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Hematophagous insects belonging to the Aedes genus are proven vectors of viral and filarial 
pathogens of medical interest. Aedes albopictus is an increasingly important vector because of its 
rapid worldwide expansion. In the context of global climate change and the emergence of zoonotic 
infectious diseases, identification tools with field application are required to strengthen efforts in the 
entomological survey of arthropods with medical interest. Large scales and proactive entomological 
surveys of Aedes mosquitoes need skilled technicians and/or costly technical equipment, further 
puzzled by the vast amount of named species. In this study, we developed an automatic classification 
system of Aedes species by taking advantage of the species‑specific marker displayed by Wing 
Interferential Patterns. A database holding 494 photomicrographs of 24 Aedes spp. from which those 
documented with more than ten pictures have undergone a deep learning methodology to train 
a convolutional neural network and test its accuracy to classify samples at the genus, subgenus, 
and species taxonomic levels. We recorded an accuracy of 95% at the genus level and > 85% for 
two (Ochlerotatus and Stegomyia) out of three subgenera tested. Lastly, eight were accurately 
classified among the 10 Aedes sp. that have undergone a training process with an overall accuracy 
of > 70%. Altogether, these results demonstrate the potential of this methodology for Aedes species 
identification and will represent a tool for the future implementation of large‑scale entomological 
surveys.

Pathogens (viruses, bacteria, parasites) transmitted by arthropods are among the most devastating infectious 
agents that scourge the human population worldwide. Hematophagous insects belonging to the Aedes genus 
are proven vectors of viral (chikungunya, Zika, dengue, Rift Valley fever, etc.) and filarial pathogens (Brugia 
malayi, Wuchereria bancrofti) of medical interest. The Aedes genus encompasses 79 subgenera, with more than 
900 valid named species and 63 subspecies (https:// www. itis. gov/). In 2000, a revision of the Aedes taxonomy 
was proposed, and the subgenus Ochlerotatus was “raised” to the level of the  genus1. Nevertheless, this remains a 
matter of  debate2, and a stable classification that considers utility and the current knowledge of the evolutionary 
relationship was  proposed3. Still, much of the scientific literature refers to the subgenus Ochlerotatus. Out of 79 
described subgenera, 15 contain named species with medical interests in transmitting viruses or parasites. Most 
Aedes species with medical interest fall into the Ochlerotatus (Lynch Arribalzaga, 1891), Stegomyia (Theobald, 
1901), Aedimorphus (Meigen, 1818), or Finlaya (Theobald, 1903) subgenera. Among species with medical interest, 
only 2 disclose a worldwide distribution in 6 out of 7 continents: Ae. aegypti (Linnaeus 1762) and Ae. albopictus 
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(Skuse, 1895). Aedes albopictus, a vector of public health importance, has encompassed a rapid change in its 
global distribution due to the worldwide trade in second-hand tires, often containing stagnant water, making it 
an ideal place for eggs and larvae, and its easiness to adapt to new environments, even in a temperate climate. 
This expansion offers opportunities for arboviruses (viruses transmitted by arthropods) to circulate in new areas, 
becoming a common cause of epidemics in Ae. aegypti-free countries. In addition to the mentioned species, at 
least seven others are indigenous mosquitoes on more than two continents (https:// www. world atlas. com/ conti 
nents accessed on 01/24/2023).

For the entomological survey, identifying potential vectors belonging to the Aedes genus is typically based 
on intrinsic and extrinsic morphological criteria with morphological keys of determination as a tool. This is a 
time-consuming task that requires expertise and training. The discriminative morphological identification of 
adult Ae. albopictus is readily amenable by looking at bold black shiny scales and distinct silver-white scales on 
the palpus and  tarsi4. Additionally, the dorsal scutum is black, with a distinguishing white stripe in the center, 
beginning at the dorsal surface of the head and continuing along the thorax. This character is nevertheless present 
in the specimen of the Scutellaris groups belonging to the Stegomyia subgenus, roughly 40 species. It cannot as 
perse be considered a diagnostic character. It is a medium-sized mosquito (2.0–10.0 mm; males are on average 
20% smaller than females). Differential morphology of males from females includes the plumose antennae and 
modified mouthparts for nectar feeding. Dark scales cover the abdominal tergites. Legs are black with white 
basal scales on each tarsal segment. The abdomen narrows into a point characteristic of the genus Aedes. Adult 
Ae. aegypti can be recognized by white marks on the legs and a marking lyre on the thorax. In areas with multiple 
sympatric Aedes species with or without medical importance, these distinctions according to morphological 
characteristics are only sometimes easily discriminative. In addition, it is common for older adult specimens to 
have missed or damaged body parts or characters (e.g., scales, legs) that are essential for accurate identifications. 
Specimens with damage in critical regions for diagnostic characters separating vector species from closely related 
non-vector ones further puzzled entomological surveys.

