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A B S T R A C T   

Study region: The Congo River basin (CRB), the world’s second-largest river system, is subject to 
extreme hydrological events that strongly impact its ecosystems and population. 
Study focus: Here we present an improved 40-year (1981–2020) hydrological reanalysis of daily 
CRB discharge and analyze the spatiotemporal dynamics of recent major CRB floods and 
droughts, and their teleconnection with El Niño-Southern Oscillation (ENSO), the dominant 
driver of tropical precipitation. We employ a large-scale hydrologic-hydrodynamic model (MGB) 
with lake storage dynamics representation and a data assimilation (DA) technique using in-situ 
and remote sensing observations. 
New Hydrological Insights: The MGB model demonstrates satisfactory performance, with Kling- 
Gupta efficiency metric of 0.84 and 0.71 for calibration and validation, respectively. Incorpo-
rating lake representation substantially enhances simulations, increasing the Pearson correlation 
coefficient from 0.3 to 0.63. Additionally, DA yields a ~13% reduction in discharge errors via 
cross-validation. We find that the 1997–1998 flood impacting the south and central CRB is sta-
tistically linked to a major El Niño event during that period. However, no such association is 
found for the 2019–2020 flood. Severe droughts in 1983–1984 and 2011–2012, affecting 
northern and southern CRB respectively, exhibit strong correlation with preceding El Niño and La 
Niña events, with a ~10–12 months lag. This study advances understanding of the intricate 
interplay between spatiotemporal hydrological variability in CRB and large-scale climate phe-
nomena like ENSO.   
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1. Introduction 

The Congo River basin (CRB) is the second-largest basin in the world both in terms of drainage area and discharge to the ocean with 
a mean annual flow rate of 40,500 m3 s− 1 at Kinshasa/Brazzaville (Beighley et al., 2011; Laraque et al., 2020). The CRB with its vast 
and complex hydrological system is also home to the world’s second-largest rainforest, which is one of the most climate sensitive 
regions on the planet (Zelazowski et al., 2011), especially regarding the potential impacts of climate change (James et al., 2013; Vizy 
and Cook, 2012). However, the CRB remains largely understudied, poorly monitored (Nicholson et al., 1988; Washington et al., 2013) 
and has not received adequate attention in terms of hydrological and climate research (Alsdorf et al., 2016; Tshimanga and Hughes, 
2014; Washington et al., 2006). These conditions limit the understanding of the processes that control Congo’s hydrology dynamics in 
a spatially and temporally coherent manner and prevent the development of appropriate and sustainable water resources management 
strategies in the CRB. 

The CRB has been subject to extreme hydrological events such as droughts and floods which have affected more than 10 million 
people living in the nine countries covered by the CRB. Several studies have highlighted the vulnerability of the CRB to these extreme 
hydrological events, including the recent 2020 flood (Bola et al., 2022; Mugisho Bachinyaga et al., 2022; “Republic of Congo,” 2020), 
and the 1998, 2005–2006 and 2016–2017 droughts (Ndehedehe et al., 2019; Sorí et al., 2022). Other studies have examined the 
climatic variability and trends in the region over relatively longer time periods (Ayugi et al., 2022; Chambers and Roberts, 2014; 
Mabrouk et al., 2022; Masih et al., 2014; Zhou et al., 2014), as well as the impact of precipitation patterns on hydrological variability 
(Ndehedehe and Agutu, 2022). In general, it has been shown that extreme events in the CRB are mainly related to i) rainfall and 
evapotranspiration variability, which may have been exacerbated by climate change in recent decades and to ii) changes in the hy-
drological response of the basin, for example due to anthropogenic disturbances for instance (Gosset et al., 2023; Karam et al., 2022). 
By studying hydroclimatic variability and extreme events in the CRB, we can gain critical insights into the region’s vulnerability to 
climate change and identify effective strategies for sustainable development and climate resilience. 

On the other hand, many hydrological models capable of representing the dynamics of the large-scale water cycle have been 
developed in recent years (Paiva et al., 2011; Singh, 2018; Yamazaki et al., 2012), which could help to overcome the lack of in-situ 
observations in the CRB (Kitambo et al., 2022). Up to now, the application of hydrological modeling in the CRB has been evalu-
ated mainly to understand the hydrological variability in space and time and the dominant processes on a regional to large scales, by 
using different types of models, statistical, and process-based hydrologic and hydrodynamic models (Datok et al., 2022; Dos Santos 
et al., 2022; O’Loughlin et al., 2019; Paris et al., 2022; Tshimanga et al., 2022, 2011). Beyond the scarcity of hydrological data, these 
modeling framework have been challenged by other many issues, including its geographic extent, the natural complexity of the 
processes to be modeled (Munzimi et al., 2019; Paris et al., 2022), the understanding of the processes (Kabuya et al., 2022; Tshimanga 
et al., 2022), and the uncertainty of the model structures and parameters (Tshimanga et al., 2011). Other challenges are related to the 
integration of natural storage modeling of lakes and wetlands, which dominate the basin hydrology, into the model structure (Paris 
et al., 2022; Tshimanga and Hughes, 2014), especially along the Cuvette Centrale (Paris et al., 2022). 

In addition to modeling, some techniques such as data assimilation (DA) have been developed in the last decades to update model 
state variables by optimally combining model simulation and observations (Liu et al., 2016; Sun et al., 2016). Their application in 
large-scale hydrology has had different objectives such as the study of past extreme events (Wongchuig et al., 2019) and streamflow 
forecasting (Andreadis et al., 2017; Paiva et al., 2013). To our knowledge, only in recent years few studies such as (Revel et al., 2019) 
and (Apers et al., 2023) have used DA in hydrologic models in the CRB. The first one used DA as a proof of concept to test a localization 
methodology and not to generate actual and long-term streamflow series, while the second one, only to simulate and study a specific 
region of the Congo peatlands in the Cuvette Centrale. 

In this context, here we present the improvement of a semi-distributed, large-scale hydrological-hydrodynamic model (Collischonn 
et al., 2007; Paris et al., 2022) by integrating for the CRB, i) the representation of lakes storage dynamics and ii) the assimilation of 
in-situ discharge and water level series to yield long-term hydrological variables. Additionally, the largest amount of existing in-situ 
data from the region has been used for the calibration, validation and assimilation process during the last 40 years. The main objective 
is to improve current estimates of river discharges in a spatially distributed manner throughout the CRB, in order to identify and study 
extreme events over the last 40 years as well as their potential hydroclimatic triggers and large-scale teleconnections. Considering that 
many studies are mainly focused only on the variability in precipitation (Diem et al., 2021; Mabrouk et al., 2022), in part because of 
considerable lack of in-situ discharge observations. 

