
https://doi.org/10.1177/11769343221150585

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial
4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Evolutionary Bioinformatics
Volume 19: 1–10
© The Author(s) 2023
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/11769343221150585

Introduction
Bioinformatics is a multi-disciplinary area supporting the dis-
covery of biological information utilizing computational
approaches.1 This research field is at the intersection of several
sciences like biology, computer sciences, and mathematics,
intending to analyze and classify biological data.2 One of the
most common bioinformatics tasks, relevant in metagenomics
and phylogenetic analysis,3 is the sequence alignment,4,5 which
consists of comparing 2 (pairwise)6 or more (multiple)7 nucleo-
tides or proteins sequences against a reference.

One of the most utilized alignment types is the graphical
sequence alignment,8,9 which provides visualization of rear-
rangements, insertions, deletions, and other structures found in
DNA or protein sequences. Graphical alignments are com-
monly represented in a dot matrix called dot-plots.10 Dot-plots
are rectangular matrixes where columns and rows represent the
residues to be aligned; at each cell, a dot is painted with a gray-
scale intensity proportional to the degree of similarity of the
sequences at that point.11

There are several published software packages able to gen-
erate dot-plots. Dotter9 is one of the most popular graphical

pairwise sequence aligners, using dynamic programming12 and
well suited for small DNA or protein sequences (few 1000 of
nucleotides).13 Other available software programs are Dotlet14,
which runs on a web server; JDotter13 is a version of Dotter
running on a remote java platform, Tuple_plot15 which pro-
posed a different way to calculate the dot-plot and can reduce
the noise for large sequences (>10 kB) and Gepard16 using a
heuristic suffix array method17 to generate dot-plots of small
and large sequences but with a high noise level. The SFILE18
library was designed to deal with big-data sequences, enhanc-
ing out-of-core management and using a k-mer value identifi-
cation to reduce computational space. More recently, novel
software has been published as Flexidot,19 which generates
high-quality dot-plots for small repetitive sequences, and
finally D-genies,20 a standalone and web application that uses
the minimap221 output to calculate the alignment for chromo-
somes and genomes, D-genies also use MashMap,22 an approx-
imate algorithm for computing local alignment boundaries
between long DNA sequences using k-mers and taking advan-
tage of HPC strategies and mapping genome assembly or long
reads to other reference sequences. However, despite signifi-
cant progress in using large sequences datasets, the quality and
the execution times of dot-plots still represent a challenge.

G-SAIP: Graphical Sequence Alignment Through
Parallel Programming in the Post-Genomic Era

Johan S. Piña1,2* , Simon Orozco-Arias2,3*, Nicolas Tobón-Orozco2,
Leonardo Camargo-Forero4, Reinel Tabares-Soto5
and Romain Guyot5,6

1Department of Data Science, People Contact, Manizales, Caldas, Colombia. 2Department of
Computer Science, Universidad Autónoma de Manizales, Manizales, Caldas, Colombia.
3Department of Systems and Informatics, Universidad de Caldas, Manizales, Caldas, Colombia.
4UbiHPC, Bucaramanga, Colombia. 5Department of Electronics and Automation, Universidad
Autónoma de Manizales, Manizales, Caldas, Colombia. 6Institut de Recherche pour le
Développement, CIRAD, University of Montpellier, Montpellier, France.

ABSTRACT: A common task in bioinformatics is to compare DNA sequences to identify similarities between organisms at the sequence level.
An approach to such comparison is the dot-plots, a 2-dimensional graphical representation to analyze DNA or protein alignments. Dot-plots
alignment software existed before the sequencing revolution, and now there is an ongoing limitation when dealing with large-size sequences,
resulting in very long execution times. High-Performance Computing (HPC) techniques have been successfully used in many applications to
reduce computing times, but so far, very few applications for graphical sequence alignment using HPC have been reported. Here, we present
G-SAIP (Graphical Sequence Alignment in Parallel), a software capable of spawning multiple distributed processes on CPUs, over a super-
computing infrastructure to speed up the execution time for dot-plot generation up to 1.68× compared with other current fastest tools, improve
the efficiency for comparative structural genomic analysis, phylogenetics because the benefits of pairwise alignments for comparison between
genomes, repetitive structure identification, and assembly quality checking.

KEywoRdS: G-SAIP, HPC, bioinformatics, dot-plots, graphical alignments, post-genomic era

RECEIVEd: November 14, 2022. ACCEPTEd: December 23, 2022.

TyPE: Original Research

FundInG: The author(s) disclosed receipt of the following financial support for the
research, authorship, and/or publication of this article: Simon Orozco-Arias is supported by
a Ph.D. grant from the Ministry of Science, Technology and Innovation (Minciencias) of
Colombia, Grant Call 785/2017. JSP, SOA, NTO, RTS and RG were supported by
Universidad Autónoma de Manizales, Manizales, Colombia under project 752-115, and
Universidad de Caldas under project 0319120. This work was supported by Minciencias-
Ecos Nord No. C21MA01 and 285-2021 and STICAMSUD 21-STIC-13.

dEClARATIon oF ConFlICTInG InTERESTS: The author(s) declared no potential
conflicts of interest with respect to the research, authorship, and/or publication of this article.

