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ABSTRACT
Ehrlichia chaffeensis is a tick-borne disease transmitted by ticks to
dogs. Few studies have mathematical modelled such tick-borne dis-
ease in dogs, and none have developed models that incorporate
different ticks’ developmental stages (discrete variable) aswell as the
duration of infection (continuous variable). In this study, we develop
and analyze a model that considers these two structural variables
using integrated semigroups theory. We address the well-posedness
of the model and investigate the existence of steady states. The
model exhibits a disease-free equilibrium and an endemic equilib-
rium. We calculate the reproduction number (T0). We establish a
necessary and sufficient condition for the bifurcation of an endemic
equilibrium. Specifically, we demonstrate that a bifurcation, either
backwardor forward, canoccur atT0 = 1, leading to the existence, or
not, of an endemic equilibrium even when T0 < 1. Finally, numerical
simulations are employed to illustrate these theoretical findings.
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1. Introduction

Ehrlichiosis are tick-borne diseases caused by obligate intracellular rickettsia bacteria
in the genera Ehrlichia [1–5]. These bacteria are classified within the group of the α-
proteobacteria, order Rickettsiales, family Anaplasmataceae, genus Ehrlichia [3,6]. This
genus consists of obligate intracellular Gram-negative bacteria [1,4,6] that mainly infect
leukocytes (such asmonocytes,macrophages, granulocytes and neutrophils), and endothe-
lial cells in mammals, and salivary glands, intestinal epithelium, and hemolymph cells of
ticks [1,7–12]. The genus Ehrlichia comprises of six recognized tick-transmitted species:
E. canis, E. muris, E. chaffeensis, E. ewingii, E. minasensis, and E. ruminantium [3,11], and
in recent times, other Ehrlichia species have been reported [7,8,11]. Going by our current
knowledge, a large number of Ehrlichia species might not have been described [11].

The reservoir hosts for Ehrlichia species include numerous wild animals, as well as
some domesticated species and livestock [6]. Some of these Ehrlichia species affect ani-
mals including pets such as cats and dogs [6,13], and a limited number have been know
to infect humans [2,4,6,13–16]. Specifically, Ehrlichia canis, E. chaffeensis, E. ewingii, E.
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muris, and E. ruminantium are members of the genus Ehrlichia known to naturally infect
various mammalian hosts such as cats, dogs, ruminants, and mice, and are responsible for
emerging zoonoses in humans [7,8,10,17].

Ehrlichia are tick-borne diseases transmitted by ticks in the family Ixodidae. Rhipi-
cephalus sanguineus (brown dog tick) and Ixodes ricinus are vectors for Ehrlichia canis
[5,6]. E. canis can also be transmitted by Amblyomma cajennense, and experimentally
by Dermacentor variabilis (American dog tick) [6]. In North America A. americanum
(Lone Star tick) is the primary vector for both E. chaffeensis and E. ewingii [4,6,18,19].
‘Outside North America, E. chaffeensis has been found in ticks in the genera Ambly-
omma, Haemaphysalis, Dermacentor, and Ixodes in Asia, in R. sanguineus in Cameroon,
and in A. parvum in Argentina’ [6]. Haemaphysalis flava and Ixodes persulcatus com-
plex ticks transmits E. muris [6]. E. ruminantium is the only known Ehrlichia species
that infects cattle and it is found on the continent of Africa and a couple of Caribbean
islands [8].

Ticks life-cycle span between 2-to-3 years depending on the species [20,21]. They go
through four life stages namely egg, six-legged larva, eight-legged nymph, and adult. To
survive each life stage after hatching from eggs, the ticks must take a blood meal from a
host; but, most ticks will die if they are unable to find a host [20]. Ticks feed once on a
host, then fall off and develop into the next stage. This feeding pattern creates pathways for
diseases to be transmitted from hosts to hosts [22]. Ixodes scapularis (black-legged tick) life
cycle generally lasts two years, while the life cycle of Amblyomma americanum (the lone
star tick) is around three years long [21]. Some species like Rhipicephalus sanguineus (the
brown dog tick) whose primary host is the domestic dog, prefer to feed on the same host
during all its life stages [20,22]. Since R. sanguineus are endophilic, they are found inside
houses and dog kennels [22].

Dogs are susceptible to infection with multiple Ehrlichia spp., including E. chaffeensis,
E. ewingii, and E. canis [2,12,19,23,24]. In 2019, over 200,000 dogs tested positive for anti-
bodies against Ehrlichia spp. within the United States out of 7,056,709 dogs tested, while
over 1000 dogs tested positive out of 168,216 dogs tested in Canada [25]. According to
Gettings et al. [25] the distribution of infected dogs follows the distribution of the related
tick vectors. For instance, Amblyomma americanum is commonly found on dogs and peo-
ple in the southeastern and southcentral United States [2]. In Beall et al. [2] the overall
seroprevalence of E. canis, E. chaffeensis, and E. ewingii across the United States in 2012
was 0.8%, 2.8%, and 5.1%, respectively. The highest E. canis seroprevalence of 2.3% was
found in Arkansas, Louisiana, Oklahoma, Tennessee, and Texas. E. chaffeensis seroreactiv-
ity was 6.6% in Arkansas, Kansas, Missouri, and Oklahoma (the central region), and 4.6%
inGeorgia,Maryland, North Carolina, South Carolina, Tennessee andVirginia (the south-
east region). Seroreactivity of E. ewingii was highest in the central region with 14.6% value
while the southeast region had a seroreactivity value of 5.9%.

Ehrlichia in dogs was discovered in the 1970s when military dogs were returning from
the Vietnam war. They found this disease to be extremely severe in German Shepards,
Doberman Pinschers, Belgium Malinois, and Siberian Huskies. Several studies including
experimental researches and serological surveys have been carried out to understandEhrli-
chiosis transmission in canine including Ehrlichia Chaffeensis [1,15,26–28]. We only found
two quantitative studies modelling Ehrlichiosis in human [29,30]. Thus, in this study, we
developed amathematicalmodel forAmblyommaamericanum in theGreat Plains anddogs
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infected with Ehrlichia Chaffeensis with the aim of understanding the quantitative proper-
ties of themodel including the asymptotic dynamics of the disease in dogs across the Plains.

The rest of the paper is organized as follows: Section 2 gives the description of themodel
including the interactions between the ticks and dogs; Section 3 describes the results of the
study. These results include the existence and uniqueness of solutions, the disease invasion
process, and the bifurcation analysis. More precisely, we show that, depending on the sign
of a constant Cbif – referred to as the bifurcation parameter – which depends on model’s
parameters, a bifurcation occurs at T0 = 1 that is either a forward or backward bifurca-
tion. In a forward bifurcation, which occurs when Cbif < 0, there exists a unique endemic
equilibrium if and only if T0 > 1. However, in a backward bifurcation, which occurs when
Cbif > 0, no endemic equilibrium exists for T0 � 1 small enough; a unique endemic equi-
librium exists if T0 > 1 while multiple equilibria exist when 0� T0 < 1 close enough to
1. Finally in Section 4 we numerically illustrate such bifurcation results.

2. Model formulation

The transmission model of Ehrlichia Chaffeensis incorporates two subgroups: dogs and
ticks. At any time t, the dog population is divided into susceptible SD(t), infected iD(t, a),
and chronically infected cD(t, a), recovered RD(t). Here, the variable a represents the time
since infection. Thus, the total number of dogs at time t is quantified by

ND(t) = SD(t)+
∫ ∞
0

iD(t, a) da+
∫ ∞
0

cD(t, a) da+ RD(t).

The ticks population is structured into several stages: eggs (E), larva (L), nymph (N), and
adult (A). We denote by S = {E, L,N,A} the set of ticks stages. Let STk(t) be the number
of susceptible ticks of stage K ∈ S at time t. We also denote by iTk(t, a) the number of
infected ticks of stageK ∈ S \ {E} at time t and which are infected since time a. Themodel
proposed assumes that there are no infected eggs. Therefore the total number of ticks of
stage k ∈ S \ {E} at time t is given by

NTk(t) = STk(t)+
∫ ∞
0

iTk(t, a) da. (1)

The dogs-ticks infection life cycle is shown in Figure 1.
Dogs’ population dynamic. At any time t, infected ticks (which are infected since time

a) induce an infection within the dogs’ population through the force of infection λT(t, a),
such that

λT(t, a) = βT(a)
∑

K∈S\{E}
iTk(t, a), (2)

where βT denotes the infectivity of infected ticks. Therefore, newly infected dogs are given
by SD(t)

ND(t)
∫∞
0 λT(t, a) da and ε

RD(t)
ND(t)

∫∞
0 λT(t, a) da, where ε is constant parameter account-

ing for the relative disease transmission to previously recovered dogs. Note that ε can be
considered age-dependent (ε = ε(a)) with no more difficulties in the analysis proposed
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here. Thus, the dogs population dynamic is then described by the below system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSD(t)
dt
= θD − SD(t)

ND(t)

∫ ∞
0

λT(t, a) da− μDSD(t),

iD(t, 0) = SD(t)+ εRD(t)
ND(t)

∫ ∞
0

λT(t, a) da,

∂iD(t, a)
∂t

+ ∂iD(t, a)
∂a

= −(μD + γ (a)+ δD(a)+ νD(a))iD(t, a),
∂cD(t, a)

∂t
+ ∂cD(t, a)

∂a
= −(μD + δC(a))cD(t, a)

cD(t, 0) =
∫ ∞
0

νD(a)iD(t, a) da,

dRD(t)
dt

=
∫ ∞
0

γ (a)iD(t, a) da− ε
RD(t)
ND(t)

∫ ∞
0

λT(t, a) da− μDRD(t).

(3)

In the above model, susceptible dogs are recruited at rate θD and all dogs die naturally at
rate μD. Infected and chronically infected dogs have a disease-induced mortality rate δD
and δC. Infected dogs progress to a chronic infection at rate νD. Finally, only non-chronic
infections are assumed to recover from the infection at rate γ .