Section 2 describes briefly the study area, datasets used, model set-up and experiment design. Section 3 provides the results of the 
calibration and validation, and the final long-term simulation. We discussed analysis of particular hydrological extreme events and 
possible links to large-scale climate variability, especially related to the El Niño-Southern Oscillation (ENSO), which drives larger year 
to year variations in ocean temperature in the tropical Pacific. ENSO is also considered the largest driver of tropical precipitation on 
interannual timescales and with significant influences on the sea surface temperature (SST) in other tropical oceans (Bhavani et al., 
2017; Yuan et al., 2012). In that sense, supplementary analyses were also discussed considering Tropical Indian Ocean (TIO) indices 
such as the TIO SST anomalies and the Indian Ocean Dipole Mode Index (DMI). 

2. Material and methods 

2.1. Study area 

The CRB is located in central Africa astride the equator, with many characteristics of a tropical humid ecosystem. The CRB spans 
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over nine riparian countries including Central African Republic, Cameroon, Republic of the Congo, Angola, Democratic Republic of 
Congo (DRC), Zambia, Tanzania, Rwanda, and Burundi (Fig. 1). Of these riparian countries, the DRC also holds ~70% of the drainage 
area. In addition to a dense hydrographic network of the basin, there are also many wetlands and lakes of global significance. Some of 
the major lakes of the CRB encompass the Tanganyika, Kivu, Tumba, Mai-Ndombe, Bangweulu, Mweru, and Zimbambo. 

The annual rainfall is ~1900 mm yr-1 along an east-west trend across the basin, decreasing northward and southward to 
~1100 mm yr-1 (Alsdorf et al., 2016). The rainfall seasonality also varies in space, which is mainly modulated due to the bi-annual 
passage of the inter-tropical convergence zone (ITCZ) across the basin. The quality (migration/stationarity) of the ITCZ together 
with the influence of teleconnection patterns, such as the ENSO, has a direct impact on the spatio-temporal organization of convection 
and, consequently, on the distribution of precipitation over the region (Nicholson, 2018). Thus, distinct mechanisms, such as dynamics 
(e.g. ITCZ, ENSO) and local and mesoscale thermodynamics (Nicholson et al., 2022), in addition to surface characteristics, are key to 
understanding the extreme hydrological events that are intrinsically associated with the occurrence of extreme weather and climate 
episodes over the region. 

The Mbandaka and Brazzaville regions, located in the central part of the basin, have a less marked seasonality. The northern region 
has their wettest period during March to May, while the southern region shows regular double-peak cycles (bimodality) with the 
highest water levels in November-December and March-April (Kelemen et al., 2021; Paris et al., 2022; Samba et al., 2008) (Fig. S1). 

2.2. The MGB hydrologic-hydrodynamic model 

The MGB (Portuguese acronym for Large Basins Model) is a semi-distributed, large-scale hydrological model that uses physical and 
conceptual equations to simulate land surface hydrological and hydrodynamic processes (Collischonn et al., 2007; de Paiva et al., 
2013; Siqueira et al., 2018). The model discretizes the basin into unit-catchments and uses the hydrological response units (HRUs) 
approach, which combines soil type and land use within each unit. The simulated vertical hydrological processes in MGB are calculated 
based on the variable contributing area concept. This means that for each HRU of each unit-catchment, the model simulates the soil 
water budget using a bucket model, the energy budget and evapotranspiration, interception, soil infiltration, runoff and also the 
generation of subsurface and groundwater flow (Fig. 2). 

Fig. 1. (a) Map of the Congo River basin, its terrain elevation and country boundaries. The in-situ stations for discharge (triangles), water level 
(squares), satellite altimetry derived water levels (circles), and the seven lakes (diamonds) represented in this study’s model are overlaid on the map. 
(b) Temporal availability of observed discharge and water level from in-situ stations, as well as water level virtual stations from radar altimetry, for 
the period 1950–2020. 
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The propagated discharge in the main network of each unit-catchment is the sum of the flow from the upstream drainage area and 
the flow generated in the unit-catchment itself. Flow routing is computed using the local inertial method (Pontes et al., 2017), which is 
a simplification of the 1D Saint-Venant equations in which the advective inertial term is neglected (Bates et al., 2010; Pontes et al., 
2017). 

The lake routing and data assimilation modules implementation in the MGB model are described in Sections 2.4.1 and 2.4.2, 
respectively. More detailed information for the MGB hydrologic-hydrodynamics components and equationing can be found in the 
Supplementary material, in (Collischonn et al., 2007) and in (Pontes et al., 2017). 

2.3. Datasets 

2.3.1. Model forcing 
The Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) precipitation dataset (Funk et al., 2015), as well as ERA5 

reanalysis (Copernicus Climate Change Service, 2019) information for atmospheric air pressure, radiation fluxes, wind speed, relative 
humidity and surface air temperature were used to force the MGB model. 

CHIRPS is based on precipitation models that are merged with in-situ precipitation data (Funk et al., 2015). The latest version 
CHIRPS v2.0 was used in this study with a spatial resolution of 0.05◦ x 0.05◦ on a daily time scale. Precipitation data for each 
unit-catchment are obtained by the interpolation to each CHIRPS pixel, using the nearest neighbor algorithm. (Dos Santos et al., 2022) 
and (Kouakou et al., 2023) reported a satisfactory performance of CHIRPS v2.0 throughout the CRB and in its northern region, 
respectively, when evaluated against other satellite-based precipitation datasets in a large-scale hydrologic model. 

Climate variables used to compute evapotranspiration were retrieved from ERA5 which is a global atmospheric reanalysis dataset 
from the European Centre for Medium-Range Weather Forecasts (ECMWF) that provide a large number of atmospheric, land, oceanic 
and climate variables at a spatial resolution of ~30 km and from a temporal resolution of 1-hourly time step spanning the period 1950 
to present (Copernicus Climate Change Service, 2019; Tarek et al., 2020). In the MGB, we consider the long-term monthly climatology 
of the ERA5 reanalysis variables that is applied internally in the calculations for each day (corresponding to each month) for each 
unit-catchment. Finally, the outputs of the state variables of the MGB model are at daily time steps. 

Fig. 2. Schematic of the general structure of the MGB hydrologic-hydrodynamic model.  
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2.3.2. Observations for model calibration, validation and assimilation 
Here we used a consolidated database of: (i) in-situ stations (i.e., 12 of discharge and 15 of water level from 1981 to 2020) acquired 

from the Congo Basin Water Resources Research Center (CRREBaC, <https://www.crrebac.org/>, last access: August 2022), the 
Environmental Observation and Research project (SO-HyBam, <https://hybam.obs-mip.fr/fr/>, last access: September 2022), and 
from the Global Runoff Data Centre database (GRDC, <https://www.bafg.de/GRDC/EN/02_srvcs/21_tmsrs/210_prtl/prtl_node. 
html>, last access: September 2022); (ii) radar altimetry-derived water level dataset (i.e., a total of 836 virtual stations (VSs) over the 
period 1995–2020) for calibration, validation and assimilation and (iii) water level data for lakes obtained by radar altimetry (five VSs 
for lakes over the period 2001–2020). (ii) and (iii) were obtained from the Theia Hydroweb database (available at: <https:// 
hydroweb.theia-land.fr/>, last access: October 2022). Consider that the VSs do not have a fixed temporal resolution among the 
different altimetry radar sensors (Jason, Envisat and Sentinel), which can vary from 9.9 to 35 days. More details about these datasets 
can be found in (Kitambo et al., 2022). 