CoRRESPondInG AuTHoRS: Johan S. Piña, Department of Computer Science,
Universidad Autónoma de Manizales, Antigua estación del ferrocarril, Manizales, Caldas
170004, Colombia. Email: jspinad@gmail.com

Simon Orozco-Arias, Department of Computer Science, Universidad Autónoma de
Manizales, Antigua Estación de Ferrocarril, Manizales, Caldas 170004, Colombia. Email:
simon.orozco.arias@gmail.com

1150585 EVB0010.1177/11769343221150585Evolutionary BioinformaticsPiña et al
research-article2023

* These authors contributed equally.

https://uk.sagepub.com/en-gb/journals-permissions
mailto:jspinad@gmail.com
mailto:simon.orozco.arias@gmail.com

2 Evolutionary Bioinformatics

Advances in next-generation sequencing technologies and
associated low costs have allowed an exponential increase in
available genetic information,23 known as the sequencing revo-
lution.24-27 As a result, the challenges have shifted from
sequencing organisms to analyzing their genomes in a post-
genomic era.28,29 This shift required a new generation of algo-
rithms considering the use of parallel, distributed, and other
high-performance computing (HPC) techniques to accelerate
the genome data analyses.30

Developments in HPC, supercomputing and parallel
programming have improved the execution time in several
areas,31-34 due to parallel programming can launch processes
over heterogeneous architectures such as CPU, GPU, or
CPU + GPU using libraries for programming in a fast and
flexible way, even with shared or unshared memory.35 In bioin-
formatics, these techniques allow accelerating the analysis of
genetic information.36 Different bioinformatics applications
use parallel programming approaches.37-40 These applications
focus on multiple sequences alignments41-45 and non-graphic
paired alignment of protein nucleotides,46-50 including repeti-
tive structures.51 However, graphic aligners that use parallel
strategies are not available.

In this work, we reported G-SAIP (Graphical Sequence
Alignment in Parallel), a tool that can be easily integrated into
a pipeline and HPC-based strategy that follows the Flynn52
taxonomy SIMD (simple instruction multiple data). G-SAIP,
taking advantage of MashMap, performs graphical pairwise
sequence alignment (1 channel and 8 bits image) at the genomic
level on CPU architectures over multiple nodes speeding up
execution times through parallel programming in order to pro-
vide tools for analyzing a massive amount of data produced by
large scales genomic projects such as the 10K plant genomes53
and the Earth BioGenome.54 In contrast with other programs,
G-SAIP prioritizes process parallelization over programs like
gepard to generate dot-plots, as well as uses the principles of
sequence mapping to score similarities with programs like
minimap2 and MashMap which perform file alignments as
results and use multi-threaded processes in their execution.
This tool can also be used for quality verification of genome
reference-based assemblies.

Materials and Methods
G-SAIP implementation

G-SAIP was developed using Python 3.855 and with parallel
computing support using mpi4py.56 It is a DNA graphical
aligner that takes advantage of MashMap57 for sequence
alignment due to its speed, and requires input parameters as
the reference and query sequences in FASTA format that
must be declared in the command line execution to calculate
the dot-plot. Also, users can define optional parameters like
MashMap Segment similarity, identity percentage for filter-
ing, k-mer size, and G-SAIP output image attributes like
image width, height, and word size to enhance the resulting
quality.

 Window Total sequence length
size =

_ _
1024 (1)

Equation 1. Calculated window size by G-SAIP, where Total_
sequence_length is the complete size of residues from larger
sequence and 1024 is the maximum size of the result image.

To generate the dot-plot, G-SAIP receives the nucleotide
FASTA files for reference and query sequences; these files can
contain 1 or more sequences. Hence the algorithm joins each
file into a unique sequence to facilitate the execution. Thus, the
largest sequence file is split into subsequences of length calcu-
lated by equation (1), ensuring that each pixel of the default
output image size represents the minimum number of nucleo-
tides and keeps the significant information. Then, G-SAIP
uses MashMap to calculate the score of each region; the score
value is extracted from the result file and mapped from 0% to
100% (identity) to pixel intensity 0 to 255. Next, G-SAIP gen-
erates the dot-plot matrix, which is scaled to height and width
defined by the user (by default is 1024 pixels and 1024 pixels).
The software preserves the intensities extracted from MashMap
but, if the user wants to reduce the image noise, G-SAIP has a
filter tool that reduces to zero the intensities under a given
threshold and assigns the maximum intensity to pixels above
the threshold. Another option available is to generate a dot-
plot with 3 colors. The user is asked for 2 values between 0 and
100; the dots are red-colored for scores under the minimum
value. For scores above the maximum number, dots are colored
green, and scores between those ranges are orange painted.
Finally, the image is saved in SVG, PNG, or PDF format as a
specified format by the user (by default, PNG is used), and the
algorithm removes temporary files used during the execution.

G-SAIP parallel strategy

G-SAIP uses mpi4py, a Python implementation of Message
Passing Interface (MPI),58 specifically for Open MPI.59 This
library allows graphical alignment to be performed parallel over
multiple CPU cores belonging to a single node or distributed
nodes in an HPC cluster. The software takes all subsequences to
calculate the number of sequences that each processor will pro-
cess. Then, the master process creates 1 file per worker node
(with the subsequences that it will use) and sends this file as the
same as the shorter-joined sequence to worker processes. Finally,
each process runs MashMap with its individual sequences file,
shorter-joined sequence, and user parameters. By default,
G-SAIP defines MashMap parameters like segment length, k-
mer size, identity percentage, and filter mode as 5000, 16, 95, and
None. In this way, the algorithm takes advantage of this HPC
strategy to do several alignments simultaneously.

The output file generated by MashMap is processed to
extract alignment scores, which are used to generate and fill the
N × M matrix, where N is the subsequence length, and M is the
shortest sequence length. Finally, when each process is done,

Piña et al 3

the master process takes all matrixes generated and creates the
final dot-plot matrix. Figure 1 resumes the parallel strategy
applied by G-SAIP for dot-plot calculation.

In addition, G-SAIP has a specific module to make dot-
plots to compare the quality of an assembly with a reference
genome. Ragtag60 is used for contigs and scaffold orders com-
pared with a reference file. This process is executed before the
execution of MashMap for alignment to determine the correct
quality of an assembly file.

Availability of G-SAIP

The G-SAIP source code is open source and can be found in
https://github.com/simonorozcoarias/G-SAIP. Installation
instructions, how to run, sample data, and results are also
available there.

