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Sentinel-1 Backscatter and Interferometric Coherence
for Soil Moisture Retrieval in Winter Wheat Fields
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Abstract—This work aims to assess the effectiveness of machine
learning (ML) algorithms and semiempirical models for surface soil
moisture (SSM) retrieval by exploring the Sentinel-1 backscatter
and interferometric coherence data. First, three commonly used
categories of ML algorithms are evaluated using data gathered
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from diverse rainfed and irrigated wheat fields located in Mo-
rocco and Tunisia. Specifically, these algorithms include artificial
neural network (ANN), deep neural network, three support vector
regression (SVR) models [radial basis function (SVR_rbf), linear
(SVR_linear), and polynomial (SVR_quad) kernels], and two tree-
based methods [random forest and eXtreme Gradient Boosting
(XGBoost)]. The comparison between predicted and measured
SSM showed that the best retrieval results were obtained using
Sentinel-1 data at VV polarization with R ranging between 0.68
and 0.76 and root-mean-square error (RMSE) of 0.05 m3/m3

and 0.06 m3/m3. Second, to further assess their transferability,
the ANN, SVR_rbf, and XGBoost, which demonstrated the most
favorable results from each category, were evaluated and compared
against the coupled Water Cloud and Oh models (WCM), using
a second dataset collected over a drip-irrigated wheat field in
Morocco. Overall, the best retrieval results were achieved by ANN
and SVR_rbf with R and RMSE of 0.81 and 0.034 m3/m3, respec-
tively. In addition, their performances were consistent with that of
WCM, which yielded R and RMSE values of0.81 and 0.04 m3/m3,
respectively. Finally, due to its good compromise between retrieval
accuracy of SSM, processing time, and simplicity, SVR_rbf was
chosen to generate high-resolution SSM maps from Sentinel-1 data
over irrigated wheat fields.

Index Terms—Backscattering models, irrigated and rainfed
winter wheat, machine learning (ML), semiarid regions, Sentinel-1
backscatter and interferometric coherence, surface soil moisture
(SSM).

I. INTRODUCTION

I T IS well known that accurate estimates of surface soil mois-
ture (SSM) are crucially required for a better understanding

of water and energy exchanges at the biosphere–atmosphere
interface [1] and hydrological processes [2], [3] Indeed, SSM
governs the energy balance equation at the land surface by
influencing the partitioning of available energy into sensible and
latent heat flux through soil evaporation and plant transpiration
processes [4]. Thus, SSM controls the water budget equation
through its impact on the partitioning of precipitation into runoff
and infiltration [3]. In addition, the improvement of land surface
models (LSMs) and distributed hydrologic models can benefit
from realistic SSM values either as an initial condition or through
assimilation techniques [5], [6], [7], [8], [9]. Meanwhile, SSM
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has been recognized as an indispensable variable in climate
studies by the Global Climate Observing System [10] due to its
ability to provide valuable climate background by analyzing the
long-term trends of its variations [3]. More specifically, precise
SSM information is a key parameter for agricultural water re-
sources management such as irrigation scheduling, hydric stress
monitoring, and yield prediction, which can ensure food and
water security, particularly in arid and semiarid regions [11],
[12]. Consequently, an accurate knowledge of SSM at high
spatiotemporal resolution exhibits an important source of in-
formation to both human activities and ecological environment.

Remote-sensing-based approaches that incorporate active mi-
crowave sensors (viz., synthetic aperture radar—SAR and scat-
terometers [13]) and passive microwave sensors (radiometers:
e.g., AMSR-E [14], SMOS [15], and SMAP [16]) have been
found to be promising due to their high sensitivity to SSM
variations [17] and weather-independent capability compared
to optical sensors [18]. These sensors are characterized by a
coarse spatial resolution, of the order of tens of kilometers, which
is a major drawback. Such a resolution is useful for climate
applications, e.g., [19]. However, the estimation of variables
that present a high spatial variability from one plot of less
than one-tenth of a square kilometer to another requires finer
resolution, such as that maintained by today’s SAR sensors. In
particular, the ESA Sentinel-1 constellation with two satellites
A and B, launched in 2014 and 2016, respectively, has opened
up new research opportunities for retrieving SSM at the field
scale, thanks to their high spatial resolution (10 m) and revisit
times of up to 6 days [20]. In a recent study in [21], attention was
drawn to the collaborative utilization of SMAP and Sentinel-1
backscatter data. This approach aims to extend the downscaling
of SMAP soil moisture beyond the 1-km scale, necessitating
further modifications to address the existing challenges related
to achieving subkilometer spatial resolutions. These adjustments
are specially tailored to suit the requirements of the Southern
Mediterranean region.

The retrieval of SSM from SAR data is, nonetheless, not a
straightforward task due to the nonlinear dependence between
radar signal and in situ SSM [19]. To address this issue, nu-
merous physically-based scattering models have been developed
such as Michigan microwave canopy scattering (MIMICS, [22])
and Karam [23]. As a result of their strong physical foundation,
these models are more suited for characterizing the vegetation
layer in depth and accurately modeling backscattering from
vegetated surfaces [24]. However, these models are difficult to
implement through SSM inverting algorithms, particularly at a
large scale, due to their necessity of several input parameters
mainly including information about soil surface characteristics,
leaves, branches, trunks, and sensors. In addition, the use of these
models requires substantial knowledge of the complex mecha-
nisms involved in the interaction of electromagnetic radiation
and the target variable. Likewise, the coupling of semiempirical
models, such as the Oh model [25] for bare soil and the Water
Cloud model [26] for vegetation, has been widely used, partic-
ularly for crops such as wheat. This is due mainly to their good
tradeoff between accuracy and model complexity [27], [28],
[29], [30], [31], [32], [33], [34]. Nevertheless, the applicability of

this category of models to other conditions and vegetation types
is still an open question due to their dependence on observation
data related to vegetation and soil surface roughness [36]. In fact,
even with extensive in situ sampling of surface roughness, it is
still challenging to provide an accurate roughness parameteri-
zation scheme at the field scale or larger because of the natural
variability of the soil [35], [36], [37].

