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Multi-station deep learning on geodetic time series
detects slow slip events in Cascadia
Giuseppe Costantino 1✉, Sophie Giffard-Roisin1, Mathilde Radiguet 1, Mauro Dalla Mura2,3, David Marsan1 &

Anne Socquet 1

Slow slip events (SSEs) originate from a slow slippage on faults that lasts from a few days to

years. A systematic and complete mapping of SSEs is key to characterizing the slip spectrum

and understanding its link with coeval seismological signals. Yet, SSE catalogues are sparse

and usually remain limited to the largest events, because the deformation transients are often

concealed in the noise of the geodetic data. Here we present a multi-station deep learning

SSE detector applied blindly to multiple raw (non-post-processed) geodetic time series. Its

power lies in an ultra-realistic synthetic training set, and in the combination of convolutional

and attention-based neural networks. Applied to real data in Cascadia over the period

2007–2022, it detects 78 SSEs, that compare well to existing independent benchmarks:

87.5% of previously catalogued SSEs are retrieved, each detection falling within a peak of

tremor activity. Our method also provides useful proxies on the SSE duration and may help

illuminate relationships between tremor chatter and the nucleation of the slow rupture. We

find an average day-long time lag between the slow deformation and the tremor chatter both

at a global- and local-temporal scale, suggesting that slow slip may drive the rupture of

nearby small asperities.
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S low slip events (SSEs) generate episodic deformation that
lasts from a few days to years1. Like earthquakes, they
originate from slip-on faults but, unlike them, do not

radiate energetic seismic waves. In the mid-1990s, Global Navi-
gation Satellite System (GNSS) networks started to continuously
monitor the ground displacement, providing evidence that SSEs
are a major mechanism responsible for the release of stress in
plate boundaries, as a complement to seismic rupture2–6. This
constituted a change of paradigm for the understanding of the
earthquake cycle and of the mechanics of the fault interface.
Twenty years later, the characterization of the full slip spectrum
and the understanding of the link between slow slip and the
associated seismological signals are hindered by our capacity to
detect slow slip events in a systematic manner, more particularly
those of low magnitude (typically lower than Mw 6), even though
a systematic and complete mapping of SSEs on faults is key for
understanding the complex physical interactions between slow
aseismic slip and earthquakes. Indeed, the small deformation
transients associated with an SSE are often concealed in the
noise7,8, making it difficult to precisely characterize the slip
spectrum and provide fruitful insights into the fault
mechanics5,9,10. Studies dealing with the detection and analysis of
SSEs often rely on dedicated signal analysis, involving visual
inspection of the data, data selection, denoising, filtering, geodetic
expertize, dedicated modeling methods with a fine-tuning of the
parameters, and also often complementary data such as catalogs
of tremor or low-frequency earthquakes (LFEs)8,11–14. Tremors
and LFEs are weakly emergent micro-seismicity, or micro-
seismicity with low-frequency content often accompanying SSEs
in certain subduction zones15,16.

The development of in-situ geophysical monitoring generates
nowadays huge data sets, and machine learning techniques have
been largely assimilated and used by the seismological commu-
nity to improve earthquake detection and characterization6,17–19,
generating catalogs with unprecedentedly high quality20,21 and
knowledge shifts22,23. However, up to now, such techniques could
not be successfully applied to the analysis of geodetic data and
slow slip event detection because of two main reasons: (1) too few
true labels exist to train machine learning-based methods, which
we tackle by generating a realistic synthetic training data set, (2)
the signal-to-noise ratio is extremely low in geodetic data24,25,
meaning that we are at the limit of detection capacity. One
possibility is to first pre-process the data to remove undesired
signals such as seasonal variations, common modes, and post-
seismic relaxation signals (via denoising, filtering, trajectory
modeling, or independent-component-analysis-based inversion),
but this is at the cost of possibly corrupting the data. Trajectory
models are often used to subtract the contribution due to seasonal
variations in the GNSS time series. Yet, this can lead, in some
cases, to poor noise characterization since seasonal variations can
have different amplitudes in the whole time series and a signal
shape that is not necessarily fully reproduced by a simple sum of
sine and cosine functions. This approach can thus introduce some
spurious transient signals which could be erroneously modeled as
slow slip events. Another possibility would be to use
independent-component-analysis-based methods to extract the
seasonal variations. However, the extracted components might
contain some useful signals as well as some noise characteristics
that could not be removed (e.g., specific harmonics or spatio-
temporal patterns). Hence, the main motivation of this work is
that we do not want to model any GNSS-constitutive signals, but
use the non-post-processed GNSS time series as they are, by
relying on a deep-learning model which should be able to learn
the noise signature, and therefore separate the noise from the
relevant information (here, slow slip events). In order to develop
an end-to-end model (which does not require any manual

intermediate step) capable of dealing with non-post-processed
geodetic measurements, it is necessary, on one hand, to set up
advanced methods to generate realistic noise, taking into account
the spatial correlation between stations as well as the large
number of data gaps present in the GNSS time series. On the
other hand, it involves developing a specific deep-learning model
able to treat multiple stations simultaneously, using a relevant
spatial stacking of the signals (driven by our physics-based
knowledge of the slow slip events) in addition to a temporal
analysis. We address these two major drawbacks in our new
approach and present SSEgenerator and SSEdetector, an end-to-
end deep-learning-based detector, combining the spatiotemporal
generation of synthetic daily GNSS position time series contain-
ing modeled slow deformation (SSEgenerator), and a Convolu-
tional Neural Network (CNN) and a Transformer neural network
with an attention mechanism (SSEdetector), that proves effective
in detecting slow slip events in raw GNSS position time series
from a large geodetic network containing more than 100 stations,
both on synthetic and on real data.

Overall strategy
In this study, we build two tools: (1) SSEgenerator, which gen-
erates synthetic GNSS time series incorporating both realistic
noise and the deformation signal due to synthetic slow slip events
along the Cascadia subduction zone, and (2) SSEdetector, which
detects slow slip events in 135 GNSS time series by means of
deep-learning techniques. The overall strategy is to train the
SSEdetector to reveal the presence of a slow slip event in a fixed-
size temporal window, here 60 days, and to apply the detection
procedure on real GNSS data with a window sliding over time.
We first create 60,000 (60-day) samples of synthetic GNSS
position time series using an SSEgenerator, which are then fed to
the SSEdetector for the training process. Half of the training
samples contain only noise, with the remaining half containing an
SSE of various sizes and depths along the subduction interface.
Thanks to this procedure, the SSEdetector can evaluate the
probability of whether or not an SSE is occurring in the window,
yet it does not allow it to determine its position on the fault. It is
important to note that the detection is also linked to the GNSS
network in Cascadia. On real data, the detection is applied to each
time step and provides the probability of occurrence of a slow slip
event over time. We first apply this strategy to synthetic data to
evaluate the detection power of the method. Then, we apply
SSEdetector on real GNSS time series and compare our results
with the SSE catalog from Michel et al.12, who used a different
(independent-component-analysis-based) signal processing tech-
nique, and with the tremor rate.

