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A B S T R A C T   

Given the global biodiversity crisis, there is an urgent need for new tools to monitor populations of endangered 
marine megafauna, like sharks. To this end, Baited Remote Underwater Video Stations (BRUVS) stand as the most 
effective tools for estimating shark abundance, measured using the MaxN metric. However, a bottleneck exists in 
manually computing MaxN from extensive BRUVS video data. Although artificial intelligence methods are 
capable of solving this problem, their effectiveness is tested using AI metrics such as the F-measure, rather than 
ecologically informative metrics employed by ecologists, such as MaxN. In this study, we present both an 
automated and a semi-automated deep learning approach designed to produce the MaxN abundance metric for 
three distinct reef shark species: the grey reef shark (Carcharhinus amblyrhynchos), the blacktip reef shark 
(C. melanopterus), and the whitetip reef shark (Triaenodon obesus). Our approach was applied to one-hour baited 
underwater videos recorded in New Caledonia (South Pacific). Our fully automated model achieved F-measures 
of 0.85, 0.43, and 0.72 for the respective three species. It also generated MaxN abundance values that showed a 
high correlation with manually derived data for C. amblyrhynchos (R = 0.88). For the two other species, cor
relations were significant but weak (R = 0.35–0.44). Our semi-automated method significantly enhanced F- 
measures to 0.97, 0.86, and 0.82, resulting in high-quality MaxN abundance estimations while drastically 
reducing the video processing time. To our knowledge, we are the first to estimate MaxN with a deep-learning 
approach. In our discussion, we explore the implications of this novel tool and underscore its potential to produce 
innovative metrics for estimating fish abundance in videos, thereby addressing current limitations and paving the 
way for comprehensive ecological assessments.   

1. Introduction 

At a time of global biodiversity crisis (Knapp et al., 2021; Lees et al., 
2020; Rull, 2022; Tian et al., 2020; Wagner, 2019), top predators are 
critically endangered by human activity, threatening key ecosystem 
functions and services (Hammerschlag et al., 2019; Rizzari et al., 2014). 
In the seas, shark extinction risk is rising with over one third of species 
endangered globally (Baum and Blanchard, 2010; Boussarie et al., 2018; 
Davidson and Dulvy, 2017; Edgar et al., 2014; Graham et al., 2010; 
Jorgensen et al., 2022; Juhel et al., 2018a), mostly due to ever increasing 
fishing pressure, habitat loss, climate change and pollution (Barone 
et al., 2022). Although data on shark population abundance is crucial for 
species conservation planning, monitoring their numbers poses chal
lenges due to their rarity and extensive range. To overcome the issue of 
data collection, video imagery is becoming increasingly popular as a 
biomonitoring tool (Ditria et al., 2020; Goodwin et al., 2022; Tian et al., 
2020; Whytock et al., 2021) especially since the advent of cheap action 

cameras. Due to recent advances, artificial intelligence (AI) can solve the 
problem of video data processing. However, algorithms are usually 
evaluated on closed sets of still images and AI metrics such as F-measure, 
rather than on open sets of video streams and metrics used by biologists 
such as animal abundance. This created a situation where powerful AI 
methods remain mostly in the realm of emerging tools rather than being 
used by biologists. Reconciling the outputs of AI algorithms with biology 
therefore appears to be a priority if certain aspects of the biodiversity 
crisis are to be addressed in an effective way. 

Baited remote underwater video stations (BRUVS) are particularly 
suitable to observe marine predators such as sharks (Ditria et al., 2021; 
Goetze et al., 2019; Weinstein, 2018). Current video processing pro
tocols involve a biologist manually annotating sharks on BRUVS to 
determine their presence and abundance. Technically, biologists only 
annotate a frame when the number of individuals of a species in that 
frame exceeds that of previous frames. At the end of the video processing 
protocol, biologists retain “the maximum number of a particular species 
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seen in any one video frame across the duration of the video record” to 
estimate relative abundance (Langlois et al., 2020; Tian et al., 2020). 
This abundance metric, called MaxN, is until now the standard and most 
used method for estimating fish and shark abundance on BRUVS (Cappo 
et al., 2003; Langlois et al., 2020; Tian et al., 2020; Whitmarsh et al., 
2017). Convolutional Neural Networks (CNNs) demonstrate exceptional 
performance in object detection and identification within images, 
showcasing the capabilities of artificial intelligence for processing 
BRUVS videos. Indeed, fish identification and localisation with Deep 
Learning has been continuously improving since 2015 (Chen et al., 
2018; Cui et al., 2020; Jalal et al., 2020; Knausgård et al., 2022; Rathi 
et al., 2018; Salman et al., 2016; Tian et al., 2020; Villon et al., 2016, 
2018). 