Due to the variable temporal availability of the data for each station, only seven in-situ daily discharge and nine daily water level 
gauges (Table 1 and Fig. 1 for their locations) were used to calibrate MGB during the set-up phase, which spans from 01/01/2001–31/ 
12/2020. In addition to these contemporary observations overlapping the set-up period, the oldest observations from eight daily 
discharge and 13 daily water level stations from 1981 were used to validate MGB (see temporal availability in Fig. 1b). For the 
calibration of the lake’s parameters, historical discharge data were used from five stations on a monthly time scale from 1950 to 1959 
(from historical stations, i.e, in situ observations before the 1990 s, Table 1). Considering the period of the hydrological modeling set- 
up, the calibration of the lakes’ dynamics was performed by analyzing the monthly climatology of the series and the validation was 
performed by using lakes VSs during the recent period (2001–2020). 

Our criterion for choosing the calibration period has been mainly to give priority to the general availability of data from either 
discharge, in-situ water level or VSs, then to the availability of observed discharge data which was relevant for calibration of the lakes’ 
dynamics. 

2.4. Model set-up 

The model pre-processing, which includes the generation of the drainage network using a digital elevation model and the gen-
eration of the hydrologic response units using land use maps, is described in detail in the Supplementary material. 

2.4.1. Lake routing 
The Congo basin hydrology contains several lakes and wetlands which play an important role in the hydrological regime of the 

basin through their capacity to store water, leading to flow attenuation and regulation, delays and increased residence time (Tourian 

Table 1 
Summary of in-situ discharge and water level stations for model calibration and validation.  

ID Station name Lat Lon Data Temporal resolution * Use for ** Period 

1 Bangui 4.37 18.61 Discharge/ Water level D Cal-Val / Cal-Val 1981–2020 
2 Brazzaville -4.30 15.30 Discharge/ Water level D Cal-Val / Cal-Val 1981–2020 
3 Ouesso 1.62 16.065 Discharge/ Water level D Cal-Val / Cal-Val 1981–2020 
4 Boali 4.905 18.025 Discharge D Val 1985–1988 
5 Mbata 3.663 18.302 Discharge D Val 1986–1994 
6 Old Pontoon -10.95 31.07 Discharge D Cal-Val 1981–2004 
7 Salo 3.201 16.122 Discharge D Val 1985–1994 
8 Zemio 5.002 25.195 Discharge D Val 1986–1994 
9 Ilebo -4.33 20.58 Discharge/ Water level D Cal / Val 2013–2016 / 1981–1991 
10 Dimalumbu -3.275 17.498 Discharge/ Water level D Cal / Cal-Val 2012–2013 / 1981–2012 
11 Lediba -3.057 16.557 Discharge D Cal 2011–2016 
12 Bagata -3.39 17.4 Water level D Val 1981–1990 
13 Bandundu -3.3 17.37 Water level D Val 1981–1993 
14 Basoko 1.28 24.14 Water level D Val 1981–1991 
15 Esaka amont -3.402 17.944 Water level D Cal-Val 1981–2010 
16 Kabalo -5.74 26.91 Water level D Val 1981–1990 
17 Kindu -2.95 25.926 Water level D Cal-Val 1981–2004 
18 Kisangani 0.51 25.19 Water level D Cal-Val 1981–2011 
19 Mbandaka -0.07 18.26 Water level D Val 1981–1984 
20 Maluku -4.07 15.51 Water level D Cal 2017–2019 
21 Mbata 3.663 18.302 Water level D Cal 2017–2018 
Stations with historical data 
1 Lualupa -10,36 -10,36 Discharge M Cal Lake Bangweulu 1950–1959 
2 Lukuga 28,62 28,62 Discharge M Cal Lake Tanganyika 1952–1959 
3 Luvua -5,91 -5,91 Discharge M Cal Lake Mweru 1950–1959 
4 Mulungo 29,19 29,19 Discharge M Cal Lake Zimzambo 1950–1959 
5 Ruzizi -7,34 -7,34 Discharge M Cal Lake Kivu 1955–1959 

* D=Daily, M=Monthly 
** Cal=Calibration, Val=Validation 
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et al., 2023; Tshimanga et al., 2022). In the first version of the MGB model developed for the CRB by (Paris et al., 2022), the lake 
hydrological processes were not taken into account. Here, the hydrological functions of seven lakes were considered, including 
Bangweulu, Mweru, Tanganyika, Kivu, Zimbambo, Tumba, and Mai-Ndombe Lakes (Fig. 1). In order to properly represent the hy-
drology of the basin, a lake routing scheme was implemented, based on (Fleischmann et al., 2019, 2021) and based on a lumped 
(level-pool) approach. This computes a simple and lumped continuity equation for a given lake assuming a horizontal water level, 
represented here by the unit-catchment identified as the outlet of each lake (see Fig. 2). 

The variation of storage within the lake area is computed by the continuity equation (Eq. s2) already defined in the hydrodynamic 
routing method in MGB. The storage is adjusted by replacing the respective unit-catchments’ level–storage relationship by the one 
representative of the lake. For this purpose, a pre-processing was developed in each lake’s outlet in which a representative level- 

Fig. 3. Schematic representation of the experiment set-up divided by the manuscript’s sections.  
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storage relationship was defined by using satellite altimetry and flooded area from the Theia Hydroweb database. 
The second characteristic that defines the simulation of a lake is its outflow equation, defined here as a rectangular spillway 

structure, represented as an internal boundary condition, and defined as follows: 

Q = C • L • hd
3
2 (1)  

where Q is the spillway outflow, C the spillway discharge coefficient, L the spillway length and hd represents the water depth above the 
crest of the spillway level. 

The C parameter was adjusted during calibration for each lake, while L was estimated as the lake width at the lake’s outlet, based on 
high-resolution Google satellite imagery acquired in February 2023. 

2.4.2. Data assimilation approach 
Among the data assimilation (DA) methods that have been implemented in the field of hydrology, the ensemble Kalman filter 

(EnKF) has become popular because it allows a simplified implementation in hydrological models in which non-linear processes 
predominate (Moradkhani, 2008; Wongchuig et al., 2019). This method uses an ensemble of state variables to sample the model errors 
and compute the covariance error matrix, which is used to estimate the Kalman gain. For this purpose, it is common to estimate these 
errors from the perturbation of the model forcing or parameters (Biancamaria et al., 2011; Liu et al., 2012; Paiva et al., 2013). Among 
the EnKF-based methods, the local ensemble Kalman filter (LEnKF) was adopted in this study, which was implemented and evaluated 
in MGB (Wongchuig et al., 2020b, 2019). 