Computational resources

All experiments were executed using a server with a 64-core
Intel (R) Xeon(R) CPU E5-2683, with 2.1 GHz, 256 GB of
RAM and the CentOS7 operating system, managed by Slurm.61

Performance tests

G-SAIP was tested for 2 perspectives to generate self-plots
(a dot-plot with the same query and subject sequence) of
genomes with different sizes (Table 1). First, the software was
executed with different CPU numbers (2, 4, 8, 16, 32, 56, and
62) in a single node, and each execution was performed 10
times to examine the acceleration and speed provided by
G-SAIP. Amdahl’s law considers the elapsed execution time

sequentially and the execution time for the code parallel sec-
tion to speed up the calculation. In addition, the execution
time of the overall execution was recorded to explore the time
added by sequential code.

On the other hand, Homo sapiens X chromosomes self-plot
was generated with G-SAIP to compare the execution time
differences between G-SAIP and other graphical sequence
aligners: Gepard, Dotter, D-GENIES, and the MashMap Perl
script to make dot-plots.

Assembly quality test

G-SAIP was used to determine the assembly quality of
2 organisms from raw sequence reads datasets. First, we used
a WGS (whole genome sequencing) Illumina paired-end
sequence reads of Arabidopsis thaliana available in NCBI SRA65
repository under SRR10178322 accession number, with 16 Gb
of size per file. The second dataset used was a WGS Illumina
paired-end sequence reads of Drosophila melanogaster with
4 Gb of size per file65 and accessible in SRA repository with
SRR10735526 accession number.

Figure 1. G-SAIP parallel strategy diagram. Sub-sequence file corresponds to a file containing sub-sequences for the largest FASTA file (can be the

reference or the query file). One-sequence file corresponds to the other file (the shorter).

Table 1. Performance test sequence dataset.

SEqUENCE NAME SIzE GENBANk ASSEMBLy
ACCESSION

Homo sapiens genome62 3.1 Gb GCA_000001405.28

Triticum turgidum
genome63

9.9 Gb GCA_900231445.1

Pinus taeda genome64 22.1 Gb GCA_000404065.3

https://github.com/simonorozcoarias/G-SAIP

4 Evolutionary Bioinformatics

Thus, both raw sequence reads were analyzed using
FASTQC66 and Trimmomatic67 to improve the quality of the
reads. Then, each dataset was assembled with MEGAHIT,68
Velvet,69 ABySS,70 and MaSuRCA71 assemblers keeping a
minimum contig length of 500 bp and k-mer values of 31, 51,
71, and 91. So, assemblies were checked with BUSCO72 and
QUAST73 to calculate the N50 value and other significant
metrics to define the best assembly. Finally, G-SAIP was exe-
cuted with a quality module activated in order to execute ragtag
for assembly ordering and compare each assembly with refer-
ences genomes of Arabidopsis thaliana74 (116 Mb) and
Drosophila melanogaster75 (139 Mb) to find out a relation
between G-SAIP dot-plot and variables extracted with
BUSCO and QUAST.

Comparative genomic test

Finally, to define the G-SAIP usefulness to perform a com-
parative analysis of sequences, the X chromosome of the Homo
sapiens genome was compared against other X chromosomes of
mammals listed in Table 2 because this chromosome is the
most conserved during the species evolution.76 All chromo-
somes were joined in a unique file for better visualization, and
then a G-SAIP self-plot was generated.

Scalability test

For this test, G-SAIP was executed with 62 CPUs distributed
over 1, 2, 3, 4, 5, and 6 nodes with distributed memory, using
Triticum turgidum genome and running the algorithm 10 times
for each number of nodes in order to determine if G-SAIP can
run in several nodes without a significant reduction of perfor-
mance compared to its execution on a single node. Finally, a
strong and weak scaling test was performed to verify the soft-
ware scalability.

For the strong scaling, we follow the Amdahl’s law83 that
can be formulated as follows:

 SpeedUp
s p

N

=
+

1
 (2)

Equation 2. Amdahl’s law formula for strong scaling

Where s is the serial time execution of G-SAIP, p is the pro-
portion of execution times and N is the number of processors.
In weak scaling, Gustafson’s law84 provides the formula for
scaled speedup:
 ScaledSpeedUp s p N= + * (3)

Equation 3. Gustafson’s law formula for weak scaling

Where s, p, and N have the same meaning as in Amdahl’s law.

Results
Performance test

G-SAIP was executed with a specific window size for each
genome size according to equation (1), and MashMap segment
length of 50 000 for Homo sapiens and Triticum turgidum
genomes, and 500 000 for Pinus taeda, because of its exception-
ally large genome size. G-SAIP averaged execution times of
genomes in Table 1 with 2, 4, 8, 16, 32, 56, and 62 cores are
plotted in Figure 2a, obtaining a reduction in times from twelve
(12) to seven (7) minutes for Homo sapiens, from ~1.2 hours to
23 minutes for Triticum turgidum and up to 50 minutes for
Pinus taeda. Also, speed-up was calculated by taking the time
with 2 cores as the nominal time due to G-SAIP using 1 work-
ing process as a master process, achieving a speed up even of
3.0× (Triticum turgidum) compared with nominal time. The
speed-up of G-SAIP with each genome was calculated by
dividing averaged times for 2 CPUs between the averaged time
obtained with each other CPUs; these values are drawn in
Figure 2b. We timed only the code section, which is executed in
parallel (shown in Figure 1.)

