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Abstract
Fertilization in Arabidopsis (Arabidopsis thaliana) is a highly coordinated process that begins with a pollen tube delivering the 2 
sperm cells into the embryo sac. Each sperm cell can then fertilize either the egg or the central cell to initiate embryo or endo
sperm development, respectively. The success of this double fertilization process requires a tight cell cycle synchrony between 
the male and female gametes to allow karyogamy (nuclei fusion). However, the cell cycle status of the male and female gametes 
during fertilization remains elusive as DNA quantification and DNA replication assays have given conflicting results. Here, to 
reconcile these results, we quantified the DNA replication state by DNA sequencing and performed microscopic analyses of 
fluorescent markers covering all phases of the cell cycle. We show that male and female Arabidopsis gametes are both arrested 
prior to DNA replication at maturity and initiate their DNA replication only during fertilization.
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Introduction
Sexual reproduction in flowering plants involves key devel
opmental phases that first generate genetically distinct hap
loid spores during meiosis (Kawashima et al. 2014). After 
several rounds of division, the male and female spores differ
entiate into 2 male gametes (sperm cells) within a pollen 
grain and 2 female gametes (egg cell, central cell) inside 
an embryo sac. During double fertilization, 1 sperm cell 
fuses with the egg cell to give rise to the embryo, while 
the second fuses with the diploid central cell to form the 
endosperm. This developmental mechanism, which is typ
ical of flowering plants, requires a tight synchronization of 
the cell cycle between the male and the female gametes 
to ensure successful fusion.

Quantification of DNA content using 4,6-diamidino- 
2-phenylindole (DAPI) staining has suggested that sperm 
cells are arrested during DNA replication in Arabidopsis 
(Arabidopsis thaliana) pollen grains (Friedman 1999; 
Rotman et al. 2005; Kim et al. 2008) and reach the G2 phase 
only at fertilization (Friedman 1999). However, recent experi
ments using 5-ethynyl-2′-deoxyuridine (EdU) staining to de
tect active DNA replication in pollen grains and in growing 
pollen tubes of Arabidopsis failed to detect any labeling con
sistent with a cell-cycle arrest prior to DNA replication in 
sperm cells (Liu et al. 2021). In addition, the phase of cell- 
cycle arrest of female gametes (egg cell and central cell) 
has remained largely unexplored. Measurements of nuclear 
DNA content suggested that both female gametes are ar
rested prior to DNA replication (Mogensen et al. 1995; 

https://doi.org/10.1093/plphys/kiad512 PLANT PHYSIOLOGY 2024: 194: 412–421

https://orcid.org/0000-0001-8460-7018
https://orcid.org/0009-0000-2824-2923
https://orcid.org/0000-0002-0620-2442
https://orcid.org/0000-0001-8409-761X
https://orcid.org/0000-0002-8810-1281
https://orcid.org/0000-0001-7116-9821
https://orcid.org/0000-0001-8905-8222
https://orcid.org/0000-0001-8948-9102
https://orcid.org/0000-0002-2679-1328
https://orcid.org/0000-0002-3982-3843
https://orcid.org/0000-0002-3609-8260
https://orcid.org/0000-0001-7178-9748
https://orcid.org/0000-0002-6106-4564
mailto:yoav.voichek@gmi.oeaw.ac.at
mailto:mathieu.ingouff@ird.fr
https://academic.oup.com/plphys/pages/General-Instructions
https://creativecommons.org/licenses/by/4.0/


Mogensen and Holm 1995; Tian et al. 2005; Sukawa and 
Okamoto 2018). Overall, the cell cycle state of the male 
and female gametes during fertilization is still unclear as 
the current methods employed, such as DNA quantification 
and DNA replication assays, have given inconsistent results 
(Friedman 1999; Rotman et al. 2005; Kim et al. 2008; Liu 
et al. 2021).

Here, to assess the cell cycle status of the male and female 
gametes during the fertilization, we combined 2 strategies as 
follows: DNA sequencing (DNA-Seq) and microscopic exam
ination of fluorescent cell-cycle markers. Our findings reveal 
that the cell cycle of both male and female Arabidopsis ga
metes is blocked prior to DNA replication, and that DNA rep
lication is triggered only during fertilization.