Results
SSEgenerator: construction of the synthetic data set. We choose
the Cascadia subduction zone as the target region because (1) a
link between slow deformation and tremor activity has been
assessed16 and a high-quality tremor catalog is available26; (2) a
preliminary catalog of SSEs has recently been proposed during
the period 2007–2017 by Michel et al.12 based on time-series
decomposition via independent-component analysis. This pro-
posed catalog will be used for comparison and baseline for our
results, which are expected to provide a more comprehensive
catalog that will better show the link between slow deformation
and tremors.
To overcome the scarcity of cataloged SSEs, we train

SSEdetector on synthetic data, consisting of simulated sets of
GNSS time series for the full station network. Each group of
signals (60 days and 135 stations) is considered a single input
unit. In order to be able to detect SSEs in real raw time series,
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several characteristics need to be present in these synthetics. First,
they must contain a wide range of realistic background signals at
the level of the GNSS network, i.e., spatially and temporally
correlated realistic noise time series. On the other hand, while a
subset of the samples (negative samples) will only consist of
background noise, another subset must also include an SSE signal.
Here, we use a training database containing half positive and half
negative samples. For this, we model SSE signals that are realistic
enough compared to real transients of aseismic deformation. The
modeled signals do not propagate over space. Finally, the
synthetics should also carry realistic missing data recordings, as
many GNSS stations have data gaps in practice.
First, we thus generate realistic synthetic time series, that

reproduce the spatial and temporal correlated noise of the data
acquired by the GNSS network, based on the method developed
by Costantino et al.25. This database of 60,000 synthetic time
series is derived from real GNSS time series (details in section
SSEgenerator: Generation of realistic noise time series). We select
data in the periods 2007–2014 and 2018–2022 as sources for the
noise generation, while we keep data in the period 2014–2017 as
an independent test data set (details in section SSEgenerator: data
selection).
In order to create the positive samples (time series containing

an SSE), we model 30,000 dislocations (approximated as a point
source) distributed along the Cascadia subduction interface (see
Fig. 1b) following the slab2 geometry27 (detailed procedure in
section SSEgenerator: Modeling of synthetic slow slip events). The
focal mechanism of the synthetic ruptures approximates a thrust,
with rake angle following a uniform distribution (from 75 to 100∘)
and strike and dip defined by the geometry of the slab. The
magnitude of the synthetic SSEs is drawn from a uniform

probability distribution (from Mw 6 to 7). Their depths follow the
slab geometry and are taken from 0 to 60 km, with further
variability of ± 10 km. Such a variability in the depth allows us to
better generalize over different slab models and, most impor-
tantly, on their fitting to real GNSS data. We further assign each
event a stress drop modeled from published scaling laws28. We
use the Okada dislocation model29 to compute static displace-
ments at each real GNSS station. We model synthetic SSE signals
as sigmoidal-shaped transients, with duration following a
uniform distribution (from 10 to 30 days). Eventually, we
compute a database of 30,000 synthetic SSE transients, where
the SSE signal is added to the positive samples (placed in the
middle of the 60-day window).
The synthetic data set is thus made of 60,000 samples and

labels, equally split into pure noise (labeled as 0) and signal
(labeled as 1) with different nuances of signal-to-noise ratio,
resulting both from different station noise levels and differences
in magnitude and location so that the deep-learning method
effectively learns to detect a variety of slow deformation transients
from the background noise. The data set is further split into three
independent training (60%), validation (20%), and test (20%) sets,
with the latter being used after the training phase only.

SSEdetector: high-level architecture. SSEdetector is a deep
neural network made of a CNN30 and a Transformer network31

that are sequentially connected (detailed structure in section
SSEdetector: Detailed architecture). We constructed the CNN to
be a deep spatial-temporal encoder, that behaves as a feature
extractor. The structure of the encoder is a deep cascade of
1-dimensional temporal convolutional block sequences and

Ultra-realistic artificial noise Synthetic SSE signals Synthetic GNSS time series

a. SSEgenerator b.

c. SSEdetector

1 / 0

Feature extraction
Convolutional Neural Network

Attention mechanism
Transformer

Detection
probability

Fig. 1 Schematic architecture of SSEgenerator and SSEdetector. a Overview of the synthetic data generation (SSEgenerator). In the matrix, each row
represents the detrended GNSS position time series for a given station, color-coded by the value of the position. The 135 GNSS stations considered in this
study are here shown sorted by latitude. The synthetic static displacement model (cf. b panel), due to a Mw6.5 event, at each station is convolved to a
sigmoid to model the SSE transient, and is added to the ultra-realistic artificial noise to build synthetic GNSS time series. b Location of the GNSS stations of
MAGNET network used in this study (red triangles). An example of synthetic dislocation is represented by the black rectangle, with arrows showing the
modeled static displacement field. The heatmap indicates the locations of the synthetic ruptures considered in this study, color-coded by the slab depth.
The dashed black contour represents the tremor locations from the PNSN catalog. c High-level representation of the architecture of SSEdetector. The input
GNSS time series are first convolved in the time domain. Then, the Transformer computes similarities between samples of each station, learning self-
attention weights to discriminate between the relevant parts of the signals (here, slow slip transients) and the rest (e.g., background noise), and a
probability value is provided depending on whether slow deformation has been found in the data.
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spatial pooling layers. The depth of the feature extractor guar-
antees: (1) a high expressive power, i.e., detailed low-level spa-
tiotemporal features, (2) robustness to data gaps, since their
propagation is kept limited to the first layers thanks to a cascade
of pooling operators, and (3) limited overfit of the model on the
station patterns, thanks to the spatial pooling operation. The
decisive component of our architecture is the Transformer net-
work, placed right after the deep CNN encoder. The role of the
Transformer is to apply a temporal self-attention mechanism to
the features computed by the CNN. As humans, we instinctively
focus just on particular fragments of data when looking for any
specific patterns. We wanted to replicate such a behavior in our
methodology, leading to a network able to enhance crucial por-
tions of the data and neglect the irrelevant ones. This is done by
assigning a weight to the data, with those weights being learned
by finding significant connections between data samples and by
relying on a priori knowledge of the labels, i.e., whether there is
an SSE or not. As a result, our Transformer has learned (1) to
precisely identify the timing of the aseismic deformation tran-
sients in the GNSS time series and (2) to focus on it by assigning a
weight close to zero to the rest of the time window. We further
guide the process of finding slow deformation transients through
a specific supervised learning classification process. First, the
disclosed outputs of the Transformer are averaged and passed
through a sigmoid activation function. The output values are a
detection probability lying in the (0,1) range and can be further
interpreted as a confidence measure of the method. Second, we
train the SSEdetector by minimizing the binary cross-entropy loss
between the target and the predicted labels (details in section
Training details). The combination of the two strategies allows
SSEdetector to be successfully applied in a real context because
(1) we can run our detector on 1-day-shift windows of real data
and collect an output value for each day used to build a temporal
probability curve, (2) thanks to the Transformer neural network,
such a curve will be smooth and the value of probability will
gradually increase in time as SSEdetector identifies slow defor-
mation in the GNSS time series.