For G-SAIP execution time comparison against Dotter,
Gepard, D-GENIES, and MashMap dot-plot tool, a joined
file with X chromosomes of Table 2 was used to generate self-
plots with these graphical aligners. Table 3 demonstrates the
overall execution time registered of each software and speed-up
of G-SAIP against each other software; these times show per-
formance up to 1.68× from G-SAIP concerning to current
software tested. All software was executed in the same compu-
tational architecture using 62 CPUs. G-SAIP was executed
with 62 CPUs, a window calculated with (1) and MashMap
segment length of 50 000; Dotter execution time, with default
parameters, is the estimated given by the software because of
the considerable time. D-Genies was installed in standalone
mode, changing in the configurations files the number of CPUs
to execute this software from 8 to 62, using a maximum of
RAM memory up to 80 GB, changing the maximum file of the
input files, and using also MashMap to calculate the alignment,
other parameters were set by default for D-GENIES. Gepard
dot-plot matrix was calculated with EDNA substitution

Table 2. Comparative genomic datasets test.

SEqUENCE NAME SIzE (MB) NCBI NUMBER

Homo sapiens X chromosome77 151 NC_000023.11

Canis lupus X chromosome78 120 NC_006621.3

Sus scrofa X chromosome79 122 NC_010461.5

Equus caballus X chromosome80 125 NC_009175.3

Mus musculus X chromosome81 166 NC_000086.7

Pan paniscus X chromosome82 151 NC_027891.1

Piña et al 5

matrix, and MashMap dot-plot tool was executed with output
for Homo sapiens with segment similarity of 50 000. All experi-
ments can be consulted G-SAIP repo under the folder Test.

Assembly quality test

Read sequencing data of Arabidopsis thaliana and Drosophila
melanogaster was analyzed with FASTQC to examine the
sequences quality and adapter’s presence. Then, Trimmomatic
was executed to cut sequences with substandard quality. Next,
FASTQC was re-executed for new sequences to visualize the
new quality. Secondly, VELVET, MEGAHIT, ABySS, and
MaSuRCA were executed using the trimmed data and k-mer
values of 13, 51, 71, and 91. All completed assemblies had a
minimum contig length of 800 bp. These assemblies’ results
were the input of QUAST to evaluate and compare the best
assembly.

Moreover, BUSCO was executed for Arabidopsis and
Drosophila genomes to complement the QUAST results.
QUAST results for each assembly with its N50 value are in
Figure S1. Figure S2 shows BUSCO results for all assemblies.

Finally, each assembly was compared with its respective ref-
erence genome (Arabidopsis thaliana or Drosophila melanogaster)
using G-SAIP with a window size of 113 000 for Arabidopsis
and 135 000 for Drosophila, the rest of the parameters were
assigned by default, and quality assembly parameter was set to
true for ragtag execution before dot-plot calculation. Figure 3a
and c showed the highest quality assembly dot-plot for
Arabidopsis and Drosophila, respectively, against the reference
genome, and Figure 3b and d displayed lower quality assembly
dot-plot for each organism against the reference. In addition,
the N50 value and the complete and single-copy BUSCO’s
percentage were added to each image to analyze them in the
discussion section. All details about this section are in

(a)

(b)

Figure 2. G-SAIP parallel execution time for each genome tested: (a) execution times and (b) speed-up graphic.

6 Evolutionary Bioinformatics

supplementary data, and all dot-plots are in the same docu-
ment from Supplemental Figures S3 to S30.

In Table 4 are lists values of N50 and complete and single
copy BUSCO’s percentage for dot-plots in Figure 3.

Comparative genomic tests

In this experiment, G-SAIP generated a self-plot with X chro-
mosomes in Table 2. Thus, all X chromosomes were pre-joined
in a single FASTA file to generate a unique dot-plot with all
comparisons. In this case, G-SAIP was executed with a win-
dow size of 160 000 because this is the window for the shortest
chromosome to analyze. Also, MashMap segment length was
set at 5000, 90% identity percentage was chosen, and k-mer
size of 16 to enhance the dot-plot quality. In addition, for bet-
ter visualization, the draw sequences limits were set to true to
draw lines at the end of sequences. Figure 4 demonstrates the
dot-plot for the X chromosomes comparison. G-SAIP gener-
ated this image in 5.9 minutes (358 seconds) for 860 Mbp com-
pared with GEPARD which performed this alignment in
19.3 hours.

Scalability test

G-SAIP was executed with the Triticum turgidum genome
using 62 CPUs distributed in a different number of nodes.
Each run had a memory consumption of <32 Gb. We ran each
test 10 times to do a box-plot graph. Figure 5 shows that
G-SAIP execution times are similar between each computing
node with few differences according to the number of nodes.

This experiment shows that are no significant time differ-
ences changing the number of computing nodes parameter,
the performance of the time is associated with the process satu-
ration in the cluster where the experiment was executed. In
addition, weak and strong scaling experiment Formulas (2) and
(3) were applied to execution times for different cores over the
same node in the cluster. Results are painted in Figure 6. In
GitHub repository are all scripts and result files executed for
this article in “test” folder.

Discussion
Over the last years, software that performs graphical sequence
aligners have proposed different approaches to generate dot-
plots, such as DOTTER, which has high performance for
short sequences using dynamic programming, software with
heuristics methods to calculate dot-plot as GEPARD or
r2cat,80 and recently published as Flexidot or D-GENIES.
Nevertheless, this software presents some issues with big size
sequences (greater than 3 Gb); some of them are no longer
available, or the languages they were developed are depreciated.
Software like D-GENIES report execution times shorter than
G-SAIP, but we present a software that is easily integrated into
pipelines, also, G-SAIP is easier configurable than D-GENIES
which is a web application useful for making dot-plots within
an interactive interface, and the default parameters like maximum
RAM memory, maximum file size are not intuitive modifiable.
In addition, the application of HPC has demonstrated high
performances for several bioinformatics tasks such as multiple
sequence alignment,41-45 sequence mapping,45-48,81 analyzing
transposable elements,82-84 and identification of transposon
insertion polymorphisms,83 among others. Nevertheless, HPC
software has not been deployed for graphical alignment. In this
way, this software will be helpful to process big data supported
by the availability of clusters around the world18 and the
number of massive sequencing projects.