Ticks’ population dynamic. At time t, infected dogs (chronic or not) induce an infection
within the ticks population through the force of infection λD(t), such that

λD(t) =
∫ ∞
0

[β1
D(a)iD(t, a)+ β2

D(a)cD(t, a)] da,

where β
j
D(a) denotes the infectivity of infected and chronically infected dogs a-time post

infection. Therefore, newly infected ticks of stage k ∈ S \ {E} are given by STk(t)
ND(t) λD(t). The

ticks population dynamic is then described by the system below⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSTE(t)
dt

= rE
(
1− STE(t)

K

)
NTA(t)− (αE + μE)STE(t),

dSTL(t)
dt

= αESTE(t)− STL(t)
ND(t)

λD(t)− (αL + μL)STL(t),

dSTN(t)
dt

= αLSTL(t)− STN(t)
ND(t)

λD(t)− (αN + μN)STN(t),

dSTA(t)
dt

= αNSTN(t)− STA(t)
ND(t)

λD(t)− μASTA(t),

and for k ∈ S \ {E},
iTk(t, 0) = STk(t)

ND(t)
λD(t),

∂iTk(t, a)
∂t

+ ∂iTk(t, a)
∂a

= −(μk + αk)iTk(t, a)

(4)

with αA = 0. In the above system of the ticks dynamic, the eggs’ production rate at time t
is rE(1− STE(t)

K )NTA(t), where rE is the number of eggs produced by adult ticks NTA, and
the parameter K is the eggs’ carrying capacity. Parameters αk,s are ticks progression rates
from the eggs’ to adult’ stage. The death rate of ticks at each k-stage is μk. The notations of
all variables and parameters are summarized in Table 1.
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Figure 1. Flow chart of the model.

3. Main results

This section is devoted to the main results of this paper. Overall, our results are based on
the following assumption on the parameters of system (3)–(4). More precisely, we assume
that



6 F. B. AGUSTO ET AL.

Table 1. State variables and parameters used for simulations.

Category Description Value (Unit) [Ref]

Variables
t Time day
a Time since infection day
State Variables
SD(t) Susceptible Dogs
iD(t, a) Infected Dogs
cD(t, a) Chronically infected Dogs
RD(t) Recovered Dogs
STE(t) Number of Eggs
STk(t) Susceptible ticks at stage k
k ∈ {L,N, A} L for Larva, N for Nymph, and A for Adult
iTk(t, a) Infected ticks at stage k
k ∈ {L,N, A} L for Larva, N for Nymph, and A for Adult
Parameters
θD Birth rate of dogs 70,000 (day−1) [31]
μD Death rate of dogs 0.00027397 (day−1) [32]
ε Rate of reinfection in dogs 0.00444444 (day−1) [33]
γ (a) Rate of infected to recovered dogs 0.04761905 (day−1) [34]
νD(a) Rate of acute to chronic infection in dogs 0.04761905 (day−1) [34]
δD(a) Acute infection death rate in dogs Variable (day−1)
δC(a) Chronic infection death rate in dogs Variable (day−1)
β1
D(a) Disease transmission probability from Variable (No Unit)

infected dogs to ticks
β2
D(a) Disease transmission probability from Variable (No Unit)

chronically infected dogs to ticks
βT (a) Disease transmission probability from ticks to dogs Variable (No Unit)
rE Ticks egg laying rate Variable (day−1)
K Ticks carrying capacity 1,000,000 (day−1) [Assumed]
αE Maturation rate from tick eggs to larvae 0.0243902 (day−1) [35]
αL Maturation rate from tick larvae to nymphs 0.00273973 (day−1) [35]
αN Maturation rate from tick nymphs to adult 0.0037037 (day−1) [35]
μE Death rate of eggs 0.008 (day−1) [36]
μk Death rate of ticks at stage k 0.003 (day−1) [Assumed]
k ∈ {L,N, A} L for Larva, N for Nymph, and A for Adult

Assumption 3.1: (1) The recruitment rate θD of susceptible dogs and the natural death rate
μD are positive constants. The ticks’ stage transition rates αk,s and death rates μk,s
are positive constants. The parameter ε, rE and the carrying capacity K are positive
constants;

(2) Parameters γ , δD, νD, δC and the transmission rates βT ,βk
D, k = 1, 2, belong in

L∞+ ((0,+∞),R) \ {0L∞};
(3) The initial condition is such that SD(0) = SD0 > 0, RD(0) = RD0 ≥ 0, iD(0, ·) =

iD0 ∈ L1+((0,+∞),R), cD(0, ·) = cD0 ∈ L1+((0,+∞),R), STk0(0) = STk0 ≥ 0, and
iTk(0, ·) = iTk0 ∈ L1+((0,+∞),R) for k ∈ S .

3.1. Existence and uniqueness of nonnegative solution

In this section, we state the results concerning the existence of a globally defined nonneg-
ative solution to system (3)–(4).

In order to state ourmain results, wewill rewrite the system in amore appropriate equiv-
alent form. To do this, denote by ek, k ∈ {1, 2, 3} and vk, k ∈ {1, 2} the canonical basis ofR3

and R
2, respectively. Thus, we can consider the states variables in a vector form by setting
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for every t ≥ 0 and a ≥ 0⎧⎪⎨⎪⎩
ST(t) = STL(t)e1 + STN(t)e2 + STA(t)e3,
iT(t, a) = iTL(t, a)e1 + iTN(t, a)e2 + iTA(t, a)e3,
iD(t, a) = iD(t, a)v1 + cD(t, a)v2.

Moreover, we define the vector βD(a) of transmission rates with components β1
D(a) and

β2
D(a), i.e.

βD(a) = β1
D(a)v1 + β2

D(a)v2,

and define the vector 1 = e1 + e2 + e3. Let M be ticks stage progression matrix from the
larval stage to the adult stage, i.e.

M :=
⎛⎝μL + αL 0 0
−αL μN + αN 0
0 −αN μA

⎞⎠ . (5)

Therefore, using the notation 〈·, ·〉 to denotes the inner product in R
2 and R

3 and setting
for all a ≥ 0

θ(a) :=
(

γ (a)+ δD(a)+ νD(a) 0
0 δC(a)

)
, (6)

Model (3)–(4) takes the following form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSD(t)
dt
= θD − SD(t)

ND(t)

∫ ∞
0

βT(a) 〈1, iT(t, a)〉 da− μDSD(t),

∂iD(t, a)
∂t

+ ∂iD(t, a)
∂a

= −(μD + θ(a))iD(t, a),

iD(t, 0) = SD(t)+ εRD(t)
ND(t)

∫ ∞
0

βT(a) 〈1, iT(t, a)〉 da v1

+
∫ ∞
0

νD(a) 〈v1, iD(t, a)〉 da v2,

dRD(t)
dt

=
∫ ∞
0

γ (a) 〈v1, iD(t, a)〉 da− ε
RD(t)
ND(t)

∫ ∞
0

βT(a) 〈1, iT(t, a)〉 da− μDRD(t),

(7)

and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSTE(t)
dt

= rE
(
1− STE(t)

K

)(
〈ST(t), e3〉 +

∫ ∞
0
〈iT(t, a), e3〉 da

)
− (αE + μE)STE(t),

dST(t)
dt
= αESTE(t)e1 −MST(t)− ST(t)

ND(t)

∫ ∞
0

〈
βD(a), iD(t, a)

〉
da,

∂iT(t, a)
∂t

+ ∂iT(t, a)
∂a

= −MiT(t, a),

iT(t, 0) = ST(t)
ND(t)

∫ ∞
0

〈
βD(a), iD(t, a)

〉
da,

(8)
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subject to the initial condition SD(0) = SD0 > 0, iD(0, ·) = iD0 ∈ L1+((0,+∞),R2),
RD(0) = RD0 ∈ R+, STE(0) = STE0 ∈ R+, iD(0, ·) = iD0 ∈ L1+((0,+∞),R2), ST(0) =
ST0 ∈ R

3+, and iT(0, ·) = iT0 ∈ L1+((0,+∞),R3). The following result then concerns the
existence and uniqueness of nonnegative solutions to (7)–(8).

Theorem3.2: LetAssumption 3.1 be satisfied. Then there exists a unique continuous globally
defined integrated solution to (7)–(8). Moreover, if we set

�(a, τ) := e−
∫ a
τ (μD+θ(l)) dl, ∀a ≥ τ ≥ 0. (9)

then the solution satisfies, for all t ≥ 0 and a ≥ 0,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSD(t)
dt
= θD − SD(t)

ND(t)

∫ ∞
0

βT(a) 〈1, iT(t, a)〉 da− μDSD(t),

dRD(t)
dt

=
∫ ∞
0

γ (a)iD(t, a) da− ε
RD(t)
ND(t)

∫ ∞
0

βT(a) 〈1, iT(t, a)〉 da− μDRD(t),

dSTE(t)
dt

= rE
(
1− STE(t)

K

)(
〈ST(t), e3〉 +

∫ ∞
0
〈iT(t, a), e3〉 da

)
− (αE + μE)STE(t),

dST(t)
dt
= αESTE(t)e1 −MST(t)− ST(t)

ND(t)

∫ ∞
0

〈
βD(a), iD(t, a)

〉
da,

iD(t, a) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�(a, a− t)iD0(a− t), if a ≥ t

SD(t − a)+ εRD(t − a)
ND(t − a)

∫ ∞
0

βT(a) 〈1, iT(t − a, τ)〉 dτ�(a, 0)v1

+
∫ ∞
0

νD(τ ) 〈v1, iD(t − a, τ)〉 dτ�(a, 0)v2, if a < t

and

iT(t, a) =

⎧⎪⎨⎪⎩
e−MtiT0(a− t) if a ≥ t

e−Ma ST(t − a)
ND(t − a)

∫ ∞
0

〈
βD(τ ), iD(t − a, τ)

〉
dτ if a < t.

Moreover, the total population of Dogs, ND(t), at time t is the unique solution to⎧⎪⎪⎨⎪⎪⎩
dND(t)

dt
= θD − μDND(t)−

∫ ∞
0

δD(a)iD(t, a) da−
∫ ∞
0

δC(a)cD(t, a) da, t > 0

ND(0) = STE0 + STL0 + STN0 + STA0 +
∫ ∞
0

[iTL0(a)+ iTN0(a)+ iTA0(a)] da.