Application to the synthetic test set: detection threshold. We
test the SSEdetector against unseen synthetic samples and we
analyze the results quantitatively. We build a synthetic test data
set from GNSS data in the period 2018–2022 to limit the influ-
ence of data gaps (details in the section “SSEgenerator: data
selection”). We generate events down to magnitude 5.5 to better
constrain the detection limit at low magnitudes. First, the prob-
ability p output by SSEdetector for each test sample must be
classified (i.e., either “noise” or “SSE”). We compute the ROC
(receiving operating characteristic) curve as a function of the
magnitude, with magnitudes higher than a given threshold, as
shown in Fig. 2a. The curves represent the false positive rate
(FPR, the probability of an actual negative being incorrectly
classified as positive) as a function of the true positive rate (TPR,
the probability that an actual positive will test positive). They are
obtained by selecting the (positive) events whose magnitude is
higher than a set of “limit” magnitudes with increments of 0.2.
The negative sample set is the same for all the curves so that each
curve describes the increment of discriminative SSE power with
respect to the noise Each point of the curve is computed with a
different detection threshold pθ, such that a sample is classified as
SSE when p > pθ. Three threshold choices (0.4, 0.5, 0.6) are
marked in Fig. 2a. As shown in the figure, the higher the mag-
nitude, the higher the number of true positives. When the
threshold is high (e.g., 0.6) the model is more conservative: the
false positive rate decreases, yet as well as the number of true
positives. On the contrary, when the threshold is lower (e.g., 0.4),

more events can be correctly detected, at the cost of introducing
more false positives. In this study, we choose pθ= 0.5 to have a
trade-off between the ability to reveal potentially small SSEs (less
false negatives, thus more true positives) and the introduction of
false positives. This threshold will be used both for further ana-
lyses of synthetic data and for the detection of slow slip events in
real data.
We obtain a further measure of the sensitivity of our model by

computing the true positive rate as a function of the magnitude,
as shown in Fig. 2b. On a global scale, the sensitivity increases
with the signal-to-noise ratio (SNR), which also shows that there
exists an SNR threshold limit for any SSE detection. This
threshold is mainly linked to the magnitude of the event, rather
than the moment rate. Thus, the ability of SSE detection is mostly
influenced by the signal-to-noise ratio rather than the event
duration (cf. Supplementary Fig. 1). We compute the sensitivity
as a function of the spatial coordinates of the SSE, by deriving a
synthetic proxy as the magnitude threshold under which the TPR
is smaller than 0.7 on a spatial neighborhood of approximately 50
km. We can see from Fig. 2c that the detection power is related to
the density of stations in the GNSS network, as well as to the
distance between the rupture and the nearest station, and the
rupture depth. When the density of GNSS stations is not high
enough, our resolution power decreases as well as the reliability of
the prediction. In those cases, we can only detect high-magnitude
SSEs. This is also the case on the eastern side of the targeted
region where the SSE sources are deeper because of the slab
geometry (Fig. 1b), even in locations where the density of stations
is higher. In this case, the magnitude threshold increases because
these events are more difficult to detect.

Continuous SSE detection in Cascadia from raw GNSS time
series during 2007–2022
Overall characteristics of the detected events. In order to evaluate
how SSEdetector performs on real continuous data, we applied it
to non-post-processed daily GNSS position time series in Cas-
cadia for the period 2007–2022. SSEdetector scans the data with a
60-day sliding window (1-day stride), providing a probability of
detection for the central day in each window. Figure 3a shows the
probability of slow slip event detection (in blue) together with the
tremor activity over the period 2007–2022 (in gray). We consider
having a reliable detection when the probability value exceeds 0.5.
We find 78 slow slip events over the period 2007–2022, with
durations ranging from 2 to 79 days. We find 55 slow slip events
in the period 2007–2017, to be compared with the 40 detections
of the catalog of Michel et al.12 (Table 1). We detected 35 of the
40 (87.5%) cataloged SSEs. Three of the missed SSEs have a
magnitude smaller than 5.5, and one of them has a magnitude of
5.86. The remaining one has a magnitude of 6.03. We show their
location in Supplementary Fig. 2, superimposed on the magnitude
threshold map derived for SSEdetector (see Fig. 2b). Given their
location, the five missed events have magnitudes that are below
the magnitude resolution limit (from 6 to 6.7, see Supplementary
Fig. 2). The remaining 20 events may be associated with new
undetected SSEs. We also found 23 new events in the period
2017–2022, which were not covered by Michel et al.12. We fixed
the detection threshold to its default value of 0.5, i.e., the model
detects an event with a 50% confidence. Yet, this threshold can be
modified to meet specific needs: if high-confidence detections are
required, the threshold can be raised; conversely, it can be low-
ered to capture more events with lower confidence. Interestingly,
the two SSEs from Michel et al.12 with magnitude 5.86 and 6.03,
which were missed with a 0.5 probability threshold, can be
retrieved when lowering it to 0.4, as shown in Supplementary
Fig. 18.
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We also analyze the shape of the static displacement field in
correspondence with the detected SSEs (cf. Supplementary Fig. 3).
We compute the static displacement field by taking the median
displacement over three days and subtracting the displacement
value at each station corresponding to the dates of the SSE. We
find a good accordance with independent studies12,32,33. More-
over, many of the events found after 2018, as well as the new
events detected in the period analyzed by Michel et al.12, have a
displacement field suggesting that they are correct detections.