Results
Mature sperm cells are arrested in a pre-replication 
phase until fertilization
As a first step, we adapted a DNA-Seq approach (Voichek et al. 
2016) that can detect even subtle DNA replication signals 
(Fig. 1A). To demonstrate the ability of the DNA-Seq to detect 
DNA replication in Arabidopsis, we performed a control ex
periment where suspension cells were enriched for G1 or S 
phase (Supplemental Fig. S1). Genome-wide coverage in S- 
vs. G1-phase cells showed an increase along chromosome 
arms, as expected from early replicating regions (Fig. 1B, gray 
curve). Next, we applied our DNA-Seq approach to sperm 
and vegetative nuclei isolated from mature pollen grains using 
fluorescence-activated cell sorting (FACS) (Kawashima et al. 
2014). We first compared the genome-wide coverage of 
purified sperm nuclei with that of vegetative nuclei or root 
nuclei. In contrast to our control experiments, the coverage 
was uniform along the chromosomes (Fig. 1B, green curve; 
Supplemental Fig. S2). Although the genome-wide coverage 
pattern showed no evidence of DNA replication, a subpopula
tion of sperm cells may still be replicating their DNA. This 
would be evident as a weaker signal of DNA replication 
when compared with previously published replication data 
from Arabidopsis (Concia et al. 2018). However, we observed 
no correlation with published profiles of DNA replication tim
ing, as opposed to in the control experiment (Fig. 1C). We also 
assessed this possibility by sorting 3 subpopulations of sperm 
cells based on increasing propidium iodide (PI) staining, which 
might reflect increased DNA replication (Supplemental Fig. 
S3A to C). Regardless of the PI fluorescence, sperm nuclei 
never showed a signal of DNA replication in our DNA-Seq 
measurements (Fig. 1D). Lastly, we also ruled out the possibil
ity that profiles of DNA replication timing in sperm cells might 
differ from that published for other cell types. Genomic 
DNA-replication profiles are assumed to be continuous, since 
close-by regions should replicate at similar times. Therefore, 
autocorrelation of the coverage between near-by positions 
should correlate if DNA is replicating, irrespective of the replica
tion order. In contrast to the synchronized cells, no 

autocorrelation was observed for sperm cells (Fig. 1E; 
Supplemental Fig. S3D).

Thus, our genome-wide analysis could not detect any DNA 
replication in sperm, contrary to published results (Friedman 
1999; Rotman et al. 2005; Kim et al. 2008). Our analyses sug
gest that DAPI-based measurement of DNA content is not a 
reliable method to assess cell cycle phase in sperm nuclei, 
probably due to their peculiar chromatin structure (Liu 
et al. 2021). However, direct measurements using DNA se
quencing could not determine directly if sperm cells in ma
ture pollen were arrested in G1 or G2 phase.

Given this, we sought to determine when sperm cells do 
commence DNA replication. We selected Arabidopsis lines 
expressing fluorescent markers of key components of the 
G1, S, and G2/M phases fused with a gene encoding a fluor
escent protein. Confocal analyses of root cells combining 
markers of G1 and S phases, of S and G2/M phases, and of 
the different S-phase markers revealed dynamics and sub
nuclear patterns that can trace distinct phases of the cell cy
cle (Supplemental Fig. S4). We therefore analyzed their 
pattern in sperm cells in mature pollen grains (Fig. 2A to 
K). We did not detect fluorescence for ORC1a-GFP, a compo
nent of the origin recognition complex (ORC), (Fig. 2B) in 
sperm cell nuclei whereas ORC1b-GFP (Fig. 2C), which is de
graded at the G1/S transition in proliferating cells, showed a 
punctate pattern consistent with that of meristematic and 
early differentiating root tip cells (Vergara et al. 2023). 
Likewise, ORC2-GFP, which is also acting in G1, was detected 
in sperm nuclei (Supplemental Fig. S5A). The Chromatin li
censing and DNA replication factor 1 (CDT1a), another com
ponent of the pre-replication complex (pre-RC), that 
accumulates in G1 and is degraded at the G1/S transition 
(Desvoyes et al. 2019), was detected in sperm cells 
(Fig. 2D). Proliferating cell nuclear antigen (PCNA) and 
DNA ligase 1 (LIG1) are essential DNA replication factors 
(Moldovan et al. 2007; De Sanchez et al. 2012). Both factors 
form dotted foci during early replication and speckled foci 
during late replication but distributed uniformly in the nu
cleus in G1 and G2 phases in Arabidopsis (Yokoyama et al. 
2016) (Supplemental Fig. S4). This triphasic pattern repre
sents highly resolute visual information for the progression 
of S phase. Only a uniform fluorescence signal could be ob
served in sperm cells from plants expressing either of the 2 
tagged PCNA genes present in the Arabidopsis genome 
(Fig. 2, E and F) or LIG1-GFP (Fig. 2G) (Andreuzza et al. 
2010), suggesting a cell-cycle arrest in the G1 phase prior 
to DNA replication. To expand on the above observations, 
we analyzed the dynamics of the 4 B1-type cyclins (CYCB1) 
present in the Arabidopsis genome, which mark the G2/M 
phase (Weimer et al. 2016). As reported previously, 
CYCB1;1 and CYCB1;2 reporter lines showed no expression 
in sperm cells (Brownfield et al. 2009; Zheng et al. 2011) 
(Fig. 2H to I). Reporter lines of CYCB1;3 and CYCB1;4 which 
both include the upstream region of the gene up to the cod
ing sequence encoding the G2/M destruction box fused to 
the GFP gene (Ubeda-Tomás et al. 2009; Weimer et al. 

