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Introduction
Bioinformatics is a multi-disciplinary area supporting the dis-
covery of biological information utilizing computational 
approaches.1 This research field is at the intersection of several 
sciences like biology, computer sciences, and mathematics, 
intending to analyze and classify biological data.2 One of the 
most common bioinformatics tasks, relevant in metagenomics 
and phylogenetic analysis,3 is the sequence alignment,4,5 which 
consists of comparing 2 (pairwise)6 or more (multiple)7 nucleo-
tides or proteins sequences against a reference.

One of the most utilized alignment types is the graphical 
sequence alignment,8,9 which provides visualization of rear-
rangements, insertions, deletions, and other structures found in 
DNA or protein sequences. Graphical alignments are com-
monly represented in a dot matrix called dot-plots.10 Dot-plots 
are rectangular matrixes where columns and rows represent the 
residues to be aligned; at each cell, a dot is painted with a gray-
scale intensity proportional to the degree of similarity of the 
sequences at that point.11

There are several published software packages able to gen-
erate dot-plots. Dotter9 is one of the most popular graphical 

pairwise sequence aligners, using dynamic programming12 and 
well suited for small DNA or protein sequences (few 1000 of 
nucleotides).13 Other available software programs are Dotlet14, 
which runs on a web server; JDotter13 is a version of Dotter 
running on a remote java platform, Tuple_plot15 which pro-
posed a different way to calculate the dot-plot and can reduce 
the noise for large sequences (>10 kB) and Gepard16 using a 
heuristic suffix array method17 to generate dot-plots of small 
and large sequences but with a high noise level. The SFILE18 
library was designed to deal with big-data sequences, enhanc-
ing out-of-core management and using a k-mer value identifi-
cation to reduce computational space. More recently, novel 
software has been published as Flexidot,19 which generates 
high-quality dot-plots for small repetitive sequences, and 
finally D-genies,20 a standalone and web application that uses 
the minimap221 output to calculate the alignment for chromo-
somes and genomes, D-genies also use MashMap,22 an approx-
imate algorithm for computing local alignment boundaries 
between long DNA sequences using k-mers and taking advan-
tage of HPC strategies and mapping genome assembly or long 
reads to other reference sequences. However, despite signifi-
cant progress in using large sequences datasets, the quality and 
the execution times of dot-plots still represent a challenge.
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Advances in next-generation sequencing technologies and 
associated low costs have allowed an exponential increase in 
available genetic information,23 known as the sequencing revo-
lution.24-27 As a result, the challenges have shifted from 
sequencing organisms to analyzing their genomes in a post-
genomic era.28,29 This shift required a new generation of algo-
rithms considering the use of parallel, distributed, and other 
high-performance computing (HPC) techniques to accelerate 
the genome data analyses.30

Developments in HPC, supercomputing and parallel  
programming have improved the execution time in several 
areas,31-34 due to parallel programming can launch processes 
over heterogeneous architectures such as CPU, GPU, or 
CPU + GPU using libraries for programming in a fast and 
flexible way, even with shared or unshared memory.35 In bioin-
formatics, these techniques allow accelerating the analysis of 
genetic information.36 Different bioinformatics applications 
use parallel programming approaches.37-40 These applications 
focus on multiple sequences alignments41-45 and non-graphic 
paired alignment of protein nucleotides,46-50 including repeti-
tive structures.51 However, graphic aligners that use parallel 
strategies are not available.

In this work, we reported G-SAIP (Graphical Sequence 
Alignment in Parallel), a tool that can be easily integrated into 
a pipeline and HPC-based strategy that follows the Flynn52 
taxonomy SIMD (simple instruction multiple data). G-SAIP, 
taking advantage of MashMap, performs graphical pairwise 
sequence alignment (1 channel and 8 bits image) at the genomic 
level on CPU architectures over multiple nodes speeding up 
execution times through parallel programming in order to pro-
vide tools for analyzing a massive amount of data produced by 
large scales genomic projects such as the 10K plant genomes53 
and the Earth BioGenome.54 In contrast with other programs, 
G-SAIP prioritizes process parallelization over programs like 
gepard to generate dot-plots, as well as uses the principles of 
sequence mapping to score similarities with programs like 
minimap2 and MashMap which perform file alignments as 
results and use multi-threaded processes in their execution. 
This tool can also be used for quality verification of genome 
reference-based assemblies.