Analysis of the SSE durations. The shape of the probability curve
gives insights into how the SSEdetector reveals slow slip events
from raw GNSS time series (see Fig. 3). The probability curve in
correspondence with an event has a bell shape: it grows until a
maximum value, then it smoothly decreases when the model does
not see any displacement associated with slow deformation in the
data anymore. We use this property of the probability curve to
extract a proxy on the detected SSE duration, based on the time
span associated with the probability curve exceeding 0.5. We
present the duration distribution in Fig. 4 as well as a summary in
Table 1. We detect most of the SSEs found by Michel et al., but we
also find 43 additional events, not only in the 2018–2022 period
which was not investigated by Michel et al., but also within the
2007–2017 time window that they analyzed, suggesting that our
method is more sensitive. We find potential slow slip events at all
scales of durations (from 2 to 79 days). Michel et al. hardly detect

SSEs that last less than 15 days, probably due to temporal data
smoothing12, while we retrieve shorter events (less than 10 days)
since we use raw time series, meaning that our method has a
better temporal resolution. However, these short events are
associated with higher uncertainties, corresponding to a lower
probability value, and the potential implications of this finding
should be interpreted with caution. In Fig. 4b, we show a com-
parison between the SSE durations of Michel et al.’s12 cataloged
events and ours. This plot is made by considering all the com-
binations between events in our catalog and in the Michel et al.
one. Each horizontal alignment represents an event in our catalog
that is split into sub-events in the Michel et al. catalog, while
vertical alignments show events in the Michel et al. catalog cor-
responding to sub-events in our catalog. We find that the dura-
tions are in good accordance for a large number of events, for
which the overlap is often higher than 70%, both for small- and
large-magnitude ones. We can also identify, from Fig. 4b, that
some events are separated in one method while identified as one
single SSE in the other: this is the case for the 55-day-long event
from Michel et al.12, which was paired with 3 SSEdetector sub-
events (see Fig. 3d and the rectangle in Fig. 4b). The majority of
the points located off the identity line (the diagonal) are thus sub-
events for which the grouping differs in the two catalogs. As more
points are below the diagonal than above, we can see that the
SSEdetector tends to separate the detections more. We interpret
this as a possible increase in the detection precision, yet a

c.a.

b.

Fig. 2 Performance of SSEdetector on synthetic data. a ROC (receiver operating characteristic) curve as a function of the magnitude greater than an
incremental magnitude threshold (see lower legend), shown as different colors. The AUC (area under the curve) is shown in the legend for each curve (an
AUC of 1 is associated with the perfect detector). For each curve, a detection threshold equal to 0.4, 0.5, and 0.6 is marked (see upper legend). b The blue
curve represents the true positive rate (probability that an actual positive will test positive), computed on synthetic data, as a function of the magnitude.
c Map showing the spatial distribution of the magnitude threshold for reliable detection, computed, for each spatial bin, as the minimum magnitude
corresponding to a true positive rate value of 0.7.

COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-023-01107-7 ARTICLE

COMMUNICATIONS EARTH & ENVIRONMENT |           (2023) 4:435 | https://doi.org/10.1038/s43247-023-01107-7 | www.nature.com/commsenv 5

www.nature.com/commsenv
www.nature.com/commsenv


validation with an independent acquisition data set is needed
since the separation into sub-events strongly depends on the
threshold applied to the detection probability to define a slow slip
event (0.5 in this study). Also, a few points above the diagonal
represent events that were split into sub-events by Michel et al.,

which our model tends to detect as a single event. It should be
noted that the event duration is related to the choice of the
threshold and thus influenced by a priori choices, making it hard
to compare different catalogs. Also, the comparison of events in
the same catalog might be biased because the threshold may affect
the events differently depending on differences in the signal-to-
noise ratio.

Validation against tremors. In order to have an independent
validation, we compare our results with tremor activity from the
Pacific Northwest Seismic Network (PNSN) catalog26 between
2009-2022 and Ide’s catalog34 catalog between 2006-2009, shown
in gray in Fig. 3. We show the location of the tremors in our
catalogs with the dashed black contour in Fig. 1b. From a qua-
litative point of view, we can see that the detection probability
curve seems to align well with the number of tremors per day,
throughout the whole period. This is also true for the 20 possible
newly detected events that were not present in previous catalogs,
for example during the period after 2017 (see Fig. 3c), but also in
2016–2017, where we detected 7 possible events that were not
previously cataloged (see Fig. 3b). The excellent similarity

a.

b.

c.

d.

Fig. 3 Overview of the performance of SSEdetector on real raw GNSS time series. The blue curves show the probability of detecting a slow slip event
(output by SSEdetector) in 60-day sliding windows centered on a given date. Gray bars represent the number of tremors per day, smoothed (gaussian
smoothing, σ= 2 days) in the gray curve. Red horizontal segments represent the known events cataloged by ref. 12. The a panel shows the global
performance of the SSEdetector over 2007–2022. The red arrow indicates the time window analyzed by Michel et al., while the green arrows describe the
two periods from which the synthetic training samples have been derived. The gray rectangle indicates the period which was not covered by the PNSN
catalog. In this period, data from Ide, 201234 has been used. The b, c, and d panels show zooms in 2016–2017, 2019–2021, and 2017 (January to July),
respectively.

Table 1 Comparison of the number of detections from
SSEdetector with respect to the catalog from Michel et al.12.

Period Method

Michel et al. SSEdetector

2007–2017 Common with
Michel et al.

40 35

Not detected by
Michel et al.

0 20

2017–2022 0 23

We distinguish detections in 2007–2017 (the same period analyzed by Michel et al.), and in
2017–2022. We further discriminate, in 2007–2017, between events in common with Michel
et al., and new events in the same period.
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between tremors and our detections is quantitatively assessed by
computing the cross-correlation between the probability curve
and the number of tremors per day, the latter smoothed with a
Gaussian filter (σ= 1.5 days), as a function of the time shift
between the two curves (Fig. 5a). The interval 2007–2010 has
been excluded from Fig. 5a in order to consider the period cov-
ered by the PNSN catalog only. The maximum correlation value
is around 0.58 and is obtained for a time shift between 1 and
2 days. This shows that, at a global scale, the probability peaks are
coeval with the peaks of tremor activity.
We also make a further comparison at the local scale for each

individual detected SSE. In Fig. 5b we observe that most of the
individual detected SSEs show a correlation larger than 0.4 with
the coeval peak of tremor. SSE and tremor signals are offset by
about 2 days on average (see Fig. 5c). This result, obtained on
windows of month-long scale, seems consistent with the decade-
long correlation shown in Fig. 5a, suggesting that the found large-
scale trend is also true at a smaller scale. This may suggest that the
slow deformation, for which the detection probability is a proxy,
precedes the tremor chatter by a few days, with potential
implications on the nucleation of the slow rupture.
We compare the tremor peak duration (see details in section

“Calculation of tremor durations”) to the SSE duration in Fig. 5d
for all the events that have been also considered in Fig. 5b. The
figure shows a correspondence between slow slip duration and
coeval tremor activity duration: most of the events are associated
with a peak of tremor activity of close duration. This is true also
for large events, up to 80 days. This finding gives an insight that
our deep-learning-based method, blindly applied to raw GNSS
time series, achieves reliable results. Yet, this result should be
taken with caution, since it is strongly dependent on the choice of
the window of observation (see sections “Calculation of tremor
durations” and “Computation of local- and global-scale correla-
tions” for further details).