Regarding sharks, three studies were identified. The short Shark-EYE 
(Merencilla et al., 2021) study used a YOLOv3 neural network to detect 
sharks in underwater images. This paper does not classify individuals to 
species level, but detects sharks with an accuracy of 86%. A second study 
proposed a pipeline composed of multiple neural networks to localize 
and identify individuals at the species level (Jenrette et al., 2022). The 
pipeline includes 1) a shark locator which localizes fish individuals in 
images 2) a shark identifier which verifies that the detected individuals 
are sharks 3) a first shark classifier classifies the individuals at the genus 
level and 4) for each genus, a second classifier identifies the shark at a 
species level. This 4-stage pipeline allowed the authors to detect and 
identify 10 species in 7 short videos, with a recall of 69% and a precision 
of 94%. The third study used two backbones architectures (VGG16 and 
U-net) to discriminate sharks at an individual level on images (Le et al., 
2022). The method was able to predict with 81% accuracy whether in
dividual sharks present in the test dataset had ever been encountered in 
the training dataset. 

In summary, the current literature on studies utilizing CNNs for fish 
and shark counting in images is promising. However, it indicates that 
these studies tend to present their findings in terms of accuracy, recall 
and F-measure rather than comparing model outputs with standard 
ecological metrics like MaxN abundance. Therefore, it is yet to be 
determined if AI methods can extract from videos some metrics that are 
useful for biologists, such as species identification and abundance. It is 
also unclear whether models exhibiting a high F-measure will produce 
MaxN abundance values that align with those recorded by biologists. 

Here, we used 185 one-hour BRUVS videos to build an all-in-one 
CNN-based detector and classifier for reef shark species. Specifically, 
we assessed its effectiveness to identify and count 3 common South- 
Pacific species: the grey reef shark Carcharhinus amblyrhynchos, the 
blacktip reef shark C. melanopterus and the whitetip reef shark Tri
aenodon obesus in standard ecologically relevant 1-h long underwater 
BRUVS videos. We then assessed the efficiency of our model through 
both classic CNN metrics (F-measure, recall, accuracy) and standard 
ecological abundance metric MaxN. We also explored how such method 
can lead to semi-automated video processing. Finally, we discussed how 
Deep Learning processing can deepen our understanding of shark con
servation and behavior by making it possible to create new ecological 
metrics. 

1.1. Material 

We collected one-hour baited videos (BRUVS) at 185 different sta
tions across New-Caledonia's reefs, a biodiversity hotspot listed world 
heritage by UNESCO since 2008. Videos were recorded with Sony hdr cx- 
7 or Sony hdr cx-12 cameras, then manually processed by biologists to 
annotate MaxN (Juhel et al., 2018b). A random division was performed 
on the 185 one-hour videos, resulting in 163 training videos (80%) and 
22 testing videos (20%). Then, 1366 video clips were extracted from the 
163 training video dataset, and randomly divided into 1092 training 
clips (80%) and 274 testing clips (20%). Each clip lasted 15 to 20 s and 
was centered around species MaxNs. A 5-fold method experimentation 
was conducted, involving five instances of an 80/20 random selection of 

clips (refer to Methods for details). Our training data included 8 shark 
species and 19 non-shark species commonly associated with sharks on 
baited underwater videos to add diversity in the training. After trans
forming video clips into still images at a rate of 1 frame per second, we 
annotated sharks and the 19 non-shark species present in the frames 
with bounding boxes. This resulted in 26,947 fish annotations (Table 1). 
Given that the Faster RCNN architecture automatically generates 
negative samples (Ren et al., 2015), there was no need to annotate any. 