However, G-SAIP reduces the execution time for dot-plot
calculation, generating dot-plots in times under 30 minutes for
sequence size of <3 GB and speeding up the algorithm up to
3× times faster, increasing the number of CPUs. In the same
way, G-SAIP can generate dot-plots of sequence greater than
3 GB in size, even Pinus taeda genome (21 GB) in a few hours
in contrast with other software that does not support large files.
Also, G-SAIP executes graphical aligners with chromosome
sequences even 196× times faster than Gepard with detail in
the output image because this tool does not apply any parallel
strategy to calculate the graphical alignment.

A demonstrated application of dot-plots is to check assem-
bly quality based on a genome reference.85 For this reason,
G-SAIP is also a helpful tool showing through dot-plots the

Table 3. Execution times comparison.

SOFTwARE ELAPSED TIME G-SAIP SPEED-UP MAXIMUM MEMORy CONSUMPTION
IN GB FOR X ChROMOSOMES

G-SAIP 5.9 min 1× 1.6

D-GENIES 9.95 min 1.68× 0.95

MashMap tool 50 min* 8.4× 1.8

Gepard 19 h 196× 0.98

Dotter 1699 y** 151 447 165× 0.95

This table shows how many times it is faster G-SAIP against the other tools.
*This time is from MashMap execution added the tool published in their repository to make dot-plots available in: https://github.com/marbl/MashMap/tree/master/scripts
with name marbl MashMap/scripts.
**Time estimated by Dotter.

https://github.com/marbl/MashMap/tree/master/scripts

Piña et al 7

similarity of respective assemblies against the reference genome
using ragtag59 tool to make a previous ordering with the refer-
ence and complementing results given by other metrics such as
BUSCO and N50 score. For example, in Figure 3a a diagonal
line across the image is drawn, which shows that the Arabidopsis
reference genome and the MaSuRCA71 assembly are close
similar, squared regions marked in some points of the images
are telomeres and centromeres of chromosomes, these regions
are difficult to assemble and are masked by N. This similarity
between no recognized regions in assembly and reference
genomes are translated in black marked zones in dot-plot and
are related to higher values of N50 and percentage of complete
and single-copy BUSCOs. In contrast, Figure 3d is no diagonal

lines in the image; this denotes that the assembly had very
short contigs, and it was not possible to rebuild any part of the
genome in relation to N50 value and percentage of BUSCOs
that has low values for this assembly.

Moreover, comparative genomic analysis tools are essential
to characterize genomes and sequences, focusing on varia-
tions between genomes of 2 or more individuals.86 However,
visualizing this data is not easy, and it would be even more
complex with large sequences because the standard tools
to make comparative genomic generate text files as results.87
A first approximation for dot-plot usage in comparative
genomics with software like DOTTER restricted the size of
sequences and execution times required for these tasks. In this

Figure 3. G-SAIP assemblies versus reference genome dot-plots: (a) MaSuRCA assembly for Arabidopsis, (b) Velvet k-mer 31 assembly for Arabidopsis,

(c) MaSuRCA assembly for Drosophila, and (d) Velvet k-mer 91 assembly for Drosophila.

Table 4. N50 values and BUSCO’s percentages for best and worst assemblies.

FIGURES ORGANISM qUALITy N50 BUSCOS [%]

Figure 3a Arabidopsis high 110 900 97.8823529

Figure 3b Arabidopsis Low 3110 8.7

Figure 3c Drosophila high 9973 95.6862745

Figure 3d Drosophila Low 2428 0

8 Evolutionary Bioinformatics

way, G-SAIP offers the possibility of handling large sequences
(up to 21 GB) and executing fast graphical alignment with
high quality (in order of minutes or few hours) even in multi-
ples nodes with distributed memory and few latencies com-
pared to 1 node execution. Furthermore, this tool provides
a new way to visualize the similarity between sequences,
allowing tuning option as similarity percentage to show
repetitive sections, deletions, insertion, and rearrangement
given by speciation events and delivering a result more com-
prehensively for researchers.

Conclusions
Currently, there is a necessity for tools to process large-scale
genomic data sets in short periods. HPC clusters are growing

worldwide in computational capacity offering the opportunity
to researchers to process bigger and more complex information.
G-SAIP is a novel graphical sequence aligner able to produce
dot-plots at a genomic scale, using the computational resources
available in HPC clusters and the data produced by massive
sequencing projects.53,54 Due to the parallel strategy used by
the software and the scalability provided by HPC techniques,
G-SAIP can accelerate the graphical alignments up to 1.68×
times than other current software tested. This tool provides the
opportunity to analyze, at a genomic scale, complete genomes
with sizes up to 21 GB (Pinus taeda), facilitating processes such
as assembly quality checking, comparative genomics, and iden-
tification of structures in DNA as transposable elements and
other repetitive sequences.

Figure 4. Dot-plots for X mammals’ chromosomes.

Figure 5. Boxplot of G-SAIP execution times over several nodes with 62

CPUs. This experiment was tested in computing cluster that has its

queue with SCLURM scheduler.

Figure 6. Scaling test for each organism. Strong scaling test with Amdahl’s law with light width and bold line for weak scaling test with Gustafson’s law.

Piña et al 9

Author Contributions
The authors confirm contribution to the paper as follows:
Johan S. Piña conceived and designed the software, performed
the experiments, analyzed the data, prepared figures and/or
tables, authored or reviewed drafts of the article, and approved
the final draft.
Simon Orozco-Arias conceived and designed the software,
performed the experiments, analyzed the data, prepared figures
and/or tables, authored or reviewed drafts of the article, and
approved the final draft.
Nicolas Tobón-Orozco analyzed the data, prepared figures
and/or tables, and approved the final draft.
Leonardo Camargo-Forero contributed to the design of the
parallel architecture for the software.
Reinel Tabares-Soto analyzed the data, authored or reviewed
drafts of the article, and approved the final draft.
Romain Guyot conceived and designed the experiments,
authored or reviewed drafts of the article, and approved the
final draft.