Materials and Methods
G-SAIP implementation

G-SAIP was developed using Python 3.855 and with parallel 
computing support using mpi4py.56 It is a DNA graphical 
aligner that takes advantage of MashMap57 for sequence 
alignment due to its speed, and requires input parameters as 
the reference and query sequences in FASTA format that 
must be declared in the command line execution to calculate 
the dot-plot. Also, users can define optional parameters like 
MashMap Segment similarity, identity percentage for filter-
ing, k-mer size, and G-SAIP output image attributes like 
image width, height, and word size to enhance the resulting 
quality.

   Window Total sequence length
size =

_ _
1024     (1)

Equation 1. Calculated window size by G-SAIP, where Total_
sequence_length is the complete size of residues from larger 
sequence and 1024 is the maximum size of the result image.

To generate the dot-plot, G-SAIP receives the nucleotide 
FASTA files for reference and query sequences; these files can 
contain 1 or more sequences. Hence the algorithm joins each 
file into a unique sequence to facilitate the execution. Thus, the 
largest sequence file is split into subsequences of length calcu-
lated by equation (1), ensuring that each pixel of the default 
output image size represents the minimum number of nucleo-
tides and keeps the significant information. Then, G-SAIP 
uses MashMap to calculate the score of each region; the score 
value is extracted from the result file and mapped from 0% to 
100% (identity) to pixel intensity 0 to 255. Next, G-SAIP gen-
erates the dot-plot matrix, which is scaled to height and width 
defined by the user (by default is 1024 pixels and 1024 pixels). 
The software preserves the intensities extracted from MashMap 
but, if the user wants to reduce the image noise, G-SAIP has a 
filter tool that reduces to zero the intensities under a given 
threshold and assigns the maximum intensity to pixels above 
the threshold. Another option available is to generate a dot-
plot with 3 colors. The user is asked for 2 values between 0 and 
100; the dots are red-colored for scores under the minimum 
value. For scores above the maximum number, dots are colored 
green, and scores between those ranges are orange painted. 
Finally, the image is saved in SVG, PNG, or PDF format as a 
specified format by the user (by default, PNG is used), and the 
algorithm removes temporary files used during the execution.

G-SAIP parallel strategy

G-SAIP uses mpi4py, a Python implementation of Message 
Passing Interface (MPI),58 specifically for Open MPI.59 This 
library allows graphical alignment to be performed parallel over 
multiple CPU cores belonging to a single node or distributed 
nodes in an HPC cluster. The software takes all subsequences to 
calculate the number of sequences that each processor will pro-
cess. Then, the master process creates 1 file per worker node 
(with the subsequences that it will use) and sends this file as the 
same as the shorter-joined sequence to worker processes. Finally, 
each process runs MashMap with its individual sequences file, 
shorter-joined sequence, and user parameters. By default, 
G-SAIP defines MashMap parameters like segment length, k-
mer size, identity percentage, and filter mode as 5000, 16, 95, and 
None. In this way, the algorithm takes advantage of this HPC 
strategy to do several alignments simultaneously.

The output file generated by MashMap is processed to 
extract alignment scores, which are used to generate and fill the 
N × M matrix, where N is the subsequence length, and M is the 
shortest sequence length. Finally, when each process is done, 
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the master process takes all matrixes generated and creates the 
final dot-plot matrix. Figure 1 resumes the parallel strategy 
applied by G-SAIP for dot-plot calculation.

In addition, G-SAIP has a specific module to make dot-
plots to compare the quality of an assembly with a reference 
genome. Ragtag60 is used for contigs and scaffold orders com-
pared with a reference file. This process is executed before the 
execution of MashMap for alignment to determine the correct 
quality of an assembly file.

Availability of G-SAIP

The G-SAIP source code is open source and can be found in 
https://github.com/simonorozcoarias/G-SAIP. Installation 
instructions, how to run, sample data, and results are also 
available there.