Machine learning models, especially convolutional neural networks, can classify objects by identifying visible 
and non-visible features to the naked  eye5. They are of choice and have been extensively used for insect identi-
fication involving whole insect image recognition. They demonstrate astonishing accuracy on a wide range of 
 Arthropods6–8, including  Culicidae9–11. Features related to animal behavior (e.g., flying and walking trajectories, 
postures, etc.)12, allowing at-distance identification of alive specimens, have also been tested. Models based on 
insect morphology imaging of immobilized insects, an approach close to the entomological expertise deployed 
to identify insects that have inter-genus inter-species high morphological similarities, require a considerable 
number of data for training each Genus/species to learn the features and gain validation  accuracy10,13,14. Databases 
needed to train such models on whole insect recognition are filled with pictures of several poses, dorsal–ventral, 
etc., to collect taxonomic discrimant  characters6,15–17.

Wing Interference Patterns (WIPs) have received attention for their taxonomic  potential18–20. The thin-film 
interference occurring on the wings’ transparent membrane allows the formation of a colored pattern. These 
WIPs significantly vary among specimens belonging to different species but moderately between representatives 
of the same species or between sexes. Unlike the angle-dependent iridescence effect of a flat film, the newton 
color series displayed is proportional to the thickness of the wing membrane at any given point, wing structures 
acting as diopters ensuring the WIPs appear essentially non-iridescent19. In previous papers, we have shown the 
value of WIPs for Glossina and Anopheles  classification21,22.

In the context of global climate change and the emergence of zoonotic infectious diseases, identification 
tools with field application are required to strengthen efforts in the entomological survey of arthropods with 
medical  interest23,24. Therefore, implementing new and affordable methods to accurately identify mosquitoes of 
the Aedes genus is a prerequisite for an entomological survey. To this aim, we have explored the accuracy and 
reliability of Wing Interferential Patterns (WIPs) to accurately identify Aedes specimens and classify them using 
a deep learning (DL) procedure.

Material and methods
Aedes selection and storage
The first WIPs reference collection of Culicidae gathers samples belonging to the Aedes genus using well-estab-
lished Aedes albopictus laboratory breeds. Specimens were also selected in the ARIM collection (https:// arim. 
ird. fr/) of IRD (Institut de Recherche pour le Développement). In addition, samples collected in natura whose 
identification was performed by trained entomologists at the time of their catch with available regional identifica-
tion keys were also included in the database. The description of the samples used in this study is given in Table 1, 
and the worldwide distribution of samples included in the study is illustrated in Fig. 1. A complete list of the 
Diptera dataset used in this study and of species included in the database with their associated class is available 
in the supplementary data and the figshare server (Supdata: ID of species included in the study).

Image acquisition and database construction
The procedures applied to capture WIPs were the same as those described for Glossina sp. WIPs  acquisition21. 
Wings were dissected and deposited on a glass slide, adding a small cover slide. The picture was taken with 
a Keyence™ VHX 1000 microscope, using the VH-Z20r camera and a Keyence VH K20 adapter, allowing an 
illumination incidence of 10°. The High Dynamic Range (HDR) function was used for all photos. All pictures 
were enlarged to a maximal occupancy, making the size of the wing not a discriminating parameter for insect 
species identification. The numerical parameters settled are the same as described and detailed in the publica-
tion on Glossina spp.21.

https://www.worldatlas.com/continents
https://www.worldatlas.com/continents
https://arim.ird.fr/
https://arim.ird.fr/
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A Aedes spp. in our database Med int* Or Year N Country code
Morphological identification by 
trained entomologists