ORCID iD
Johan S. Piña https://orcid.org/0000-0003-4760-7232

Supplemental material
Supplemental material for this article is available online.

RefeRenCeS
 1. López-Gartner G, Agudelo-Valencia D, Castaño S, et al. Identification of a

putative ganoderic acid pathway enzyme in a ganoderma australe transcriptome
by means of a hidden Markov model. In: Overbeek R, Rocha MP, Fdez-Riverola
F, de Paz JF, eds. 9th International Conference on Practical Applications of Compu-
tational Biology and Bioinformatics, Spain, 3-5 June 2015. Springer International
Publishing; 2015:107-115.

 2. Arango-López J, Orozco-Arias S, Salazar JA, Guyot R. Application of data
mining algorithms to classify biological data: the Coffea Canephora genome case.
In: Solano A, Ordoñez H, eds. Advances in Computing. Springer International
Publishing; 2017:156-170.

 3. Borozan I, Watt S, Ferretti V. Integrating alignment-based and alignment-free
sequence similarity measures for biological sequence classification. Bioinformatics.
2015;31:1396-1404.

 4. Luscombe NM, Greenbaum D, Gerstein M. A Proposed definition and overview
of the field. Methods Inform Med. 2001;40:346-358.

 5. Gamermann D, Montagud A, Alberto Conejero J, de Córdoba PF, Urchueguía
JF. Large scale evaluation of differences between network-based and pairwise
sequence-alignment-based methods of dendrogram reconstruction. PLoS One.
2019;14:1-13.

 6. Clark C, Kalita J. A comparison of algorithms for the pairwise alignment of
biological networks. Bioinformatics. 2014;30:2351-2359.

 7. Edgar RC, Batzoglou S. Multiple sequence alignment. Curr Opinion Struct Biol.
2006;16:368-373.

 8. Duret L, Gasteiger E, Perriere G. Lalnview: a graphical viewer for pairwise
sequence alignments. Bioinformatics. 1996;12:507-510.

 9. Sonnhammer ELL, Durbin R. A dot-matrix program with dynamic threshold
control suited for genomic DNA and protein sequence analysis. Gene. 1995;
167:GC1.

 10. Gibbs AJ, Mcintyre GA. The diagram, a method for comparing sequences: its use
with amino acid and nucleotide sequences. Eur J Biochem. 1970;16:1-11.

 11. Trelles-Salazar O, Zapata EL, Dopazo J, Coulson AFW, Carazo JM. An image-
processing approach to dotplots: an x-window-based program for interactive
analysis of dotplots derived from sequence and structural data. Bioinformatics.
1995;11:301-308.

 12. zu Siederdissen CH, Prohaska SJ, Stadler PF. Algebraic dynamic programming
over general data structures. BMC Bioinformatics. 2015;16:1-13.

 13. Brodie R, Roper RL, Upton C. JDotter: a Java interface to multiple dotplots
generated by dotter. Bioinformatics. 2004;20:279-281.

 14. Junier T, Pagni M. Dotlet: diagonal plots in a web browser. Bioinformatics. 2000;
16:178-179.

 15. Szafranski K, Jahn N, Platzer M. tuple_plot: fast pairwise nucleotide sequence
comparison with noise suppression. Bioinformatics. 2006;22:1917-1918.

 16. Krumsiek J, Arnold R, Rattei T. Gepard: a rapid and sensitive tool for creating
dotplots on genome scale. Bioinformatics. 2007;23:1026-1028.

 17. Manber U, Myers G. Suffix arrays: a new method for on-line string searches.
SIAM J Comput. 1993;22:935-948.

 18. Trelles O. Dotplots: dealing with Big-Data. Subbmited to ECCB; 2012.
 19. Seibt KM, Schmidt T, Heitkam T. FlexiDot: highly customizable, ambiguity-

aware dotplots for visual sequence analyses. Bioinformatics. 2018;34:3575-3577.
 20. Cabanettes F, Klopp C. D-GENIES: dot plot large genomes in an interactive,

efficient and simple way. PeerJ. 2018;2018:e4958.
 21. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics.

2018;34:3094-3100.
 22. Jain C, Dilthey A, Koren S, Aluru S, Phillippy AM. A fast approximate

algorithm for mapping long reads to large reference databases. J Comput Biol.
2018;25:766-779.

 23. Quail MA, Smith M, Coupland P, et al. A tale of three next generation sequenc-
ing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina
MiSeq sequencers. BMC Genomics. 2012;13:341.

 24. Rishishwar L, Wang L, Clayton EA, Mariño-Ramírez L, McDonald JF, Jordan
IK. Population and clinical genetics of human transposable elements in the (post)
genomic era. Mob Genet Elements. 2017;7:1-20.

 25. Auerbach D, Thaminy S, Hottiger MO, Stagljar I. The post-genomic era of
interactive proteomics: facts and perspectives. Proteomics. 2002;2:611-623.

 26. Ow DW. Recombinase-directed plant transformation for the post-genomic era.
Plant Mol Biol. 2002;48:183-200.

 27. Medini D, Serruto D, Parkhill J, et al. Microbiology in the post-genomic era.
Nat Rev Microbiol. 2008;6:419-430.

 28. Greene CS, Tan J, Ung M, Moore JH, Cheng C. Big data bioinformatics. J Cell
Physiol. 2014;229:1896-1900.

 29. Orozco Arias S, Isaza G, Guyot R. Retrotransposons in plant genomes: struc-
ture, identification, and classification through bioinformatics and machine
learning. Int J Mol Sci. 2019;20:1-31.

 30. Khan AA, Hassan L, Ullah S. Open MP-based parallel and scalable genetic
sequence alignment. J Eng Appl Sci. 2015;34:29-34.