This localization method proposed by (Houtekamer and Mitchell, 2001) and implemented here limits the update of the state 
variable to a spatial range from the observation. The radius of influence has been evaluated in previous works for large basins such as 
the Amazon (Emery et al., 2018; Wongchuig et al., 2019), leading to optimal values from 500 to 2000 km. In the present work we 
choose 2000 km, so that the assimilation improvements spread over at least 43% of the area with a correlation greater than 0.5 (see 
Fig. S4), even when only three stations are assimilated in the whole basin. For more details on the equationing, implementation and 
performance of the LEnKF scheme in MGB see the Supplementary material and (Wongchuig et al., 2020b, 2020a, p. 2, 2019). 

2.5. Experimental design 

2.5.1. Calibration and validation 
The objective of this section is to show the experimental process to obtain the satisfactory hydrologic and hydraulic parameters of 

the MGB based on the statistical metrics shown in Section 2.5.4. Fig. 3 presents a complete schematic representation of our experi-
mental design. The MGB model was set-up at the daily time scale over two periods. The first one over the period 01 January 2001–31 
December 2020 for calibration and the second one over the period 01 January 1981–31 December 2000 for validation. For this we use 
in-situ daily discharge and daily water level series as well as satellite altimetry from VSs (see Section 2.3.2 and Table 1). Only during 
the validation phase no satellite feed data were used due to the non-consistent data during this period. The in-situ stations present daily 
data and the VSs from altimetry range between 9.9 and 35 days. These periods of calibration and validation were chosen also to take 
advantage of the satellite-derived water level over the recent period to calibrate the MGB hydraulic parameters. A spin-up period of 
two years was selected to eliminate the influence of initial conditions. The parameters to be calibrated within the MGB are mainly 
divided into hydrological and hydraulic. The hydrologic parameters (see Table S1) are mainly associated with soil conditions in the 
runoff generation process. As for the hydraulic parameters, they are associated with the hydraulic geometry which are the stable width 
and depth of the main river channel for each unit-catchment. 

For the calibration of the lake’s parameters of the MGB, five stations with historical series of monthly discharge during the period 
1950–1959 were used, which are located downstream of their associated lakes (see Table 1). The lake parameters are mainly hydraulic 
(see Section 2.4.1) such as C the spillway discharge coefficient, L the length of the spillway and hd which represents the depth of water 
above the crest of the spillway level. The validation of the series was performed by comparing the water level anomalies between the 
simulations at each lake outlet with information from VSs developed specifically for each lake in the Theia database for the period 
2001–2020. 

2.5.2. Data assimilation 
Secondly, we performed a long-term simulation from 1981 to 2020 with the LEnKF DA approach. The objective of this second part 

is to improve the state variables of the model along the whole basin. At this stage, three major experiments were performed (Fig. 3), 
two of which were for validation purposes. These experiments were: (S.1) Assimilation of the discharge and water level anomaly of the 
three stations with most continuous and longest availability in the basin (Bangui, Brazzaville and Ouesso), and validation with all the 
remaining stations; (S.2) Assimilation of the discharge and water level anomaly of the stations with less data and validation with the 
three stations with more continuous and longest data; (S.3) Assimilation of all the available in-situ and radar altimetry information. 
After a proper validation, we were able to use MGB to improve our understanding of the basin’s interannual and seasonal water 
variability, and identify major hydrological extreme events (i.e. 1983–1984 droughts and 1997–1998 or 2019–2020 floods). 

2.5.3. Extreme events analysis considering duration and intensity 
In this section we analyzed the discharge time series from the observations and simulations, which were deseasonalized using a 

multiplicative method. When using this method, daily discharges belonging to a given month are multiplied by the ratio between the 
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monthly climatology and the annual or historical climatology of the discharge (see Eq. 2). In this way, orders of magnitude similar to 
the original series are maintained and negative values are avoided. 

Qdes,d = Qnon− des,d •

(
Qnon− des,d

)

m

(Qnon− des)yr
(2)  

where Qdes,d is the daily deseasonalized discharge, calculated by the product of Qnon− des,d which is the daily non-deseasonalized 
discharge and the ratio between 

(
Qnon− des,d

)

m which corresponds to the monthly climatology to which the analyzed day belongs 
and the (Qnon− des)yr which is the annual or historical climatology of the discharge during the total period (1981–2020). 

Thus, for the duration analysis we used a simple concept to consider the number of days above or below a certain threshold 
(Marengo et al., 2013; Tabari, 2021; Wongchuig et al., 2017). This threshold was defined as half of the standard deviation of the annual 
maximum and minimum events, after testing a range from 0.5 to 1 of the standard deviation. We used this value because it represents 
in a spatially continuous manner different extreme hydrologic events in the drainage network that have been documented in the 
literature. For the intensity we based our analysis on the return period analysis by considering the extreme value theory (EVT) (Faragó 
and Katz, 1990; Katz et al., 2002) with a Peak Over threshold (POT) method (Marengo et al., 2013; Nadarajah and Shiau, 2005). To 
estimate the return period, we use the Generalized Pareto Distribution (GPD) (Balkema and de Haan, 1974; Hosking and Wallis, 1987; 
Pickands, 1975) which is a probability distribution function used to model the tails of a distribution. GPD is often used to model the 
distribution of exceedances above a certain threshold, and is therefore also used to estimate the probability of extreme events in 
hydrology, such as floods and droughts (e.g. Anghel and Ilinca, 2023; Zhou et al., 2017). 