(10)

Proof: The existence and positiveness of solutions of system (3)–(4) can be addressed
using an integrated semigroup approach andVolterra integral formulation.More precisely,
a similar approach as in [37] can be applied for detailed proof of Theorem 3.2. However,
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here we give a brief sketch of such an approach. For all t ∈ R, let us set

u(t) = (
SD(t),RD(t), 0R2 , iD(t, ·), STE(t), ST(t), 0R3 , iT(t, ·)) ∈ Y ,

where Y is the space

Y = R×R×R
2 × L1((0,∞),R2)×R

3 ×R
3 ×R

3 × L1((0,∞),R3).

Such a Banach space Y is endow with the usual product norm ‖ · ‖Y .
LetM : D(M) ⊂ Y −→ Y the linear operator defined by

D(M) = R×R× {0R2} ×W1,1((0,∞),R2)×R
3 ×R

3 × {0R3} ×W1,1((0,∞),R3),

and

M

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

SD
RD
0R2

iD(·)
STE
ST
0R3

iT(·)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−μDSD
−μDRD
−iD(0)

−i′D − (μD + θ)iD
−(αE + μE)STE
−MST
−iT(0)
−i′T −MiT

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

as well as the map F : Y → Y such that

F

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

SD
RD
0R2

iD(·)
STE
ST
0R3

iT(·)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θD − SD
ND

∫ ∞
0

βT(a) 〈1, iT(a)〉 da∫ ∞
0

γ (a) 〈v1, iD(a)〉 da− ε
RD
ND

∫ ∞
0

βT(a) 〈1, iT(a)〉 da

SD + εRD
ND

∫ ∞
0

βT(a) 〈1, iT(a)〉 da v1 +
∫ ∞
0

νD(a) 〈v1, iD(a)〉 da v2
0

rE
(
1− STE

K

)(
〈ST , e3〉 +

∫ ∞
0
〈iT(a), e3〉 da

)
αESTEe1 − ST

ND

∫ ∞
0

〈
βD(a), iD(a)

〉
da

ST
ND

∫ ∞
0

〈
βD(a), iD(a)

〉
da

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Observe that the nonlinear map F is not well defined on D(M) due to the term ND and
is then not locally Lipschitz continuous. Furthermore, for any ζ > 0, let us introduce the
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space

Yζ = {u ∈ D(M) : κ(u) ≥ ζ } ⊂ D(M),

where κ : Y → Y is the operator defined by

κ(u) = SD +
∫ ∞
0

iD(a) da+
∫ ∞
0

cD(a) da+ RD.

We can now define the nonlinear operator Fζ : Yζ → Y by Fζ ≡ F. Therefore, sys-
tem (7)–(8) can be rewritten as the following non-densely defined abstract Cauchy
problem:

d
dt
u(t) =Mu(t)+Fζ (u(t)), t > 0, u(0) ∈ Yζ ∩ Y+. (11)

We then address the existence and uniqueness of bounded solutions to (11) in a manner
similar to the approach in [37]. �

3.2. Disease invasion process

System (7)–(8) exhibits two disease-free equilibria. More precisely, in an infection-free
environment, we have a disease-free equilibrium either in the presence of dogs and ticks
or only in the presence of dogs. But, only the former is interesting within this context
because the disease is transmitted from dogs to ticks and vice versa. Such an equilibrium is
named after the disease-free equilibrium of system (3)–(4). Let us introduce the following
threshold parameter

R0
ST =

rE
μA

∏
k∈S

αk

αk + μk
= rE

αE

αE + μE

αL

αL + μL

αN

αN + μN

1
μA

. (12)

The parameter R0
ST accounts for the ticks’ reproduction number and is such that, αE

αE+μE
represents the fraction of eggs that progress to the larval stage, αL

αL+μL
is the fraction of

larval that progress to the nymphal stage, αN
αN+μN

is the fraction of nymph that progress to
the adult stage, 1

μA
is the life expectancy of adult ticks and rE is the ticks egg laying rate.

Furthermore, whenR0
ST > 1, the disease-free equilibrium of system (3)–(4) is given by

E0 :=
(
S̄D, 0L1((0,+∞),R2), 0, S̄TE, S̄T , 0L1((0,+∞),R3)

)
, (13)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S̄D = θD

μD
,

S̄TE = K

(
1− 1

R0
ST

)
,

S̄T = αES̄TE
3∑

k=1
ek

k∏
j=1

αj−1
μj + αj

, with α0 = 1, α3 = 0.

(14)

In the last equality, the correspondence L← 1,N ← 2, and A← 3 is used to facilitate the
notations. See Section 6 for a detailed computation of E0.
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Next, we introduce the following threshold

T0 = T D→T
0 × T T→D

0 , (15)

where T D→T
0 quantifies the transmission capability from dogs to ticks and T T→D

0 the
transmission capability from ticks to dogs. More precisely, we have

T D→T
0 =

∫ ∞
0

β1
D(a)πD(a) da︸ ︷︷ ︸

Transmission from infected dogs to ticks

+
∫ ∞
0

β2
D(a)πC(a) da

∫ ∞
0

νD(a)πD(a) da︸ ︷︷ ︸
Transmission from chronically infected dogs to ticks

,

and

T T→D
0 =

∑
k∈S\{E}

S̄k∑
j∈S\{E} S̄j︸ ︷︷ ︸

Proportion ticks of stage k

× T T→D
0k , (16)

where T T→D
0k denotes the vectorial capacity of ticks population of stage k and is explicitly

given by

T T→D
0k =

∑
j∈S\{E} S̄j
S̄D︸ ︷︷ ︸

Ticks/Dogs ratio

×
∫ ∞
0

βT(a)
〈
1, e−Maek

〉
da,︸ ︷︷ ︸

Transmission from ticks at stage k to Dogs

(17)

with {
πD(a) = e−

∫ a
0 (μD+δD(l)+νD(l)) dl = �(a, 0)v1,

πC(a) = e−
∫ a
0 (μD+δC(l)) dl = �(a, 0)v2.

(18)

The map a→ πD(a) (resp. a→ πC(a)) describes the probability to still be infected (resp.
chronically infected) a-time post-infection. Based on the above notations, we now state the
invasion dynamics in terms of the threshold T0 defined in (15).

Theorem 3.3: Let Assumption 3.1 be satisfied. Assume in addition that the ticks’ reproduc-
tion number satisfiesR0

ST > 1. Then the following properties hold true:

(i) If T0 < 1 then the disease-free equilibrium E0 is locally asymptotically stable.
(ii) If T0 > 1 then the disease-free equilibrium E0 is unstable.

The proof of Theorem 3.3 is given in Section 7.

3.3. Existence of an endemic equilibrium and bifurcation

In this section, we state our main result concerning necessary and sufficient conditions for
the existence of an endemic equilibrium to system (7)–(8) and forward (resp. backward)
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bifurcation at T0 = 1. Denote by E∗ an endemic equilibrium to system (7)–(8) that is a
time-independent solution to system (7)–(8).

E∗ = (S∗TE, S
∗
T , i
∗
T , S
∗
D, i
∗
D,R
∗
D) (19)

with⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

N∗D = S∗TE +
∫ ∞
0

〈
1, i∗T(a)

〉
da+ 〈

1, S∗T
〉+ S∗D

+
∫ ∞
0

〈
v1, i∗D(a)

〉
da+

∫ ∞
0

〈
v2, i∗D(a)

〉
da+ R∗D

0 = θD − μDN∗D −
∫ ∞
0

δD(a)
〈
v1, i∗D(a)

〉
da−

∫ ∞
0

δC(a)
〈
v2, i∗D(a)

〉
da

(20)

such that S∗TE > 0, S∗T ∈ int(R3+), i∗T �= 0L1((0,+∞),R3), S∗D > 0, i∗D �= 0L1((0,+∞),R2), and
R∗D > 0. By means of scaling and a suitable change of variables, we prove in Section 8 that
the existence of an endemic equilibrium E∗ can be reduced to the existence of a positive
solution of one equation with one unknown. More precisely, we prove that there exists an
endemic equilibrium E∗ if and only if there exists K>0 satisfying

�(T0,K) = 1

with

�(T0,K) := 1− I�D(T0,K)− (1− ε)R�D(T0,K)

N∗D(K)
f (KT0)

1
T T→D
0

T0.

The maps K → N∗D(K), K → R�D(T0,K), and K → I�D(T0,K) are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∗D(K) := θD

μD + T T→D
0 K(

∫∞
0 δD(a)πD(a) da+

∫ ∞
0

δC(a)πC(a) da)

R�D(T0,K) := T T→D
0

KN∗D(K)

εKT0f (KT0)+ μDN∗D(K)

∫ ∞
0

γ (a)πD(a) da

I�D(T0,K) = KT T→D
0

∫ ∞
0

πD(a) da+ KT T→D
0

∫ ∞
0

νD(a)πD(a) da
∫ ∞
0

πC(a) da

and the function x→ f (x) is defined by

f (x) := θD

μD

3∑
k=1

⎛⎝ k∏
j=1

μj + αj

(μj + αj)+ x

⎞⎠ S̄k∑
j∈S\{E} S̄j

T T→D
0k

with T T→D
0 (resp. T T→D

0k ) is the vectorial (k’s ticks stage vectorial) capacity given in (16)
(resp. in (17)). Recall that in the above sum, we have used the notations L← 1, N ← 2,
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and A← 3 with α3 = 0. Furthermore, if we consider the bifurcation parameter

C−1bif :=
1

μD
T T→D
0

(∫ ∞
0

δD(a)πD(a) da+
∫ ∞
0

δC(a)πC(a) da
)

−
3∑

k=1

⎛⎝ k∑
j=1

1
μj + αj

⎞⎠ S̄k∑
j∈S\{E} S̄j

T T→D
0k

T T→D
0

− (1− ε)
1

μD
T T→D
0

∫ ∞
0

γ (a)πD(a) da

− T T→D
0

∫ ∞
0

πD(a) da− T T→D
0

∫ ∞
0

νD(a)πD(a) da
∫ ∞
0

πC(a) da

then we have the following results whose proof is given in Section 8.