Computational resources

All experiments were executed using a server with a 64-core 
Intel (R) Xeon(R) CPU E5-2683, with 2.1 GHz, 256 GB of 
RAM and the CentOS7 operating system, managed by Slurm.61

Performance tests

G-SAIP was tested for 2 perspectives to generate self-plots  
(a dot-plot with the same query and subject sequence) of 
genomes with different sizes (Table 1). First, the software was 
executed with different CPU numbers (2, 4, 8, 16, 32, 56, and 
62) in a single node, and each execution was performed 10 
times to examine the acceleration and speed provided by 
G-SAIP. Amdahl’s law considers the elapsed execution time 

sequentially and the execution time for the code parallel sec-
tion to speed up the calculation. In addition, the execution 
time of the overall execution was recorded to explore the time 
added by sequential code.

On the other hand, Homo sapiens X chromosomes self-plot 
was generated with G-SAIP to compare the execution time 
differences between G-SAIP and other graphical sequence 
aligners: Gepard, Dotter, D-GENIES, and the MashMap Perl 
script to make dot-plots.

Assembly quality test

G-SAIP was used to determine the assembly quality of  
2 organisms from raw sequence reads datasets. First, we used  
a WGS (whole genome sequencing) Illumina paired-end 
sequence reads of Arabidopsis thaliana available in NCBI SRA65 
repository under SRR10178322 accession number, with 16 Gb 
of size per file. The second dataset used was a WGS Illumina 
paired-end sequence reads of Drosophila melanogaster with 
4 Gb of size per file65 and accessible in SRA repository with 
SRR10735526 accession number.

Figure 1. G-SAIP parallel strategy diagram. Sub-sequence file corresponds to a file containing sub-sequences for the largest FASTA file (can be the 

reference or the query file). One-sequence file corresponds to the other file (the shorter).

Table 1. Performance test sequence dataset.

SEqUENCE NAME SIzE GENBANk ASSEMBLy 
ACCESSION

Homo sapiens genome62 3.1 Gb GCA_000001405.28

Triticum turgidum 
genome63

9.9 Gb GCA_900231445.1

Pinus taeda genome64 22.1 Gb GCA_000404065.3

https://github.com/simonorozcoarias/G-SAIP
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Thus, both raw sequence reads were analyzed using 
FASTQC66 and Trimmomatic67 to improve the quality of the 
reads. Then, each dataset was assembled with MEGAHIT,68 
Velvet,69 ABySS,70 and MaSuRCA71 assemblers keeping a 
minimum contig length of 500 bp and k-mer values of 31, 51, 
71, and 91. So, assemblies were checked with BUSCO72 and 
QUAST73 to calculate the N50 value and other significant 
metrics to define the best assembly. Finally, G-SAIP was exe-
cuted with a quality module activated in order to execute ragtag 
for assembly ordering and compare each assembly with refer-
ences genomes of Arabidopsis thaliana74 (116 Mb) and 
Drosophila melanogaster75 (139 Mb) to find out a relation 
between G-SAIP dot-plot and variables extracted with 
BUSCO and QUAST.

Comparative genomic test

Finally, to define the G-SAIP usefulness to perform a com-
parative analysis of sequences, the X chromosome of the Homo 
sapiens genome was compared against other X chromosomes of 
mammals listed in Table 2 because this chromosome is the 
most conserved during the species evolution.76 All chromo-
somes were joined in a unique file for better visualization, and 
then a G-SAIP self-plot was generated.

Scalability test

For this test, G-SAIP was executed with 62 CPUs distributed 
over 1, 2, 3, 4, 5, and 6 nodes with distributed memory, using 
Triticum turgidum genome and running the algorithm 10 times 
for each number of nodes in order to determine if G-SAIP can 
run in several nodes without a significant reduction of perfor-
mance compared to its execution on a single node. Finally, a 
strong and weak scaling test was performed to verify the soft-
ware scalability.

For the strong scaling, we follow the Amdahl’s law83 that 
can be formulated as follows:

         SpeedUp
s p

N

=
+

1
 (2)

Equation 2. Amdahl’s law formula for strong scaling

Where s is the serial time execution of G-SAIP, p is the pro-
portion of execution times and N is the number of processors. 
In weak scaling, Gustafson’s law84 provides the formula for 
scaled speedup:
        ScaledSpeedUp s p N= + *  (3)

Equation 3. Gustafson’s law formula for weak scaling

Where s, p, and N have the same meaning as in Amdahl’s law.