These difficulties associated with physical and semiempirical
approaches have forced researchers to look for purely data-
driven predicting tools by exploring the recent development of
machine learning (ML) algorithms [1], [38], [39]. As a matter
of fact, ML algorithms, which are based on statistical learning
theory, are able to learn independently the high nonlinear rela-
tionship between SSM (target) and land surface features (pre-
dictors) at the global scale. More recently, the utilization of ML
algorithms has gained increased attention in SSM retrieval due to
their ability to tackle numerous limitations of the semiempirical
and physically based models as previously outlined. Most of the
previous studies focused on the joint use of radar data and optical
data (as a descriptor of vegetation) as input features for training
their ML algorithms and thus retrieving SSM [19], [40], [41],
[42], [43]. However, a severe lack of optical data observations
may occur in the event of prolonged cloud cover, which is quite
frequent when crops, particularly cereals, are cultivated during
the wet season, as in the South-Mediterranean regions. To deal
with this issue, Efremova et al. [44] have proposed a framework
for unsupervised deep domain adaptation for radar and opti-
cal satellite imagery with cycle-consistent adversarial networks
(cycleGANs). In the same vein, using a large in situ database
collected from several irrigated and rainfed wheat in Morocco
and Tunisia countries, Ouaadi et al. [45] have developed a new
approach to predict SSM, based only on two complementary and
relatively independent information extracted from Sentinel-1
radar including backscattering coefficient and interferometric
coherence (ρ). According to their finding, ρ, which is defined
as the variance of the interferometric phase, can be fairly used
as a descriptor of vegetation thanks to its good correlation with
vegetation characteristics such as the dry above-ground biomass
and the vegetation water content. In addition, they showed that
the use of ρ as a descriptor improves the SSM retrieval compared
to the Normalized Difference Vegetation Index (NDVI) derived
from Sentinel-2. Lately, Villarroya-Carpio et al. [46] have suc-
cessfully demonstrated the Sentinel-1 coherence’s usefulness
as a vegetation index by relying on its high correlation with
NDVI revealed over several crops. Likewise, they pointed out
that both its temporal evolution and the main phenological stages
of crops are well matched. Note that these recent works confirm
the findings reported previously in several studies, which have
already been exhibited that ρ is tightly related to vegetation
characteristics [47], [48], [49]. Overall, these findings support
the use of solely radar data in the SSM inversion process,
excluding optical data that are limited by weather and lighting
conditions.

The objective of this study is to evaluate the utilization of radar
data, specifically Sentinel-1’s backscattering coefficient and co-
herence, through the implementation of multiple ML algorithms,
for SSM monitoring. Indeed, as far as we know, no investigation
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Fig. 1. Location of Sidi Rahal and Chichaoua sites in the Haouz plain, central of Morocco as well as the Kairouan sites in the Kairouan plain.

TABLE I
GENERAL INFORMATION ABOUT THE SSM MEASUREMENTS OVER THE DIFFERENT WINTER WHEAT SITES IN MOROCCO AND TUNISIA

has highlighted the drive of ML algorithms directly by coherence
as a descriptor of vegetation and backscattering coefficient. This
study will focus on testing the most popular ML regression
algorithms such as artificial neural network (ANN) and deep
neural network (DNN), support vector regression (SVR) [viz.,
radial basis function (SVR_rbf), polynomial (SVR_quad), and
linear (SVR_linear)] and tree-based [viz., random forest (RF)
and eXtreme Gradient Boosting (XGBoost)]. This work will
also assess the transferability of these algorithms as well as their
performance against the coupled Water Cloud and Oh models
(WCM). To this end, data were collected over irrigated and
rainfed winter wheat fields in Morocco and Tunisia within the
framework of the Tensift and Kairouan network observatories.

II. DATA DESCRIPTION AND METHODOLOGY

A. Experimental Data

In order to test the potential of the ML algorithms and
their transferability to retrieve SSM, several rainfed and irri-
gated wheat sites located in the Haouz plain (center of Mo-
rocco) and Kairouan plain (center of Tunisia) were used in this

study (see Fig. 1). Both sites are characterized by a semiarid
Mediterranean climate with high potential evaporation (about
1600 mm per year), greatly exceeding the annual rainfall, which
ranged between 250 and 300 mm. Descriptive details of both
sites are detailed in [31] and [45]. SSM measurements were
conducted using a time-domain reflectometer (TDR Campbell
Scientific CS616) and handheld theta probe sensors at different
wheat fields in Haouz and Kairouan sites, respectively. In ad-
dition, these measurements were properly calibrated using the
gravimetric method. Data used in this study were recorded from
three sites (see Table I).

1) Kairouan site: In total, 18 fields of irrigated (sprinkler
technique) and rainfed wheat located in the Kairouan
plain were selected [31]. Twenty handheld theta probe
samples were recorded from different locations in each
field and were averaged per field. These measurements
were performed at topsoil (i.e., a depth of 5 cm) and taken
at the same time as Sentinel-1 acquisitions over the chosen
fields.

2) Sidi Rahal site: One rainfed wheat field situated approx-
imately 40 km east of Marrakech city (Haouz plain)
was selected [50]. Automated SSM measurements were
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obtained through the use of two TDR sensors positioned
at a depth of 5 cm and subsequently averaged.

3) Chichaoua site: Two irrigated wheat fields (referred to
hereafter as F1 and F2) within a private farm were selected.
This farm is situated near the province of Chichaoua at
65 km west of Marrakesh city (Haouz plain). Data were
recorded in these fields during three growing seasons.
The first field was monitored during the two growing
seasons 2016–2017 and 2017–2018 while the second one
was monitored during the 2018–2019 growing season. In
both fields, drip irrigation was applied, with a flow rate
of 7.14 mm/h for each dripper. Automated SSM measure-
ments were collected using two TDR sensors positioned
between and beneath the drippers at a depth of 5 cm.
These measurements were then averaged to offer a more
representative value for the Sentinel-1 pixel.