It is known that classic deep architectures need numerous image 
sample per class to work correctly (Lecun et al., 2015; Villon et al., 
2022). Hence, shark species that were infrequently captured in our clips 
(Carcharhinus albimarginatus, Galeocerdo cuvier, Nebrius ferrugineus, 
Negaprion acutidens) were excluded from the testing phase. However, 
they were included during the training phase to enhance the ability of 
our CNN to build pertinent feature embeddings. In an effort to improve 
our model accuracy, we also included 19 non-shark species during the 
training phase. These species were commonly associated with or 
exhibited resemblances to the studied shark species. Overall, we 
assembled two types of datasets  

1) a Videostations dataset composed of 185 one-hour BRUVS videos. This 
dataset was divided into the Trainingstations dataset composed of 163 
one-hour BRUVS videos (80%) and the Testingstations dataset 
composed of 22 one-hour BRUVS videos (20%);  

2) a Videoclips dataset composed of 1366 video sequences, each lasting 
15–20-s. These clips were extracted from the Trainingstations dataset 
and focused on the MaxN of the studied species. Video clips were cut 
at one frame per second, generating 23,222 frames. Then, the Vid
eoclips dataset was randomly divided into 1092 Trainingclips and 274 
Testingclips datasets (80/20) for each fold, and corresponding frames 
used for training and testing the CNN models. 

Table 1 
The annotated dataset with the number of annotations per species, along with 
details on the number of frames and video clips in which each species appeared. 
Shark species are indicated with an asterisk (*). Non-shark species show no 
asterisk. The studied species of sharks are shown in bold.  

Species Number of 
annotations 

Number of 
frames 

Number of clips 
with the species 

Carcharhinus 
amblyrhynchos* 8006 4214 65 

Triaenodon obesus* 1432 822 40 
Carcharhinus 

melanopterus* 
434 162 32 

Galeocerdo cuvier* 243 229 7 
Nebrius ferrugineus* 207 190 4 
Negaprions acutidens* 112 112 4 
Carcharhinus 

albimarginatus* 85 37 3 

Stegostoma fasciatum* 80 80 4 
Lutjanus bohar 10,474 4621 90 
Plectropomus laevis 2570 1640 62 
Epinephelus maculatus 900 615 16 
Lethrinus olivaceus 783 430 35 
Aprion virescens 454 322 28 
Carangoides 

fulvoguttatus 346 103 10 

Carangoides ferdau 267 168 13 
Caranx ignobilis 223 77 11 
Symphorus 

nematophorus 
132 80 35 

Carangoides 
orthogrammus 107 78 9 

Scomberomorus 
commerson 

36 30 5 

Chanos Chanos 32 18 4 
Lutjanus rivulatus 14 1 1 
Grammatorcynus 

bilineatus 
10 8 1  
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For each fold, the frames from Trainingclips were used to train the 
models. The Testingclips were used to assess the robustness of our method 
on short sequences centered around the presence of fish presence. The 
Testingstations, common to all k-fold were used to assess the robustness of 
the method on 1-h videos, corresponding to the real use-case scenarios 
of ecological studies (Supp. Fig. 1). 

2. Methods 

2.1. Deep learning model 

To assess the robustness of our method, we performed a 5-fold cross- 
validation. For each fold, we randomly selected 80% of our dataset 
Videoclips to train our model, and 20% to test it. We could not split 
directly images from the frame dataset as images from the same videos 
were very alike which can lead to a model with a low generalization 
capacity. Using a 80% training/20% testing random split on videos 
rather than images ensured full independency between images of the 
training set and testing set. 

Our deep-learning models used NASnet architecture (Zoph et al., 
2017) with a Faster-rcnn backbone (Ren et al., 2015) implemented in 
Tensorflow2. The parameters of the model can be found on TensorFlow 
model zoo1 under the name “faster_rcnn_nas”. All images were resized to 
1333 × 800 pixels to match with the pre-training data (COCO dataset 
(Lin et al., 2014)) used to prepare the first layers of our model and save 
computing time during the training phase). We used a learning rate of 
0.008 with a cosine learning rate decay. For each K-fold, the model was 
trained on its own version of Trainingclips through 200,000 iterations, 
with a batch size of 16 images per iteration. The training was completed 
in 96 h per model using a GPU-cluster equipped with 4 RTX8000. In 
order to evaluate the performance of our deep-learning models, we 
computed the recall, precision, and F-measure for each model. Briefly, a 
recall of 1 indicates that the model correctly detected all sharks present 
in the video (False Negative detections are costly), while a recall of 
0 indicates that the model missed all sharks. A precision of 1 indicates 
that detected individuals are all correctly identified, while a precision of 
0 indicates that all detected sharks are wrongly identified (False Posi
tives detections are costly). Finally, the F-measure is a harmonic mean of 
recall and precision. It tends toward 1 when positive detections and 
correct species identifications outweigh misclassifications and unde
tected individuals, and toward 0 otherwise. Recall, precision and F- 
measure are given by the following formulae: 