Validity of the duration proxy against temporal smoothing: the
March 2017 slow slip event. We test the first-order effectiveness
of the duration proxy computation to assess any potential

temporal smoothing effects. We focus on the Mw 6.7 slow slip
event that occurred in March 2017. We rely both on the measured
time series and on the kinematic model of the slip evolution by
Itoh et al.32. Figure 6a shows the displacement field output by
Itoh et al.’s model and its temporal evolution is shown in Fig. 6b.
We use SSEgenerator to build a random noise time series, to
which we add the modeled displacement time series to build a
synthetic time series reproducing the March 2017 SSE, as shown
in Fig. 6c. Figure 6e shows the probability curve output by SSE-
detector on the synthetic time series (in blue), to be also com-
pared to the prediction associated with the same event in real
GNSS data (in red, see also Fig. 3d). By the analysis of the
probability curve, we estimate a duration of 28 days, comparable
with the duration inferred by Itoh et al.32 (30 days). A 3-day time
shift is found between the probability curve and the slip evolu-
tion, represented by the moment rate function in Fig. 6d, which
can be imputed to the specific realization of synthetic noise.
When comparing the probability curve associated with the same
event as computed from real data (red curve in 6e), we find a
better resemblance, consistent also with the catalog from Michel
et al. (see Fig. 3d), which demonstrates that SSEdetector does not
suffer from any first-order temporal smoothing issues.

Robustness of SSEdetector to variations in the source char-
acteristics. We perform an extensive study to test how the SSE-
detector performs on SSEs that exhibit characteristics in the
source parameters that differ from the synthetic data set used for
the training. We train the SSEdetector on synthetic dislocations
with fixed aspect ratios and shapes. However, SSEs in Cascadia
generally have aspect ratios between 3 and 13 and exhibit het-
erogeneous slip along strike with pulse-like propagation12,35. We
create a synthetic test sample containing three slow slip events
that propagate in space and time, to simulate a real large SSE that
lasts 60 days and propagates southwards, as shown in Supple-
mentary Fig. 19. The detection probability and the associated
duration proxy suggest that the probability curve can still be used
to retrieve SSEs that last longer than 30 days. Thanks to its multi-
station approach, our method detects slices of slow slip events

a. b.

Fig. 4 Distribution of the detected SSEs and comparison with the independent catalog from Michel et al.12. a Cumulative histogram of SSEdetector
inferred durations. Blue bars represent the 35 cataloged events by Michel et al.12 that have been successfully retrieved. Orange bars show the 20 additional
events that have been discovered within the time window analyzed by Michel et al., while green ones represent the 23 events found in the time period
2017–2022, not covered by the catalog of Michel et al. b Event durations from Michel et al.’s catalog with respect to the durations obtained by SSEdetector.
Events are color-coded by the overlap percentage (details in section Overlap percentage calculation). The black rectangle represents an example of a large
event found by Michel et al.12, that is split into three sub-events by SSEdetector.
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through time and space (station dimension), regardless of the
training configuration. This can be seen as a stage in which some
building blocks are provided to the model, that combines them
during the testing phase to detect events having different shapes
and sizes. For this reason, SSEdetector can be used to generalize,
at first order, over more complex events in real data without the
need to build a complex train data set, which should also account
for realistic event propagation mechanisms, yet difficult to model.
We also test the generalization ability of SSEdetector over

shorter (less than 10 days) events. We build a synthetic sample of
a 3-day slow slip event. As shown in Supplementary Fig. 20, the
SSEdetector is able to correctly detect it, with an inferred duration
of 4 days, suggesting that it has learned what the first-order
temporal signature of the signals of interest, being able to detect
them also at shorter scales.
SSEdetector is applied to real data by following a sliding-

window strategy. In real data, two events could be found in the
same window, most likely one in the northern and the other in

the southern part. For this, we build two synthetic tests, the first
test with two 20-day-long events that do not occur at the same
time, and the second one with two 20-day-long synchronous
events. Supplementary Figs. 20 and 21 show the results for both
cases, which suggest that SSEdetector can generalize well when
there are two events in the same window, also corroborating the
results found on real data.

Sensitivity study. We analyze the sensitivity of SSEdetector with
respect to the number of stations. We construct an alternative test
selecting 352 GNSS stations (see Supplementary Fig. 5), which is
the number of stations used by Michel et al.12. The 217 extra
stations have larger percentages of missing data compared to the
initial 135 stations (cf. Supplementary Fig. 4). We train and test
SSEdetector with 352 time series and we report the results in
Supplementary Figs. 6–7. We observe that the results are similar,
with an excellent alignment with tremors and similar correlation
and lag values, although with this setting the detection power

a. b.

d.c.

Fig. 5 Validation of SSEdetector performance against tremor activity in 2010–2022. a Global-scale cross-correlation between the full-length SSEdetector
output probability and the number of tremors per day, as a function of the time shift between the two curves. b Local-scale maximum value of cross-
correlation for each SSE and tremor window, centered on the SSE duration, as a function of the SSE duration, color-coded by the associated time lag
between tremor and SSE (positive lag means deformation precedes tremor). Events having a zero-lag cross-correlation (correlation coefficient) lower than
0.4 are marked with an empty point. c Histogram of the time lags computed in the b panel. d SSE durations as a function of the tremor durations for the
events in the b panel which have a correlation greater than 0.4. The solid black line represents the identity line, while the dashed gray line is the maximum
tremor duration that can be attained for a given SSE duration, that is SSE duration+ 14 days (see section “Computation of local- and global-scale
correlations’’).
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slightly decreases, probably due to a larger number of missing
data, suggesting that there is a trade-off between the number of
GNSS stations and the number of missing data.
We also test the ability of SSEdetector to identify SSEs in a

sub-region only (even if it is trained with a large-scale network.
For that, we test SSEdetector (trained on 135 stations), without
re-training, on a subset of the GNSS network, situated in the
northern part of Cascadia. To this end, we replace with zeros all
the data associated with stations located at latitudes lower than
47 degrees (see Supplementary Fig. 8). Similarly, we find that
SSEdetector retrieves all the events that were found by Michel
et al.12 and the correlation with tremors that occur in this sub-
region is still high, with a global-scale cross-correlation of 0.5
(cf. Supplementary Figs. 9–10). This means that the model is
robust against long periods of missing data and, thanks to the
spatial pooling strategy, can generalize over different settings of
stations and obtain some information on the localization.
We found similar results for SSEs in the southern part, with a
lower correlation with tremors, probably because of the higher
noise level in south Cascadia, as shown in Supplementary
Figs. 16–17.

Finally, we test the SSEdetector against other possible deep-
learning models that could be used for detection. We report in
Supplementary Figs. 11–12, the results were obtained by replacing
the one-dimensional convolutional layers with two-dimensional
convolutions on time series sorted by latitude (as shown in
Fig. 1a). This type of architecture was used in studies having
similar multi-station time-series data36. We observe that the
results on real data are not satisfactory because of too high a rate
of false detections and a lower temporal resolution than
SSEdetector (in other words, short SSEs are not retrieved). This
suggests that our specific model architecture, handling in different

ways the time dimension and the station dimension, might be
more suited to multi-station time-series data sets.