Aedes (Stegomyia) albopictus Yes C-W 2015 239 250, 638 Ph Bousses

Aedes (Stegomyia) aegypti Yes W 2010 55 854, 266, 710 ND, Ph Bousses

Aedes (Stegomyia) polynesiensis Yes W 2016 27 876 F Mathieu-Daudé

Aedes (Stegomyia) africanus Yes W 2010 2 ND JP Hervy

Aedes (Stegomyia) opok No W ND 2 ND JP Hervy

Aedes (Stegomyia) luteocephalus Yes W 1967 13 854 G Pichon, F Rodhain

Aedes (Stegomyia) simpsoni No W ND 7 175 JP Hervy, ND

Aedes (Ochlerotatus) detritus No W ND 22 504, 250 H Bailly-Choumara

Aedes (Ochlerotatus) mariae No W 1929 13 12 ND

Aedes (Ochlerotatus) pullatus No W ND 15 ND ND

Aedes (Ochlerotatus) punctor No W 1967 12 250 ND

Aedes (Ochlerotatus) rusticus No W 1967 8 250 ND

Aedes (Ocherotatus) dufouri No W 2012 14 686 Ph Bousses

Aedes (Ochlerotatus) cantans No W 1960 9 250 H Bailly-Choumara

Aedes (Neomelaniconion) bolense No W 1950 2 ND ND

Aedes (Neomelaniconion) macintoshi Yes W 1950 5 854 J Hamon

Aedes (Neomelaniconion) circumluteolus No W 1955 5 ND J Hamon

Aedes (Aedimorphus) fowleri No W 2012 3 638 Ph Bousses

Aedes (Aedimorphus) irritans No W 1986 7 686 JP Hervy

Aedes (Diceromyia) furcifer Yes W 1986 7 686 JP Hervy

Aedes (Diceromyia) taylori Yes W 1987 2 686 J Hamon

Aedes (Finlaya) geniculatus No W 2015 6 ND G Le Goff

Aedes (Finlaya) echinus No W 1966 10 504 H Bailly-Choumara

Aedes (Fredwardsius) vittatus Yes W 1960 9 384 J Hamon

B Aedes spp. of medical interest not in our database

Aedes (Aedimorphus) cumminsii

Aedes (Aedimorphus) dalzieli

Aedes (Aedimorphus) dentatus

Aedes (Aedimorphus) hirsutus

Aedes (Aedimorphus) ochraceus

Aedes (Aedimorphus) vexans

Aedes (Catageionyia) minutus

Aedes (Catageiomyia) argenteopunctatus

Aedes (Catageiomyia) tarsalis

Aedes (Downsiomyia) harinasutai

Aedes (Downsiomyia) niveus

Aedes (Elpeytonius) simulans

Aedes (Finlaya) fijiensis

Aedes (Finlaya) kochi

Aedes (Finlaya) poicilius

Aedes (Georgecraigius) atropalpus

Aedes (Georgecraigius) epactius

Aedes (Hulecoeteomyia) japonicus

Aedes (Hulecoeteomyia) koreicus

Aedes (Neomelaniconion) palpalis

Aedes (Ochlerotatus) angustivittatus

Aedes (Ochlerotatus) atlanticus

Aedes ((Ochlerotatus) canadanensis

Aedes (Ochlerotatus) cantator

Aedes (Ochlerotatus) condolescens

Aedes (Ochlerotatus) dorsalis

Aedes (Ochlerotatus) dupreei

Aedes (Ochlerotatus) excrucians

Aedes (Ochlerotatus) fitchii

Aedes (Ochlerotatus) grossbecki

Aedes (Ochlerotatus) infirmatus

Continued
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Collected dataset, image pre‑processing, and dataset splitting for training/learning and 
validation
A rich annotated image dataset, including 494 pictures of 24 Aedes species, is available (figshare: https:// figsh are. 
com/s/ 597f4 e2f2d 8206e 09603). Under-sampled Aedes species (less than ten samples/pictures) were discarded 
for training to prevent overfitting. All processed images were resized to 256 and 116 pixels for width and height, 
respectively. Pixel values were normalized within the (0, 1) range.

The dataset was then prepared for k-fold cross-validation, with k = 5 (Fig. 1). K-fold cross-validation is a classic 
approach to evaluate the robustness of a machine learning method, including Deep Learning ones. Mainly, for 
this study, the dataset was randomly shuffled and partitioned into k equal-size subsets with similar class distribu-
tions. A separately learned classifier was evaluated for each subgroup using kth of the whole dataset for valida-
tion and the remaining k−1 as training data (see Fig. 2 for illustration). This strategy allowed for measuring the 
mean accuracy of 5 distinct models and is the most accurate neural network performance estimation  method25.