The cell cycle status of Arabidopsis gametes PLANT PHYSIOLOGY 2024: 194; 412–421 | 413

http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiad512#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiad512#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiad512#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiad512#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiad512#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiad512#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiad512#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiad512#supplementary-data


2016) also showed no detectable fluorescence (Fig. 2, J and 
K). These analyses suggest that sperm chromatin is not repli
cated at anthesis but is arrested in late G1, in agreement with 
our DNA-Seq analysis. Interestingly, none of the markers 
tested were detected in the vegetative cell with exception 
of a strongly uniform nuclear fluorescence of LIG1-GFP 
(Fig. 2, C and G), and a faint signal of ORC1b-GFP. Our 
data are consistent with the vegetative cell having exited 
the cell cycle and being in a quiescent state (Berger and 
Twell 2011).

Next, we searched for PCNA1-sGFP replicating foci in 
sperm cell nuclei from the time of pollination until their fu
sion with the female gametes at karyogamy (Fig. 2A). To 

facilitate these observations, we crossed wild type pistils 
with pollen from plants expressing PCNA1-sGFP and fluores
cent histone 1 (H1-1-RFP) heterochromatin markers 
(Rutowicz et al. 2019) (except for Fig. 2N where only 
PCNA1-sGFP marker was used). Sharp heterochromatin 
foci of H1-1-RFP were detectable during all phases of sperm 
cell migration (Fig. 2L, M, O, and P). In contrast, only a diffuse 
fluorescent pattern of PCNA1-sGFP was observed in sperm 
cell nuclei during pollination and pollen tube growth 
(Fig. 2L to M). Semi in vivo pollination of wild type pistils 
with pollen grains expressing PCNA1-sGFP or ORC1b-GFP 
and CDT1a-RFP further confirmed that sperm DNA does 
not replicate during pollen tube growth (Supplemental 
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Figure 1. Quantification of DNA replication in sperm nuclei by DNA-Seq. A) Replicated regions yield double the coverage in DNA-Seq relative to 
non-replicated regions. Black line, DNA; green line, sequence reads; 1x, non-replicated; 2x, replicated regions. B) DNA-Seq coverage along chromo
some 3 in sperm vs. vegetative nuclei (green) or of cells enriched for S vs. G1 phase (gray). Coverage is averaged over 100 kbp bins and ratios are log2 
transformed; shaded gray denotes the centromere position. C) Correlation between replication timing, as measured by EdU enrichment from early 
S-phase cells (Concia et al. 2018), to DNA-Seq coverage in sperm vs. vegetative nuclei (left) or of cells in S phase vs. G1 phase (right). Each dot is an 
average of 10 kbp bin in the genome, and Pearson’s correlation coefficient values are shown. D) Correlation of DNA-Seq coverage to replication 
timing as in C), for the 3 fractions of sperm nuclei sorted based on PI staining intensity, from lowest (top) to highest (bottom). E) 
Autocorrelation of the genomic signal to itself for different distances, for early S vs. G1 phase enriched with EdU (Concia et al. 2018) (black), 
S vs. G1 phase quantified with DNA-Seq (gray) and sperm vs. vegetative nuclei quantified with DNA-Seq (green). The genome was averaged 
over 10 kbp bins. All next-generation sequencing data used in this figure are listed in Supplemental Table S1.
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Fig. S6, A and B). PCNA1-sGFP foci were still not observed 
upon release and migration of the sperm cells within the em
bryo sac (Fig. 2, O and P). Although PCNA1-sGFP fluores
cence becomes difficult to detect at plasmogamy (the 
plasma membrane fusion of gametes), we did not distinguish 
any foci in the sperm cells under our imaging conditions in
dicating that sperm cells are delivered in the G1 phase. In 
conclusion, our results suggest that sperm cells are arrested 
in the G1 phase until they enter the ovules where they initi
ate DNA replication.