Theorem 3.4: Let Assumption 3.1 be satisfied. Assume in addition that the ticks’ reproduc-
tion number satisfiesR0

ST > 1. Then the following properties hold true

(i) IfCbif > 0 thenwe have a backward bifurcation atT0 = 1, that is there exists an endemic
equilibrium for T0 < 1 close to 1;

(ii) If Cbif < 0 then we have a forward bifurcation at T0 = 1, that is there exists an endemic
equilibrium for T0 > 1 close to 1 and no endemic equilibrium for T0 < 1 close to 1.

4. Numerical simulations

In this section, we present numerical simulations to illustrate the forward and backward
bifurcation results of Model (3)–(4). These simulations were conducted using finite vol-
ume numerical schemes implemented with the R software (http://www.r-project.org/).
The values of the parameters used are given in Table 1. In all the figures, we have
used the initial conditions SD(0) = 10, iD(0, a) = 0.03amax(0, 100− a), cD(0, a) =
0.01amax(0, 100− a), RD(0) = 0, STE(0) = 1, STL(0) = 10, STN(0) = 0, STA(0) = 2,
iTL(0, a) = 0.01, iTN(0, a) = 0.3, iTA(0, a) = 1. Given the parameter values in Table 1, the
ticks’ reproduction numberR0

ST ≈ 66.193.
A forward bifurcation occurs at T0 = 1 (Theorem 3.4), which means that whenever

T0 < 1, then the disease-free equilibrium E0 is locally asymptotically stable (Theorem 3.3)
and no endemic equilibrium exists. Asymptotically, the disease go extinct (Figure 2(b),
where T0 ≈ 0.992). However, if T0 > 1, then E0 is unstable (Theorem 3.3) and an endemic
equilibrium exists if Cbif < 0 (Theorem 3.4). The disease is asymptotically persistent and
the solution converges to the endemic equilibrium (Figure 2(a), where T0 ≈ 1.103 and
Cbif ≈ −9.4× 10−4).

A backward bifurcation occurs at T0 = 1. This means that whenever T0 > 1, the
disease-free equilibrium is unstable and there exists a unique endemic equilibrium.
In such a situation, the solutions converge asymptotically to this endemic equilibrium
(Figures 3(a)), where T0 ≈ 1.318). By contrast to the forward bifurcation (Figures 2
and 4(a)), when T0 < 1 and Cbif ≈ 5.21× 10−4 > 0 there exists an endemic equilibrium
(Theorem 3.4). Furthermore, there exists a threshold T ∗0 ≈ 0.422 < 1 such that (i) for

http://www.r-project.org/
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Figure 2. Forward bifurcation diagram with convergence either to (a) the endemic equilibrium when
T0 ≈ 1.103 > 1; (b) the disease-free equilibrium when T0 ≈ 0.992 < 1. Here rE = 1, δD(a) = 1.735×
10−4, δC(a) = 3.47× 10−4, β2

D(a) = 0.038, βT(a) = 0.15504, and Cbif = −9.4× 10−4 are fixed. The
probability of infection β1

D(a) is considered constant with: (a) β1
D(a) = 0.076 and (b) β1

D(a) = 0.0506.
The other parameters are given by Table 1.

T0 < T ∗0 , there is no endemic equilibrium and the solutions converge to the disease-free
equilibrium (Figures 3(b) and 4(b), where T0 ≈ 0.415 < T ∗0 ) and (ii) for T ∗0 < T0 < 1,
there exist an endemic equilibrium such that, depending on the initial condition, the solu-
tion can converge to this endemic equilibrium (Figures 3(c) and 4(b), where T ∗0 < T0 ≈
0.843).

5. Discussion and conclusions

5.1. Discussion

In this work, we have developed a novel partial differential equation (PDE) model that
extends classical epidemiological models proposed for tick-borne diseases (see [29,30]).
The model proposed here incorporates the ability to accurately account for the different
ticks’ developmental stages (discrete variable) as well as the variations in infectiousness
over the course of infection (continuous variable). In our study, we established the mathe-
matical well-posedness of the model using the integrated semigroups theory. However, the
presence of singularity in the force of infection whenever the total dogs’ population is zero
introduces a complication to the analysis. Note that this is a mathematical construct, since
without dogs the model would not hold nor make sense.

We derived an explicit formula for the reproduction number T0, extending the classical
formula. We identified two possible behaviours around T0 = 1. The first scenario involves
a forward bifurcation, indicating that an epidemic can only occur if T0 > 1. In the sec-
ond scenario, a backward bifurcation is observed, where an epidemic can arise if T0 < 1,
provided that T0 is sufficiently close to 1. These findings have significant epidemiological
implications, especially in an endemic region where controlling the epidemic is of impor-
tance. In the forward bifurcation case, simply reducing the reproduction number T0 below
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Figure 3. Backward bifurcation diagram with convergence either to (a) the endemic equilibrium when
T0 ≈ 1.318 > 1; (b) the disease-free equilibrium when T0 ≈ 0.415 < T ∗0 < 1; (c) the endemic equi-
librium when T ∗0 < T0 ≈ 0.843 < 1. Here rE = 1, δD(a) = 0.1735, δC(a) = 0.347, β2

D(a) = 0.608,
βT(a) = 0.15504, andCbif = 5.21× 10−4 are fixed. Theprobability of infectionβ1

D(a) is considered con-
stant with: (a) β1

D(a) = 0.76, (b) β1
D(a) = 0.304, and (c) β1

D(a) = 0.456. The other parameters are given
by Table 1.

1 is sufficient to halt the epidemic. However, in the backward bifurcation scenario, the
number must be reduced below a second threshold, denoted as T ∗0 .

The epidemiological implication of the backward bifurcation phenomenon is that
the classical requirement of having the basic reproduction number (R0) less than one
is no longer sufficient to ensure effective disease eradication or elimination [38]. This
implies that disease can invade to a relatively high endemic level once the reproduction
number R0 is more than one; decreasing R0 below one do not necessarily make the
disease disappear, see Figure 3(b) and Figure 2 in [38]. Backward bifurcation has been
shown to occur in several vector-borne disease models [37,39–45]. For instance Garba
et al. [44] showed for a dengue model the possibility of backward bifurcation where
a locally stable disease-free equilibrium coexists with a locally stable endemic equilib-
rium. Also, the age-structure malaria and Chikungunya models in [37,39,42,43] were
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Figure 4. Forward and backward bifurcation diagram. (a) Forward bifurcation diagram with Cbif =
−9.4× 10−4 where all the parameters are the same as in Figure 2. (b) Backward bifurcation diagram
with Cbif = 5.21× 10−4 and the parameters are the same as in Figure 3. Note that Cbif does not depend
on the parameter β1

D.

shown to exhibit backward bifurcation when R0 is less than one. This phenomenon
is equally possible in the absence of any age-structure [39,42,43]. Backward bifurcation
in these vector-borne disease models is induced by disease induced mortality. Further-
more, backward bifurcation can equally be induced by several other factors like vaccina-
tion [46–49], exogenous re-infection which are known to occur in tuberculosis models
[50–52], and cross-immunity for instance in a two strain influenza transmission model
[53]. Other epidemiological mechanism like differential susceptibility in risk-structured
models could also cause backward bifurcation in disease transmission models [38]. We
should note that the age-structured Ehrlichia chaffeensis model (3)–(4) include disease
induce death (δD and δC) in the dog population and hence the source of the backward
bifurcation.

5.2. Conclusion

In conclusion, we have developed a novel partial differential equation model of Ehrlichia
chaffeensis transmission dynamics in dogs. The model incorporates the different develop-
mental life stages of ticks (discrete variable) as well as the duration of infection (continuous
variable). The following results were obtained from our theoretical analysis and numerical
simulations:

(i) The developed model is well-posed;
(ii) The model always exhibits a disease-free equilibrium along with an endemic equilib-

rium;
(iii) The model has a reproduction number, denoted as T0;
(iii) A necessary and sufficient condition for the bifurcation of an endemic equilibrium

was established using semigroup approach;
(iv) A bifurcation (forward or backward), can occur at T0 = 1.
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6. The disease-free equilibrium of (3)–(4)

The dynamic of ticks in the absence of infection is governed by the following system of
equations ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSTE(t)
dt

= rE
(
1− STE(t)

K

)
STA(t)− (μE + αE)STE(t)

dSTL(t)
dt

= αESTE(t)− (μL + αL)STL(t)

dSTN(t)
dt

= αLSTL(t)− (μN + αN)STN(t)

dSTA(t)
dt

= αNSTN(t)− μASTA(t)

(21)

with initial condition STE(0) = STE0 ≥ 0, STL(0) = STL0 ≥ 0, STN(0) = STN0 ≥ 0, and
STA(0) = STA0 ≥ 0. It is easy to see that {0} ×R

3+ is invariant with respect to the ordinary
differential equation so that if STE0 = 0 then the larval, nymphal, and adult stages expo-
nentially goes to 0. From this, we have that a necessary condition for the ticks to persist
is STE0 > 0. Moreover, by straightforward computations, we find that (21) has a unique
positive stationary solution if and only if the ticks reproduction number R0

ST defined
by (12) satisfiesR0

ST > 1. By straightforward computations, we have that the equilibrium
of system (21) is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S̄TE = K
R0

ST − 1
R0

ST
,

S̄TL = αE

μL + αL
S̄TE,

S̄TN = αL

μN + αN

αE

μL + αL
S̄TE,

S̄TA = αN

μA

αL

μN + αN

αE

μL + αL
S̄TE.

