
1. Introduction
Small-scale ocean mixing processes leading to diffusion of heat, salt and other tracers across density surfaces, 
are closely tied to the energetics of the global ocean circulation (Gregg et  al.,  2018; Moum, 2021; Munk & 
Wunsch,  1998). Small-scale physical processes in the upper ocean determine the evolution of upper ocean 
temperature, salinity and density stratification in response to surface winds, and air-sea fluxes of heat and fresh-
water (Moum & Smyth, 2001). Air-sea interaction over the fresh, warm upper layer of the Bay of Bengal (BoB) 
favors multi-scale organization of monsoon convection (Bhat et al., 2001; Fu et al., 2007; Gadgil, 2003; Lau 
et al., 2012; Samanta et al., 2018; Vecchi & Harrison, 2002; Webster, 2006), and rapid intensification of tropical 
cyclones (Balaguru et al., 2012; Chaudhuri et al., 2019; Neetu et al., 2012). The aim of this study is to infer the 
seasonality of basin-scale mixing beneath the surface layer of BoB.

The BoB gains nearly 1.6 m (∼4,000 km 3) of freshwater every year from monsoonal rivers and precipitation 
minus evaporation (P-E) during June–September (Sengupta et  al.,  2006; Papa et  al.,  2012). River water is 
stirred into the basin interior by mesoscale eddies and swift Ekman currents (Chaudhuri et al., 2021; Sreelekha 
et al., 2018, 2020). The area covered by fresh, light water with surface salinity <30 pss and density <1,018 kg/m 3 
is highest in October–November, and approaches zero by April–May (Figure 1). In summer and autumn, the 
northern bay has a shallow (∼5–10  m) fresh mixed layer and warm, salinity-stratified “barrier” layer, with 
subsurface pockets of trapped heat (Shroyer et al., 2021; Thadathil et al., 2016; Vinayachandran et al., 2002). 
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Plain Language Summary The freshwater from monsoonal rivers and rain discharged into the Bay 
of Bengal (BoB) forms a shallow (<10 m deep) salinity-stratified layer which has implications for the regional 
air-sea interaction. There is very limited understanding of the mixing of the freshwater owing to the absence of 
near-surface turbulence measurements in BoB. It is important to understand the disappearance of the shallow 
fresh layer in the Bay due to it's linkages to the regional hydrological cycle and the near-surface stratification. 
In this study, we infer the seasonality of basin-scale mixing beneath the surface layer of BoB from a freshwater 
volume balance using a combination of observations and ocean analysis. We find that the highest rates of 
freshwater mixing (mean and median values of about 5.5 × 10 −5 m 2/s and 4.2 × 10 −5 m 2/s) occur during winter 
(December–January), mainly driven by enhanced surface buoyancy loss thereby reducing the freshwater content 
at a mean rate of 0.015 m/day. This study has implications for improvement of ocean and climate models, which 
generally have too-high mixing rates and poor representation of the salinity-stratified near-surface layer in BoB.
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High-resolution measurements in the north bay (Mahadevan et  al.,  2016) reveal rapidly changing, intricately 
layered salinity, temperature and density stratification in the upper ocean. Turbulence microstructure measure-
ments show very low thermal diffusivity KT (median values less than 10 −5 m/s 2) beneath the fresh (24–31 pss) 
near-surface layer in August–September 2015 (Lucas et al., 2016), with evidence of enhanced values at the edges 
of sub-mesoscale fronts (Adams et al., 2019). These observations indicate that the fresh surface layer effectively 
isolates the deeper ocean from surface forcing. Strengthening winds can lead to shear-induced deepening of 
the mixed layer by nearly 30 m at the onset of monsoon (Shroyer et al., 2021). Using Solo floats equipped with 
turbulence sensors called χ-pods, Shroyer et al. (2016) showed that in August–September 2015, upward mixing 
of stored heat from a warm subsurface layer initially offsets any sea surface temperature (SST) cooling under 
100 W/m 2 of net surface heat loss. Eventually, turbulence erodes the weak barrier layer, and SST falls rapidly due 
to mixing with cool upper thermocline water.