Note that in this work, SSM data collected over Kairouan and
Sidi Rahal fields were used for the training and validation pro-
cess of the ML algorithms while that collected over Chichaoua
site (i.e., F1 and F2) were explored to test their transferability and
to evaluate their performances against the coupled WCM model
built through the combination of backscattering of soil (Oh) and
vegetation (Water Cloud) models. In addition, measurements of
the field’s surface roughness were taken using a pin profiler of
1-m length with 2 cm between two successive needles in order to
run the WCM model. Sixteen samples were gathered at various
locations over the experimental field, with eight measurements
parallel to the row and eight perpendicular to the row to better
account for the influence of row direction. Thanks to an algo-
rithm based on needle height normalization, these measurements
were processed to provide two statistical roughness parameters
used as inputs of the Oh model such as the root-mean-square
surface height (hrms) and the correlation length [45]. Like-
wise, 11 hemispherical digital images were taken weekly at
different locations over the experimental field to calculate the
canopy fraction cover used as an input of the Water Cloud
model.

B. Satellite Data

This study used the Sentinel-1 radar data for retrieving SSM
including the backscattering coefficient and the coherence at VV
and VH polarizations. Sentinel-1 consists of two identical satel-
lites, Sentinel-1A and Sentinel-1B. Sentinel-1A was launched on
April 3, 2014, whereas Sentinel-1B was launched on April 25,
2016. Both satellites are equipped with aC-band SAR system in
three different imaging modes, providing all-weather and day-
and-night imaging capability with a revisit time of six days [20].
The interferometric wide-swath mode is the main operational
imaging mode over land surfaces, realizing acquisitions in VV
and VH polarizations over a wide-area coverage with a swath
of up to 250 km and a resolution of up to 5×20 m. Note that,
level-1 products, which can be directly downloaded from the
Sentinel-1 mission’s official data hub, are typically distributed in
the single look complex (SLC) and ground range detected (GRD)
formats. Herein, a brief description of the GRD and SLC image
processing is given, more details are given in [51]. GDR images

were processed at the original 10 m resolution with the Orfeo
ToolBox (OTB) software [52] in order to compute the backscat-
tering coefficient σ0. The main processing steps included in this
software are: 1) thermal noise removal, 2) radiometric calibra-
tion [53], and 3) terrain correction [54] using digital elevation
model (DEM) Shuttle Radar Topography Mission (SRTM) at
30-m resolution [55]. Also, SLC images were processed using
the Sentinel application platform SNAP to derive the coherence,
which typically ranges between 0 (incoherence) and 1 (perfect
coherence). This process includes the following five steps.

1) The “Apply-Orbit-file” module to more accurately esti-
mate the satellite’s location and speed.

2) The orbital data and the DEM SRTM were used to co-
register (“Back-geocode”) the two consecutive images.

3) The application of the coherence module.
4) The TOPSAR-Deburst module was applied to remove the

bursts (the black band in the SLC products).
5) Terrain correction was utilized to project the images on

the Earth’s surface using the SRTM DEM.
Table II summarizes the characteristics of Sentinel-1 pro-

cessed products across all fields used in the context of this study.

C. Methodology

Fig. 2 graphically summarizes the methodology and the var-
ious tasks performed in this study. In general, this research was
structured into two main phases, involving the exploration of
processed Sentinel-1 backscatter and interferometric coherence
data in both VV and VH polarizations, along with ground data
collected from various rainfed and irrigated wheat fields at three
different sites, namely Kairouan, Siddi Rahal, and Chichaoua.
In the first phase, an effort was made to assess the potential of
three commonly used categories of ML algorithms to determine
the best model within each category for the exclusive purpose of
retrieving SSM based solely on Sentinel-1 data. These three cat-
egories, which are thoroughly explained in the Appendix, con-
sist of algorithms utilizing neural networks (comprising ANN
and DNN), support vector machines with radial basis function
(SVR_rbf), linear (SVR_linear), and polynomial (SVR_quad)
kernels, and tree-based algorithms (RF and XGBoost). All of
these algorithms were trained and validated using data collected
from a variety of rainfed and irrigated wheat fields situated
in the Sidi Rahal and Kairouan sites. Following a comparison
between the retrieved and measured SSM, a model was selected
from each category based on its statistical performance metrics
[root-mean-square error (RMSE), R2, and BIAS].

In the second phase, the selected models were examined for
their transferability to improve their usability across diverse
conditions, employing different datasets gathered from drip
wheat fields situated in the Chichaoua site. Simultaneously, these
models were assessed in comparison to the Water Cloud Model
(WCM), which employs the same inputs, including backscatter
coefficient and coherence, along with additional parameters,
such as fractional cover and roughness. The outcomes generated
by the selected ML models and the WCM were compared against
the observed values to determine which model was most suitable
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TABLE II
CHARACTERISTICS OF SENTINEL-1 PROCESSED PRODUCTS ACROSS ALL FIELDS USED IN THE CONTEXT OF THIS STUDY

Fig. 2. Flowchart providing an overview of the methodology used in this work.



EZZAHAR et al.: SENTINEL-1 BACKSCATTER AND INTERFEROMETRIC COHERENCE FOR SOIL MOISTURE RETRIEVAL 2261

Fig. 3. Retrieved SSM using ANN and DNN algorithms versus in situ measurements over the Sidi Rahal and Kairouan sites. (a) VV polarization. (b) VH
polarization.

for SSM mapping. This assessment is based on three criteria: 1)
accuracy, 2) computational time, and 3) simplicity.