(22)

Note that in accordance with the compact formulation (7)–(8), the above expressions of
R0

ST and S̄Tk, with k ∈ S , can be rewritten as

R0
ST := rEαE

αE + μE

〈
M−1e1, e3

〉
, (23)

and ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
S̄TE = K

(
1− 1

R0
ST

)
,

S̄T = αES̄TE
3∑

k=1
ek

k∏
j=1

αj−1
μj + αj

, with α0 = 1, α3 = 0,

(24)

and using the correspondence L← 1, N ← 2, and A← 3.
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7. Threshold and proof of Theorem 3.3

In order to obtain the threshold of (7)–(8) that determine disease invasion dynamics in a
completely susceptible population of ticks and dogs, we consider the linearized equation
to (7)–(8) at the disease-free equilibrium E0. More precisely, we linearize the infective
compartments of (7)–(8) around E0 to obtain the following system⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂iD(t, a)
∂t

+ ∂iD(t, a)
∂a

= −(μD + θ(a))iD(t, a)

iD(t, 0) =
∫ ∞
0

βT(a) 〈1, iT(t, a)〉 da v1

+
∫ ∞
0

νD(a) 〈v1, iD(t, a)〉 da v2

(25)

and ⎧⎪⎨⎪⎩
∂iT(t,a)

∂t + ∂iT(t,a)
∂a = −MiT(t, a)

iT(t, 0) = S̄T
S̄D

∫ ∞
0

〈
βD(a), iD(t, a)

〉
da

(26)

whose initial conditions satisfy iD(0, ·) ∈ L1((0,+∞),R2) and iD(0, ·) ∈ L1((0,+∞),R3).
In order to define the threshold and study the local asymptotic stability of the disease-free
equilibrium, we will make use of the semigroup approach by reformulating (25) and (26)
as an abstract Cauchy problem. For this purpose, we consider the Banach spaces X :=
R
2 × L1((0,+∞),R2), Y = R

3 × L1((0,+∞),R3), X0 := {0R2} × L1((0,+∞),R2) and
Y0 := {0R3} × L1((0,+∞),R3). Let AD : D(AD) ⊂ X0→ X and AT : D(AT) ⊂ Y0→
Y be the linear operators defined by

AD

(
0R2

ϕ

)
=

( −ϕ(0)
−ϕ′ − (μD + θD(·)ϕ)

)
and AT

(
0R3

φ

)
=

( −φ(0)
−φ′ −Mφ

)
with

D(AD) = {0R2} ×W1,1((0,+∞),R2) and D(AT) = {0R3} ×W1,1((0,+∞),R3).

LetA : D(A) ⊂ Y0 × X0→ Y × X with

D(A) = D(AD)× D(AT) and A
(

ϕ

φ

)
=

(
AD[ϕ]
AT[φ]

)
.

Let B : X0 × Y0→ X × Y be the bounded linear operator defined by

B
(

ϕ

φ

)
=

⎛⎜⎜⎜⎝
(
v1PT[φ]+ v2QD[ϕ]

0L1((0,+∞),R2)

)
S̄T
S̄D

(
WD[ϕ]

0L1((0,+∞),R3)

)
⎞⎟⎟⎟⎠ (27)



JOURNAL OF BIOLOGICAL DYNAMICS 19

where we have set for each ϕ = ( 0
R2
ϕ

) ∈ X0⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

WD[ϕ] :=
∫ ∞
0

〈
βD(a),ϕ(a)

〉
da

PD[ϕ] :=
∫ ∞
0

γ (a) 〈v1,ϕ(a)〉 da

QD[ϕ] :=
∫ ∞
0

νD(a) 〈v1,ϕ(a)〉 da

and each φ = ( 0
R3
φ

) ∈ Y0⎧⎪⎪⎨⎪⎪⎩
WT[φ] :=

∫ ∞
0
〈e3,φ(a)〉 da

PT[φ] :=
∫ ∞
0

βT(a) 〈1,φ(a)〉 da.

Hence, setting for all t>0

ϕD(t) :=
(

0R2

iD(t, ·)
)

and φT(t) :=
(

0R3

iT(t, ·)
)

and

ϕD0 :=
(

0R2

iD(0, ·)
)

and φT0 :=
(

0R3

iT(0, ·)
)

the system (25)–(26) can be rewritten as the following abstract Cauchy problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
d
dt

(
ϕD(t)
φT(t)

)
= A

(
ϕD(t)
φT(t)

)
+ B

(
ϕD(t)
φT(t)

)
, t > 0(

ϕD(0)
φT(0)

)
=

(
ϕD0

φT0

)
∈ X0 × Y0.

(28)

In order to define the threshold that determines the local asymptotic stability of the disease-
free equilibrium, we need first to prove the following lemma. Before proceeding, let us
set X+ := R

2+ × L1((0,+∞),R2), Y+ := R
2+ × L1((0,+∞),R2), X0+ := X+ ∩ X0, and

Y0+ := Y+ ∩ Y0.

Lemma 7.1: Let Assumption 3.1 be satisfied. Then the following properties hold true

(i) A is resolvent positive i.e. (λ−A)−1 maps X+ × Y+ into itself for all large λ in the
resolvent set ρ(A) ofA;

(ii) The spectral bound s(A) i.e.

s(A) = sup {�(λ) : λ ∈ σ(A)} (29)

satisfies s(A) < 0 and (s(A),+∞) ⊂ ρ(AD) ∩ ρ(AT).
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Proof: In order to obtain the conclusion of the lemma, we first prove that A is resolvent
positive. To do this, let us note that if λ ∈ ρ(AD) ∩ ρ(AT) then λ ∈ ρ(A) and

(λ−A)−1
(

ϕ̃

φ̃

)
=

(
(λ−AD)−1[ϕ̃]
(λ−AT)−1[φ̃]

)
so that the resolvent of A is obtained by determining the resolvent of AD and AT . By
standard computations, we have for each λ ∈ ρ(AD) and ϕ̃ = (

x
ϕ̃ ) ∈ Y

(λ−AD)−1
(
x
ϕ̃

)
=

(
0R2

ϕ

)
⇐⇒ ϕ(a) = e−λa�(a, 0)x +

∫ a

0
e−λ(a−τ)�(a, τ)ϕ̃(τ ) dτ , a ≥ 0

(30)

(where �(a, 0) is defined in (9)) while for each λ ∈ ρ(AT) and φ̃ = (
y
φ̃
∈ X we have

(λ−AT)−1
(
y
φ

)
=

(
0R3

φ

)
⇐⇒ φ(a) = e−λae−May +

∫ a

0
e−λ(a−τ)e−M(a−τ)φ̃(τ ) dτ , a ≥ 0.

(31)

Next, recalling the definition ofM and θ(a) respectively in (5) and (6) it follows that if{
λ > −min(μL + αL,μN + αN ,μA) =: −μ1,− < 0

and λ > −μD −min(essinfR+θ11(a), essinfR+θ22(a)) =: −μ2,− < 0
(32)

then λ ∈ ρ(AD) ∩ ρ(AT). Next, recalling from [54,55] ifA is resolvent positive then{
s(A) = inf

{
λ ∈ ρ(A) : (λ−A)−1(X+ × Y+) ⊆ (X+ × Y+)

}
(s(A),+∞) ⊆ ρ(A)

(33)

and we infer from (30) to (33) that s(A) < 0. The proof is completed. �

Thanks to Lemma 7.1 and the positiveness of the bounded linear operatorB (i.e. it maps
X0+ × Y0+ into X+ × Y+), one can use the theory developed in [56] to define a threshold
which determines the sign of s(A+ B) i.e. the spectral bound ofA+ B given by

s(A+ B) = sup {�(λ) : λ ∈ σ(A+ B)} .

More precisely, we set

T̂0 := r(B(−A)−1) (34)

where r(B(−A)−1) is the spectral radius of the bounded linear operator B(−A)−1. The
following lemma will allow us to obtain the relationship between the sign of T̂0 − 1 and
the growth bound of the C0-semigroup generated by (A+ B)0 i.e. the part of A+ B in
X0 × Y0. Note that the latter threshold T̂0 does not exhibit explicitly the parameters of the
model but this will be resolved after proving the local stability properties.
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Lemma 7.2: Let Assumption 3.1 be satisfied. Then s(A+ B) and T̂0 − 1 have the same
sign. Moreover, we have the following properties

(i) s((A+ B)0) = s(A+ B) = ω0((A+ B)0) with ω0((A+ B)0) the growth bound of
the C0-semigroup generated by (A+ B)0

(ii) ω0,ess((A+ B)0) ≤ ω0(A0) = s(A0) = s(A) with ω0,ess((A+ B)0) the essential
growth bound of the C0-semigroup generated by (A+ B)0 and A0 is the part of A in
X0 × Y0.

Proof: We first note that X × Y is an AL-space [56, Theorem 3.14] with positive cone
X+ × Y+ that is normal and generating (see [56]) so that

s(A0) = ω0(A0) and s((A+ B)0) = ω0((A+ B)0) (35)

with ω0(A0) the growth bound of the C0-semigroup generated byA0. The first assertion
of the lemma is a direct application of [56, Theorem 3.5]. Next, we prove properties (i)
and (ii). Since ρ(A) = ρ(A0) and ρ(A+ B) = ρ((A+ B)0) (see [57]) it follows that
s(A0) = s(A) and s((A+ B)0) = s(A+ B). This proves (i) and the equality ω0(A0) =
s(A0) = s(A). Next, note that B is compact since B(X0 × Y0) is a finite-dimensional
space. Therefore, we infer from [58, Theorem 1.2] that ω0,ess((A+ B)0) ≤ ω0(A0) and
the proof is completed. �

Lemma 7.3: Let Assumption 3.1 be satisfied. Assume in addition that the ticks’ reproduction
number satisfies R0

ST > 1. Then the disease-free equilibrium is locally asymptotically stable
if T̂0 < 1 and unstable if T̂0 > 1.

Proof: If T̂0 < 1 then by Lemma 7.3 we have ω0((A+ B)0) < 0 resulting to the local
asymptotic stability of the disease-free. If T̂0 > 1 then ω0((A+ B)0) > 0 and since
ω0,ess((A+ B)0) < 0 it follows that ω0,ess((A+ B)0) < ω0((A+ B)0). Therefore, using
[58, Theorem 3.2.] one knows that (A+ B)0 has an isolated positive eigenvalue. Thus we
refer to [57, Proposition 5.7.4]) that the disease-free equilibrium is unstable. �

The threshold T̂0 defined in (34) is somehow abstract and does not allow the inter-
pretation of the stability of the disease-free to be made in terms of the parameters of the
model. Therefore, we will give in the following and equivalent threshold which incor-
porate explicitly the parameters of the model. To this end, we first make a remark that
allows us to simplify the determination of T0. Let us set Y1 = R

2 × L1((0,+∞),R2),
andX1 = R

3 × L1((0,+∞),R3). Next, we observe that Y1 × X1 is finite-dimensional and
B(Y0 × X0) ⊆ Y1 × X1 so that the spectral bound ofB(−A)−1 coincides with the spectral
bound of B(−A)−1|Y1×X1

. The advantage of considering B(−A)−1|Y1×X1
is that we can obtain

the spectral radius by solving an eigenvalue problem of a matrix.
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Proposition 7.4: Let Assumption 3.1 be satisfied. Assume in addition that the ticks’ repro-
duction number satisfiesR0

ST > 1 and set

T0 = 1
S̄D

∫ ∞
0

βT(a)
〈
1, e−MaS̄T

〉
da

[∫ ∞
0

β1
D(a)πD(a) da

+
∫ ∞
0

νD(a)πD(a) da
∫ ∞
0

β2
D(a)πC(a)

]
. (36)

Then T̂0 − 1 and T0 − 1 have the same sign.