 31. Khaitan SK. A survey of high-performance computing approaches in power
systems. IEEE Power and Energy Society General Meeting, Boston, MA, 17-21 July,
2016. IEEE.

 32. Procopiou AT, Quiros-Tortos J, Ochoa LF. HPC-based probabilistic analysis of
LV networks with EVs: impacts and control. IEEE Trans Smart Grid. 2017;8:
1479-1487.

 33. Fox GC, Qiu J, Kamburugamuve S, Jha S, Luckow A. HPC-ABDS high perfor-
mance computing enhanced apache big data stack. Proceedings - 2015 IEEE/
ACM 15th International Symposium on Cluster, Cloud, and Grid Computing,
CCGrid 2015, Shenzhen, China, 4-7 May, 2015. IEEE; 2015:1057-1066.

 34. Jha S, Fox G. Understanding ML driven HPC: applications and infrastructure.
Proceedings - IEEE 15th International Conference on eScience, eScience 2019, San
Diego, CA, 24-27 September, 2019. IEEE; 2019:421-427.

 35. Tabares Soto R. Programación paralela sobre arquitecturas heterogéneas. 2016:
80. Accessed September 1, 2020. http://www.bdigital.unal.edu.co/54267/

 36. Orozco-Arias S, Tabares-Soto R, Ceballos D, Guyot R. Parallel programming
in biological sciences, taking advantage of supercomputing in genomics. In:
Solano A, Ordoñez H, eds. Advances in Computing. Springer International
Publishing; 2017:627-643.

 37. Mikailov M, Luo F jyh, Barkley S, et al. Scaling bioinformatics applications on
HPC. BMC Bioinformatics. 2017;18:501.

 38. Li J kun, Zhang L, Xiao M. The high performance computing applications for
bioinformatics research. ICBBS’17: 6th International Conference on Bio informatics
and Biomedical Science, Singapore, Singapore, 22-24 June, 2017. ACM; 2017:1-6.

 39. Rucci E, Garcia C, Botella G, de Giusti A, Naiouf M, Prieto-matias M.
Accelerating Smith-Waterman alignment of long DNA sequences with OpenCL
on FPGA. Bioinform Biomed Eng. 1900;2:500-511.

 40. Ren S, Ahmed N, Bertels K, Al-Ars Z. GPU accelerated sequence alignment
with traceback for GATK HaplotypeCaller. BMC Genomics. 2019;20:184.

 41. Milne I, Lindner D, Bayer M, et al. TOPALi v2: a rich graphical interface for
evolutionary analyses of multiple alignments on HPC clusters and multi-core
desktops. Bioinformatics. 2009;25:126-127.

 42. Borovska P, Gancheva V, Georgiev I. Hybrid parallel implementation of multiple
sequence alignment software ClustalW on Intel Xeon Phi. Sixth International
Conference on Advances in Computing, Electronics and Communication - ACEC
2017, Rome, Italy, 9-10 December, 2017.

 43. Kim J, Warnow T. PASTA: ultra-large multiple sequence alignment for nucleo-
tide and amino-acid sequences. J Comput Biol. 2015;22:377-386.

 44. Orobitg M, Guirado F, Cores F, Llados J, Notredame C. High performance
computing improvements on bioinformatics consistency-based multiple sequence
alignment tools. Parallel Comput. 2015;42:18-34.

https://orcid.org/0000-0003-4760-7232
http://www.bdigital.unal.edu.co/54267/

10 Evolutionary Bioinformatics

 45. Lassmann T. Kalign 3: multiple sequence alignment of large datasets. Bio-
informatics. 2019;36:1928-1929.

 46. Rodrigues FM, von Mering C. Sequence analysis HPC-CLUST: distributed
hierarchical clustering for large sets of nucleotide sequences. Bioinformatics.
2014;30:287-288.

 47. Sawyer SE, Drive D, Horton MD, Brook RG. HPC-BLAST: distributed
BLAST for Xeon Phi clusters categories and subject descriptors. BCB’15,
Atlanta, GA, 9-12 September, 2015. ACM; 2015:512-513.

 48. Driscoll AO, Belogrudov V, Carroll J, et al. HBLAST: parallelised sequence
similarity: a Hadoop MapReducable basic local alignment search tool. J Biomed
Inform. 2015;54:58-64.

 49. Nowicki M, Bzhalava D, BaŁa P. Massively parallel implementation of sequence
alignment with basic local alignment search tool using parallel computing in Java
library. J Comput Biol. 2018;25:871-881.

 50. Zhang J, Lan H, Chan Y, Shang Y, Schmidt B, Liu W. BGSA: a bit-parallel
global sequence alignment toolkit for multi-core and many-core architectures.
Bioinformatics. 2018;35:2306-2308.

 51. Orozco Arias S, Liu J, Tabares Soto R, et al. Inpactor, integrated and parallel
analyzer and classifier of LTR retrotransposons and its application for pineapple
LTR retrotransposons diversity and dynamics. Biology. 2018;7:32.

 52. Tamayo M, Tabares R, Montes N. Three-dimensional indexing in GPU for
numerical approximation of solutions of the Laplace equation. Rev Antioq.
2015;5:37-42.

 53. Cheng S, Melkonian M, Smith SA, et al. 10KP: a phylodiverse genome sequenc-
ing plan. Gigascience. 2018;7:giy013.

 54. Lewin HA, Robinson GE, Kress WJ, et al. Earth BioGenome project: sequenc-
ing life for the future of life. Proc Natl Acad Sci USA. 2018;115:4325-4333.

 55. van Rossum G, Drake FL. The Python Language Reference Manual. Network
Theory Ltd.; 2011.

 56. Dalcín L, Paz R, Storti M, D’Elía J. MPI for python: performance improve-
ments and MPI-2 extensions. J Parallel Distrib Comput. 2008;68:655-662.
doi:10.1016/j.jpdc.2007.09.005

 57. Jain C, Koren S, Dilthey A, Phillippy AM, Aluru S. A fast adaptive algorithm
for computing whole-genome homology maps. Bioinformatics. 2018;34:i748-i756.