Recalli =
Tpi

Tpi + Fni  

Precisioni =
Tpi

Tpi + Fpi  

Fmeasurei = 2.
Recalli.Precisioni

Recalli + Precisioni  

with Tpi the number of true positives, Fpi the number of false positives 
and Fni the number of false negatives for species i. 

2.2. Estimating shark abundance on video 

Fitted deep-learning models were used to estimate shark abundance 
(MaxN) on both video clips and complete one-hour videos. For video 
clips, each frame of the Testingclips dataset was considered indepen
dently. For each species, the predicted MaxN value corresponded to the 
predicted number of individuals in each frame. For full one-hour videos, 

we first extracted frames from the Testingstations dataset at a rate of one 
frame per second, then identified and counted sharks on each frame 
using our deep-learning models. Finally, MaxN was computed as the 
maximum number of a particular species detected by the models in any 
one frame throughout the entire duration of the video recording. To 
mitigate errors resulting from occasional false positives, without 
increasing the size of the model architecture (e.g., with memory cells), 
we considered a predicted MaxN to be true if, for a given species, the 
predicted number of individuals was consistent across at least 2 
consecutive frames. Correlation and linear regression analyses were 
then used to compare MaxN predicted by the models with MaxN 
observed by biologists. Additionally, the accuracy of MaxN was 
computed for each species i as follows: 

MaxN accuracyi =
Correct MaxN Predictioni

Correct MaxN Predictioni + Uncorrect Maxn Predictioni 

A perfect correspondence between predicted and observed MaxN 
would lead to a correlation coefficient, R, of 1, a regression intercept of 
0, a regression slope of 1, and a MaxN accuracy of 1 for all species. 
Comparisons at the frame level enabled testing the robustness of our 
method with densely populated information, and associating classic 
CNN metrics such as recall and precision with ecological metrics. 
Conversely, comparisons at the station level, involving the processing of 
1-h videos, allowed us to assess the efficiency of our method on real field 
videos with sparse information. Furthermore, we evaluated our meth
odology of introducing non-targeted species diversity during the 
training phase. 

To evaluate the potential of a semi-automated fish counting method, 
we utilized the testing dataset of our 5th model. Initially, we processed 
the testing dataset through our CNN model. Subsequently, we manually 
reviewed the network's annotations, making corrections where neces
sary. Finally, we compared the results obtained from both the semi- 
automated and fully automated methods in terms of recall, precision, 
and F-measure. Given that all misclassifications were rectified manually 
with the semi-automated method, the resulting precision was naturally 
1, indicating that errors were solely attributable to false detections or 
missed individuals. 

3. Results 

3.1. Deep-learning model performance 

Models trained on 27 species showed recall values of 0.91, 0.43, and 
0.67 for Carcharhinus amblyrhynchos, C. melanopterus, and Triaenodon 
obesus, respectively. Interestingly, these results closely paralleled those 
obtained from models trained on only the 3 targeted shark species (0.92, 
0.42, and 0.67). Models trained on 27 species demonstrated higher 
precision, with scores of 0.81, 0.43, and 0.80 compared to 0.72, 0.29, 
and 0.68 for the 3-species models (Fig. 1). Consequently, the models 
trained on 27 species exhibited higher F-measures (0.85, 0.43, and 0.72) 
than those trained on 3 species only (0.80, 0.34, and 0.67). Furthermore, 
we observed stability across the models for C. amblyrhynchos, with a F- 
measure standard deviation under 0.02 between models. This stability 
extended to precision and recall, with standard deviations ranging be
tween 0.02 and 0.04. However, the two other species, having less data, 
displayed a slightly higher F-measure standard deviation, ranging from 
0.08 to 0.11 between models. Considering the superior performance of 
the models trained on 27 species (Supp. Table 1), these were selected for 
subsequent analyses. 