This strategy allowed for measuring the mean accuracy of the five distinct classifiers. Among all existing 
machine learning methods, Deep Convolutional Neural Networks and their different architectures have shown 
in the last decade to be the most adapted for image classification. Compared to classic shallow methods (Support 
Vector Machine, Random Forest, and Boosting-based approaches for the main ones), they do not need hand-
crafted features as input of the learning process: the selection of the best features is intrinsic to the method itself 
and is particularly well adapted to the WIPs scenario. A pipeline overview of the complete training procedure 
using CNN is shown in Fig. 3.

Training of the neural network (CNN)
The data used to develop the Deep Learning model includes Culicidae and non-Culicidae  specimens26. The 
methodology used was initially developed and tested on Tetse  flies21. Briefly, the original CNN architecture 
 MobileNet27,  ResNet28, and  YOLOv229 architecture were deemed for automatically classifying Aedes sp. with the 
abovementioned dataset. Compared to classic Deep Learning, ours is more compact to cope with the specificity 
of our dataset in terms of size; therefore, thinner image recognition and classification architecture were devel-
oped to consider its reduced size. The first one is inspired by MobileNet, which takes advantage of depth-wise 
 convolution27. We propose to work with only one depth-wise convolution per layer of the CNN architecture to 
reduce the complexity and the number of extracted features. In addition, batch normalization was set to speed 
up and stabilize the training  process30.

In addition to this first compact CNN architecture based on MobileNet, two interconnected layers like  VGG31 
for YOLOv2 were applied with a DarkNet-19  architecture29, as performed on tsetse flies  samples21. As this archi-
tecture tends to over-fit the training set (meaning a lack of generalization of the performance when data other 
than the training data set are considered), we test two reduced architectures, i.e., using 1 or 2 scales less than 
the original network. For clarity, we called them DarkNet-9 (8 convolution layers and 1 classification layer) and 
DarkNet-14 (13 convolution layers and 1 classification layer). We also reproduced the ResNet18 architecture 
from He and  collaborator28 and trained it from random initialization. Even if this architecture seems too “deep” 

A Aedes spp. in our database Med int* Or Year N Country code
Morphological identification by 
trained entomologists

Aedes (Ochlerotatus) melanimon

Aedes (Ochlerotatus) nigromaculis

Aedes (Ochlerotatus) provocans

Aedes (Ochlerotatus) scapularis

Aedes (Ochlerotatus) sollicitans

Aedes (Ochlerotatus) squamiger

Aedes (Ochlerotatus) sticticus

Aedes (Ochlerotatus) stimulans

Aedes (Ochlerotatus) taeniorhynchus

Aedes (Ochlerotatus) trivittatus

Aedes (Ochlerotatus) vigilax

Aedes (Polyleptomyia) albocephalus

Aedes (Protomacleaya) triseratus

Aedes (Rampamyia) notoscriptus

Aedes (Stegomyia) scutellaris

Aedes (Tanakaius) togoi

Table 1.  List of named Aedes species and description of samples included in the dataset (A) and of Aedes 
species having a medical interest but not included in our dataset (B). *Medical interest according to the WRBU 
database (https:// wrbu. si. edu/ vecto rspec ies? field_ family_ target_ id= 1194& title= & field_ mt_ produ cts_ tags_ 
target_ id= & field_ patho gens_ target_ id= & field_ geogr aphic_ locat ions_ target_ id= & items_ per_ page= 30) and 
Wilkerson et al.3. & ISO 3166–1 country code available at (https:// www. atlas- monde. net/ codes- iso/). Or, the 
sample’s origin; W, wild; C, colony; N, number of samples processed.

https://figshare.com/s/597f4e2f2d8206e09603
https://figshare.com/s/597f4e2f2d8206e09603
https://wrbu.si.edu/vectorspecies?field_family_target_id=1194&title=&field_mt_products_tags_target_id=&field_pathogens_target_id=&field_geographic_locations_target_id=&items_per_page=30
https://wrbu.si.edu/vectorspecies?field_family_target_id=1194&title=&field_mt_products_tags_target_id=&field_pathogens_target_id=&field_geographic_locations_target_id=&items_per_page=30
https://www.atlas-monde.net/codes-iso/
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(may lead to overfitting) compared to our other architectures, the intrinsic properties of ResNet18, residual 
connections, allow convergence of the training  procedure21.