To assess potential relationships between extreme hydrological events in the CRB and the large-scale climate patterns associated 
with ENSO during the period 1981–2020, we have used the classic Niño-3.4 SST index calculated as the sea surface temperature (SST) 
interannual anomalies, i.e. SST cleared from their monthly mean climatology and averaged over the central Pacific region [5 N-5S 
170–120 W] (available at: <https://psl.noaa.gov/gcos_wgsp/Timeseries/Nino34/>, last access on April 2023). El Niño (La Niña) 
events were then identified when values of the Niño-3.4 SST index were above (below) the standard deviation for at least six 
consecutive months, which is a variation of the standard methodology for identifying ENSO events (e.g., Trenberth, 1997). This value 
which is about 1 ◦C compared to the traditional value of 0.4 ◦C, allows the categorization of extreme El Niño and La Niña events. 
Specific extreme hydrological events were selected and it was identified whether they were associated with El Niño or La Niña events. 
In addition, composite maps are calculated for the normalized discharge anomaly during La Niña and El Niño periods. The lagged 
Pearson correlation coefficient maps showing the maximum value and the number of months of time lag between the discharge 
anomaly and the Niño-3.4 SST index are also calculated. The Pearson correlation coefficient has been associated to P-values below 
0.05, then it can be considered statistically significant. Similar analyses were performed for two additional indexes in the Supple-
mentary material, the Tropical Indian Ocean (TIO) SST anomalies and the Indian Ocean Dipole (IOD) considered as a dominant 
interannual phenomenon in the TIO (An, 2004; Huang et al., 2016; Webster et al., 1999). For the second one, the Indian Ocean Dipole 
Mode Index (DMI) has been used, defined as the difference in SST anomalies between the western TIO (50◦E to 70◦E and 10◦S to 10◦N; 
IODW) and the southeastern TIO (90◦E to 110◦E and 10◦S to 0◦S; IODE) (Saji et al., 1999). The procedure to determine the negative 
and positive phases of the TIO SST and the DMI index were similar to the methodology used to determine the extreme events of La Niña 
and El Niño for ENSO. For this purpose, the monthly SST from the ERA5 reanalysis was used (available at: <https://cds.climate. 
copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means>, last access on September 2023). 

We use this exploratory analysis as numerous have demonstrated the importance of SST variations in explaining African precip-
itation variability studies (Folland et al., 1986; Hoerling et al., 2006), providing an entry point for reliable attribution studies of 
extreme hydrological events in the CRB. 

Table 2 
Efficiency metrics used in this study.  

Metric Assessment Equation 

Pearson’s correlation coefficient (r) Linear correlation 
r =

n
∑

xsimxobs − (
∑

xsim
∑

xobs)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

n
∑

xsim2 − (
∑

xsim)
2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

n
∑

xobs2 − (
∑

xobs)
2

√
(3) 

Nash–Sutcliffe efficiency (NSE) High flows 
NSE = 1 −

∑
(xsim − xobs)

2

∑
(xobs − xobs)

2  

(4) 

Kling–Gupta efficiency (KGE) Overall performance 
KGE = 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(r − 1)2 +
( σsim/μsim

σobs/μobs
− 1

)2
+
( μsim

μobs
− 1

)2
√ (5) 

Relative bias (%) Under- and overestimation 
(volume) Relative bias(%) =

(∑
xsim −

∑
xobs

∑
xobs

)

× 100  
(6) 

Difference in the relative root mean square 
error (ΔRRMSE)

Deviation of predicted values 

RRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑(xsim − xobs

xobs

)2

n

√
√
√
√
√

, ΔRRMSE =

RRMSEassimilation − RRMSEopen− loop

RRMSEopen− loop   

(7)  
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2.5.4. Metrics for assessment of results 
A number of efficiency metrics were used to evaluate the model’s performance during the calibration and validation phases. These 

include the Pearson correlation coefficient (r), Nash–Sutcliffe efficiency (NSE), Kling–Gupta efficiency (KGE), relative bias and dif-
ferences in the relative root-mean-square error (ΔRRMSE). The NSE is a normalized statistic that determines the relative magnitude of 
residual variance compared with the observed data variance, while the KGE offers more general results in model performance, because 
it uses the most components, such as correlation, variability and bias terms. Both NSE and KGE range between − ∞ and 1 (perfect fit). 
The ΔRRMSE metric was used to compare relatively the open-loop (i.e. simulation without assimilation) with the run with assimi-
lation, more negative values indicate a greater reduction of errors by the DA technique. The equations for each of the above metrics are 
provided below in Table 2: 

where xsim and xobs are the simulated and observed variable, respectively, σ is the standard deviation and μ is the mean, n is the total 
number of observations. 

3. Results and discussions 

3.1. Model calibration and validation 

3.1.1. In-situ river discharge and water level 
Overall, the MGB model simulated very satisfactory daily discharges during the calibration step. The median values of KGE, NSE 

and relative bias were 0.84%, 0.73% and 1.7%, respectively (Fig. 4). The lowest values of NSE and KGE are observed at the most 
downstream gauge of Brazzaville. This can be attributed to the overestimation of water volume by the model at the second peak of the 
annual hydrograph, which is the result of the aggregation of different hydrological temporal patterns contributing to this particular 
point of the basin. The largest model overestimation is found around 2018–2019 at Brazzaville and Bangui stations, both in the time 
series and in the scatterplot panels on the right side of each series, because of an overestimation of the CHIRPS precipitation. Similarly, 
the water level performance is shown in Fig. S5, where the NSE and Pearson correlation coefficient show values of 0.52 and 0.82 
respectively. A better performance occurs in the northern part of the CRB, which varies less on seasonal timescales than the southern 
one. 

Fig. 5 shows the time series of water level anomaly and the spatial distribution of the statistical indices for 836 VSs during the 

Fig. 4. Time series of observed (blue line) and simulated (red line) discharge for six in-situ stations for the calibration period 2001–2020. The 
scatterplot of the observed vs. simulated daily series with the colors of each point corresponding to the respective year is placed next to the time 
series. The spatial distribution and the boxplot of the statistical performance index for in-situ gauges are shown in the middle-left panel. 
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calibration period. The overall performance for NSE and Pearson correlation coefficient r are 0.38 and 0.75, respectively. A better 
performance is shown for the northern and southern (i.e. Kasai River) tributaries of the CRB. The time series of water level anomaly 
show a satisfactory agreement between MGB simulations and remote sensing-based observations, considering amplitude, interannual 
and seasonal representation for most of the basin. The lowest performance is found in the Middle-Congo region (e.g. Lopori and Ruki 
rivers), which may be likely due to two causes: i) the low representativeness of the annual variability of rainfall in the central Congo 
region as assessed by (Beck et al., 2017) when analyzing several rainfall datasets including CHIRPS used in this study; ii) although the 
hydraulic parameters of the main channel were calibrated (depth and width), the floodplain topography (MERIT DEM) used to 
generate the hypsometric curve is probably not sufficiently accurate in representing the bare surface since this region is particularly 
covered by dense forest, as seen in the land use-land cover maps (see Fig. S3b-c in the Supplementary material). 

Regarding the time series and spatial distribution of the discharge during the validation period (1981–2000), KGE, NSE and relative 
bias show a median value of 0.71, 0.51 and − 11.7%, respectively (Fig. 6). Similar to the calibration period, the better performance is 
captured for the northern region of the CRB (Sangha and Oubangui), where interannual and seasonal variability are adequately 
represented. Overall, the model performance for the timing and magnitude of high and low flows is better that those obtained in 
previous studies (i.e. (Dos Santos et al., 2022; Paris et al., 2022, p. 202; Tshimanga and Hughes, 2014). The validation of in-situ water 
level anomaly is shown in Fig. S6. For comparison purposes with other hydrological-related variables, the terrestrial water storage 
from GRACE (Rodell and Famiglietti, 2002; Scanlon et al., 2016; Strassberg et al., 2009) and surface water extent from GIEMS-2 (Papa 
et al., 2010; Prigent et al., 2007) are also assessed and are shown in the supplementary material (Figs. S7 and S8). 