Proof: Wefirst give the explicit formof the linear operatorB(−A)−1|X1×Y1 . Let (
ϕ1
φ1

) ∈ X1 ×
Y1 be given with ϕ1 := x

0L1((0,+∞),R2)
) and φ1 := (

y
0L1((0,+∞),R3)

). Then using the resolvent
formula ofAD andAT respectively in (30) and (31) we obtain

(−AD)−1[ϕ1] =
(

0R2

�(·, 0)x
)
=: ϕ0 (37)

and

(−AT)−1[φ1] =
(

0R3

e−M·y

)
=: φ0. (38)

Hence using the explicit form of B in (27) it comes

B(−A)−1
(

ϕ1
φ1

)
= B

(
ϕ0
φ0

)
=

⎛⎜⎜⎜⎝
(
v1PT[φ0]+ v2QD[ϕ0]

0L1((0,+∞),R2)

)
S̄T
S̄D

(
WD[ϕ0]

0L1((0,+∞),R3)

)
⎞⎟⎟⎟⎠ (39)

with{
v1PT[φ0]+ v2QD[ϕ0] = v1

∫∞
0 βT(a)

〈
1, e−May

〉
da+ v2

∫∞
0 νD(a) 〈v1,�(a, 0)x〉 da

WD[ϕ0] =
∫∞
0

〈
βD(a),�(a, 0)x

〉
da

so that the spectral radius ofB(−A)−1 is given by the spectral radius of the linear operator
C : R2 ×R

3→ R
2 ×R

3 given by

C
(
x
y

)
=

⎛⎜⎜⎝v1
∫ ∞
0

βT(a)
〈
1, e−May

〉
da+ v2

∫ ∞
0

νD(a) 〈v1,�(a, 0)x〉 da
S̄T
S̄D

∫ ∞
0

〈
βD(a),�(a, 0)x

〉
da

⎞⎟⎟⎠
Since C is a positive linear operator of finite-dimensional spaces, its spectral radius T̂0 is
an eigenvalue. Moreover, let ( xy ) ∈ R

2 ×R
3 be a non zero vector such that C(

x
y ) = T̂0( x

y) .
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Then we have the following system of equations⎧⎪⎪⎪⎨⎪⎪⎪⎩
v1

∫ ∞
0

βT(a)
〈
1, e−May

〉
da+ v2

∫ ∞
0

νD(a) 〈v1,�(a, 0)x〉 da = T̂0x

S̄T
S̄D

∫ ∞
0

〈
βD(a),�(a, 0)x

〉
da = T̂0y

(40)

from where we obtain the equality

y = 1
T̂0

S̄T
S̄D

∫ ∞
0

〈
βD(a),�(a, 0)x

〉
da. (41)

Hence, plugging (41) into the first equation of (40) gives

v1
1
T̂0

1
S̄D

∫ ∞
0

βT(a)
〈
1, e−MaS̄T

〉
da

∫ ∞
0

〈
βD(a),�(a, 0)x

〉
da

+ v2
∫ ∞
0

νD(a) 〈v1,�(a, 0)x〉 da = T̂0x.

Thus, setting x = x1v1 + x2v2 and recalling that 〈βD(a),�(a, 0)v1〉 = β1
D(a)πD(a),

〈βD(a),�(a, 0)v2〉 = β2
D(a)πC(a), and 〈v1,�(a, 0)v1〉 = πD(a) we obtain by identifica-

tion⎧⎪⎪⎨⎪⎪⎩
1
S̄D

∫ ∞
0

βT(a)
〈
1, e−MaS̄T

〉
da

∫ ∞
0

[x1β1
D(a)πD(a)+ x2β2

D(a)πC(a)] da = T̂ 2
0 x1

x1
∫ ∞
0

νD(a)πD(a) da = T̂0x2

so that

1
S̄D

∫ ∞
0

βT(a)
〈
1, e−MaS̄T

〉
da

[
x1

∫ ∞
0

β1
D(a)πD(a) da

+ 1
T̂0

x1
∫ ∞
0

νD(a)πD(a) da
∫ ∞
0

β2
D(a)πC(a) da

]
= T̂ 2

0 x1. (42)

From the above computations, we see that (
x
y ) is the null vector if and only if x1 = 0.

Therefore, the spectral radius of C satisfies

T̂ 2
0 =

1
T̂0

T0,2 + T0,3 (43)

with⎧⎪⎪⎪⎨⎪⎪⎪⎩
T0,2 := 1

S̄D

∫ ∞
0

βT(a)
〈
1, e−MaS̄T

〉
da

∫ ∞
0

β1
D(a)πD(a) da

T0,3 := 1
S̄D

∫ ∞
0

βT(a)
〈
1, e−MaS̄T

〉
da

∫ ∞
0

νD(a)πD(a) da
∫ ∞
0

β2
D(a)πC(a) da.
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Next, observe that T0 defined in (15) is also given by T0 = T0,2 + T0,3.Moreover, by similar
computations, one obtains that the non-zero eigenvalues of C satisfy

λ3 = T0,2 + λT0,3. (44)

To prove that T̂0 − 1 and T0 − 1 have the same sign, we will make use of (43) and (44).
Indeed if T̂0 = 1 then (43) implies that T0 = 1. If T0 = 1 then (44) becomes λ3 = (1−
T0,3)+ λT0,3 with 1− T0,3 ≥ 0 so that the non-zero solution of (44) have modulus less
than one. This proves that T̂0 = 1wheneverT0 = 1. To complete the proof, we observe that
if T0 > 1 then (43) implies that 1 < T 2

0 = 1
T0T0,2 + T0,3 < T0,2 + T0,3 = R0. Similarly if

T0 < 1 thenR0 < 1. �

8. Proof of Theorem 3.4

In order to determine the endemic equilibrium of themodel (7)–(8), we proceed in several
steps. In the first step, we give an equivalent system to (45), the second step is concerned
with the solvability of (46), and the last step concerns the bifurcation properties. In this
section, we will always suppose that Assumption 3.1 is satisfied and R0

ST > 1. Let us
note that using the notation (18) together with Theorem 3.2, one knows that an endemic
equilibrium E∗ defined in (19) satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = rE
(
1− S∗TE

K

)(〈
S∗T , e3

〉+ ∫ ∞
0

〈
i∗T(a), e3

〉
da

)
− (αE + μE)S∗TE

i∗T(a) = 1
N∗D

∫ ∞
0

〈
βD(a), i∗D(a)

〉
da e−MaS∗T

0R3 = αES∗TE e1 −
1
N∗D

∫ ∞
0

〈
βD(a), i∗D(a)

〉
da S∗T −MS,T

(45)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = θD − S∗D
N∗D

∫ ∞
0

βT(a)
〈
1, i∗T(a)

〉
da− μDS∗D

i∗D(a) = S∗D + εR∗D
N∗D

∫ ∞
0

βT(a)
〈
1, i∗T(a)

〉
da πD(a) v1

+
∫ ∞
0

νD(τ )
〈
v1, i∗D(a)

〉
da πC(a) v2

0 =
∫ ∞
0

γ (a)
〈
v1, i∗D(a)

〉
da− ε

R∗D
N∗D

∫ ∞
0

βT(a)
〈
1, i∗T(a)

〉
da− μDR∗D

0 = θD − μDN∗D −
∫ ∞
0

δD(a)
〈
v1, i∗D(a)

〉
da−

∫ ∞
0

δC(a)
〈
v2, i∗D(a)

〉
da.

(46)

On the stationary states of ticks: Let us first prove the following lemma which describes the
stationary states of the eggs.
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Lemma 8.1: The total number of eggs remains unchanged at the endemic and the disease-
free equilibrium i.e. S̄∗TE = S̄TE. Moreover, we always have

S∗T +
∫ ∞
0

i∗T(a) da = S̄T . (47)

Proof: Note that, using the third equation of (45) we have

0R3 = αESTE M−1e1 − 1
N∗D

∫ ∞
0

〈
βD(a), i∗D(a)

〉
daM−1S∗T − S∗T (48)

Next, integrating the second equation of (45) it follows that∫ ∞
0

i∗T(a)da = 1
N∗D

∫ ∞
0

〈
βD(a), i∗D(a)

〉
da

∫ ∞
0

e−MaS∗Tda

= 1
N∗D

∫ ∞
0

〈
βD(a), i∗D(a)

〉
daM−1S∗T (49)

Thus, by combining (48) and (49) we obtain∫ ∞
0

i∗T(a)da+ S∗T = αES∗TE M
−1e1 =

S∗TE
S̄TE

S̄T . (50)

Therefore, plugging (50) in the first equation of (53) we obtain the following equality

0 = rE
(
1− S∗TE

K

)
S∗TE
S̄TE

〈
S̄T , e3

〉− (αE + μE)S∗TE (51)

or equivalently

0 = rE
(
1− S∗TE

K

) 〈
S̄T , e3

〉− (αE + μE)S̄TE. (52)

The right-hand side of (52) is a decreasing function of S∗TE so that the unique solution to
(51) is S∗TE = S̄TE. The equality (47) now follows from (50). �

Thanks to Lemma 8.1 the system of equations (45) is equivalent to⎧⎪⎪⎨⎪⎪⎩
i∗T(a) = 1

N∗D

∫ ∞
0

〈
βD(a), i∗D(a)

〉
da e−MaS∗T

0R3 = αESTE e1 − 1
N∗D

∫ ∞
0

〈
βD(a), i∗D(a)

〉
da S∗T −MS∗T .