We used a standard approach (shallow approach) based on extracting SURF descriptors (an efficient imple-
mentation of the classic SIFT descriptors), a Bag of Features (BoF) representation using a 4000 codewords 
dictionary, and an SVM with a standard polynomial kernel similar to it was proposed in Sereno et al.32. For each 
task, we only use one fully connected layer with the softmax activation to predict the probability that an image 
belongs to the correct class. We train our networks using Stochastic Gradient Descent (SGD) with a learning rate 
of  102 and a momentum of 0:9 for 30 epochs. The method was developed on a workstation with a quad-core CPU 
3.0 GHz and 16Go RAM. Information on the training options, accuracy, and sensitivity, as well as the code, are 
available at https:// github. com/ marce nsea/ dipte ra- wips/ commit/ 12f39 ab500 a3f82 0cfb8 17c67 ef25c 58094 2301d.

Results
Training and classification
We explored the training classifier accuracy on the Aedes dataset and on datasets of Culicidae that do not belong 
to the Aedes genus (non-Aedes) and from mosquitoes that do not belong to the Culicidae family (non-Culicidae) 
as negative samples. We trained the CNN on such a combination to improve the model’s accuracy. The database 
initially filled with a total of 494 pictures of Aedes spp. WIPs pictures. Since we cannot fill the database with all 

Figure 1.  Geographic distribution of samples included in the study using Google Looker Studio (https:// looke 
rstud io. google. com/ overv iew).

Figure 2.  Schematic representation of the dataset splitting for learning (red) and testing (orange) from Cannet 
et al.21.

https://github.com/marcensea/diptera-wips/commit/12f39ab500a3f820cfb817c67ef25c580942301d
https://lookerstudio.google.com/overview
https://lookerstudio.google.com/overview
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Aedes species acting as primary vectors of viruses, parasites, or bacteria with a medical interest, we first focused 
on a restricted set of species (Table 1). Using this pictures-set, we ascertained the accuracy of the process to 
discriminate the Aedes genus (Meigen, 1818) from other Culicidae (Meigen, 1818), including Anophelinae 
(Grassi, 1900), Culicinae (Meigen, 1818), and non-Culicidae samples members (e.g., Psychodidae, Glossini-
dae…). From our dataset and process, the automatic classification process accuracy is rather good and higher 
than 95% (Table 2).

We also evaluated the DL process’s accuracy at the subgenus level (Table 3). The Aedes genus encompasses 
79 subgenera, with only 14 gathering species documented to act as primary vectors of viruses, parasites, and 
bacteria of medical interest. As mentioned in the introductory section, the subgenus Ochlerotatus was “raised” to 
the level of the genus in  20001. Considering that a large number of the scientific literature refers to the subgenus 
Ochlerotatus, we refer to this taxonomic nomenclature to carry out our  analysis33. Our Aedes dataset does not 
represent the overall diversity at the subgenera level. Nevertheless, the computed accuracy for the identification 
process is high (> 85%) for the Stegomyia and Ochlerotatus subgenera, with a classification accuracy of 97.0 and 
86.7%, respectively. Still, it fails to address the Finlaya subgenus accurately. Such low accuracy might be due to 
the small sample size available to train and test the process for Finlaya. Therefore, efforts in implementing the 
database with enough specimens representative of the Finlaya and other subgenera must be made to address 
our methodology’s accuracy in addressing the classification process at the subgenus taxonomic level. Overall, 
our methods are the first based on deep learning with the versatility of automatically handling samples at the 
subgenus level, which might be of interest to speed and facilitate the identification of specimens of Aedes species 
of medical interest.

Finally, the reliability of the DL model to accurately classify WIPs pictures of 10 Aedes species was calculated, 
and the results are presented in Table 4. Variable level of accuracy is recorded, ranging from not accurate (0.00%) 
to perfect classification (100.00%). A perfect accuracy (100.00%) is achieved for 50% of Aedes species whose WIPs 
pictures are filled in the dataset. More than 75% accuracy in classification is recorded for 7 Aedes species, but the 
DL methods failed to assign 2 Aedes species correctly (Ae. echinus and Ae. mariae) (Table 4). Even if populations 
of Ae. albopictus bear a high variability independently of whether the populations are native or  invasive34,35, we 
record a high classification accuracy (Table 4). The DL approach based on WIPs can manage the diversity of 
specimens sampled in two distant geographic areas, France and La Réunion. Aedes aegypti exists in two subspe-
cies or forms: the domestic ecotype, Ae. aegypti aegypti found outside Africa and the presumed ancestral Ae. 
aegypti formosus occurring in sub-Saharan Africa in sympatry with Ae. aegypti aegypti in some  ecologies36,37. 
Our samples of Ae. aegypti originating from sub-Saharan Africa were not identified at the subspecies level. They 
may be a mix of the two ecotypes with subtle variations in their WIPs. This might be the underlying factor trig-
gering the lower accuracy (72.7%) of the identification process of Ae. aegypti in our dataset, as compared to the 
accuracy recorded for Ae. albopictus (95.8%) classification. This deserves to be investigated. Nevertheless, the 
overall calculated specific recognition of samples belonging to Aedes remains satisfactory.