III. RESULTS AND DISCUSSION

In this study, the collected data over Morocco and Tunisia
rainfed and irrigated winter wheat sites were combined and used
to train and validate all ML methods. To this end, the data were
subdivided into a training (calibration dataset) and a validation
set. The backscatter coefficient and interferometric coherence
at both polarization VV and VH were used as input and the
measured soil moisture (MSM) as a target. Using multiple data
sites has allowed us to build robust ML algorithms able to
generate the simulated SSM from Sentinel-1 data over different
regions. Subsequently, to enhance their applicability across var-
ious conditions, the most successful algorithms from the three
categories were further tested on winter wheat sites with drip
irrigation in Morocco. These algorithms were then compared
to conventional techniques based on the inversion of vegetation
and soil semiempirical models. This section is divided into three
parts. The first part involves evaluating algorithms from three
categories and selecting the best model from each category. The
subsequent part focuses on investigating the transferability of
the selected algorithms and conducting a comparison of these
algorithms with WCM. Finally, the third part is dedicated to
generating SSM maps using the algorithm that exhibits the best
performance.

A. Evaluation of ML Algorithms

1) ANN Versus DNN: This section addresses the investiga-
tion of retrieving SSM using ANN and DNN algorithms based
on the backscattering coefficient and interferometric coherence
data for both VV and VH polarizations. In Fig. 3, a scatter
plot depicting the relationship between retrieved and measured
SSM is presented. Overall, both algorithms yielded quite good
results between retrieved and measured SSM for VV polariza-
tion as shown in Fig. 3(a). The R, RMSE, and Bias values for
DNN simulations were approximately 0.75, 0.05 m3/m3, and

0.01 m3/m3, whereas for ANN, they were 0.76, 0.05 m3/m3,
and 0.01 m3/m3, respectively (see Table III). It can be clearly
observed that the obtained results are very similar, demonstrating
the potential of ANN and DNN algorithms for retrieving SSM
using only the Sentinel-1 backscatter and interferometric coher-
ence as a vegetation descriptor at VV polarization. It should be
noted that the use of interferometric coherence as a description
of vegetation in conjunction with the backscatter coefficient as
input for the ANN algorithm yielded approximately the same
correlation between retrieval and MSM cited in [19]. Contrary
to our investigation, Santi et al. [19] have trained their ANN al-
gorithm using backscatter coefficient data generated through the
implementation of a semiempirical model while the validation
was conducted using data obtained directly from C-band and
X-band at VV polarization, with NDVI employed as an optical
descriptor for vegetation. Their finding showed that the RMSE
and Bias values were 0.052 m3/m3 and 0.009 m3/m3 for C-band
and 0.052 m3/m3 and 0.003 m3/m3 for X-band. Likewise,
they pointed out that the use only of backscatter coefficient
data without ancillary information of vegetation yielded a worst
correlation between RSM and MSM. El Hajj et al. [40] have
also proven that ANN driven by the backscatter coefficient
at VV polarization and NDVI derived from Sentinel-1 and -2
provide satisfactory simulations of soil moisture and were well
compared to our findings. Furthermore, the positive outcomes
of our algorithms provide additional support to recent research
conducted by Ouaadi et al. [45], which highlighted the capacity
of backscatter coefficients and interferometric coherence at VV
polarization for soil moisture retrieval through the inversion of
the combined Oh and Water Cloud model, utilizing the same
dataset. Their obtained values of R, RMSE, and Bias ranged
between 0.7–0.75, 0.06–0.08 m3/m3, and 0.01–0.03 m3/m3,
respectively.

On the contrary, the use of the backscatter coefficient and
the interferometric coherence at VH polarization showed more
dispersion for both algorithms ANN and DNN compared to VV
polarization, as shown in Fig. 3(b). The values of R, RMSE,
and Bias were about 0.54, 0.07 m3/m3, and 0.00 m3/m3 for
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TABLE III
STATISTICAL METRICS OF THE RETRIEVED SSM USING THE SEVEN ML ALGORITHMS INCLUDING THE RMSE, THE MEAN DIFFERENCE (BIAS), THE CORRELATION

COEFFICIENT (R), THE SLOPE AS WELL AS THE OFFSET OF THE LINEAR REGRESSION

DNN simulations and 0.64, 0.06 m3/m3, and 0.00 m3/m3 for
ANN. Scientifically speaking, this result is expected due to the
fact that radar backscattering at VV polarization is generally
more sensitive to the change in soil water content compared to
VH polarization [56], [57], and the coherence at VV is the best
describing of the crops such cereals (particularly for the wheat
as in our case) contrary to VH, which better suited for certain
less dense crops as stated in [46]. In the same vein, by inverting
the combined model of Oh and WCM, Ouaadi et al. [45] point
out that the use of radar data (i.e., backscatter coefficient and
the interferometric coherence) at VH polarization yielded more
dispersion compared to VV polarization. In the same context, El
Hajj et al. [40] have shown that ANN driven by the backscatter
coefficient at VV polarization and NDVI derived from Sentinel-1
and -2 performed better than the use of VH polarization. By the
same token, by exploring Sentinel-1 and Landsat 8 data, Bao
et al. [58] have also reported that the backscattering at VV is
more appropriate for soil moisture retrieval with an improvement
of about 10% and 21% in R and RMSE compared to VH
polarization.

Overall, in our specific study, we have noticed that the per-
formance of single-layer ANN mimics the highly complex mul-
tilayers DNN in terms of statistical results at VV polarization.
May be this behavior can be related to the fact that multilay-
ers DNN needs more data and is devoted to a more complex
problem, particularly when the estimated target depends on
several input variables. Interestingly, as demonstrated in [59], the
predictive performance of multilayers DNN increases strongly
with the use of a large dataset. In the same vein, as stated
in [60], the use of single-layer ANN can be considered as the
potential algorithm for providing satisfactory soil moisture sim-
ulations from soil suction rather than the use of highly complex
multilayers DNN, peculiarly under wetting conditions where it
overfits the soil moisture.

Wherefore, based on these results and considering the com-
putational time associated with each algorithm, we have decided
to use only the single-layer ANN in the upcoming comparison
with other ML algorithms and for the transferability evaluation.

This choice is made because the multilayer DNN algorithm did
not yield a significant improvement in the estimation of SSM,
at least within the context of our specific site conditions.