Direct turbulence measurements spanning a few seasonal cycles have been recently made at selected locations in 
BoB (Warner et al., 2016). The southern BoB is a site of active mixing between surface fresh water and saltier 
subsurface water from the Arabian Sea in summer (George et al., 2019; Vinayachandran et al., 2013; Wijesekera 
et al., 2016). Cherian et al. (2020) use χ-pod data from moorings along 8°N to study seasonal dependence of 
diffusivity at 30–100 m depth. The data show (a) highest diffusivities (κ ∼ O (10 −4) m 2/s) below the mixed layer 
during June–September, (b) elevated mixing due to near-inertial shear during storm passage, and (c) absence of 
turbulence (near-molecular κ values) in April–May, when surface wind forcing is weak. The seasonal cycle of 
mixing is rather different in northern and southern BoB. Mixing in the north bay is very sensitive to the presence 
of river water at the surface: Moored turbulence records at 18°N 89.5°E show a striking suppression of subsurface 
turbulence upon arrival of river water (Thakur et al., 2019)—the median diffusivity decreased from 10 −4 m 2/s to 
10 −5 m 2/s after the arrival of river water in mid-July. Both surface salinity and diffusivity were found to remain 
low until November, despite passage of a cyclone.

Figure 1. Bay of Bengal mean sea surface salinity (pss; color) from SMAP satellite in (a) May and (b) October of 2015. 
Mean salinity at 0.5 m depth (pss; color) from Global Ocean Analysis, in 2015 (c) May and (d) October. Ganga-Brahmaputra-
Meghna (GBM; orange dot) and Irrawaddy (purple dot) river mouths are marked in (a). 30 pss contour (white curve) and 
18 kg/m 3 potential density contour (magenta curve) at 0.5 m depth from the ocean analysis in (c, d); southern boundary of the 
bay at 6.5°N (gray) shown in (d).
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Modeling studies (Akhil et al., 2014; Benshila et al., 2014; Wilson & Riser, 2016) suggest that vertical mixing of 
freshwater is a primary mechanism to restore basin-average salinity to higher values during pre-monsoon season. 
Wilson and Riser (2016) use an eddy-resolving HYCOM model to evaluate salt budget of the upper 30 m of BoB. 
They report a vertical diffusivity of 10 −4 m 2/s during September-November; however, HYCOM salinity values 
are higher than 30 pss in the upper 30 m, an overestimate compared to Argo observations. Observation-based 
studies emphasize shear-induced mixing and a possibility that SST cooling resulting in surface buoyancy loss 
may drive subsurface mixing in BoB during winter (Thadathil et al., 2016). Jampana et al. (2018) use hourly 
moored observations in north BoB to show that perturbations of reduced stratification due to buoyancy loss are 
responsible for mixing in post-monsoon season, whereas both buoyancy and shear perturbations play a role in 
winter. Girishkumar et al. (2020) report elevated diffusivities in winter due to surface buoyancy forcing, based 
on analysis of moored observations.

The extent of very fresh (salinity <30  pss) and light water in the BoB rises and falls with seasons. We use 
this simple observation to infer seasonal dependence of spatially averaged mixing in the near-surface ocean. 
We construct freshwater balance within a control volume (CV) enclosed by the 1,018 kg/m 3 isopycnal surface 
(18 kg/m 3 potential density anomaly surface) using daily eddy-permitting ocean reanalysis, daily continental 
runoff, precipitation and evaporation estimates during 2011–2015. We present data and methodology in Section 2, 
main results deduced from freshwater balance in Section 3, summary in Section 4.

2. Data and Methods
We use daily salinity, temperature, potential density and ocean currents from global ocean physics analysis and 
forecast (GLOBAL_MULTIYEAR_PHY_001_030) with 1/12° horizontal resolution, 22 vertical levels in the 
upper 100 m to estimate the volume of freshwater in BoB during 2011–2015 (EU, 2023). Global ocean analysis 
uses v3.1 NEMO model with atmospheric forcing from European Centre for Medium-Range Weather Forecasts 
(ECMWF) to obtain a daily 10-day forecast and assimilate the altimeter data, in situ temperature and salinity verti-
cal profiles from Argo, XBT and satellite-derived SST but not satellite salinity; the model configuration does not 
include tides (Chassignet et al., 2018); the model uses a turbulent kinetic energy (TKE) closure scheme (Blanke & 
Delecluse, 1993) to parameterize vertical mixing. Other data sets include: daily 0.25° gridded rainfall from the Trop-
ical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis, 3B42v7 (Huffman et al., 2016); 
daily 0.25° heat fluxes at the ocean surface from TropFlux data set (Praveen Kumar et al., 2012); daily 0.5° gridded 
global continental discharge data (Jarugula & Decharme, 2023) from the Interactions between Soil, Biosphere and 
Atmosphere-Total Runoff Integrating Pathways (ISBA-CTRIP) land surface model (Decharme et al., 2012, 2019).