Discussion
In this study, we use a multi-station approach that proves efficient
in detecting slow slip events in raw GNSS time series even in the
presence of SSE migrations12,32,33. Thanks to SSEdetector, we are
able to detect 87 slow slip events with durations from 2 to
79 days, with an average limit magnitude of about 6.4 in north
Cascadia and 6.2 in south Cascadia computed on the synthetic
test set (see Fig. 2b). The magnitude of the smallest detected SSE
in common with Michel et al. is 5.42, with a corresponding
duration of 8.5 days. One current limitation of this approach is
that the location information is not directly inferred. In this
direction, some efforts should be made to develop a method for
characterizing slow slip events after the detection in order to have
information on the location, but also on the magnitude, of the
slow rupture.
We apply our methodology to the Cascadia subduction zone

because it is the area where independent benchmarks exist and it
is thus possible to validate a new method. However, the applic-
ability of SSEgenerator and SSEdetector to other subduction
zones is possible. The current approach is, however, region-
specific. In fact, the characteristics of the targeted zone affect the
structure of the synthetic data, thus a method trained on a specific
region could have poor performance if tested on another one
without re-training. This problem can be addressed by generating
multiple data sets associated with different regions and combin-
ing them for the training. Also, we focus on the Cascadia sub-
duction zone, where not much regular seismicity occurs, making
it a prototypical test zone when looking for slow earthquakes.

b.

c.

a.

d.

e.

Fig. 6 Temporal smoothing analysis on a synthetic model of the March 2017 slow slip event. a Model of the static displacement associated with the
March 2017 slow slip event by Itoh et al.32 (black arrows). The red triangles represent the 135 stations used in this study and the points show the tremor
location from March 1 to April 30, 2017, color-coded by date of occurrence. b Matrix showing the temporal evolution of Itoh et al.’s model. Each row
represents the detrended E-W GNSS position time series for a given station, color-coded by the position value. c Detrended E-W synthetic time series
(sum of the Itoh et al.’s model and a realization of artificial noise output by SSEgenerator, color-coded by position value. dMoment rate function associated
with the slip evolution of the model by Itoh et al. e The blue curve represents the daily probability output by the SSEdetector from the synthetic time series
shown in the c panel. The red curve shows the probability curve associated with the prediction of SSEdetector on the March 2017 slow slip event on real
GNSS data (see also Fig. 3d).
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When addressing other regions, such as Japan, for example, the
influence of earthquakes or post-seismic relaxation signals could
make the problem more complex. This extension goes beyond the
scope of this study, yet we think that it will be essential to tackle
this issue in order to use deep-learning approaches for the
detection of SSEs in any region.

Conclusions
We developed a powerful pipeline, consisting of a realistic syn-
thetic GNSS time-series generation, SSEgenerator, and a deep-
learning classification model, SSEdetector, aimed to detect slow
slip events from a series of raw GNSS time series measured by a
station network. We built a new catalog of slow slip events in the
Cascadia subduction zone by means of SSEdetector. We found
78 slow slip events from 2007 to 2022, 35 of which are in good
accordance with the existing catalog12. The detected SSEs have
durations that range between a few days to a few months. The
detection probability curve correlates well with the occurrence of
tremor episodes, even in time periods where we found new
events. The duration of our SSEs, for the 35 known events, as well
as for the 43 new detections, are found to be similar to the coeval
tremor duration. The comparison between tremors and SSEs also
shows that, both at a local and a global temporal scale, the slow
deformation may precede the tremor chatter by a few days, with
potential implications on the link between a slow slip that could
drive the rupture of nearby small seismic asperities. This is the
first successful attempt to detect SSEs from raw GNSS time series,
and we hope that this preliminary study will lead to the detection
of SSEs in other active regions of the world.

Methods
SSEgenerator: data selection. We consider the 550 stations in the
Cascadia subduction zone, belonging to the MAGNET GNSS
network, and we select data from 2007 to 2022. We train the
SSEdetector with synthetic data whose source was affected by
different noise and data-gap patterns. We divide the data into
three periods: 2007–2014, 2014–2018, and 2018–2022. In order to
create a more diverse training set, data in the period 2007–2014
and 2018–2022 has been chosen as a source for synthetic data
generation. The period 2014–2018 was left aside and used as an
independent validation set for performance assessment on real
data. Nonetheless, since synthetic data is performed by applying a
methodology based on randomization (SSEgenerator), a test on
the whole sequence 2007–2022 is possible without overfitting.
For the two periods 2007–2014 and 2018–2022, we sorted the

GNSS stations by the total number of missing data points and we
chose the 135 stations affected by fewer data gaps as the final
subset for our study. We make sure that stations having too high
a noise do not appear in this subset. We selected 135 stations
since it represents a good compromise between the presence of
data and the longest data-gap sequence in a 60-day window.
However, we also train and test SSEdetector on 352 stations (the
same number used in the study by Michel et al.12) to compare
with a setting equivalent to the one from Michel et al.12. We
briefly discuss the results in the section “Sensitivity study”.

SSEgenerator: generation of realistic noise time series. Raw
GNSS data is first detrended at each of the 135 stations, i.e., the
linear trend is removed, where the slope and the intercept are
computed, for each station, without taking into account the data
gaps, i.e., for each station the mean over time is calculated
without considering the missing data points, and is removed from
the series. Only the linear trend is removed from the data, without
accounting for seasonal variations, common modes, or co- and
post-seismic relaxation signals, which we want to keep to have a

richer noise representation. We remove the linear trend for each
station to avoid biases in our noise generation strategy since the
variability due to the linear trend would be captured as a principal
component thus introducing spurious piece-wise linear signals in
the realistic noise. We build a matrix containing all station time
series X 2 RNt ´Ns , where Nt is the temporal length of the input
time series and Ns is the number of stations. In this study, we use
2 components (N-S and E-W) and we apply the following pro-
cedure for each component independently. Each column of X
contains a detrended time series. We proceed as follows. The X
matrix is then re-projected in another vector space through a
Principal Component Analysis (PCA), as follows. First, the data is
centered. The mean vector is computed μ 2 RNs , such that μi is
the mean of the i-th time series. The centered matrix is con-
sidered ~X ¼ X � μ, and is decomposed through Singular Value
Decomposition (SVD) to obtain the matrix of right singular
vectors V, which is the rotation matrix containing the spatial
variability of the original vector space. We further rotate the data
by means of this spatial matrix to obtain spatially uncorrelated
time series X̂ ¼ ~XV. Then, we produce X̂R, a randomized version
of X̂, by applying the iteratively refined amplitude-adjusted
Fourier transform (AAFT) method37, having globally the same
power spectrum and amplitude distribution of the input data. The
number of AAFT iterations has been set to 5 based on pre-
liminary tests. The surrogate time series are then back-projected
in the original vector space to obtain XR ¼ X̂RV