2) SVR and Tree-Based Algorithms: In this section, SVR
(SVR_rbf, SVR_quad, and SVR_linear) and tree-based (XG-
Boost and RF) algorithms were evaluated using the same data
explored in the training and testing process for the single-layer
ANN. Similarly to the single-layer ANN, these five algorithms
were trained and tested using data at both polarization VV and
VH in order to confirm our findings concerning the potential of
VV polarization for retrieving SSM. Figs. 4 and 5 exhibit the
comparison between measured and retrieved SSM using the five
algorithms at both VV and VH polarizations, respectively.

Regarding the results of SVR algorithms, the RBF kernel
outperformed slightly based on the polynomial kernel in predict-
ing soil moisture at VV polarization (see Table III). Both SVR
models yielded the same values of RMSE (i.e., 0.05 m3/m3)
and Bias (i.e., 0.00 m3/m3) with a small difference in R of
2%. Also, the obtained slope of the regression equation for
SVR_rbf was close to 1 (about 0.97) while SVR_quad showed
an underestimation of 8%. Globally, their performances are
in accordance with the ANN algorithm. However, the linear
kernel model performed less well than SVR_rbf and SVR_quad
with R, RMSE, and Bias values of about 0.69, 0.06 m3/m3,
and −0.01m3/m3, respectively. It is important to mention that
our findings were similar to those reported in previous stud-
ies [60], [61], which demonstrated that the SVR_rbf provides
the most superior simulation results, followed by polynomial
kernel and linear kernel. In a similar vein, our statistical metrics
are in the range of the performance exhibited by the investiga-
tion in [43] when using SVR with several features extracted
from Sentinel-1 and -2 and Radarsat-2 remote sensing data.
Likewise, Katagis et al. [62] showed that the SVR algorithm
driven by backscatter at VV polarization extracted from the
active microwave Advanced Scatterometer (ASCAT) estimates
correctly soil moisture and their results, which are in agree-
ment with our findings, exhibit minor variations depending on
the different training/testing configurations. Kindly note that,
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Fig. 4. Retrieved SSM using the support vector algorithms (RBF, quadratic, and linear kernels) versus in situ measurements over the Sidi Rahal and Kairouan
sites. (a) VV polarization. (b) VH polarization.

Fig. 5. Retrieved SSM using the XGBoost and RF algorithms versus in situ measurements over the Sidi Rahal and Kairouan sites. (a) VV polarization. (b) VH
polarization.

in addition to its robustness in the estimation of soil mois-
ture, and compared with SVR_quad, SVR_rbf exhibits lower
computational complexity and less computational time [61].
Consequently, among the three proposed SVR algorithms, only
the RBF kernel will be adopted for testing the transferability
processes.

Concerning the tree-based algorithms, the comparison of
retrieved soil moisture using XGBoost regression and RF regres-
sion (RFR) at VV polarization against the measured values is
displayed in Fig. 5. According to Table III, XGBoost remarkably
outperformed RF. While XGBoost achieved a satisfactory high-
est prediction accuracy with R = 0.74, RMSE = 0.05m3/m3,
and an underestimation of 4%, RFR produced less prediction
performance with R = 0.69, RMSE = 0.06m3/m3, and its
values are shown to be noticeably underestimated compared to
measured ones with about 24%. This good achievement of the
XGBoost against RF is revealed also in [63] when they tested
these algorithms by fusing several remote sensing data includ-
ing data Sentinel-1 C-band dual polarimetric SAR, Sentinel-2

multispectral data, and ALOS Global Digital Surface Model to
predict soil moisture in Australia. Compared to ANN and SVR
algorithms, one can notice that the performance of XGBoost in
the estimation of soil moisture is comparable to those obtained
by SVR with RBF kernel and ANN algorithms. Moreover, RF
yielded the worst performance among all the ML techniques
regarding its underestimation in the retrieving of soil moisture.
Subsequently, thanks to this evaluation between the two tree-
based algorithms, only the XGBoost technique will be used
concerning the investigation of the transferability processes.

Finally, as excepted, the five algorithms including SVR with
its three versions, XGBoost regression and RF produced the
lowest prediction performance at VH polarization compared to
VV polarization as shown in Figs. 4 and 5. According to Table
III, slope and R are reduced by 0.2 and 0.18 for the polynomial
kernel, 0.14 and 0.14 for the RBF kernel, 0.04 and 0.11 for
the linear kernel, 0.16 and 0.17 for XGBoost, and 0.1 and 0.18
for RF. Furthermore, RMSE values were increased by about
10%, except for the linear kernel, which kept the same value.
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Fig. 6. Taylor diagrams for the ANN, SVR_rbf, XGBoost, and WCM for Chichaoua site. The solid line and dotted line represent the correlation coefficient and
RMSD values.

TABLE IV
STATISTICAL METRICS OF THE RETRIEVED SSM USING SVR_RBF, ANN, XGBOOST, AND WCM AT VV AND VH POLARIZATION OVER CHICHAOUA SITE

Generally speaking, this finding confirms strictly the results
obtained when we used the ANN algorithm and also the investi-
gation in [45], which have stated that the use of the backscatter
coefficient and the interferometric coherence at VV polarization
can accurately estimate soil moisture through backscattering
modeling inversion approach. In addition, all ML algorithms
showed decreased performance for both polarizations when the
SSM values exceeded 0.3 m3/m3. This phenomenon is linked
to the saturation of the radar signal in regions with high soil
moisture, which leads to a reduction in the accuracy of the
inversion results.

B. Transferability of ML Algorithms and Their Evaluation
Versus Backscattering Models

In order to test the transferability of the selected ML algo-
rithms based on their highest prediction accuracy for the soil
moisture estimation (ANN, SVR_rbf, and XGBoost), datasets
collected over a drip-irrigated winter wheat field are employed.
Over this area, Sentinel-1 data including the backscatter coeffi-
cient and the interferometric coherence are provided at 35.2◦ of
the incidence angle. This will permit us to investigate also the
effect of incidence angle on the SSM retrieval. Also, the per-
formance of ML algorithms was evaluated against the coupled
WCM. The performance of different ML algorithms as well as
the WCM model to retrieve SSM at VV and VH polarization
was investigated using a Taylor diagram (see Fig. 6). This
presentation graphically summarizes the comparison between

ML algorithms and WCM model against the observations based
on the root-mean-square difference (RMSD), the correlation
coefficient R, and the standard deviations [64]. Statistical metrics
are reported in Table IV.