Mixed layer depth (MLD) from the ocean analysis is estimated as the depth where potential density exceeds the 
surface density by 0.125 kg/m 3.

2.1. Estimating Freshwater Volume and Net Freshwater Input Within 18 kg/m 3 Isopycnal

Freshwater volume (FWV) within a CV bounded by a selected isopycnal surface over surface area A is defined as:

FWV = ∫
𝐴𝐴

FWC(𝑥𝑥𝑥 𝑥𝑥) dx dy (1)

where the freshwater content (FWC) at each point (x, y) is defined as 𝐴𝐴 ∫ 0

−𝑍𝑍

[

1 −
𝑆𝑆(𝑧𝑧)

𝑆𝑆ref

]

dz, Z is the depth of 18 kg/m 3 
isopycnal, S(z) is salinity as a function of depth, and Sref is a reference salinity taken as 35  pss (Sreelekha 
et al., 2020). Note that freshwater balance could also be constructed using a CV bounded by a selected isohaline 
surface (Bryan & Bachman, 2015; Schmitt & Blair, 2015). Net daily freshwater input to BoB within the area 
enclosed by 18 kg/m 3 isopycnal is given by:

FWIN = ∫
𝐴𝐴

(𝑃𝑃 +𝑅𝑅 − 𝐸𝐸) dx dy (2)

where P is precipitation from TRMM, E is evaporation from TropFlux and R is continental discharge from 
ISBA-CTRIP; for P and E, the integral is over the area A with surface seawater density <18 kg/m 3; the integral 
of R is evaluated only over that part of the coastline where density of surface seawater <18 kg/m 3 (Figure S1 in 
Supporting Information S1). The Ganga-Brahmaputra-Meghna (GBM) is the largest of all rivers that discharge 
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into BoB. Given the significant difference between model GBM river discharge and in situ observations, we 
choose the grid point at GBM river mouth, and replace the model discharge with in situ GBM discharge data 
(Papa et al., 2012) to obtain estimates of daily freshwater input for all years. This results in higher June discharge, 
and peak summer discharge begins to decrease about a week earlier.

Following Wijffels et al. (1992) and Talley (2008), we estimate FWV transport (km 3/day) across the southern 
boundary of BoB, chosen as 6.5°N from ocean analysis:

FW𝑇𝑇 =

𝐿𝐿

∫
0

0

∫
−𝑍𝑍(𝑥𝑥)

𝑣𝑣(𝑥𝑥𝑥 𝑥𝑥)

[

1 −
𝑆𝑆(𝑥𝑥𝑥 𝑥𝑥)

𝑆𝑆ref

]

dzdx (3)

where L is the width of longitudinal section at 6.5°N, Z(x) is depth of the 18 kg/m 3 isopycnal surface, v(x, z) is 
meridional velocity at 6.5°N, S(x, z) is salinity at 6.5°N, Sref is 35 pss.

We select 18 kg/m 3 isopycnal surface (which nearly coincides with that of 30 pss isohaline) for constructing 
freshwater balance for two reasons: First, the area covered by 18 kg/m 3 isopycnal is not significantly affected by 
spring-time surface warming, unlike the higher values of density. For example, FWV enclosed by the 19 kg/m 3 
isopycnal has a distinct secondary peak in April–May. This secondary maximum is mainly due to spring warm-
ing of BoB (Sengupta et al., 2002), making the surface water lighter (Figures S2 and S3 in Supporting Infor-
mation S1). Secondly, the transport of freshwater across the southern boundary within the 18 kg/m 3 CV is zero 
(Figure S2 in Supporting Information S1)—thus we avoid any errors arising from velocity uncertainties in the 
ocean analysis data set and need not consider advection across the southern boundary of the bay.