Results
Performance test

G-SAIP was executed with a specific window size for each 
genome size according to equation (1), and MashMap segment 
length of 50 000 for Homo sapiens and Triticum turgidum 
genomes, and 500 000 for Pinus taeda, because of its exception-
ally large genome size. G-SAIP averaged execution times of 
genomes in Table 1 with 2, 4, 8, 16, 32, 56, and 62 cores are 
plotted in Figure 2a, obtaining a reduction in times from twelve 
(12) to seven (7) minutes for Homo sapiens, from ~1.2 hours to 
23 minutes for Triticum turgidum and up to 50 minutes for 
Pinus taeda. Also, speed-up was calculated by taking the time 
with 2 cores as the nominal time due to G-SAIP using 1 work-
ing process as a master process, achieving a speed up even of 
3.0× (Triticum turgidum) compared with nominal time. The 
speed-up of G-SAIP with each genome was calculated by 
dividing averaged times for 2 CPUs between the averaged time 
obtained with each other CPUs; these values are drawn in 
Figure 2b. We timed only the code section, which is executed in 
parallel (shown in Figure 1.)

For G-SAIP execution time comparison against Dotter, 
Gepard, D-GENIES, and MashMap dot-plot tool, a joined 
file with X chromosomes of Table 2 was used to generate self-
plots with these graphical aligners. Table 3 demonstrates the 
overall execution time registered of each software and speed-up 
of G-SAIP against each other software; these times show per-
formance up to 1.68× from G-SAIP concerning to current 
software tested. All software was executed in the same compu-
tational architecture using 62 CPUs. G-SAIP was executed 
with 62 CPUs, a window calculated with (1) and MashMap 
segment length of 50 000; Dotter execution time, with default 
parameters, is the estimated given by the software because of 
the considerable time. D-Genies was installed in standalone 
mode, changing in the configurations files the number of CPUs 
to execute this software from 8 to 62, using a maximum of 
RAM memory up to 80 GB, changing the maximum file of the 
input files, and using also MashMap to calculate the alignment, 
other parameters were set by default for D-GENIES. Gepard 
dot-plot matrix was calculated with EDNA substitution 

Table 2. Comparative genomic datasets test.

SEqUENCE NAME SIzE (MB) NCBI NUMBER

Homo sapiens X chromosome77 151 NC_000023.11

Canis lupus X chromosome78 120 NC_006621.3

Sus scrofa X chromosome79 122 NC_010461.5

Equus caballus X chromosome80 125 NC_009175.3

Mus musculus X chromosome81 166 NC_000086.7

Pan paniscus X chromosome82 151 NC_027891.1
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matrix, and MashMap dot-plot tool was executed with output 
for Homo sapiens with segment similarity of 50 000. All experi-
ments can be consulted G-SAIP repo under the folder Test.

Assembly quality test

Read sequencing data of Arabidopsis thaliana and Drosophila 
melanogaster was analyzed with FASTQC to examine the 
sequences quality and adapter’s presence. Then, Trimmomatic 
was executed to cut sequences with substandard quality. Next, 
FASTQC was re-executed for new sequences to visualize the 
new quality. Secondly, VELVET, MEGAHIT, ABySS, and 
MaSuRCA were executed using the trimmed data and k-mer 
values of 13, 51, 71, and 91. All completed assemblies had a 
minimum contig length of 800 bp. These assemblies’ results 
were the input of QUAST to evaluate and compare the best 
assembly.

Moreover, BUSCO was executed for Arabidopsis and 
Drosophila genomes to complement the QUAST results. 
QUAST results for each assembly with its N50 value are in 
Figure S1. Figure S2 shows BUSCO results for all assemblies.

Finally, each assembly was compared with its respective ref-
erence genome (Arabidopsis thaliana or Drosophila melanogaster) 
using G-SAIP with a window size of 113 000 for Arabidopsis 
and 135 000 for Drosophila, the rest of the parameters were 
assigned by default, and quality assembly parameter was set to 
true for ragtag execution before dot-plot calculation. Figure 3a 
and c showed the highest quality assembly dot-plot for 
Arabidopsis and Drosophila, respectively, against the reference 
genome, and Figure 3b and d displayed lower quality assembly 
dot-plot for each organism against the reference. In addition, 
the N50 value and the complete and single-copy BUSCO’s 
percentage were added to each image to analyze them in the 
discussion section. All details about this section are in 

(a)

(b)

Figure 2. G-SAIP parallel execution time for each genome tested: (a) execution times and (b) speed-up graphic.
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supplementary data, and all dot-plots are in the same docu-
ment from Supplemental Figures S3 to S30.