The mature egg cell and central cell are arrested in a 
pre-replicating phase and only start replicating at 
fertilization
Little is known about the cell-cycle arrest phase in the 2 types 
of female gametes: the egg cell and central cell. Gene expres
sion analyses of cell-cycle-related genes in transcriptomes of 
purified Arabidopsis female gametes (Zhao et al. 2019; Susaki 
et al. 2021) showed no enrichment of phase-specific genes 
(Supplemental Table S2). Female gametes are limited in 

number and form deep within the pistil, and therefore, isolat
ing enough for DNA-Seq is challenging. We therefore ana
lyzed the expression pattern of our set of cell-cycle markers 
in the female gametes (Fig. 1A; Fig. 3). Of all the G1 markers, 
only a weak fluorescence could be detected for ORC1b-GFP 
and CDT1a-GFP in the central cell (Fig. 3A to C; 
Supplemental Fig. S5). All 3 S-phase markers (LIG1-GFP, 
PCNA1-sGFP, and PCNA2-TagRFP) accumulated nuclear 
fluorescence in both gametes without any detectable foci 
(Fig. 3D to F). In addition, G2/M markers were not detected 
in the female gametes (Fig. 3, G to J) (Ingouff et al. 2006; 
Johnston et al. 2008; Guo et al. 2016). To complement these 
observations, we analyzed the pattern of 2 cell cycle fluores
cent sensors in the mature female gametes (Echevarría et al. 
2021). The Plant Cell Cycle Indicator (PlaCCI) (Desvoyes et al. 
2020) combines 3 genetic fusions—CDT1a-eCFP, CYCB1; 
1-YFP, and H3.1-mCherry, each of which indicate the G1, 
G2/M, and G1-to-G2/M phases, respectively. Similar to our 
previous observations (Fig. 3), we only observed a weak signal 
of CDT1a-eCFP in the central cell using the PlaCCI markers 
(Supplemental Fig. S7). The second fluorescent marker 
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Figure 3. The mature egg cell and central cell are arrested in a different phase of the cell cycle before DNA replication and only start replicating at 
fertilization. A to J) Expression pattern of cell-cycle phase markers in the mature female gametes. The G1-phase marker ORC1a-GFP A) is not ex
pressed in the female gametes. A weak fluorescence (green) of the G1 phase marker ORC1b-GFP B) and the pre-replication marker CDT1a-GFP 
(green) is detected specifically in the central cell nucleus C). In contrast to fluorescent nuclear foci formed during the S phase (Yokoyama et al. 
2016) (Supplemental Fig. S1), a diffuse fluorescence of the 3 S-phase markers PCNA1-sGFP (green) D), PCNA2-TagRFP (red) E), and LIG1-GFP (green) 
F) markers is detected in both female gametes. No expression is detected for all the 4 G2/M markers CYCB1;1-GFP G); pCYCB1;2-GFP H); 
pCYCB1;3-GFP I); and pCYCB1;4-GFP J). The signals around the central cell nucleus and in the integuments correspond to autofluorescence 
(red) in panels A to D) and F to J). Further details on the dynamics of these cell-cycle markers can be found in Supplemental Fig. S1. Number 
of observations n > 25 for each marker. K to O) Dynamics of the PCNA1-sGFP subnuclear pattern in the developing zygote and endosperm. 
The egg cell and the central cell are fertilized by any of the 2 sperm cells to generate a zygote and an endosperm, respectively. K) The unfertilized

(continued) 
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reports cells in S-G2-M (R Jones et al. 2017) and contains a 
VENUS fluorescent protein fused to a destruction box (DB) 
sequence from Arabidopsis CYCB1;1 placed under the con
trol of a histone H4 promoter. No fluorescence was detected 
in the mature embryo sac (Supplemental Fig. S7). We con
clude that the central cell is arrested in a pre-replication 
phase. Because none of the markers we used were inform
ative in the egg cell, we propose that it is in quiescent state 
(G0 phase). In contrast to other eukaryotes (Adikes et al. 
2020; Pulianmackal et al. 2021), no specific G0 phase markers 
have been described so far in plants.