Misclassified pictures
Inspection of the machine learning model weaknesses helps identify underlying problems. This can be performed 
via a review of the miss-predicted images. This will provide insights into what makes a photo hard to classify for 
the model. Our data set takes advantage of having to be filled with pictures of samples collected in natura or from 
laboratory colonies but also preserved for an extended period or damaged. This large panel of images taken with 
the same microscope under the same light condition, preparation process, and preprocessing methodologies 
will help to delineate factors (e.g., age, sample origin, sample preservation…) affecting the classification process. 
In Fig. 4, selected examples are presented. Deep learning models rely more on textures than shapes. A more 
extensive training set can avoid pitfalls linked to photo or sample quality, prevent confusing set-ups when taking 
pictures, and improve the accuracy of the automated classification. A guideline can be added to the application 
to advise participants to make good images of Culicidae samples.

Besides misclassified pictures, we generated activations maps pointing to which image region the architectures 
use, according to the feature extraction layers of the DCNN (Fig. 5).

These activation maps illustrate that the membrane and the vein structure are not targeted by the DCNN 
and that features activated concentrate in the lower part of the picture, particularly on the color pattern, when 
learning was successful Fig. 5 and high accuracy in the classification (Accuracy > 76%), while when classification 

Figure 3.  Schematic representation of the pipeline process developed for Glossina identification using the 
Convolutional Neural Network (CNN) approach from Cannet et al.21.
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accuracy is low (30%), features extracted spread all over the wing. In all cases, neither the wing shape nor the 
venation are features targeted by DCNN.

Discussion
With robust vector surveillance, emerging vector-borne disease threats can be addressed. During an entomologi-
cal survey, most routine identification involves skilled personnel that use diagnostic criteria, like the size, shape, 
or texture of specimens or the presence or absence of certain key features. Since the morphological identifications 
of medically important Aedes species is complex and meticulous, requiring highly skilled specialists, an alterna-
tive is to use computer vision that, like mosquito taxonomists, relies on visual (morphological) characters to 
assign a definitive taxon name. A framework based on a deep neural network was developed to extract mosquito 
anatomy from images. The process was tested on 23 Culicidae belonging to the Aedes, Anopheles, and Culex 
 Genus9, but only 3 Aedes species (Ae. aegypti, Ae. infirmatus, and Ae. taeniorhynchus). Nevertheless, manipu-
lating mosquitoes to acquire and extract morphological characters is complicated and damages specimens. A 
real-time pipeline was set but has only been tested for discrimination of Ae. aegypti and Ae. albopictus15. Finally, 
deep convolutional network approaches using whole-body pictures of field-caught mosquitoes have shown 
promise, demonstrating astonishing accuracy, even classifying unknown/unidentified species before further 
 identification10. Nevertheless, we can anticipate that morphology-based methods might suffer from the same 
limitation encountered by taxonomists for cryptic species/subspecies delineations, for Aedes species belonging 

Table 2.  Test for accuracy of the DL (Deep Learning) process for the Aedes (Meigen, 1818) genus 
identification. N, number of pictures in the test subset. Accuracy data (%) in bold.

Predicted

Aedes spp. Other Culicidae Non Culicidae

Truth

Aedes spp. N = 84 80 (95.2%) 4 0

Other Culicidae N = 259 2 256 (98.8%) 1

Non Culicidae N = 675 0 1 674 (99.9%)

Table 3.  Test for accuracy (%) of the DL classification process at the subgenus taxonomic level. N, number of 
pictures in the test subset, Accuracy in %.

Predicted 

Subgenera Stegomyia s Finlaya Non Aedes spp.