In Table 4 are lists values of N50 and complete and single 
copy BUSCO’s percentage for dot-plots in Figure 3.

Comparative genomic tests

In this experiment, G-SAIP generated a self-plot with X chro-
mosomes in Table 2. Thus, all X chromosomes were pre-joined 
in a single FASTA file to generate a unique dot-plot with all 
comparisons. In this case, G-SAIP was executed with a win-
dow size of 160 000 because this is the window for the shortest 
chromosome to analyze. Also, MashMap segment length was 
set at 5000, 90% identity percentage was chosen, and k-mer 
size of 16 to enhance the dot-plot quality. In addition, for bet-
ter visualization, the draw sequences limits were set to true to 
draw lines at the end of sequences. Figure 4 demonstrates the 
dot-plot for the X chromosomes comparison. G-SAIP gener-
ated this image in 5.9 minutes (358 seconds) for 860 Mbp com-
pared with GEPARD which performed this alignment in 
19.3 hours.

Scalability test

G-SAIP was executed with the Triticum turgidum genome 
using 62 CPUs distributed in a different number of nodes. 
Each run had a memory consumption of <32 Gb. We ran each 
test 10 times to do a box-plot graph. Figure 5 shows that 
G-SAIP execution times are similar between each computing 
node with few differences according to the number of nodes.

This experiment shows that are no significant time differ-
ences changing the number of computing nodes parameter,  
the performance of the time is associated with the process satu-
ration in the cluster where the experiment was executed. In 
addition, weak and strong scaling experiment Formulas (2) and 
(3) were applied to execution times for different cores over the 
same node in the cluster. Results are painted in Figure 6. In 
GitHub repository are all scripts and result files executed for 
this article in “test” folder.

Discussion
Over the last years, software that performs graphical sequence 
aligners have proposed different approaches to generate dot-
plots, such as DOTTER, which has high performance for 
short sequences using dynamic programming, software with 
heuristics methods to calculate dot-plot as GEPARD or 
r2cat,80 and recently published as Flexidot or D-GENIES. 
Nevertheless, this software presents some issues with big size 
sequences (greater than 3 Gb); some of them are no longer 
available, or the languages they were developed are depreciated. 
Software like D-GENIES report execution times shorter than 
G-SAIP, but we present a software that is easily integrated into 
pipelines, also, G-SAIP is easier configurable than D-GENIES 
which is a web application useful for making dot-plots within 
an interactive interface, and the default parameters like maximum 
RAM memory, maximum file size are not intuitive modifiable. 
In addition, the application of HPC has demonstrated high 
performances for several bioinformatics tasks such as multiple 
sequence alignment,41-45 sequence mapping,45-48,81 analyzing 
transposable elements,82-84 and identification of transposon 
insertion polymorphisms,83 among others. Nevertheless, HPC 
software has not been deployed for graphical alignment. In this 
way, this software will be helpful to process big data supported 
by the availability of clusters around the world18 and the 
number of massive sequencing projects.

However, G-SAIP reduces the execution time for dot-plot 
calculation, generating dot-plots in times under 30 minutes for 
sequence size of <3 GB and speeding up the algorithm up to 
3× times faster, increasing the number of CPUs. In the same 
way, G-SAIP can generate dot-plots of sequence greater than 
3 GB in size, even Pinus taeda genome (21 GB) in a few hours 
in contrast with other software that does not support large files. 
Also, G-SAIP executes graphical aligners with chromosome 
sequences even 196× times faster than Gepard with detail in 
the output image because this tool does not apply any parallel 
strategy to calculate the graphical alignment.

A demonstrated application of dot-plots is to check assem-
bly quality based on a genome reference.85 For this reason, 
G-SAIP is also a helpful tool showing through dot-plots the 

Table 3. Execution times comparison.