3.1.2. Representation of lake dynamics 
Fig. 7a shows the monthly mean climatology of discharge for historical records from in-situ stations downstream of four lakes 

compared to the MGB simulation results. Lake Tanganyika shows the best performance considering the relative bias and Pearson 
correlation coefficient of − 1.3% and 0.97, respectively. In addition, while the simulation of the seasonality is satisfactory for the lakes 
Mweru and Zimzambo there is an overestimation of the discharges by the model. For Lake Kivu, there is a significant flow underes-
timation, mainly during the dry season, likely because it is a regulated lake and, therefore, there is a controlled flow during the dry 

Fig. 5. Time series of observed (blue dots) and simulated (red line) water level for 836 virtual stations for the calibration period 2001–2020. The 
spatial distribution and the boxplot of the Nash–Sutcliffe efficiency index for virtual stations is shown in the middle-left panel. 
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season. In general, it has been possible to capture the climatology of discharges in four lakes, especially when compared to the model 
run without representation of lakes. It must be noticed also that biases can arise because the simulation and observations come from 
two different periods that are 50 years apart. In general, the implementation of lakes in MGB during the calibration period had an 
impact on the discharge series which can be seen for the ratio between the discharge with and without lakes for each river reach (upper 
center Fig. 7a). It has been observed that more than 95% of the river reaches vary in discharge by ± 10% when the lake module is 
incorporated (see the histogram in the lower center Fig. 7a). The greatest influence is observed in the Lualaba region where there is a 
greater number of lakes that influence this process simulated in the MGB. This reduction is most evident downstream of Lake Tan-
ganyika where the volume reduction can almost double. The circles in Fig. 7 show the calibration stations where there is a significant 
reduction in RRMSE for three out of the five historical stations (downstream of Tanganyika, Mweru and Zimzambo lakes). For the 
validation period, Fig. 7b shows the time series of the water level anomaly represented by the MGB model simulation with and without 
representation of lakes, and water level anomalies from radar altimetry. In general, there is an improvement in the amplitude and 
timing of the anomalies. Pearson correlation coefficient is improved, moving from 0.3 to 0.68, and NSE improved from − 0.7 to 0.33 
when the lake scheme is used (Fig. 7c). In previous studies (e.g. (Paris et al., 2022), lakes Mweru and Tanganyika, for example, were 
not properly modeled, and in fact their discharge outflows were directly forced/substituted by virtual discharge time series, which is 
defined as a series constructed from satellite altimetry and in-situ historical information. 

3.1.3. Long-term simulation and validation of the assimilation scheme 
A 40-year time series of hydrological variables is generated with MGB, for the period 1981–2020 (Fig. 8), using both the new 

representation of the lake storage dynamics and the LEnKF data assimilation scheme (experiment S.1; see Fig. 3). The performance 
metrics (NSE, KGE and Pearson correlation coefficient) for discharge time series are 0.61, 0.73 and 0.87, respectively, which are 
satisfactory for a 40-year long simulation at daily time scale. There is also an improvement in the RRMSE of 13% (reduction of errors) 
for validation the discharge temporal series. Overall, the bimodal behavior of the discharge series at Lediba and Brazzaville stations is 
well captured by MGB. However, there are still maximum annual events where MGB simulations overestimate the observations, e.g. for 
the north-western part at Salo and Ouesso stations in 2000, and the northern region at Bangui and Zemio stations in 2003. This 
behavior is specific only during these years, which could be explained by the poor representativeness of CHIRPS precipitation of these 
events. Similar performance is shown when the in-situ water levels are used for validation (see Fig. S6 in the Supplementary material). 

Results of experiment S.2 (see Fig. 3) are shown in Fig. 9, for which the three longest series of discharges and water levels are used 

Fig. 6. Time series of observed (blue line) and simulated (red line) discharge for six in-situ stations for the validation period 1981–2000. The 
scatterplot of the observed vs. simulated daily series with the colors of each point corresponding to the respective year is placed next to the time 
series. The spatial distribution and the boxplot of the statistical performance index for in-situ gauges are shown in the middle-left panel. 
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for validation. In general, there is an improvement in the RRMSE of almost 14% for validation of discharge time series. The largest 
improvement is observed in the Oubangui region at the Bangui station with a reduction in RRMSE of ~17%. Improvements are also 
found downstream at the Brazzaville station. For the assimilated stations improvements are even greater, reaching a RRMSE reductions 
of ~70% at some stations (e.g., Salo, Zemio, Mbata and Dimalumbu). Validation with in-situ water levels for experiments S.1 and S.2 is 
shown in Figs. S9 and S10, respectively. The LEnKF implementation improves the water level simulations when compared to the 836 
VSs, from mean NSE values of 0.38–0.5 (see Fig. S11). The cross-validation in Experiments S.1 and S.2 shows that the LEnKF method 
performs satisfactorily in improving the discharge time series from MGB in different regions of the CRB. With this satisfactory 

Fig. 7. (a) Time series of the observed (blue, 1950–1959) and simulated discharge climatology without lakes (light red) and with lakes (dark red) 
implementation for 2001–2020 at four stations downstream of the lakes used for calibration (circles) represented on the map with the ΔRRMSE 
index from red to blue palette color. The central map shows the ratio of mean discharge without lakes to discharge with lakes for each river reach 
and each lake (diamonds). The histogram of this ratio for all river reaches is shown next to the map. (b) Time series of satellite derived water level 
anomaly (blue dots) and simulated water level anomaly from MGB without (light red) and with lakes (dark red) implementation during the phase of 
validation (2001–2020) at same lakes used during calibration phase. (c) Boxplot of Pearson correlation coefficient r and NSE index during validation 
period for simulated water level anomaly from MGB without (light red) and with lakes (dark red) implementation. 
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performance, experiment S.3 is implemented by assimilating all the existing information which will allow us to analyze the extreme 
hydrological events in the CRB at a spatially and temporally distributed level. 

3.1.4. Hydrological extreme events analysis and ENSO teleconnections 
This section analyzes specific extreme hydrological events identified through MGB simulations and observations in the CRB. For 

this purpose, we use the experiment S.3 (see Fig. 3), in which all available in-situ observations of discharge and water level as well as 
radar altimetry have been assimilated; and this scenario correspond to the so-called CRB hydrological reanalysis. The performance 
achieved with this experiment (S.3) was analyzed with respect to the observed discharge at all stations showing a median NSE, KGE 
and Pearson correlation coefficient of 0.95, 0.94 and 0.98 respectively. Considering the in-situ water level anomaly, the NSE and 
Pearson correlation coefficient are 0.65 and 0.92, respectively. It should be noted that this high performance is also due to the fact that 
the simulations are being evaluated with the same in-situ series used for assimilation. If we analyze the water level from VSs, the NSE 
and Pearson correlation coefficient values are 0.50 and 0.82, respectively. This last value can be compared with previous studies (e.g. 
(Paris et al., 2022) that reached a Pearson correlation coefficient of 0.74 for the median of the VSs evaluated. 