(53)

Note that for each nonnegative constant η0 ≥ 0 the matrix M+ η0I3 (where I3 is the
identity operator on R

3) is invertible with inverse (M+ η0I3)−1 satisfying

(M+ η0I3)−1e1 =
3∑

k=1

⎛⎝ k∏
j=1

αj−1
μj + αj + η0

⎞⎠ ek, with α0 = 1, α3 = 0, (54)
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and where the correspondence L← 1, N ← 2, and A← 3 is used. Therefore, using (53)
together with (54), for η0 = 1

N∗D

∫∞
0 〈βD(a), i∗D(a)〉da, it follows that

S∗T = αESTE
3∑

k=1
ek

k∏
j=1

N∗Dαj−1
N∗D(μj + αj)+

∫∞
0

〈
βD(a), i∗D(a)

〉
da

, (55)

with α0 = 1 and α3 = 0. Thus, recalling the expression of S̄T in (24) we obtain

S∗T =
3∑

k=1

〈
S̄T , ek

〉
ek

k∏
j=1

N∗D(μj + αj)

N∗D(μj + αj)+
∫∞
0

〈
βD(a), i∗D(a)

〉
da

(56)

and the system of equations (53) becomes equivalent to

S∗T =
3∑

k=1

⎛⎝ k∏
j=1

μj + αj

(μj + αj)+W∗D

⎞⎠ 〈
S̄T , ek

〉
ek (57a)

i∗T(a) =W�D e−MaS∗T (57b)

W�D =
∫ ∞
0

〈
βD(a),

i∗D(a)
N∗D

〉
da. (57c)

From the above comments, it follows that S∗T and i
∗
T are entirely determined by the variables

W�D and i∗D
N∗D

.
On the stationary states of dogs: In order to obtain an equivalent formulation to (46) we

introduce the new variables

i�D(a) := i∗D(a)
N∗D

, S�D := S∗D
N∗D

and R�D := R∗D
N∗D

. (58)

Next, we set

P∗T :=
∫ ∞
0

βT(a)
〈
1, i∗T(a)

〉
da, (59)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P�D :=
∫ ∞
0

γ (a)
〈
v1, i�D(a)

〉
da

Q�D :=
∫ ∞
0

νD(a)
〈
v1, i�D(a)

〉
da,

U�D :=
∫ ∞
0

δD(a)
〈
v1, i∗D(a)

〉
da

U�C :=
∫ ∞
0

δC(a)
〈
v2, i∗D(a)

〉
da

(60)
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With these new variables, system (46) becomes⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 = θD − S�DP
∗
T − μDN∗DS

�
D

N∗Di
�
D(a) = (S�D + εR�D)P∗T πD(a) v1 + N∗DQ

�
D πC(a) v2

0 = N∗DP
�
D − εR�DP

∗
T − μDN∗DR

�
D

0 = θD − μDN∗D − N∗DU
�
D − N∗DU

�
C

(61)

which is equivalent to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∗D =
θD

μD + U�D + U�C

S�D =
θD

μDN∗D + P∗T

R�D =
N∗DP

�
D

εP∗T + μDN∗D

i�D(a) = S�D + εR�D
N∗D

P∗T πD(a) v1 + Q�D πC(a) v2.

(62)

Next, we show the relationship between P∗T andW�D defined respectively in (57c) and (59).
To do so, we integrate (57b) to obtain

P∗T =W�D
∫ ∞
0

βT(a)
〈
1, e−MaS∗T

〉
da (63)

and by using the expression of S∗T defined in (57a) we obtain the following more explicit
formula

P∗T =W�D
3∑

k=1

⎛⎝ k∏
j=1

μj + αj

(μj + αj)+W�D

⎞⎠ S̄k∑
j∈S\{E} S̄j

T T→D
0k S̄D, (64)

with T T→D
0k the k’s stage vectorial capacity defined in (17).

In the following, we determine the equations for the variables P�D, Q
�
D, U

�
D, U

�
C andW�C

defined in (60). To this end, recalling thatβD(a) = β1
D(a)v1 + β2

D(a)v1, we use successively
the equation of i�D(a) in (62) to obtain

W�D =
S�D + εR�D

N∗D
P∗T

∫ ∞
0

β1
D(a)πD(a) da (65a)

+ Q�D
∫ ∞
0

β2
D(a)πC(a) da (65b)

P�D =
S�D + εR�D

N∗D
P∗T

∫ ∞
0

γ (a)πD(a) da (65c)
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Q�D =
S�D + εR�D

N∗D
P∗T

∫ ∞
0

νD(a)πD(a) da (65d)

U�D =
S�D + εR�D

N∗D
P∗T

∫ ∞
0

δD(a)πD(a) da (65e)

U�C =
S�D + εR�D

N∗D
P∗T

∫ ∞
0

δC(a)πC(a) da. (65f)

Note that, plugging (65d) into (65a) gives the following equality⎧⎪⎪⎨⎪⎪⎩
W�D =

S�D + εR�D
N∗D

P∗T

[∫ ∞
0

β1
D(a)πD(a) da

+
∫ ∞
0

νD(a)πD(a) da
∫ ∞
0

β2
D(a)πC(a) da

]
.

(66)

Let us now define the function

f (W�D) :=
3∑

k=1

⎛⎝ k∏
j=1

μj + αj

(μj + αj)+W�D

⎞⎠ S̄k∑
j∈S\{E} S̄j

T T→D
0k S̄D (67)

and observe that the vectorial capacity T T→D
0 is given by

T T→D
0 = f (0)

S̄D
(68)

so that ⎧⎪⎪⎪⎨⎪⎪⎪⎩
T0 = f (0)

S̄D

[∫ ∞
0

β1
D(a)πD(a) da

+
∫ ∞
0

νD(a)πD(a) da
∫ ∞
0

β2
D(a)πC(a) da

]
.

(69)

In the following, we rewrite our system of equations by using the variable

K := S�D + εR�D
N∗D

P∗T
T T→D
0

. (70)

To do so, we first observe that (66) and (64) take respectively the following form

W�D = KT0 and P∗T =W�Df (W
�
D) = KT0f (KT0) (71)

while (65a) is now given by

W�D =
S�D + εR�D

N∗D
P∗T

∫ ∞
0

β1
D(a)πD(a) da (72a)

+ Q�D
∫ ∞
0

β2
D(a)πC(a) da (72b)

P�D = KT T→D
0

∫ ∞
0

γ (a)πD(a) da (72c)

Q�D = KT T→D
0

∫ ∞
0

νD(a)πD(a) da (72d)
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U�D = KT T→D
0

∫ ∞
0

δD(a)πD(a) da (72e)

U�C = KT T→D
0

∫ ∞
0

δC(a)πC(a) da. (72f)

Hence, using the first equation of (62) together with (72e), and (72f) we obtain the
following necessary conditions

N∗D(K) := θD

μD + KT T→D
0 (

∫∞
0 δD(a)πD(a) da+ ∫∞

0 δC(a)πC(a) da)
. (73)

Furthermore, the second, third and fourth equation of (62) together with (71), (72c)
and (72d) provide

R�D(T0,K) := T T→D
0

KN∗D(K)

εKT0f (KT0)+ μDN∗D(K)

∫ ∞
0

γ (a)πD(a) da (74a)

S�D(T0,K) := θD

μDN∗D(K)+ KT0f (KT0)
(74b)

i�D(a) := K T T→D
0 πD(a) v1 + KT T→D

0

∫ ∞
0

νD(a)πD(a) da πC(a) v2. (74c)

Moreover, from the equality P∗T = KT0f (KT0) and (70) it comes that for K>0 we must
have the following equality

1 = S�D(T0,K)+ εR�D(T0,K)

N∗D(K)

f (KT0)
T T→D
0

T0. (75)

Recalling that we have the necessary condition S�D + R�D +
∫∞
0 〈1, i�D(a)〉da = 1, we con-

sider the following equation

�(T0,K) = 1

with

�(T0,K) := 1− (1− ε)R�D(T0,K)− I�D(T0,K)

N∗D(K)

f (KT0)
T T→D
0

T0 (76)

and

I�D(T0,K) := KT T→D
0

∫ ∞
0

πD(a) da+ KT T→D
0

∫ ∞
0

νD(a)πD(a) da
∫ ∞
0

πC(a) da.

(77)

Lemma 8.2: There exists an endemic equilibrium to (7)–(8) if and only if there exists K>0
such that �(T0,K) = 1.

Proof: The necessity of the lemma follows from the preceding arguments. Next, we prove
the sufficiency. To this end, assume that there exists K>0 such that �(T0,K) = 1. Let
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N∗D be given by the right-hand side of (73). Let R�D and i�D be given respectively by the
right-hand side of (74a) and (74c). Observe that with these definitions we have

I�D(T0,K) =
∫ ∞
0

〈
1, i�D

〉
da (78)

so that setting

S�D := 1− R�D − I�D(T0,K) (79)

it comes from (76)

1 = S�D + εR�D
N∗D

f (KT0)
T T→D
0

T0. (80)

Note that settingW�D = KT0, P∗T =W�Df (W
�
D), with f defined in (67), andmultiplying (80)

by K it follows that

K = S�D + εR�D
N∗D

P∗T
T T→D
0

and W�D =
S�D + εR�D

N∗D

P∗T
T T→D
0

T0. (81)

Therefore, our definition of R�D and i�D respectively in (74a) and (74c) together with (81)
give us

⎧⎪⎪⎪⎨⎪⎪⎪⎩
R�D =

S�D + εR�D
N∗D

P∗T
N∗D

εP∗T + μDN∗D

∫ ∞
0

γ (a)πD(a) da

i�D(a) = S�D + εR�D
N∗D

P∗T πD(a) v1 + S�D + εR�D
N∗D

P∗T
∫ ∞
0

νD(a)πD(a) da πC(a) v2.