SOFTwARE ELAPSED TIME G-SAIP SPEED-UP MAXIMUM MEMORy CONSUMPTION  
IN GB FOR X ChROMOSOMES

G-SAIP 5.9 min 1× 1.6

D-GENIES 9.95 min 1.68× 0.95

MashMap tool 50 min* 8.4× 1.8

Gepard 19 h 196× 0.98

Dotter 1699 y** 151 447 165× 0.95

This table shows how many times it is faster G-SAIP against the other tools.
*This time is from MashMap execution added the tool published in their repository to make dot-plots available in: https://github.com/marbl/MashMap/tree/master/scripts 
with name marbl MashMap/scripts.
**Time estimated by Dotter.

https://github.com/marbl/MashMap/tree/master/scripts
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similarity of respective assemblies against the reference genome 
using ragtag59 tool to make a previous ordering with the refer-
ence and complementing results given by other metrics such as 
BUSCO and N50 score. For example, in Figure 3a a diagonal 
line across the image is drawn, which shows that the Arabidopsis 
reference genome and the MaSuRCA71 assembly are close 
similar, squared regions marked in some points of the images 
are telomeres and centromeres of chromosomes, these regions 
are difficult to assemble and are masked by N. This similarity 
between no recognized regions in assembly and reference 
genomes are translated in black marked zones in dot-plot and 
are related to higher values of N50 and percentage of complete 
and single-copy BUSCOs. In contrast, Figure 3d is no diagonal 

lines in the image; this denotes that the assembly had very 
short contigs, and it was not possible to rebuild any part of the 
genome in relation to N50 value and percentage of BUSCOs 
that has low values for this assembly.

Moreover, comparative genomic analysis tools are essential 
to characterize genomes and sequences, focusing on varia-
tions between genomes of 2 or more individuals.86 However, 
visualizing this data is not easy, and it would be even more 
complex with large sequences because the standard tools  
to make comparative genomic generate text files as results.87 
A first approximation for dot-plot usage in comparative 
genomics with software like DOTTER restricted the size of 
sequences and execution times required for these tasks. In this 

Figure 3. G-SAIP assemblies versus reference genome dot-plots: (a) MaSuRCA assembly for Arabidopsis, (b) Velvet k-mer 31 assembly for Arabidopsis, 

(c) MaSuRCA assembly for Drosophila, and (d) Velvet k-mer 91 assembly for Drosophila.

Table 4. N50 values and BUSCO’s percentages for best and worst assemblies.

FIGURES ORGANISM qUALITy N50 BUSCOS [%]

Figure 3a Arabidopsis high 110 900 97.8823529

Figure 3b Arabidopsis Low 3110 8.7

Figure 3c Drosophila high 9973 95.6862745

Figure 3d Drosophila Low 2428 0
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way, G-SAIP offers the possibility of handling large sequences 
(up to 21 GB) and executing fast graphical alignment with 
high quality (in order of minutes or few hours) even in multi-
ples nodes with distributed memory and few latencies com-
pared to 1 node execution. Furthermore, this tool provides  
a new way to visualize the similarity between sequences, 
allowing tuning option as similarity percentage to show 
repetitive sections, deletions, insertion, and rearrangement 
given by speciation events and delivering a result more com-
prehensively for researchers.

Conclusions
Currently, there is a necessity for tools to process large-scale 
genomic data sets in short periods. HPC clusters are growing 

worldwide in computational capacity offering the opportunity 
to researchers to process bigger and more complex information. 
G-SAIP is a novel graphical sequence aligner able to produce 
dot-plots at a genomic scale, using the computational resources 
available in HPC clusters and the data produced by massive 
sequencing projects.53,54 Due to the parallel strategy used by 
the software and the scalability provided by HPC techniques, 
G-SAIP can accelerate the graphical alignments up to 1.68× 
times than other current software tested. This tool provides the 
opportunity to analyze, at a genomic scale, complete genomes 
with sizes up to 21 GB (Pinus taeda), facilitating processes such 
as assembly quality checking, comparative genomics, and iden-
tification of structures in DNA as transposable elements and 
other repetitive sequences.

Figure 4. Dot-plots for X mammals’ chromosomes.

Figure 5. Boxplot of G-SAIP execution times over several nodes with 62 

CPUs. This experiment was tested in computing cluster that has its 

queue with SCLURM scheduler.

Figure 6. Scaling test for each organism. Strong scaling test with Amdahl’s law with light width and bold line for weak scaling test with Gustafson’s law.
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