 58. Bruck J, Dolev D, Ho CT, Roşu MC, Strong R. Efficient message passing inter-
face (MPI) for parallel computing on clusters of workstations. J Parallel Distrib
Comput. 1997;40:19-34.

 59. Graham RL, Shipman GM, Barrett BW, Castain RH, Bosilca G, Lumsdaine A.
Open MPI: a high-performance, heterogeneous MPI. 2006 IEEE International
Conference on Cluster Computing, Barcelona, Spain, 25-28 September 2006. IEEE;
2006:1-9.

 60. Alonge M, Soyk S, Ramakrishnan S, et al. RaGOO: fast and accurate reference-
guided scaffolding of draft genomes. Genome Biol. 2019;20:1-17.

 61. Jette M, Yoo A, Grondona M. SLURM: simple linux utility for resource man-
agement. In: Feitelson D, Rudolph L, Schwiegelshohn U, eds. Job Scheduling
Strategies for Parallel Processing. JSSPP 2003. Lecture Notes in Computer Science. Vol
2862. Springer; 2003:44-60.

 62. Law WD, Warren RL, McCallion AS. Establishment of an eHAP1 human
haploid cell line hybrid reference genome assembled from short and long reads.
Genomics. 2020;112:2379-2384.

 63. Gornicki P, Zhu H, Wang J, et al. The chloroplast view of the evolution of
polyploid wheat. New Phytol. 2014;204:704-714.

 64. Neale DB, Wegrzyn JL, Stevens KA, et al. Decoding the massive genome of
loblolly pine using haploid DNA and novel assembly strategies. Genome Biol.
2014;15:R59.

 65. Leinonen R, Sugawara H, Shumway M, Collaboration INSD. The sequence read
archive. Nucleic Acids Res. 2010;39:D19-D21.

 66. Andrews S, Krueger F, Segonds-Pichon A, Biggins L, Krueger C, Wingett S.
FastQC. Babraham Institute; 2012.

 67. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina
sequence data. Bioinformatics. 2014;30:2114-2120.

 68. Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-
node solution for large and complex metagenomics assembly via succinct de
Bruijn graph. Bioinformatics. 2015;31:1674-1676.

 69. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using
de Bruijn graphs. Genome Res. 2008;18:821-829.

 70. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM, Birol I. ABySS:
a parallel assembler for short read sequence data. Genome Res. 2009;19:
1117-1123.

 71. Zimin AV, Marçais G, Puiu D, Roberts M, Salzberg SL, Yorke JA. The
MaSuRCA genome assembler. Bioinformatics. 2013;29:2669-2677.

 72. Seppey M, Manni M, Zdobnov EM. BUSCO: assessing genome assembly and
annotation completeness. Methods Mol Biol. 2019;1962:227-245.

 73. Mikheenko A, Prjibelski A, Saveliev V, Antipov D, Gurevich A. Versatile genome
assembly evaluation with QUAST-LG. Bioinformatics. 2018;34:i142-i150.

 74. Pucker B, Holtgräwe D, Rosleff Sörensen T, Stracke R, Viehöver P, Weisshaar
B. A De Novo genome sequence assembly of the Arabidopsis thaliana Accession
Niederzenz-1 displays presence/absence variation and strong synteny. PLoS One.
2016;11:e0164321.

 75. Hoskins RA, Carlson JW, Wan KH, et al. The release 6 reference sequence of the
Drosophila melanogaster genome. Genome Res. 2015;25:445-458.

 76. Murphy WJ, Pevzner PA, O’Brien SJ. Mammalian phylogenomics comes of age.
Trends Genet. 2004;20:631-639.

 77. Ross MT, Grafham D v, Coffey AJ, et al. The DNA sequence of the human X
chromosome. Nature. 2005;434:325-337.

 78. Lindblad-Toh K, Wade CM, Mikkelsen TS, et al. Genome sequence, compara-
tive analysis and haplotype structure of the domestic dog. Nature. 2005;438:
803-819.

 79. Fang X, Mou Y, Huang Z, et al. The sequence and analysis of a Chinese pig
genome. Gigascience. 2012;1:16.

 80. Wade CM, Giulotto E, Sigurdsson S, et al. Genome sequence, comparative analy-
sis, and population genetics of the domestic horse. Science. 2009;326:865-867.

 81. Church DM, Goodstadt L, Hillier LW, et al. Lineage-specific biology revealed
by a finished genome assembly of the mouse. PLoS Biol. 2009;7:e1000112.

 82. Prüfer K, Munch K, Hellmann I, et al. The bonobo genome compared with the
chimpanzee and human genomes. Nature. 2012;486:527-531.

 83. Gene DR, Amdahl M. Validity of the single processor approach to achieving
large scale computing capabilities. AFIPS Conference Proceedings - 1967 Spring
Joint Computer Conference, AFIPS 1967, Atlantic City, NJ, 18 April 1967. ACM;
1967:483-485.

 84. Orozco-arias S, Tobon-orozco N, Piña JS, Jiménez-Varón CF, Tabares-Soto
R, Guyot R. TIP _ finder: an HPC software to detect transposable element
insertion polymorphisms in large genomic datasets. MDPI Biol. 2020;9:
1-17.

 85. Gustafson JL. Reevaluating Amdahl’s law. Commun ACM. 1988;31:532-533.
 86. Husemann P, Stoye J. r2cat: synteny plots and comparative assembly. Bio-

informatics. 2010;26:570-571.
 87. Zhang X, Wang J, Li J, Chen W, Liu C. CRlncRC: a machine learning-based

method for cancer-related long noncoding RNA identification using integrated
features. BMC Med Genomics. 2018;11:120.