To track the release of the cell-cycle block in female ga
metes, we performed a time-course fertilization analysis of 
self-pollinated plants expressing PCNA1-sGFP using the pre
cise developmental stages previously described (Faure et al. 
2002). During plasmogamy which takes place about 1 h after 
release of the gametes in the embryo sac (Faure et al. 2002), 
speckled foci of PCNA1-sGFP were already evident in the 
elongated central cell nucleus but not in the egg cell nucleus 
(Fig. 3K). This PCNA1 pattern indicates late S phase that lasts 
approximately 1 to 1.5 h in somatic cells (Yokoyama et al. 
2016). Early S-phase events were not detected in female ga
metes because the dotted pattern of PCNA1-GFP produces 
much less resolvable foci than speckles. Overall, our observa
tions suggest that DNA replication in the central cell occurs 
upon sperm entry as previously reported (Aw et al. 2010). At 
a later stage, the fertilized central cell nucleus contained 2 
nucleoli (stage F2) (Faure et al. 2002) and showed a diffuse 
PCNA1-sGFP pattern. This observation is consistent with 
the detection of the G2/M marker CYCB1;2-YFP only 1 h 
after fertilization in the endosperm nucleus (Maruyama 
et al. 2015). Events of DNA replication in the egg cell upon 
sperm cell discharge and onward could not be obtained 
due to a limited expression of PCNA1-GFP (Fig. 3D, K, L, 
and M). A uniform to speckled pattern in the elongated zyg
ote became apparent only once the endosperm reached the 
4-to-8 nucleate stage (Fig. 3M to O; Supplemental Fig. S8). 
EdU staining experiments also indicated that replicated 
DNA was only detectable in zygotes accompanied by a 4 or 
8-nucleate endosperm (Liu et al. 2021).

Discussion
In this study, we confirm recent observations obtained by 
EdU staining (Liu et al. 2021) that mature male gametes in 
Arabidopsis are arrested in the G1 phase and further show 
that this block persists until their delivery into the ovule. 

Similarly, both female gametes are arrested in a pre- 
replicated state: the central cell in G1 phase and the egg 
cell in the G0 phase. The cell-cycle block is released upon fer
tilization for both male and female gametes. However, this re
lease occurs asynchronously between the female gametes, as 
DNA replication occurs prior to karyogamy in the central cell 
but not in the egg cell, suggesting distinct underlying mo
lecular mechanisms. This is further supported by the obser
vation of autonomous proliferation in the central cell but 
not in the egg cell in the absence of fertilization in 
Polycomb group and cyclin-dependent kinase A1 (cdka;1) mu
tants (Guitton et al. 2004). Simonini et al. (2023) recently 
proposed a molecular mechanism that specifically unlocks 
central cell proliferation at fertilization. These results suggest 
that distinct, yet unknown, mechanisms operate in the egg 
cell to enable the initiation of DNA replication.

While a G1 arrest has been observed in Arabidopsis sperm 
cells (this study, Liu et al. 2021) and Torenia sperm cells, at 
anthesis (Liu et al. 2021), it is unclear if this is a universal trait 
among flowering plants. Interestingly, some flowering plants 
release bicellular pollen grains at anthesis and generate the 2 
sperm cells exclusively during pollen tube growth. We have 
observed that Arabidopsis sperm cells remain in the G1 
phase even during their transport in the pollen tube. This 
conclusion is likely to apply to bicellular angiosperms where 
there would not be sufficient time to generate the sperm 
cells and initiate their replication prior to fertilization. 
Future studies will determine whether a consistent 
G1-phase block is present in male gametophytes across all 
flowering plants.