Truth 

Stegomyia             N=67 97.0% 0.0% 0.0% 3.0% 
Ochlerotatus         N=15 0.0% 86.7% 0.0% 13.3% 
Finlaya                  N=2 50.0% 50.0% 0.0% 0.0% 
Non Aedes spp.    N=934 0.0% 0.2% 0.0% 99.8% 

Ochlerotatu

Table 4.  Accuracy in % of the DL process for Aedes spp. classification. Significant values are in [italics]. N, 
number of images in the test subset.

Predicted 

Species N  Class 1 2 3 4 5 6 7 8 9 10 11 

Truth 

Ae. albopictus 48 1 95.8 4.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Ae. aegypti 11 2 0.0 72.7 0.0 0.0 0.0 0.0 9.1 0.0 0.0 0.0 18.2

Ae. detritus 4 3 0.0 0.0 75.0 0.0 0.0 25.0 0.0 0.0 0.0 0.0 0.0

Ae. mariae 3 4 0.0 0.0 0.0 33.3 0.0 0.0 0.0 0.0 0.0 0.0 66.7

Ae. pullatus 3 5 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0

Ae. punctor 2 6 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0

Ae. luteocephalus 3 7 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0

Ae. dufouri 3 8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0

Ae. echinus 2 9 50.0 0.0 0.0 0.0 50.0 0.0 0.0 0.0 0.0 0.0 0.0

Ae. polynesiensis 5 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0

Non-Aedes spp. 934 11 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.0 99.8
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to the Neomelanoconion identification whose require examination of internal organs, and as well as the misi-
dentification of damaged specimens. Besides the mentioned methods, some characteristics like flight tone and 
wing beat, which play a role in mosquito  reproduction38–40, were used for the automated identification assay of 
Ae. albopictus and Ae. triseriatus39,40, and more recent development permits an “at a distance” discrimination 
between Ae. albopictus, Ae. aegypti and Culex sp.41,42. Here, we prove the classification accuracy with WIPs is 
above 75% for 8 of the ten species investigated in our study.

Morphometry analysis of insects’ wings has demonstrated interest in vector mosquitoes and sibling or cryptic 
 species43–45 identification. Nevertheless, this requires intact wings and extensive preprocessing to mount them 
without deformation. All that severely impedes its application for entomological survey purposes, but it is still 
attractive in taxonomic and populational studies. Our methodology would promise that Aedes species identifica-
tion can be accurately performed with minimal training, cost, and time. In addition, wings are relatively robust 
insect organs that limit the risks of damaging them. In addition, they can be easily stored at room temperature 
and be carried with minimal caution.

Alternative methodologies not relying on morphological characteristics were implemented. These alterna-
tives are DNA barcoding and protein profiling by MALDI-TOF, but they can also involve the wing beat features. 
MALDI-TOF has been applied to a restricted number of Aedes species at the egg stage, i.e., Ae. albopictus, 
Ae. atropalpus, Ae. cretinus, Ae. geniculatus, Ae. koreicus, Ae. phoeniciae, and Ae. triseriatus, 4 have medical 
 importance46,47. It was also set up to identify the second larval stage to pupae of Ae. albopictus and Ae. aegypti48 
and on the fourth instar  larvae49 but with higher accuracy for late larval  instar50. Its efficiency for field-trapped 
or colony-reared insect adults is limited. It includes species having (Ae. albopictus, Ae. vigilax, Ae. vexans, Ae. 
notoscriptus, Ae. polynesiensis) or not (Ae. fowleri, and Ae. dufouri) a medical  importance51–55. However, the 
interoperability of the MALDI-TOF methodology requires a standardized procedure in the conservation of 
samples and the choice of the mosquito body part of adult  specimens56. For MS identification, standardiza-
tion of procedures for preparation and reproducibility between instruments and homemade databases will be 
 desirable57–60. Contrary to MALDI-TOF or DNA-barcoding methodologies, our method is not designed to 
identify Aedes at larval stages. Nevertheless, a survey on adult mosquitoes is an alternative to larval surveys 
because it addresses the vector life stage responsible for transmission and thus adds information on vector 
 density61. Infrared spectroscopy (NIR and MIR) can detect changes in the mosquito cuticle by quantifying 
light  absorbed62. The discriminative capability of such methodology at the species level has been investigated 
on a restricted number of Aedes species having a medical interest (Aedes aegypti, Ae. albopictus, Ae. japonicus, 
and Ae. triseriatus)63. The main interest of this methodology relies on its capacity to grade the age of natural 
Anopheles spp. populations when coupled with a Deep learning  approach64. DNA barcoding is also an alterna-
tive to morphological identification methods. A quest for “Aedes” as a keyword in the barcode of Life system 
(BOLD) database indicates 27,458 records with sequences representative of 328 species (http:// v4. bolds ystems. 
org/ accessed on 21 of July 2022)65. During proactive surveillance of invasive and/or medically and veterinary 
important species, genetic identification by PCR is costly, destructive, and time-consuming66, a limitation that 
does not carry our method. Prompt and correct identification of exogenous species is required to monitor entry 
points under the International Health Regulations (IHR) to limit the dispersal and establishment of new vector 
species. In this case, even entomologists experienced in identifying local mosquito fauna may experience dif-
ficulty accurately identifying damaged specimens. We provide evidence that WIPs analysis coupled with Deep 
Learning for discriminative identification competency to accurately classify Aedes species at various taxonomic 
levels (genus, subgenus, and species). The competency to accurately classify Aedes samples at the subgenus level 
is of interest to medical entomologists and public health services since a restricted number of Aedes subgenus 
encompass species of medical interest. In this study, among Aedes species accurately classified (Accuracy > 75%), 
four are of medical interest (Ae. albopictus, Ae. aegypti, Ae. luteocephalus, and Ae. polynesiensis). Therefore, we 
can envision that a database of WIPs encompassing proven Aedes vectors at a global or regional scale would 
allow remote territories to address the vector status of a specimen.