This long-term reanalysis allows us to evaluate potential climate drivers of extreme hydrological events in the CRB, in particular 
with respect to ENSO, the strongest mode of large-scale interannual climate variability. It is well-known that ENSO-related shifts in SST 
in the Pacific lead to changes in the Walker circulation, which in turn leads to a significant redistribution of deep atmospheric con-
vection in the tropics. As a result, ENSO can exert a strong influence on large-scale precipitation patterns, and particularly on the 

Fig. 8. Time series of observed (blue line), open-loop simulation (dashed red line) and assimilated simulation (dashed black line) discharge for three 
assimilated (triangles) and seven validated (circles) in-situ stations for the long-term period 1981–2020. The spatial distribution and the boxplot of 
the ΔRRMSE performance index for in-situ gauges are shown in the middle-left panel. 
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strength of monsoonal systems (Taschetto et al., 2020). For instance, at the peak of El Niño, the East Asian, North American, and West 
African monsoons are significantly strengthened, while the South American monsoon is weakened. These changes in precipitation 
patterns typically correspond to changes in the amount of freshwater flowing from rivers to the ocean. Here we evaluate ENSO by using 
the Niño-3.4 SST index (i.e., SST anomalies averaged in the region delineated by the magenta rectangle on Fig. 10a). 

The duration and intensity of extreme events are shown in Fig. 10b-c for the flood years of 1997–1998 and 2019–2020, and for the 
drought years of 1983–1984 and 2011–2012, respectively. These events were selected by considering the station with the largest 
drainage area (Brazzaville) and the events that affected the largest areas across CRB (see Figs. S12 and S13). Fig. 10d shows the 
interannual discharge anomalies from observations (blue) and hydrologic reanalysis (dotted black) at four in-situ stations. A mean 
Pearson correlation coefficient of 0.96 and 0.77 is found for the three stations with the longest series and for all 13 in-situ discharge 
stations, respectively. This can be considered a satisfactory performance considering 40-years of daily discharge simulation. Fig. 10b-c 
show that the flood events occurred mainly in the main stem and in the Lualaba (Kasai’s headwater for 2019–2020) region in the south- 
eastern (southern) part of the CRB, considering duration and intensity exceeding 90 days and 50 years of return period, respectively. 
Specifically for the 1997–1998 year, a strong El Niño event was recorded (vertical opaque red bar in Fig. 10d) with a duration of 
approximately 13 months. This occurred in the same time that large floods were detected at the Bangui and Brazzaville stations by 
observations and MGB simulations. The 1997–1998 Super El Niño event also caused extreme hydrological events in the Amazon, but 
these were extreme droughts rather than floods as in the CRB (Marengo et al., 1998; Marengo and Espinoza, 2016), highlighting a 
different hydrological response in the Atlantic and therefore distinct ENSO teleconnection pathway leading to flooding in the CRB. The 

Fig. 9. Time series of observed (blue line), open-loop simulation (dotted red line) and assimilated simulation (dotted black line) discharge for seven 
assimilated (triangles) and three validated (circles) in-situ stations for the long-term period 1981–2020. The spatial distribution and the boxplot of 
the ΔRRMSE performance index for in-situ gauges are shown in the middle-left panel. 
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2019 event was also documented in the Ubangui region (Gosset et al., 2023). However, there is no evidence that the 2019–2020 year is 
related to an extreme El Niño event, although the Niño-3.4 SST index experienced positive values during the boreal winter before 
turning negative again, leading the climate condition in the Pacific towards a rare triple-dip La Niña. One can note that the classic 
“double-dip” usually follows extreme El Niño events such as the one of 2015–2016 (e.g., Hu et al., 2014; Iwakiri and Watanabe, 2021; 
Wu et al., 2019). 

In terms of drought, the 1983–1984 event is observed at the three stations with the longest records, of which Bangui and Ouesso are 
influenced by the northern regions of the CRB. This extreme event has been documented by Adisa et al. (2019) and Masih et al. (2014); 
the latter analyzed the droughts between 1900 and 2013, and detected the 1983–1984 drought as a continental scale event and unique 
in the period analyzed. This event is spatially represented by the MGB simulations in each river reach. This drought has also been 
simulated in the Kasai region in the southern part of the CRB with duration values exceeding 90 days. This event occurs at the end of a 
La Niña event in 1983–84 that followed the extreme 1982–1983 El Niño event (Fig. 10d). The 2011–2012 drought event was also 
recorded by observations at the same stations in Bangui, Ouesso and Brazzaville, as well as by MGB and occurred a few months after a 
major La Niña event that peaked during the 2011/12 boreal winter (Fig. 10d). 

To further evaluate the potential teleconnection between ENSO variability and precipitation/flooding patterns in the CRB region, 
we present, in Fig. 11, composite maps of standardized discharge anomalies, during strong La Niña (Fig. 11a) and El Niño (Fig. 11b) 
events, i.e. periods when the Niño-3.4 SST index is below and above one standard deviation, respectively. In the northern region, 
events of maximum values of the normalized discharge anomaly are mainly associated with La Niña periods (see composite in Fig. 11a) 
while the minimum values occur mainly during periods of strong El Niño (Fig. 11b). Interestingly, opposite patterns can be found in the 
Southern region. Because ENSO exhibits a clear seasonal phase locking (Stein et al., 2014), characterized by a strong tendency for 
events to peak in the boreal winter, ENSO’s impacts have been shown to be seasonally modulated (e.g., Almar et al., 2022; Boucharel 
et al., 2021). This could explain the opposite precipitation response to ENSO events of the southern and northern Congo, which is 
located across the equator and therefore exhibits an out-of-phase climatology between its northern and southern regions (see Fig. 7a). 

In addition, Fig. 11c shows the Pearson correlation coefficient (with a significance level of 0.05) between the monthly series of 
discharge anomalies and the Niño-3.4 SST index. The highest values are located in the upper part of the Middle Congo and Kasai 
regions where the time lag where this maximum correlation occurs varies from zero to approximately 4 months (Fig. 11d). Addi-
tionally, another region that shows relatively high correlations in this analysis is the northern region with a lag of 11–12 months 
(Fig. 11d). This is especially true for the two extreme drought events of 1983–1984 and 2011–2012. As the patterns of teleconnections 
and their associated impacts differ significantly between the onset and decay phases of ENSO events (Sprintall et al., 2020; Taschetto 
et al., 2020), this could explain why these droughts can occur with a lag of up to one year, probably due to a cumulative effect, as 
already reported by (Lv et al., 2022) when they analyzed the relationship between ENSO events and droughts in China. 