As shown in Fig. 6 and Table IV, one can clearly see that at
VV polarization both SVR_rbf and ANN algorithms achieved
a high prediction accuracy and the performances are quite sim-
ilar with R and RMSE values of about 0.81 and 0.03 m3/m3.
Likewise, at VH polarization, both algorithms provided also
quite similar performance but slightly lower than that obtained
at VV polarization with RMSE of 0.04 m3/m3 and R of 0.73
(ANN) and 0.77 (SVR_rbf). Overall, these achieved satisfactory
performances substantiate clearly the transferability of SVR_rbf
and ANN algorithms, meaning the possibility of their use over
other sites. Besides, compared to the statistical metrics at 40◦ of
incidence angle obtained for the testing process, one can state
that this finding confirms that the prediction performance in-
creases significantly with lower angle incidence values. Indeed,
as stated in [45], the Sentinel-1 signal is highly sensitive to soil
moisture for low incidence angles and VV polarization. In the
same vein, Zribi et al. [65] showed that the effect of vegetation
and surface roughness is more stronger on the radar signal at
40◦.

By contrast, the predictions of XGboost were lower than
those for SVR_rbf and ANN algorithms at both polarizations.
The obtained values of R at VV and VH were 0.76 and 0.71,
respectively, while the RMSE was equal to 0.04 m3/m3 for
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Fig. 7. Comparison between backscattering coefficients derived from Sentinel-1 images and those simulated by WCM at VV polarization over F2 using the
calibrated values of A and B obtained over F1 during the (a) 2016–2017 and (b) 2017–2018 seasons.

both polarization. Therefore, it can be concluded that SVR_rbf
and ANN are still the suitable algorithms for soil moisture
retrieval at VV polarization, and thus, the discussion concerning
the evaluation of ML against the coupled model WCM will
be focused thereafter only on these two algorithms. Note that
data collected from the first season (2016–2017) over F1 were
used for calibration of WCM while that of the second season
(2017–2018) and F2 data (season 2018–2019) were used for
validation. So, as shown in Fig. 6, the metrics of WCM were
slightly close to those procured by both algorithms. At VV, R
and RMSE values were 0.82 and 0.04 m3/m3, respectively, and
the values of these coefficients at VH were 0.69 and 0.05 m3/m3,
respectively. However, in spite of its good achievement, WCM is
still site-specific due to its strong dependence on two empirical
factors A and B (10) and (11), meaning that its performance can
drop drastically when growth conditions diverge significantly,
in terms of canopy structure in particular, from the conditions
on which the calibration is made. To illustrate this issue, an
investigation is made to simulate the backscatter coefficient at
VV over F2 using two couple optimized values of A and B
obtained over F1 during the first and second seasons 2016–
2017 and 2017–2018. Fig. 7 exhibits the comparison between
backscattering coefficients derived from Sentinel-1 images and
those simulated by WCM. The statistical metrics show clearly
that the performance is improved when data of the 2016–2017
season are used with an increase in R of 0.05 and a decrease
in RMSE of 0.13 dB. This can undoubtedly impact the soil
moisture inversion using the Water Cloud Model (WCM), as
elaborated in [45], where they assessed the retrieval of soil
moisture over a different wheat field sown during the same time
as F1. The data of the 2016–2017 season are used for calibration
and that of 2017–2018 for validation. Their finding exhibited
a poor performance of WCM even though the calibration was
done over the same field due to differences between the two
seasons, mainly related to the invasion of the adventices with
strong horizontal development in the validation period. As far
as we know, no previous studies have investigated the evaluation
of coupling two radar backscattering models in order to take into

account soil and vegetation contributions and ML algorithms to
assess soil moisture based only the radar data. To date, [50] have
evaluated SVR against the theoretical integral equation model
(IEM) to retrieve soil moisture over bare agricultural soil in the
Tensfit basin of Morocco. They concluded that the SVR driven
only by the backscatter coefficient can be a good algorithm for
large-scale soil moisture monitoring instead of IEM that requires
additional spatial measurements of root-mean-square height
(hrms), which is not an easy task, particularly over heterogeneous
areas. Likewise, using dual-polarized Sentinel-1 backscattering
coefficients and NDVI derived from Sentinel-2 collected over
the south of Tunisia, Inoubli et al. [42] have compared RF
and convolutional neural network (CNN) algorithms against
the Water Cloud Model. The latter is driven by Sentinel-1 and
-2 and the soil contribution was calculated only based on a
simple empirical model instead of the Oh model as used in our
investigation. Their finding revealed that CNN performed better
than RF and WCM.

Overall, based on our findings, we can conclude that data-
driven ML algorithms (SVR_rbf and ANN), particularly with
only radar data can be a viable alternative to semiempirical
parameterized models. As a matter of fact, in addition to a
strong dependence of optical data to atmospheric perturbation,
the driven of ML with radar data allow us to avoid the complex-
ity between vegetation index and radar backscatter coefficient,
especially in the case of small samples as stated in [43]. Ad-
ditionally, as shown in our investigations, the performances of
SVR_rbf and ANN algorithms were quite similar in all simula-
tions. Nevertheless, SVR_rbf has great advantages compared to
ANN. In point of fact, SVR_rbf exhibits low computation time
and reduces the complexity of the modeling procedure during
the training phase, as explained in [66]. Hence, in what follows,
only SVR_rbf is chosen for SSM mapping.