(82)

Moreover, using (81) one also note that our definition of N∗D in (73) leads to

μDN∗D = θD − (S�D + εR�D) P∗T
∫ ∞
0

δD(a)πD(a) da

− (S�D + εR�D) P∗T
∫ ∞
0

δC(a)πC(a) da. (83)

Next, we observe that the R�D-equation in (82) is equivalent to

μDN∗DR
�
D = −εP∗TR

�
D + (S�D + εR�D)P∗T

∫ ∞
0

γ (a)πD(a) da. (84)
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Note that from the above formulas of R�D and i�D in (82) we have the following identities⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ ∞
0

νD(a)
〈
v1, i�D(a)

〉
da = S�D + εR�D

N∗D
P∗T

∫ ∞
0

νD(a)πD(a) da∫ ∞
0

γ (a)
〈
v1, i�D(a)

〉
da = S�D + εR�D

N∗D
P∗T

∫ ∞
0

γ (a)πD(a) da∫ ∞
0

δD(a)
〈
v1, i�D(a)

〉
da = S�D + εR�D

N∗D
P∗T

∫ ∞
0

δD(a)πD(a) da∫ ∞
0

δC(a)
〈
v2, i�D(a)

〉
da = S�D + εR�D

N∗D
P∗T

∫ ∞
0

νD(a)πD(a) da

×
∫ ∞
0

δC(a)πC(a) da

(85)

from where we can rewrite (83), (84) and the i∗D-equation in (82) as follow⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

μDN∗D = θD − N∗D
∫ ∞
0

δD(a)
〈
v1, i�D(a)

〉
da− N∗D

∫ ∞
0

δC(a)
〈
v2, i�D(a)

〉
da

μDN∗DR
�
D = −εP∗TR

�
D + N∗D

∫ ∞
0

γ (a)
〈
v1, i�D(a)

〉
da

i�D(a) = S�D + εR�D
N∗D

P∗T πD(a) v1 +
∫ ∞
0

νD(a)
〈
v1, i�D(a)

〉
da πC(a) v2.

(86)

Next, observe that⎧⎪⎨⎪⎩
i�D(a)′ = −(μD + θ(a))i�D(a)

i�D(0) = S�D + εR�D
N∗D

P∗T v1 +
∫ ∞
0

νD(a)
〈
v1, i�D(a)

〉
da v2

(87)

so that by integrating (87) from 0 to+∞ we obtain

−S
�
D + εR�D
N∗D

P∗T v1 −
∫ ∞
0

νD(a)
〈
v1, i�D(a)

〉
da v2 = −

∫ ∞
0

(μD + θ(a))i�D(a) da

and by using (85) it follows that

μD

∫ ∞
0

〈
1, i�D(a)

〉
da = S�D + εR�D

N∗D
P∗T −

∫ ∞
0

(γ (a)+ δD(a))
〈
v1, i�D(a)

〉
da

−
∫ ∞
0

δC(a)
〈
v2, i�D(a)

〉
da. (88)

Next, multiply (89) by N∗D and use the first equation of (86) to obtain

μDN∗D
∫ ∞
0

〈
1, i�D(a)

〉
da = (S�D + εR�D) P∗T − θD + μDN∗D − N∗D

∫ ∞
0

γ (a)
〈
v1, i�D(a)

〉
da

(89)
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Hence, summing (89) and the second equation of (86) it follows that

S�DP
∗
T − θD + μDN∗D = μDN∗D

∫ ∞
0

〈
1, i�D(a)

〉
da+ μDN∗DR

�
D

= μDN∗D(1− S�D) (90)

that is

0 = θD − S�DP
∗
T − μDN∗DS

�
D ⇐⇒ S�D =

θD

μDN∗D + P∗T
. (91)

Finally, we infer from the i�D-equation of (86), the equality (91) together with our definition
of R�D, and N∗D that (62) is satisfied. The proof is completed by using the fact that we have
set P∗T =W�Df (W

�
D) withW�D = KT0 and f given by (67). �

Thanks to Lemma 8.2, the existence of positive equilibrium to (7)–(8) is subjected to
the existence of K>0 such that

�(T0,K) = 1 (92)

where�(T0,K) is given by (76) and (77). Before studying the existence of solution to (92),
we first observe that from (73), (74a) and (77) we have{

N∗D(0) = θD
μD
= S̄D

R�D(T0, 0) = I�D(T0, 0) = 0, ∀T0 ≥ 0.
(93)

We also note that for each T0 > 0 we have

lim
K→+∞R�D(T0,K) = l > 0 and lim

K→+∞ I�D(T0,K) = +∞ (94)

with

l := 1
εT T→D

0

θD
∫∞
0 γ (a)πD(a) da∫∞

0 δD(a)πD(a) da+ ∫∞
0 δC(a)πC(a) da

.

Therefore, using the equality T T→D
0 = f (0)

S̄D
it follows from (93) and (76) that

�(T0, 0) = T0 and lim
K→+∞�(T0,K) = −∞. (95)

It is now clear from (95) that for each T0 > 0 there exists K̄ := K̄(T0) > 0 such that
�(T0, K̄) = 0. In particular, ifT0 > 1 then there existsK0 ∈ (0, K̄) such that�(T0,K0) = 1
leading to the existence of an endemic equilibrium.

On the forward and backward bifurcations: In the following, we deal with the existence
of forward and backward bifurcation at T0 = 1. Roughly speaking, we have to prove that
there exists a positive map K0 defined in some right neighbourhood (forward bifurcation)
or left neighbourhood (backward bifurcation) of T0 = 1 such that �(T0,K0(T0)) = 1 and
K0(1) = 0. Since �(1, 0) = 1, one can prove the existence of forward and backward bifur-
cations using implicit function theorem which is reduced here to the study of ∂K�(1, 0).
This motivates the following lemma.
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Lemma 8.3: The following property is satisfied

∂T0�(T0, 0) = 1, ∀T0 > 0 (96)

and

∂K�(1, 0) = 1
μD

T T→D
0

(∫ ∞
0

δD(a)πD(a) da+
∫ ∞
0

δC(a)πC(a) da
)

−
3∑

k=1

⎛⎝ k∑
j=1

1
μj + αj

⎞⎠ S̄k∑
j∈S\{E} S̄j

T T→D
0k

T T→D
0

− (1− ε)
1

μD
T T→D
0

∫ ∞
0

γ (a)πD(a) da

− T T→D
0

∫ ∞
0

πD(a) da− T T→D
0

∫ ∞
0

νD(a)πD(a) da
∫ ∞
0

πC(a) da.

Proof: Since �(T0, 0) = T0 for each T0 > 0 the first equality of the lemma follows. To
compute ∂K�(1, 0), it is enough to take the derivative of�(1,K)with respect toK atK = 0.
To do so let us first note that by using (76) we have

N∗D(K)�(1,K) = f (K)

T T→D
0

− [(1− ε)R�D(1,K)+ I�D(1,K)]
f (K)

T T→D
0

.

Recalling that �(1, 0) = 1, N∗D(0) = θD
μD
= S̄D, R�D(1, 0) = I�D(1, 0) = 0 and taking the

derivative of N∗D(K)�(1,K) with respect to K at K = 0 it follows that

S̄D∂K�(1, 0) = −dN
∗
D(0)
dK

+ f ′(0)
T T→D
0

− S̄D[(1− ε)∂KR�D(1, 0)+ ∂KI�D(1, 0)].

By straightforward computations, we obtain from (73) and (77) that

dN∗D(0)
dK

= − S̄D
μD

T T→D
0

(∫ ∞
0

δD(a)πD(a) da+
∫ ∞
0

δC(a)πC(a) da
)

and

∂KI�D(1, 0) = T T→D
0

∫ ∞
0

πD(a) da+ T T→D
0

∫ ∞
0

νD(a)πC(a) da
∫ ∞
0

πC(a) da.

To complete the proof it remains to compute ∂KR�D(1, 0) and f ′(0). We first compute
∂KR�D(1, 0). To this end, we compute the derivative of R�D(1,K) from (74a) with respect
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to K and set K = 0 to obtain

∂KR�D(1, 0) = 1
μD

T T→D
0

∫ ∞
0

γ (a)πD(a) da.

To compute f ′(0) recall that

f (W�D) :=
3∑

k=1

⎛⎝ k∏
j=1

μj + αj

(μj + αj)+W�D

⎞⎠ S̄k∑
j∈S\{E} S̄j

T T→D
0k S̄D

so that setting

f̂k(W�D) :=
k∏

j=1
gj(W�D), k = 1, 2, 3, gj(W�D) := μj + αj

(μj + αj)+W�D

we obtain

f (W�D) :=
3∑

k=1
f̂k(W�D)

S̄k∑
j∈S\{E} S̄j

T T→D
0k S̄D.

Therefore, computing the derivative of ln(f̂k(W�D)) one obtains

f̂ ′k(W
�
D) = f̂k(W�D)

k∑
j=1

g′j(W
�
D)

gj(W�D)

and since f̂k(0) = gk(0) = 1 it follows that

f̂ ′k(0) =
k∑

j=1
g′j(0) = −

k∑
j=1

1
μj + αj

that is

f ′(0) = −
3∑

k=1

⎛⎝ k∑
j=1

1
μj + αj

⎞⎠ S̄k∑
j∈S\{E} S̄j

T T→D
0k S̄D. (97)

The proof is completed. �

Thanks to Lemma 8.3 one knows that if ∂K�(1, 0) = C−1bif �= 0 then by the implicit
function theorem there exists ξ ∈ (0, 1) and a smooth map K0 : (1− ξ , 1+ ξ)→ R such
that

�(T0,K0(T0)) = 1, ∀T0 ∈ (1− ξ , 1+ ξ) and K0(1) = 0. (98)

Thus, up to reduce ξ , it follows that the sign of K0 on (1− ξ , 1+ ξ) is given by the sign of
dK0(T0)
dT0 at T0 = 1. Differentiating (98) with respect to T0 and using Lemma 8.3 we obtain

dK0(1)
dT0

= −∂T0�(1, 0)
∂K�(1, 0)

= −Cbif
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so that

• If Cbif > 0 then, up to reduce ξ , we have K0(T0) > 0 for T0 ∈ (1− ξ , 1) which corre-
sponds to a backward bifurcation ;

• If Cbif < 0 then, up to reduce ξ , K0(T0) > 0 for T0 ∈ (1, 1+ ξ) which corresponds to a
forward bifurcation.
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