3. Main Results
Sea surface salinity from SMAP and ocean analysis (Figure 1) shows striking seasonality: Surface area covered 
by the freshest and lightest water in BoB is minimum in April–May and maximum in October–November. Water 
with salinity <30 pss comes mainly from GBM and Irrawady rivers—it is stirred into the interior by ocean circu-
lation, including mesoscale eddies and wind-driven Ekman flow (Benshila et al., 2014; Sreelekha et al., 2018). 
Longitude-depth sections show that seawater with potential density <18  kg/m 3 is not transported across the 
southern boundary of the BoB in any season, in line with climatology (Zweng et al., 2019), multi-year data from 
surface drifters (Hormann et al., 2019) and glider transects along 8°N east of Sri Lanka (Lee et al., 2016).

Freshwater volume within the 3-dimensional 18 kg/m 3 isopycnal surface (FWV) has similar seasonal dependence 
to freshwater within the 3-d 30 pss isohaline (Figure 2a). The surface area enclosed by the 18 kg/m 3 and 30 pss 
isolines are similar, except in winter (Figure 2b). Diminished FWV and area of light water relative to low-salinity 
water in winter is due to the contribution of temperature to potential density. Mean depth of 18 kg/m 3 and 30 pss 
isolines are both larger than the mean mixed layer depth (MLD) estimated over the area covered by water lighter 
than 18 kg/m 3 (Figure 2c). FWV and area within 18 kg/m 3 surface are highly seasonal, with a maximum in 
October–November, owing to freshwater input to the bay from monsoonal rain and river discharge (Figure 2d) 
and a minimum in March–May—the ratio of maximum FWV (∼2,000 km 3) to minimum FWV (∼200 km 3) is 
nearly 10. In December–February, net surface heat loss from the ocean makes the surface water cooler and denser 
(Figure 2e)—this is discussed further in Section 3.

The freshwater balance within the 18 kg/m 3 isopycnal surface is given by:

𝜕𝜕FWV

𝜕𝜕t
= FWIN − FWT +𝐷𝐷 (4)

where ∂FWV/∂t is the rate of change of freshwater volume, FWIN is the net input of freshwater, F WT is freshwater 
transport out of the Bay across the southern boundary at 6.5°N and D is a “deficit” term—if continental runoff, 
surface freshwater flux as well as FWV from ocean analysis were a perfect representation of reality, the deficit 
term would be entirely due to mixing processes. However, knowledge of each term in the freshwater balance is 
subject to uncertainty - errors in FWV and net freshwater input are discussed in Section 3.3.

Subseasonal changes in FWC are due to changes in the area enclosed by 18 kg/m 3 isopycnal as the freshwater 
is advected across the basin by wind-driven flow during active phases of monsoon and mesoscale eddy flow 
during the break phases of the monsoon (Figure 3a; Sreelekha et al., 2018, 2020). The net input and transport 
of freshwater within the CV is shown in Figure 3b. The zero transport across the southern boundary of BoB 
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implies that the freshwater within CV is mixed away entirely within the basin. Figure 3c shows daily FWV and 
the net accumulation ∫(FWIN − FWT) dt within the CV; the time integration during 1 June–31 May each year. 
In June–July, rise in FWV follows the rise in ∫(FWIN − FWT) dt as the net freshwater input to BoB begins to 
increase. Net freshwater input peaks in August–September, followed by a maximum in FWV about one season 
later, in October–November. Later, the curve of cumulative freshwater input ∫(FWIN − FWT)dt flattens, indicat-
ing that input is relatively small. FWC and FWV decrease rapidly in December–January, reaching a minimum in 
March–May each year. The deficit or mixing term, obtained by subtracting FWV from cumulative input, is small 
in June–July and rises gradually in August–October to about 600 km 3 each year, except in 2013 - in that year it 
reaches nearly 900 km 3, mainly due to widespread enhancement of upper ocean mixing by the intense tropical 
cyclone Phailin which crossed the northern BoB during 8–12 October (Chaudhuri et al., 2019).