C. SSM Mapping

The built SVR_rbf algorithm was implemented to map SSM
over a large irrigated area called “R3 perimeter.” This area,
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Fig. 8. SSM maps over an irrigated perimeter located 40 km east of Marrakech named R3 for two different SSM conditions. (a) Wet condition (Jan. 15, 2017).
(b) Dry condition (Jun. 20, 2017).

which is situated within the Houaz plain, is located about 40 km
east of Marrakesh. It covers about 2800 ha and is mainly planted
by wheat. Traditional flood irrigation is practiced by farmers us-
ing a network of concrete channels directly connected to a dam.
Fig. 8 exhibits two maps of soil moisture obtained by running
the SVR_rbf algorithm using Sentinel-1 images of backscatter
coefficients and coherence at VV polarization, acquired at two
dates with contrasting soil moisture during the 2016–2017 crop
season. 1) Jan. 15, 2017, during the growing season when all
wheat fields are irrigated. 2) Jun. 20, 2017, when all wheat fields
have been harvested. By scrutinizing these two maps, one can
clearly observe that most of the wheat fields were wet in January
with SSM values reaching about 0.39 m3/m3. Likewise, this
algorithm was able to highlight a high contrast in the variability
of hydric conditions from one field to another due to irrigation
distribution and sowing date. In fact, the irrigation of the total
R3 sector takes approximately 12 days to generate, thus, a large
heterogeneity in terms of the hydric condition along the sector. In
contrast to January, drier conditions are observed in June where
most of the fields are harvested. Overall, these maps elaborated
only from radar data are in good accordance with the finding
in [45] using WCM, which needs supplementary variables such
as the surface roughness and fraction cover derived optical
images. In addition to the difficulty related to the derivation
of surface roughness at a large scale due to the heterogeneity
of soil, our investigation showed that the SVR_rbf algorithm
takes largely less time than WCM to generate one map over R3
(about a multiple of 20), which is an interesting advantage, par-
ticularly for generating maps at large scale and for long series of
images.

IV. CONCLUSION

The aim of this work was to assess ML algorithms versus
coupled WCM for SSM retrieval over wheat crops based on
two complementary relatively independent information (i.e.,
backscatter coefficient and coherence) derived from Sentinel-1

data. The focus only on radar data has permitted us to get
away from dependence on optical data that are restricted by
weather and illumination conditions. A large in situ database
gathered from several irrigated and rainfed wheat fields in
Morocco and Tunisia is used in this work. Specifically, ML
algorithms that were evaluated include single-layer ANN, DNN,
three SVR models [viz., radial basis function (rbf), linear, and
polynomial kernels], and two tree-based methods (viz. RF and
XGBoost).

In the first step, all ML algorithms were trained and validated
using data collected over several irrigated and rainfed wheat
fields located in Morocco and Tunisia. Based on the comparison
between estimated and measured SSM, it was found that ANN,
DNN, SVR_rbf, and XGBoost were the best from each category
algorithms to retrieve SSM with a good performance for VV
polarization (0.75 < R < 0.76 and RMSE = 0.05 cm3/cm3).
In the second step, an investigation of the transferability of
these algorithms is made using a second in situ dataset collected
over a drip-irrigated wheat in Morocco. The investigation only
focused on ANN, SVR_rbf, and XGBoost, as the highly com-
plex DNN yielded comparable results. Overall, the ANN and
rbf-based SVR algorithms showed to reasonably estimate SSM
at VV polarization (R and RMSE of 0.81 and 0.034 m2/m2)
and performed slightly better than XGBoost (R and RMSE
of 0.76 and 0.038 m2/m2). Likewise, it was found that their
performance is comparable to that revealed by the WCM model,
which demonstrates their potential for retrieving SSM from only
radar data. More precisely, due to its good compromise between
retrieval accuracy of SSM, processing time, and simplicity,
it can be concluded that SVR_rbf can be fairly used in the
SSM inversion process instead of backscattering modeling even
semiempirical ones, particularly for SSM mapping purposes.
Indeed, our investigation revealed that generating an SSM map
over a region with an area of 4× 4 km2 using WCM took
more time than the use of SVR_rbf (about a multiple of 20).
Nonetheless, scientifically speaking, ML algorithms should in
no way hinder the advancement of physical and semiempirical
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backscatter models but rather support and complement their
development. In fact, the use of these models is still inevitable,
especially for radar signal comprehension over a complex
vegetated canopy and the development of new generation of
radars thanks to preliminary case studies before the lunching
phase.

As far as short-term prospects go, we intend to 1) apply
ML algorithms to map root zone soil moisture by exploring
the retrieved values of SSM obtained in this work, and, 2)
assimilate these SSM values into LSMs in order to improve their
continuous spatiotemporal soil moisture and evapotranspiration
estimates.

APPENDIX

ML ALGORITHMS

ANN and DNN

The ANNs establish a relationship between the input features
and the expected output. This relationship is built by summing
the weighted inputs and adjusting the weights until the desired
output is obtained. In general, many ANN architectures are
presented in the literature [67], each one consists of multiple
neural layers, which are connected by their associated weights.
Basically, these neurons comprise activation functions (usually
nonlinear), which is used to establish ANN input–output rela-
tionship due to their ability to boost the learning power of an
ANN model. The process of ANN algorithm consists first of
getting the weighted combination output of a neuron (vlik) using
input signals (x1, x2, . . .., xk) through a linear regression model
as follows:

yki =

n∑
j=1

wijx
l−1
i + bli (1)

where wij represents the interconnection weight between ith
neuron in the current lth hidden-layer and the jth neuron of the
previous (l − 1)th hidden-layer, xl−1

i represents the output of
the previous layer or layer l-1 obtained using the current input
of layer l, and finally, bli is the bias term of the ith neuron of
the lth hidden-layer. Second, an activation function is applied to
the obtained output value of a hidden-layer’s neuron in order to
get output, which will be used afterward as an input for the next
hidden layer. In practice, there are several activation functions,
which allow us to introduce the property of nonlinearity into
the model, such as sigmoid hyperbolic tangent and rectified
linear unit (ReLU) functions. In this work, the ReLU activation
function is used for the hidden layers due to its top performance
computation compared to other activation functions as proved
in [68]. This function is mathematically expressed as

g(yki ) = max(0, yki ). (2)