T þ μ. We fur-
ther enrich the randomized time series XR by imprinting the real
pattern of missing data for 70% of the synthetic data. We shuffle
the data gaps before imprinting them to the data, assigning a
station a data-gap sequence belonging to another station, such
that SSEdetector can better generalize over unseen test data for
the same station, which necessarily would have a different pattern
of data gaps. We leave the remaining 30% of the data as it is. We
prefer not to use any interpolation method to avoid introducing
new values in the data. Thus, we set all the missing data points to
zero, which is a neutral value with respect to the trend of the data
and the convolution operations performed by SSEdetector.
After this process, we generate sub-windows of noise time

series as follows. Given the window length WL, a uniformly
distributed random variable is generated s � Uð�WL

2 ;WL
2 Þ and the

data is circularly shifted, in time, by the amount s. Then, bNt
WL

c
contiguous (non-overlapping) windows are obtained. The circular
shift is needed in order to prevent SSEdetector from learning a
fixed temporal pattern of data gaps. Finally, by knowing the
desired number N of noise windows to compute, the surrogate
generation XR

� �
i can be repeated d N

bNt=WLce times. In our study,
we generate N= 60, 000 synthetic samples, by calling the
surrogate data generation 1,429 times and extracting 42 non-
overlapping noise windows from each randomized time series.

SSEgenerator: modeling of synthetic slow slip events. We first
generate synthetic displacements at all 135 selected stations using
Okada’s dislocation model29. We draw random locations (fault
centroids), and strike and dip angles using the slab2 model27

following the subduction geometry within the area of interest (see
Fig. 1b). We let the rake angle be a uniform random variable from
75 to 100 degrees, in order to have a variability around 90 degrees
(thrust focal mechanism). For each (latitude, longitude) couple,
we extract the corresponding depth from the slab and we add
further variability, modeled as a uniformly distributed random
variable from –10 to 10 km. We allow for this variability if the
depth is at least 15 km, to prevent the ruptures from reaching the
surface. We associate each rupture with a magnitude Mw, uni-
formly generated in the range (6, 7), and we compute the
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equivalent moment as M0 ¼ 101:5Mwþ9:1. As for the SSE geo-
metry, we rely on the circular crack approximation38 to compute
the SSE radius as:

R ¼ 7
16

M0

Δσ

� �1=3

ð1Þ

where Δσ is the static stress drop. We compute the average slip on
the fault as:

�u ¼ 16
7π

Δσ

μ
R ð2Þ

where μ is the shear modulus. We assume μ= 30 GPa. By
imposing that the surface of the crack must equal a rectangular
dislocation of length L and width W, we obtain L ¼ ffiffiffiffiffi

2π
p

R. We
assume that W= L/2. Finally, we model the stress drop as a
lognormally distributed random variable. We assume the average
stress drop to be Δσ ¼ 0:05 MPa for the Cascadia subduction
zone28. We also assume that the coefficient of variation cV,
namely the ratio between the standard deviation and the mean, is
equal to 10. Hence, we generate the static stress drop as
Δσ � LognormalðμN ; σ2NÞ, where μN and σN are the mean and the
standard deviation of the underlying normal distribution,
respectively, that we derive as:

σN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðc2V þ 1Þ

q
ð3Þ

and

μN ¼ lnðΔσÞ � σ2N=2: ð4Þ
We thus obtain the (horizontal) synthetic displacement vector

Ds ¼ ðDN�S
s ;DE�W

s Þ at each station s. We model the temporal
evolution of slow slip events as a logistic function. Let D be the
E-W displacement for simplicity. In this case, we model an SSE
signal at a station s as:

dsðtÞ ¼
D

1þ e�βðt�t0Þ
ð5Þ

where β is a parameter associated with the growth rate of the
curve and t0 is the time corresponding to the inflection point of
the logistic function. We assume t0= 30 days, so that the signal is
centered in the 60-day window. We derive the parameter β as a
function of the slow slip event duration T. We can rewrite the
duration as T= tmax− tmin, where tmax is the time corresponding
to the post-SSE value of the signal (i.e., D), while tmin is associated
to the pre-SSE displacement (i.e., 0). Since these values are only
asymptotically reached, we introduce a threshold γ, such that tmax

and tmin are associated with ds(D− γD) and ds(γD), respectively.
We choose γ= 0.01. By rewriting the duration as T= tmax− tmin

and solving for β, we obtain:

β ¼ 2
T
ln

1
γ
� 1

� �
: ð6Þ

Finally, we generate slow slip events having uniform duration T
between 10 and 30 days. We take half of the noise samples
(30,000) and we create a positive sample (i.e., time series
containing a slow slip event) as XR+ d(t), where d(t) is a matrix
containing all the modeled time series ds(t) for each station. We
let XR contain missing data. Therefore, we do not add the signal
ds(t) where data should not be present.

SSEdetector: detailed architecture. SSEdetector is a deep neural
network obtained by the combination of a convolutional and a
Transformer neural network. The full architecture is shown in
Supplementary Fig. 13. The model takes input GNSS time series,
which can be grouped as a matrix of shape (Ns,Nt,Nc), where
Ns,Nt,Nc are the number of stations, window length and number

of components, respectively. In this study, Ns= 135,Nt= 60 days
and Nc= 2 (N-S, E-W). The basic unit of this CNN is a Con-
volutional Block. It is made of a sequence of a one-dimensional
convolutional layer in the temporal (Nt) dimension, which
computes Nf feature maps by employing a 1 × 5 kernel, followed
by a Batch Normalization39 and a ReLu activation function40. We
will refer to this unit as ConvBlock(Nf) for the rest of the para-
graph (see Supplementary Fig. 13). We alternate convolutional
operations in the temporal dimension with pooling operations in
the station dimension (max-pooling with a kernel of 3) and we
replicate this structure as long as the spatial (station) dimension is
reduced to 1. To this end, we create a sequence of 3 Conv-
Block( ⋅ ) + max-pooling. As an example, the number of stations
after the first pooling layer is reduced from 135 to 45. At each
ConvBlock( ⋅ ), we multiply by 4 the number of computed feature
maps Nf. At the end of the CNN, the computed features have
shape (Nt ;N

final
f ), with Nfinal

f ¼ 256.
This feature matrix is given as input to a Transformer neural

network. We first use a Positional Embedding to encode the
temporal sequence. We do not impose any kind of pre-computed
embedding, but we use a learnable matrix of shape (Nt ;N

final
f ).