3.2. Comparing predicted and observed shark abondance 

Significant correlations existed between MaxN shark abundance 
automatically predicted by our deep-learning models and manually 
estimated by biologists (Fig. 2). This was true for both video clips 

1 https://github.com/tensorflow/models/blob/master/research/object_dete 
ction/g3doc/tf2_detection_zoo.md 
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(Testingclips) and 1-h videos (Testingstations) datasets. Pooling all species, 
the correlation coefficients R were 0.88 and 0.85 for the video clips and 
1-h video datasets, respectively. The correlation was highest for 
C. amblyrhynchos (R = 0.90), followed by T. obesus (R = 0.72) and 
C. melanopterus (R = 0.40) using the video clips dataset. Lower R values 
were observed with the full-hour video dataset (0.88 for 
C. amblyrhynchos, 0.35 for C. melanopterus, 0.44 for T. obesus). 

Regression analyses revealed that the models tended to overestimate 
shark abundance when none were present in the video and underesti
mate shark abundance when many were present (Fig. 2). While regres
sion intercepts were all statistically significant, the value were close to 
zero (<0.05 for video clips, <0.7 for full hour videos). This suggests that 

the models occasionally predicted sharks when none were observed by 
biologists, resulting in false positive detections especially in data-poor 
full-hour videos. Regression slopes were consistently lower than one, 
indicating that the models tended to identify fewer sharks than observed 
by biologists, particularly when shark abundance was high. Pooling all 
species, slopes were >0.7, implying that when 6–7 sharks were observed 
by biologists in a given frame, the deep-learning models tended to miss 
1–2 on average. Despite these challenges, the accuracy of our models in 
predicting MaxNs remained high with the video clip dataset, reaching 
values of 0.95, 0.99, and 0.94 for C. amblyrhynchos, C. melanopterus, and 
T. obesus, respectively (Fig. 2 and Fig. 3). Accuracies were relatively 
lower when using the full-hour video dataset (0.53, 0.77, 0.76 for 

Fig. 1. Boxplot representations of precision, recall and F-measure metrics obtained for the 5 CNN models build through cross-validation. The results obtained on 
models trained with only the 3 common shark species of interest are in blue, and the results obtained with models trained on 27 species are shown in green. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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C. amblyrhynchos, C. melanopterus, and T. obesus, respectively). The most 
challenging issues in our method were images with small/far away in
dividuals in the background (Fig. 4 A), individuals with a high degree of 
torsions when circling around the bait (Fig. 4 B) or few identifiable 
features (Fig. 4 C). 

3.3. Improving shark abundance estimation with semi-automatic 
processing 

The comparison of fully-automated (Supp. Table 2) and semi- 
automated predictions (Supp. Table 3) demonstrated notable enhance
ments in results. Precision scores increased from 0.76 
(C. amblyrhynchos), 0.58 (T. obesus), and 0.23 (C. melanopterus) to 1, 

eliminating all misclassifications. Similarly, recall improved for all three 
species, with increases from 0.90 to 0.93, 0.46 to 0.75, and 0.52 to 0.69, 
respectively. These improvements in precision and recall translated into 
a substantial enhancement in F-measure, with increments of +0.14, 
+0.34, and + 0.50, resulting in semi-automated F-scores ranging from 
0.82 to 0.97 (Table 2). 

4. Discussion 

Our study aimed to evaluate the effectiveness of Convolutional 
Neural Networks (CNNs) in extracting ecologically significant indicators 
from Baited Remote Underwater Video Stations (BRUVS). Specifically, 
we focused on assessing their efficiency in extracting MaxN, a widely 

Fig. 2. Linear regressions between MaxN shark abundance manually observed by biologists and MaxN automatically predicted by our deep-learning models. The 
dotted line represents a perfect prediction of MaxN, e.g. x = y. On the left are the short clips from Testingclips, on the right the 60-min videos from Testingstations. 