Finally, for the last hidden layer that connects to the output, a
linear activation function is applied providing an output retrieved
soil moisture (RSM) as follows:

RSM = g(yk=L
i=m) = yk=L

i=m . (3)

In the training phase of the ANN model, the difference between
RSM and MSM is minimized throughout adjusting the inter-
connection weights using a chosen objective function, which is
a mean-squared error-based and is expressed as

L(RSM,MSM) =

N∑
n=1

(RSM − MSM)2 (4)

where N is the number of soil moisture samples.
Deep learning (DNN) is a multilayer neural-network-based

ML technique. In this work, we use CNN, which has a hierarchi-
cal architecture that consists of multiple layers of convolutional
and pooling operations. They are able to learn local and global
features in an image by applying filters to subsets of the input.

Support Vector Regression

SVR incorporates nonparametric kernel functions (Φ), which
permit to obtain successful and effective results in modeling
various relationships. Technically, these kernel functions are
used in conjunction with an epsilon-insensitive loss function
(ε-SVR) to perform a regression task. So, given a set of n input–
output training data [xi, yi], i = 1, 2, . . . , n, x ∈ Rk, y ∈ R, the
goal of the training algorithm is to construct a linear optimal
function f(x) = x′w + b (b is a bias and w ∈ Rk are weights),
that deviates from the obtained targets yi by a value no greater
than epsilon (ε) for all the training data and, at the same time, is
as flat as possible. To do that, the norm value (w′w) should be
minimized as a convex optimization problem, subject to the con-
straint that sets the absolute error in the predicted value of each
of the training data less than or equal ε. This first minimization
step uses a primal formula. Then, the constrained optimization
problem is reformulated into a dual formula, which provides
a lower bound to the solution given by the primal problem by
introducing nonnegative Lagrange multipliersαi andα∗

i for each
observation xi. In this work, three kernels functions are used and
expressed as follows:

Φ(xi, xj)=

⎧⎨
⎩
exp(−γ||xi, yi||2) :RBF
(1+x′

ixj)
d :Polynomial, d∈{2, 3, . . .}

x′
ixj :Linear

.

(5)

Tree-Based Algorithms: RFR and XGboost Regression

RFR algorithm consists of creating each tree from a dif-
ferent sample of the training dataset. At each tree node, RFR
selects a different sample of features for splitting and then
runs the decision trees in parallel with no interaction among
them. The predictions of all decision trees are averaged to
increase the performance of the model. Given an input vector x,
the RFR algorithm independently generates N regression trees
hn(x), (n = 1, . . .N), and the final model prediction (FMP) is
given by the following equation:

FMP =
1

N

N∑
n=1

hn(x). (6)

XGBoost is an ensemble technique that is also a tree-based algo-
rithm and works through the use of the gradient boosting method.
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The main difference between the two algorithms is that, as men-
tioned before, RFR builds several decision trees independently
in parallel form at the training phase while XGboost creates
decision trees in sequential form by selecting the first decision
tree as its base learner. Then, by adding a new base learner trained
using the residual’s previous tree, the error between predictive
values and target can be reduced. Finally, XGBoost uses an
added model to combine the outputs of considered N decision
trees in the algorithm to predict the final output as follows:

FMP =

N∑
n=1

hn(x), h ∈ F (7)

where h stands for a decision tree and F represents the function
of all decision trees.

Semiempirical Models

Basically, the Water Cloud model, which aims to better sim-
ulate the backscattering coefficient of the vegetation canopies
(σ0

pq,canopy), is based on the radiation transport equation. In this
model, the vegetation is considered to be homogeneous horizon-
tal clouds, allowing multiple scattering to be ignored. Therefore,
the total backscattering in canopy is presented only by the sum
of two components: 1) scattering reflected directly from the
vegetation, and, 2) scattering from the bare soil. Mathematically,
the formulas of Water Cloud model are expressed as

σ0
pq,canopy = σ0

pq,vegetation + τ2σ0
pq,soil (8)

σ0
pq,vegetation = AV cos θ(1− τ2) (9)

τ2 = exp(−2BV/ cos θ) (10)

whereσ0
pq,vegetation andσ0

pq,soil denote the contribution of the veg-
etation and soil, respectively; pq is the polarization mode (V or
H); τ2 is the two-way transmissivity term of the vegetation layer;
V is a parameter describing the vegetation canopy dynamics; θ
is incident angle; A and B are empirical coefficients that strongly
depend on canopy type, sensor frequency and polarization, and
incidence angle. The values of A and B used in this study
were 0.03448 and 1.034483, respectively. The Oh model is
used to calculate soil contribution. Briefly, this model links the
copolarized p(= σ◦

hh/σ
◦
vv) and cross-polarized q(= σ◦

vh/σ
◦
vv)

ratios to radar wave incident angle (θ, in radians), wave number
(k = 2π/λ where λ is the wavelength), root-mean-square height
(hrms), and soil dielectric constant (εr). The latter was calculated
from soil texture and soil moisture using an empirical model
[69]. The following are the empirical expressions of σ◦

vh, σ◦
vv:

σ◦
vv = g cos3 θ · [Rv +Rh]/

√
p (11)

σ◦
vh = qσ◦

vv (12)

where

q = 0.23(1− exp(−khrms))
√

R◦ (13)
√
p = 1− exp(−khrms) · (2θ/π)[1/3R◦] (14)

g = 0.7
[
1− exp

(−0.65(khrms)
1.8

)]
. (15)

R◦, Rv , and Rh denote the Fresnel coefficients given
by the following expressions: R◦ = | 1−

√
εr

1+
√
εr
|2, Rv =

εr cos θ−
√

εr−sin2 θ

(εr cos θ−
√

εr−sin2 θ)2
, and Rh =

cos θ−
√

εr−sin2 θ

(cos θ−
√

εr−sin2 θ)2
.
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