Although the present analysis clearly highlights a strong teleconnection between ENSO variability and regional patterns of river 
discharge in the CRB, it also shows that the teleconnection is far from linear and straightforward, with a potentially strongly seasonally 
modulated and delayed precipitation response to ENSO events of different amplitude as shown in Fig. S14 in the Supplementary 
material, where seasonal correlations are negative mainly in the northern regions of the CRB (Sangha and Ubangui regions). In 
addition, the Dry Years (DJF) in the northern CRB region are highly correlated with SST variability in the Indo-Pacific, that has been 
corroborated by analyzing the seasonal correlations between the TIO SST anomaly and the discharge series (see Fig. S16 in the 
Supplementary material). Additionally, there is a high correlation during the beginning of the dry period (MAM) in the southeastern 
CRB region (Lualaba region). (Moihamette et al., 2022) found that about 20–32% of the rainfall variance in the CRB is associated with 
the Indian Ocean dipole (IOD), independent of El Niño or La Niña, between the November and December periods. This has been 
verified in this study by analyzing the DMI index where the highest correlations with the discharge series are found in the Middle 
Congo and Lualaba regions with a time lag of zero months, i.e. an almost immediate impact (see Fig. S17 in the Supplementary 
material). At the seasonal level, there is a high significant correlation during the dry period (DJF) in the Ubangui region and during the 
onset of wet period (SON) in the Lualaba region. Despite these high correlations, the DMI index is only able to explain the 1997–1998 
flood, similar to the way the ENSO index does in this particular event. However, these analyses suggest that ENSO explains a greater 
teleconnection with the major flood and drought events in the last 40 years in the CRB than TIO SST and DMI index. 

This is an illustration of the complex inter-basin climate teleconnections to discharge patterns in tropical Africa, which definitely 
requires more thorough investigation, especially to disentangle the impacts from the different modes of interannual tropical variability 
(e.g., ENSO, IOD) and/or low-frequency climate indices (e.g. Atlantic Multidecadal Oscillation (AMO), Solar activity changes, among 
others) as studied by Lüdecke et al. (2021). 

Fig. 10. (a) Map of the global tropical zone with the Niño-3.4 region (magenta rectangle), the TIO and western (ODW) and southeastern (ODE) TIO 
regions (dotted magenta rectangle) and the Congo River basin (black polygon). Time series of Niño-3.4 SST anomalies. Blue and red filled areas 
indicate La Niña and El Niño events respectively. (b) Maps of the number of days during flood and drought periods in blue and red palettes, 
respectively, for specific events. The results of the MGB simulations are shown in each river reach and the observations are shown in circles. (c) Maps 
of intensity of flood and drought events in blue-purple and red-purple palettes, respectively, expressed in return period in years and for the same 
events selected in (b). (d) Time series of interannual discharge anomalies from observations (blue) and MGB simulation (dashed black) for the three 
stations with the most extensive data. Horizontal lines represent estimated thresholds for observations and simulations. The opaque vertical bars 
represent La Niña (blue) and El Niño (red) events. The map of the regions (colored borders and circles) to which these series belong is shown in the 
upper center of this panel. 
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4. Conclusions 

This study presents an improved and coherent long-time series of simulated daily discharges for the whole Congo River basin (CRB) 
for the period 1981–2020. Simulation improvements were supported by the representation of the dynamics of seven major lakes, 
which is an important yet overlooked process in large-scale models of the CRB where only the outflows in each lake were replaced. 
Complementarily, a data assimilation technique was able to further improve discharge simulations across the basin. The dynamics of 
the discharges over the CRB was analyzed with a main focus on the spatial and temporal distribution of extreme hydrological events 
and its relationship with large-scale climatic factors, specifically with ocean temperature from the El Niño-Southern Oscillation 

Fig. 11. Map of composites of the normalized discharge anomaly during (a) La Niña and (b) El Niño events in the 1981–2020 period. (c) Maximum 
monthly lagged Pearson correlation coefficient between the Niño-3.4 SST anomaly series and the discharge anomaly, with a significance level of 
0.05, and (d) the monthly lag at which this maximum correlation occurs. 
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(ENSO). 
The performance of the discharge simulations was evaluated on a daily basis. Three steps were considered: 1) the calibration of the 

MGB model hydrologic and hydraulic parameters, yielding an average performance of 0.71 considering the KGE index; 2) the cali-
brated lake scheme, which showed an average improvement in performance from 0.3 (without the scheme) to 0.68 (with the scheme), 
for Pearson’s correlation coefficient; 3) correction of long-term time series with the LEnKF data assimilation framework. Two cross- 
validation experiments showed an improvement in RRMSE of about ~13% in the simulated discharges, and are satisfactory to 
represent the interannual and seasonal variability in the CRB, when compared to previous modeling studies, reaching NSE levels of e. 
g., 0.95 and 0.65 in the daily in-situ discharge and water level series, respectively, for the last experiment called hydrological 
reanalysis. 

Several historical flood and drought events were also evaluated based on the long-term run with representation of lake storage 
dynamics and data assimilation named hydrological reanalysis from the CRB. A high correlation between the observed and simulated 
series allowed us to have a satisfactory degree of confidence to identify extreme events also in places where there are no observations. 
Two major droughts and floods were evaluated. The flood of 1997–1998 was mainly associated with a major El Niño in the same 
period, however for the event of 2019–2020 there was no evidence of its association with any temperature anomaly in the central 
Pacific (Niño-3.4 region). As for the 1983–1984 and 2011–2012 droughts that mainly affected the Ubangui and Sangha in the north 
and Kasai in the south region of the CRB, it is observed that they are highly correlated some months earlier by large El Niño and La Niña 
events, respectively. These events showed a significant correlation with a delay of 10–12 months for the northern region and the Niño- 
3.4 region. 

These results show the spatial and temporal complexity of the teleconnections between hydrology and large-scale climate phe-
nomena such as the ENSO and the Tropical Indian Ocean (TIO), giving us new insights such as the fact that river discharge in the CRB is 
not linearly related to the amplitude of the ENSO event, but which better explains higher extreme flood and drought events compared 
to TIO SST and DMI index during the last 40 years. This also gives us perspectives for SST analysis in other tropical ocean regions such 
as the Madden-Julian Oscillation. This is the first work that addresses these relationships in terms of discharge from a series of hy-
drological reanalysis for the second largest basin in the world. 

In addition to having a long-term consolidated daily discharge base (or what could also be called the first hydrological reanalysis of 
the Congo in the last 40 years), the techniques implemented in the setup of the hydrological model could be used with an operational 
perspective, which is of great importance in the CRB, a region that has limited in-situ information and is under threats to ongoing 
climatic changes and anthropogenic pressure. 
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