The learned embeddings are added to the feature matrix (i.e., the
output of the CNN). The embedded inputs are then fed to a
Transformer neural network31, whose architecture is detailed in
Supplementary Fig. 14. Here, the global (additive) self-attention
of the embedded CNN features is computed as:

ηt1;t2 ¼ Wa tanh WT
1 ht1 þWT

2 ht2 þ bh
� �

þ ba; ð7Þ

at1;t2 ¼ softmax
	
ηt1;t2


 ¼ eηt1 ;t2

∑t2
eηt1 ;t2

; ð8Þ

ct1 ¼ ∑
t2
at1;t2 � ht2 ; ð9Þ

where W represents a learnable weight matrix and b a bias vector.
The matrices ht1 and ht2 are the hidden-state representations at
time t1 and t2, respectively. The matrix at1;t2 contains the
attention scores for the time steps t1 and t2. Here, a context vector
is computed as the weighted sum of the hidden-state representa-
tions by the attention scores. The context vector contains the
importance at a given time step based on all the features in the
window. The contextual information is then added to the
Transformer inputs. Then, a position-wise Feed-Forward layer
(with a dropout rate of 0.1) is employed to add further non-
linearity. After the Transformer network, a Global Average
Pooling in the temporal dimension (Nt) is employed to gather the
transformed features and to output a vector summarizing the
temporal information. A Dropout is then added as a form of
regularization to reduce overfitting41, with dropout rate δ= 0.2.
In the end, we use a fully connected layer with one output, with a
sigmoid activation function to express the probability of SSE
detection.

Training details. We perform a mini-batch training42 (batch size
of 128 samples) by minimizing the binary cross-entropy (BCE)
loss between the target labels y and the predictions ŷ (a prob-
ability estimate):

BCEðy; ŷÞ ¼ �y lnðŷÞ � ð1� yÞ lnð1� ŷÞ: ð10Þ
The BCE loss is commonly used for binary classification

problems (detection is a binary classification). We use the ADAM
method for the optimization43 with a learning rate λ= 10−3

which has been experimentally chosen. We schedule the learning
rate such that it is reduced during training iterations and we stop

COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-023-01107-7 ARTICLE

COMMUNICATIONS EARTH & ENVIRONMENT |           (2023) 4:435 | https://doi.org/10.1038/s43247-023-01107-7 | www.nature.com/commsenv 11

www.nature.com/commsenv
www.nature.com/commsenv


the training when the validation loss does not improve for 50
consecutive epochs. We initialized the weights of the SSEdetector
with a uniform He initializer44. We implemented the code of
SSEdetector in Python using the Tensorflow and Keras
libraries45,46. We run the training on NVIDIA Tesla A100
Graphics Processing Units (GPUs). The training of SSEdetector
takes less than 2 h. The inference on the whole 15-year sequence
(2007–2022) takes a few seconds.

Calculation of tremor durations. We compute the durations of
tremor bursts using the notion of topographic prominence,
explained in the following. We rely on the software imple-
mentation from the SciPy Python library47. Given a peak in the
curve, the topographic prominence is informally defined as the
minimum elevation that needs to be descended to start reaching a
higher peak. The procedure is graphically detailed in Supple-
mentary Fig. 15. We first search for peaks in the number of
tremors per day by comparison with neighboring values. In order
to avoid too many spurious local maxima, we smooth the number
of tremors per day with a Gaussian filter (σ= 1.5 days). For each
detected SSE, we search for peaks of tremors in a window given
by the SSE duration ± 3 days. For each peak of tremors that is
found, the corresponding width is computed as follows. The
topographic prominence is computed by placing a horizontal line
at the peak height h (the value of the tremor curve corresponding
to the peak). An interval is defined, corresponding to the points
where the line crosses either the signal bounds or the signal at the
slope towards a higher peak. In this interval, the minimum values
of the signal on each side are computed, representing the bases of
the peak. The topographic prominence p of the peak is then
defined as the height between the peak and its highest base value.
Then, the local height of the peak is computed as hL= h− α ⋅ p.
We set α= 0.7 in order to focus on the main tremor pulses,
discarding further noise in the curve. From the local height,
another horizontal line is considered and the peak width is
computed as the intersection point of the line with either a slope,
the vertical position of the bases, or the signal bounds, on both
sides. Finally, the total width of a tremor pulse in an SSE window
is computed by considering the earliest starting point on the left
side and the latest ending point on the right side. It must be
noticed that the derivation of the tremor duration depends on the
window length. In fact, the inferred tremor duration can saturate
to a maximum value equal to the length of the window. For this
reason, we added in Fig. 5c a dashed line corresponding to the
window length (SSE duration+ 14 days) (see section “Compu-
tation of local- and global-scale correlations”).

Computation of local- and global-scale correlations. We com-
pute the time-lagged cross-correlation between the SSE prob-
ability and the number of tremors per day (Fig. 5a, b). We smooth
the number of tremors per day with a Gaussian filter
(σ= 1.5 days). We consider a lag between –7 and 7 days, with a
1-day stride.
In the case of Fig. 5a, we compute the global correlation

coefficient by considering the whole time sequence (2010–2022).
As for Fig. 5b, we make a local analysis. For each detected SSE, we
first extract SSE and tremor slices from intervals centered on the
SSE dates ½tstartSSE � Δt; tendSSE þ Δt�, where Δt= 30 days. We first
compute the cross-correlation between the two curves to filter out
detected SSEs whose similarity with tremors is not statistically
significant, i.e., if their correlation coefficient is lower than 0.4.
We build Fig. 5b after this process.
We compute Fig. 5d by comparing the SSE and tremor

durations for all the events that had a cross-correlation higher
than 0.4. For those, we infer the tremor duration, using the

method explained in the section “Calculation of tremor
durations” on the daily tremor rate cut from an interval, with
Δt0 ¼ 7 days.

Overlap percentage calculation. In Fig. 4b we color-code the SSE
durations by the overlap percentage between a pair of events,
which we compute as the difference between the earliest end and
the latest start, divided by the sum of the event lengths. Let E1 and
E2 be two events with start and end dates given by ðtstart1 ; tend1 Þ and
ðtstart2 ; tend2 Þ and with durations given by D1 ¼ tend1 � tstart1 and
D2 ¼ tend2 � tstart2 , respectively. We compute their overlap π as:

π ¼ max 0;min tend1 ; tend2

	 
�max tstart1 ; tstart2

	 
	 

D1 þ D2

ð11Þ

Data availability
We downloaded the daily GNSS time series from the Nevada Geodetic Laboratory
solution (http://geodesy.unr.edu). The script to download the data as well as the final
slow slip event catalog are available at https://gricad-gitlab.univ-grenoble-alpes.fr/
costangi/sse-detection.

Code availability
The source code of the SSEgenerator and SSEdetector along with the pre-trained model
of the SSEdetector are available at https://gricad-gitlab.univ-grenoble-alpes.fr/costangi/
sse-detection.
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