S. Villon et al.                                                                                                                                                                                                                                   



Ecological Informatics 80 (2024) 102499

6

used abundance proxy metric employed by biologists to evaluate fish 
community structure. We conducted a comparative analysis between a 
fully automated and a semi-automated method, with manual annotation 
of MaxN for shark abundance. Our findings indicate that the fully 
automated method demonstrated high accuracy on dense data, with 
more varied results on 1-h videos containing sparse data. However, in 
both cases, strong correlations were observed between predicted MaxNs 
and human annotations for the three studied shark species. Additionally, 
the semi-automated method exhibited excellent performances, 
achieving F-measures up to 0.97 for shark detection and identification. 
The semi-automated approach holds the potential to significantly reduce 
the video processing workload for biologists, while still delivering high- 
quality biodiversity and abundance measurements. We selected the 
Faster R-CNN as the backbone architecture for our proposed method. To 
date, this architecture is still the best all-round object detector and 
classifier. While others, such as Single Shot Detector (SSD) and You Only 
Look Once (Yolo) are faster, the Faster R-CNN still produced better ac
curacy results (Bose and Kumar, 2020; Kaarmukilan et al., 2020; Lee 
et al., 2021). Nevertheless, it's important to highlight that this archi
tecture is adaptable and can be fine-tuned with alternative layers, such 
as a regression layer, or memory layers. The field of object detection and 
identification in videos is dynamically evolving, witnessing continuous 
advancements at a swift pace. To ensure the adaptability and contem
poraneity of our proposed method, we aim in the future to incorporate 
the latest techniques, particularly harnessing state-of-the-art attention 

mechanisms (Vaswani et al., 2017). Moreover, recent technological 
strides in time series processing offer promising avenues for refinement. 
Techniques such as contrastive representation distillation (Tian et al., 
2020), federated distillation learning (Xing et al., 2021), long short-term 
memory (Sepp and Jurgen, 1997), and temporal feature network (Xiao 
et al., 2021) are among the innovative approaches in this domain. 
Methodologies such as few-shot/one shot learning and adaptative losses 
may also improve the models. Such methods may be explored to effi
ciently discriminate fish with few training data, such as the tiger shark 
Galeocerdo cuvier or the silvertip shark Carcharhinus albimarginatus. The 
integration of these methodologies carries the potential to enhance ac
curacy metrics and better exploit the temporal dimension of videos. 

Our approach mimicked the way humans estimate fish biodiversity 
and abundance from BRUVS video stations, which involves manually 
detecting, identifying, and counting fish. Manual annotation allows 
ecologists to calculate MaxN standard abundance measurements. How
ever, MaxN measurements not only take time, they also produce biased 
abundance estimates when the number of fish is >20 and the screen is 
saturated (Conn, 2011; MacNeil et al., 2020). On the contrary, auto
mated methods not only offer instantaneous and effortless measure
ments but also have the capacity to provide unbiased fish abundance 
estimates, such as MeanCount. Unlike MaxN, MeanCount represents the 
mean number of fish per frame, eliminating the saturation bias. How
ever, calculating MeanCount necessitates numerous observations for 
each species in a video, escalating the cost of annotation and 

Fig. 3. Shark correctly detected an identified in complexes situations such as high degree of torsions and few visual features due to fish hiding each other and being 
partially out of the camera recording. 
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Fig. 4. Examples of shark detection or identification issues resulting in important differences between predicted MaxN and human observation.  
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underscoring the importance of an automatic method capable of 
counting each species in each frame (a task nearly impossible to 
accomplish by human annotators). In addition to existing metrics, CNN 
detection and counting open avenues for novel indicators like species co- 
occurrence (i.e. species appearing together in a frame), species avoid
ance (i.e. species never appearing in the same frame), order of species 
appearance on videos, time spent by species on screen, etc. Time series, 
particularly, exemplify information that cannot be manually extracted 
given the time required to identify each fish of each species in each 
frame over hours of videos. Without a doubt, these novel AI-generated 
indicators would be immensely valuable to biologists, potentially 
revealing new insights into ecosystem functioning. Furthermore, such 
methods are applicable to all types of videos, fixed or moving, such as 
transects and diver-operated BRUVS. 

5. Conclusion 

Our study proved the effectiveness of Convolutional Neural Net
works (CNNs) in extracting ecologically significant indicators from 
Baited Remote Underwater Video Stations (BRUVS). As for now, semi- 
automated methods, as well as automated MeanCount, could be used 
transitionally until fully automated methods accounting for the speci
ficities of marine ecosystems can provide usable results for ecologists. 
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