Materials and methods
Plant materials and growth conditions
All Arabidopsis (A. thaliana) plants described in this study 
were in the Col-0 background (except when mentioned). 
The following reporter lines were described previously: 
pORC2-ORC2-GFP (Collinge et al. 2004) (Ler accession), 
pORC1a-ORC1a-GFP and pORC1b-ORC1b-GFP (Vergara 
et al. 2023), pLIG1-LIG1-GFP (Andreuzza et al. 2010), 
pHTR10-HTR10-Clover (Kawashima et al. 2014), pPCNA1- 
PCNA1-sGFP (Yokoyama et al. 2016), pH4-DB-CYCB1;1- 
Venus (R Jones et al. 2017), pCDT1a-CDT1a-GFP and 
pCDT1a-CDT1a-RFP (Desvoyes et al. 2019), pH1-1-H1-1-RFP 
(Rutowicz et al. 2019), and PlaCCI (Desvoyes et al. 2020). 
Reporter lines for all 4 CYCB1 genes were provided by Arp 
Schnittger (Weimer et al. 2016). After a 4 d-stratification in 

Figure 3. (Continued) 
egg cell nucleus retains a homogeneous nuclear fluorescence. The arrow indicates 1 sperm cell reaching the egg cell. Speckled foci of fluorescence 
(arrowheads) are detected in the central cell nucleus. L) The zygote and the forming endosperm with 2 nucleoli, both show a uniform nuclear fluor
escence. M) The elongating zygote retains a uniform nuclear fluorescence through the 2-nucleate endosperm. N,O) A speckled nuclear pattern 
becomes detectable in the elongated zygote through the 4-nucleate and 8-nucleate endosperm. A complete view of panels N) and O) is shown 
in Supplemental Fig. S8. Number of observations n = 5 K), n = 6 L), n = 2 M), n = 5 N,O). ccn, central cell nucleus; ecn, egg cell nucleus; elzn, elon
gated zygote nucleus; en, endosperm nucleus; zn, zygote nucleus. Scale bars, 15 µm A to J) and 10 µm K to O).
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the dark, seeds were germinated and grown on soil in a growth 
chamber under long days at 20 °C (16-h light/8-h night). For 
the purpose of collecting pollen for FACS, seeds were sown 
in 60 cm × 40 cm trays with 6 cm of soil (4:1 Gramoflor 
2006:perlite), stratified for 4 d at 4 °C in the dark, and then 
moved to 21 °C/16 °C with 60% humidity, 16-h light/8-h night.

Cloning and plant transformation
A PCNA2 genomic fragment comprising 412 bp upstream of 
the ATG until the last codon before the termination codon 
of the gene flanked with attL Gateway recombination 
sites was generated by gene synthesis (Genscript). The 
pPCNA1-PCNA1-TagRFP reporter construct was obtained 
after a LR Clonase II reaction using the pPCNA1-PCNA1 entry 
vector (Yokoyama et al. 2016) and the destination vector 
pGWB559 (Nakagawa et al. 2007). Similarly, the pPCNA2- 
PCNA2-TagRFP and pPCNA2-PCNA2-CFP constructs were 
generated using pGWB459 and pGWB543 destination vec
tors (Nakagawa et al. 2007), respectively.

The transgenic plants were generated by floral dipping 
(Clough and Bent 1998) and selected on MS solid medium 
(Duchefa) with the appropriate selective agent.

Sample preparation and microscopy
Observations of the different reporter lines during male and 
female gametogenesis were obtained from freshly dissected 
anthers and carpels. Self-pollinated pistils expressing the 
PCNA1-sGFP marker (Yokoyama et al. 2016) or pistils polli
nated with the PCNA1-sGFP and H1-1-RFP (Rutowicz et al. 
2019) markers were dissected and mounted on ½ MS supple
mented with 0.4% w/v Phytagel. All the steps ranging from 
pollination, growth of the pollen tubes in the pistil up to 
the double fertilization process, and consequent develop
ment of the fertilization products (zygote, endosperm) 
were reconstituted from a series of pistils dissected at distinct 
time after pollination (Ingouff et al. 2007). Semi–in vivo pol
len tube growth was performed as described before 
(Palanivelu and Preuss 2006). Wild type pistils were polli
nated with pollen grains expressing either the PCNA1-sGFP 
marker or a combination of ORC1b-GFP and CDT1a-RFP 
and cut at the end of the style. The pollinated pistils were in
cubated on a pollen tube germination medium at 25 °С for 
4 h. Pollen tube growth was observed 4 to 6 h after pollin
ation. Imaging of cell cycle reporters in roots was performed 
as previously described (Ingouff et al. 2017).