In general, by mid-November and end of January, the deficit term rises steeply by 1,300–2,000 km 3 depending 
on the year, followed by a modest rise in February–May (Figure 3d). For example, in December 2012, nearly 
1,000 km 3 of pure freshwater is lost from the CV in a month. The slope of deficit term is a measure of the rate 
of mixing of freshwater out of CV. The rate of change of FWC is highest, that is, freshwater loss from the CV 
is most rapid, in December–January each year. The mean FWC within the CV is generally highest in October 
to early November, nearly 3.2 m, while the mean rate of freshwater loss in December–January is 0.015 m/day 
(Figures 3a–3d, Figure S4 in Supporting Information S1).

3.1. Diapycnal Diffusivity in the Bay of Bengal

Following Banyte et al. (2012), the diffusion equation for FWC on isopycnal coordinates is written as:

𝜕𝜕z

𝜕𝜕𝜕𝜕

𝜕𝜕FWC

𝜕𝜕t
=

𝜕𝜕

𝜕𝜕𝜕𝜕

(

𝜅𝜅
𝜕𝜕𝜕𝜕

𝜕𝜕z

𝜕𝜕FWC

𝜕𝜕𝜕𝜕

)

 (5)

Figure 2. (a) Total freshwater volume (km 3) with salinity <30 pss (black) and potential density <18 kg/m 3 (red). (b) Surface 
area (km 2) covered by freshwater with salinity <30 pss (black) and density <18 kg/m 3 (red). (c) Mean depth (m) of the 30 pss 
isohaline surface (black) and the 18 kg/m 3 isopycnal surface (red); mean mixed layer depth (MLD; gray) averaged over 
all points (x,y) where surface density is less than 18 kg/m 3. (d) TRMM 3B42v7 precipitation (km 3/day; yellow), TropFlux 
evaporation (km 3/day; orange), ISBA-CTRIP continental river discharge (km 3/day; blue), (e) Tropflux net heat flux (Qnet; 
W/m 2; purple) and windspeed (m/s; light purple) within the 18 kg/m 3 isopycnal surface.
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Integrating the above equation from ρsurface to ρ18 we get:

𝜕𝜕FWC

𝜕𝜕t
z18 = 𝜅𝜅

𝜕𝜕𝜕𝜕

𝜕𝜕z

𝜕𝜕FWC

𝜕𝜕𝜕𝜕
 (6)

where z18 is the depth of 18 kg/m 3 isopycnal, and κ is diapycnal diffusivity across the base of 18 kg/m 3 isopycnal, 
and ∂z/∂ρ is spacing between the isopycnals per unit density.

At a given time t, we calculate κ at each grid point (x, y), and then obtain mean diffusivity over the area enclosed 
by the 18 kg/m 3 isopycnal each day during 2011–2015. As a sensitivity test, we repeated the calculation of the 
deficit curve and diapycnal diffusivity for water lighter than 18.25 and 18.5 kg/m 3 (Figure 4). In all cases, the 
highest diffusivities O (10 −4) m 2/s are found in winter (December–January), whereas from May to October, 
the  values of κ are of O(10 −5) m 2/s. Note that enhanced vertical mixing in the north bay due to the passage of 
cyclone Phailin, 8–13 October 2013 (Chaudhuri et al., 2019) corresponds to high diffusivities of O(10 −4) m 2/s.

3.2. Seasonality in Mixing of Freshwater in the Bay

To examine the seasonality of diffusivity across 18, 18.25, and 18.5 kg/m 3 isopycnals, we calculate probability 
density function (PDF) of daily estimates of log10κ during summer (June–August), winter (December–January) 

Figure 3. (a) Daily (gray) and 30-day smoothed (black) freshwater content (m), (b) net freshwater input (km 3/day; blue) and net freshwater transport across 6.5°N 
(km 3/day; cyan) (c) daily freshwater volume (FWV; km 3, black) and net freshwater accumulation (∫(FWIN − FWT) dt; km 3, red) estimated from ocean analysis for water 
with density <18 kg/m 3. (d) Deficit term (km 3) is obtained by subtracting FWV from the net freshwater accumulation shown in (b); estimated error in the deficit term is 
nearly 25% (thin gray line).
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and spring (March–May) of 2011–2015 (Figures 4b–4d). For 18 kg/m 3 isopycnal, mean diffusivity in summer, 
winter and spring seasons are 1.4 × 10 −5 m 2/s, 5.5 × 10 −5 m 2/s, and 1.1 × 10 −5 m 2/s respectively; median values 
are: 0.8 × 10 −5 m 2/s, 4.2 × 10 −5 m 2/s, and 0.8 × 10 −5 m 2/s respectively. In winter, κ exceeds 3 × 10 −5 m 2/s about 
35% of the time, as compared to 17% and 5% of the time in summer and spring. A distinct shift of winter PDF 