Figure 4.  Selected examples of misclassified pictures. Ae. albopictus misidentified as Ae. aegypti (A), Ae. 
albopictus misidentified as Ae. aegypti (B), Ae. aegypti misidentified as Ae. luteocephalus (C), Ae. aegypti 
misidentified as Ae. albopictus (D), Ae. mariae misidentified as Cx. neavei (E), Ae. echinus misidentified as Ae. 
pullatus (F), Ae. polynesiensis misidentified as Ae. albopictus (G), Ae. polynesiensis misidentified as Cx. neavei 
(H).

http://v4.boldsystems.org/
http://v4.boldsystems.org/
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Increasing the area of vector surveillance is of high interest, even at a continental scale. Community science 
relying on the participation of non-expert people was therefore applied for  mosquitoes67,68. Unfortunately, the 
quality of entomological data can be poor in terms of identification accuracy. Deep learning approaches have 
offered opportunities to overcome this limitation and have been developed to follow Ae. albopictus in Europe, 
from pictures taken by  citizen11. However, this methodology wasn’t tested in high Aedes species diversity areas. 
Unfortunately, our method, as it stands, cannot be translated for this purpose because of the cost associated 
with microscopy and the need for high-quality pictures. Nevertheless, because wings are tiny and light, they can 
quickly be sent for identification purposes with this methodology. A global comparison between the various 
methods developed for Aedes identification is given in Table 5.

Current global vector surveillance systems are unstandardized, burdensome on public health systems, and 
threatened by the worldwide scarcity of entomologists. The Deep learning analysis of Aedes WIPs resulting in 
robust classification could empower non-experts to identify disease vectors accurately and rapidly in the field. 
This is of interest in areas where large-scale and/or proactive surveys must be performed, like the Pacific area, 
where more than 20,000 islands must be  surveyed56,69. This situation would make exogenous species introduc-
tion unnoticed. Nevertheless, the methods need now to be further investigated by evaluating, even qualitatively, 
whether the proposed approach could be usable in real-life scenarios regarding several important criteria: cost 
(including infrastructure, material, training, and cost associated with technically skilled personnel), computa-
tional resources, analyzing time, sample destructiveness, diversity, and taxonomic level (species, sibling species, 
cryptic species, sub-species) of the classification. All these will increase vector surveillance’s programmatic 
capability and capacity with minimal training and cost.

Figure 5.  Activation maps for Aedes with a high confidence value (A) and low confidence value (B) on the 
prediction. Warm colors (yellow and red) of the activation point to wing regions where local features are 
essential for the decision.
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Data availability and code availability
The whole database, including Aedes species WIPS, is available on https:// figsh are. com/s/ 597f4 e2f2d 8206e 09603, 
and the code on https:// github. com/ marce nsea/ dipte ra- wips. git.
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