Figure 4. (a) Deficit (km 3) obtained from freshwater balance of water lighter than 18 kg/m 3 (black), 18.25 kg/m 3 (red) and 18.5 kg/m 3 (blue). Probability Density 
Function (PDF) of derived diffusivity (log10κ; m 2/s) within (b) 18 kg/m 3, (c) 18.25 kg/m 3 and (d) 18.5 kg/m 3 isopycnals during summer (June–August; black), winter 
(December–January; red) and spring (March–May; blue), 2011–2015. PDF of log10κ (m 2/s; red dashed line) in (b) based on χ-pod measurements at 22 m depth at 
WHOI mooring (18.01°N, 89.45°E), 9 December 2014–31 January 2015. (e) Daily surface buoyancy flux (m 2/s 3) averaged over north of 15°N, June 2011–May 2015.



Geophysical Research Letters

JARUGULA ET AL.

10.1029/2023GL106451

8 of 11

toward higher diffusivity values indicates that the highest rates of freshwater mixing occur in December–January, 
as seen earlier from the rate of change of FWC (Figure 3d). High diapycnal diffusivities in winter are comparable 
to the diffusivity at 22 m depth at WHOI mooring (18.01°N, 89.45°E) based on χ-pod measurements (Figure 4b; 
Thakur et al., 2019). In case of 18.25 and 18.5 kg/m 3 isopycnals, the mean diffusivity in each season increases by 
10% and 20% respectively as compared to the mean diffusivity across the 18 kg/m 3 isopycnal. As we go to higher 
density values, we observe significant (60%–80%) increase in the standard deviation of the estimated diffusivity 
values as compared to 18 kg/m 3 in summer and spring, which is reflected in the broadening of the black and blue 
PDF curves in Figures 4b–4d. Wintertime PDF becomes more sharply peaked at 18.5 kg/m 3, signifying a smaller 
spread in diffusivity values (Figure 4d). The reasons require further investigation.

To understand the elevated mixing rates in winter, we examine the role of surface buoyancy flux. Net surface 
heat flux and latent heat flux from daily TropFlux data set (Praveen Kumar et al., 2012) averaged over BoB north 
of 15°N show that the ocean loses heat in winter (Figure S5 in Supporting Information S1). In general, mean 
windspeed over north bay is moderate in spring and winter, and highest during summer monsoon. Latent heat 
flux, however, is determined by windspeed and humidity gradient qs–qa, where qs is specific humidity at SST and 
qa is specific humidity of air near the surface (not shown). Although the humidity gradient and windspeed are 
comparable in spring and winter (Figure S5 in Supporting Information S1), incident shortwave radiation flux is 
much higher in spring, giving rise to positive net heat flux (Sengupta et al., 2002).

The net surface buoyancy flux (BF; m 2/s 3) given by:

BF =
g𝛼𝛼𝛼𝛼net

𝐶𝐶p

− 𝑔𝑔𝑔𝑔𝑔𝑔(𝐸𝐸 − 𝑃𝑃 ) (7)

where g is acceleration due to gravity, α and β are coefficients of thermal expansion and haline contraction, ρ 
is seawater density, Qnet is net surface heat flux, Cp is specific heat of seawater, S is surface salinity, P and E are 
precipitation and evaporation. BF estimated from ocean analysis, TRMM rainfall and TropFlux surface fluxes 
shows substantial buoyancy loss from the ocean in November–January every year (Figure 4e). BF estimated from 
reanalysis and satellite products agrees well with the BF estimated from WHOI mooring measurements during 
December 2014-December 2015, with a modest bias of −7.2 × 10 −9 m 2/s 3 and root-mean-square error (RMSE) 
of 7.8 × 10 −8 m 2/s 3 (Figure S6 in Supporting Information S1). Seasonal reduction in shortwave radiation, and 
subseasonal episodes of intense cool, dry northeasterly monsoon winds (Figure 2) lead to enhanced surface buoy-
ancy loss in winter (Anitha et al., 2008; Prasad, 1997, 2004).

3.3. Error Analysis

Year-long observations from WHOI mooring at 18oN 89.5°E (Weller et al., 2016) in 2015 are used to validate 
freshwater content (FWC) estimated from ocean analysis—note that the WHOI mooring observations are not 
assimilated into ocean analysis. RMSE of FWC at mooring location estimated from ocean analysis is about 
0.6 and 0.2 m for 14 and 26 m depth respectively (Figure S7 in Supporting Information S1). In the upper 14 m 
depth, the error is 10% of the mean FWC estimated from the mooring. Seasonal mean errors are 8.5% in spring, 
9.4% in summer and 12.6% in winter. Uncertainties are high during winter as the ocean analysis may not capture 
the dispersal of low-salinity water coming from the Andaman Sea (Gordon et  al.,  2017; Sastry et  al., 1985). 
The reliability of ocean analysis subsurface temperature and salinity is likely to be relatively low in the Anda-
man Sea where Argo float coverage is sparse. Considering an error in the net freshwater input arising from 
TRMM rainfall, ISBA-CTRIP continental runoff and TropFlux evaporation of 15% (Alkama et al., 2010; Papa 
et al., 2010; Praveen Kumar et al., 2012; Rahman et al., 2009), the estimated total error in the deficit term (D) 
is about 25%, that is, only values exceeding 700 km 3 are above the error threshold. The absence of explicit tidal 
forcing in the ocean model could be a limitation, but tidal effects are present in Argo and sea level data which are 
assimilated in the analysis.

4. Summary
Very few studies exist of the basin-scale freshwater balance for BoB, which lies in the heart of the south Asian 
monsoon (Goswami et al., 2016; Sengupta et al., 2006). Using daily three-dimensional ocean analysis, we construct 
freshwater balance within a control volume bounded by 18 kg/m 3 isopycnal surface for years 2011–2015. We 
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observe that every year the freshwater with density <18 kg/m 3 is mixed away and converted to higher density 
class entirely within the bay before it is transported out. The total volume of pure (zero-salinity) freshwater 
within the CV starts to rise in June, and reaches a maximum in October–November (∼2,000 km 3), consistent 
with accumulation of freshwater during summer monsoon (June–September). Freshwater deficit, defined as the 
difference between total freshwater volume at any time and cumulative freshwater input, rises most rapidly in 
December–January each year. Slope of the deficit curve is used to estimate the rate of mixing of freshwater 
across 18 kg/m 3 surface: We find highest diapycnal diffusivity κ (mean and median values of about 5.5 × 10 −5 
and 4.2 × 10 −5 m 2/s) in December–January. Diapycnal diffusivity in spring and summer seasons are comparable 
to each other, and nearly four times smaller than in winter. Seasonal reduction of shortwave radiation in winter, 
and episodes of cool, dry northeast monsoon winds enhance latent heat loss and surface buoyancy loss, making 
the near-surface layer unstable (Prasad, 2004). We propose that winter-time convective mixing driven by surface 
buoyancy loss reduces freshwater content at a mean rate of 0.015 m/day. The basin-scale wintertime diapycnal 
diffusivity estimated from freshwater balance is consistent with direct χ-pod measurements at WHOI mooring 
(18 N, 89.5 E) in BoB. This study has implications for improvement of ocean and climate models, which gener-
ally have too-high mixing rates and poor representation of the salinity-stratified near-surface layer in BoB. More 
detailed knowledge of mixing is important for climate and ocean biogeochemistry, but our understanding of the 
mechanisms of turbulent mixing remains a challenge due to limited availability of long-term, high-resolution 
observations in the near-surface BoB.

Data Availability Statement
The data sets used in this study are publicly available: GLOBAL_MULTIYEAR_PHY_001_030 EU  (2023); 
TropFlux data available at Praveen Kumar et al. (2012); TRMM 3B42v7 precipitation at Huffman et al. (2016); 
ISBA-CTRIP continental runoff data is available at Jarugula and Decharme (2023).
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