All the images were obtained using a laser scanning con
focal microscope (Zeiss LSM880 Fast Airyscan) equipped 
with a 40X/1.1 water immersion objective and an Airyscan 
detector, in the super-resolution acquisition mode. 
Fluorescence was collected using the following settings for 
CFP (excitation 405 nm; emission band pass 420 to 
480 nm), for GFP (excitation 488 nm; emission band pass 
495 to 550 nm), for RFP (excitation 561 nm; emission band 
pass 570 to 620 nm), and for autofluorescence (excitation 
488 nm; emission long pass 570 nm). Image contrast and 

brightness were adjusted with Adobe Photoshop, and pro
cessed images were assembled in Adobe Illustrator.

Pollen collection and FACS
Pollen was harvested from open flowers using the vacuum suc
tion method (Johnson-Brousseau and McCormick 2004), using 
150 μm, 60 μm, and 10 μm mesh filters and then flash frozen 
and kept in −80 °C. Sperm and vegetative nuclei were isolated 
by FACS following the previously described method (Borges 
et al. 2012). Collected pollen was hydrated by resuspension 
in an ice-cold Galbraith buffer (45 mM MgCl2, 30 mM 

Tri-Sodium Citrate, 20 mM MOPS pH 7.0, 0.1% Triton X-100) 
with added 72 mM ß-mercaptoethanol and 1× complete pro
tease inhibitor cocktail (Roche) (Galbraith et al. 1983). Pollen 
suspension was then centrifuged for 1 min at 10,000, and 50 μl 
of 100 μm glass beads were added and vortexed for 4 min to 
disrupt pollen walls. The suspension was filtered through a 
10 μm nylon mesh to retrieve the sperm and the vegetative 
nuclei. Nuclei were then stained with SYBR Green (S9430, 
Sigma-Aldrich) or propidium iodide (P4170, Sigma-Aldrich).

A BD FACS AriaTM III Cell Sorter was used to sort the nu
clei suspension. The sorter was operated according to stand
ard configuration, utilizing a 70 μm ceramic nozzle with a 
1×Phosphate-Buffered Saline solution flowing at a constant 
20 psi pressure. Sperm and vegetative nuclei were collected 
in 2 different tubes. For 2 identical replicates of the experi
ment with at least 1 wk difference between growth cycles, 
HTR10-Clover sperm nuclei were further separated in the 
FACS to 3 groups based on their propidium iodide fluores
cence. The different experiments and sequenced samples 
are summarized in Supplemental Table S1.

S-phase synchronization and release of MM2d cell 
suspension culture
MM2d cells from A. thaliana (Ler) were obtained from the 
lab of Crisanto Gutierrez and were previously described 
(Menges and Murray 2002, 2006). Cells were grown at 
room temperature in the dark shaking at 130 rpm and sub
cultured every week by adding 3 ml of the old culture into 
50 ml fresh MSS media (1× MS, 3% sucrose 0.5 mg/l NAA, 
0.05 mg/l kinetin). For cell cycle synchronization, 1-wk-old 
MM2d cells were diluted in new MSS media in a 1:5 ratio. 
After taking a sample for flow cytometry analysis, 4 μg/ml 
of Aphidicolin (Sigma) was added to the diluted culture for 
the cell-cycle block. Cells were incubated for 24 h with shak
ing at 130 rpm at room temperature in the dark. After 24 h, a 
sample was taken for flow cytometry analysis and 40 ml of 
cells were harvested in liquid nitrogen. Cells were washed 
with MMS media to remove the Aphidicolin and were resus
pended in media to resume the cell cycle synchronously. 
After 90 min, when cells are enriched for S phase, a sample 
was taken for flow cytometry analysis, and another 40 ml 
were harvested in liquid nitrogen. The experiment was 
done in 2 identical biological replicates, with growth cycles 
at least a week apart. For flow cytometry analysis, samples 
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were chopped in Galbraith buffer (45 mM MgCl2, 30 mM 

Na-citrate, 20 mM MOPS pH 7.0, 0.1% Triton X-100) and fil
tered through a 40 μm nylon mesh. Nuclei were stained 
with 4 μg/ml DAPI and analyzed on the Penteon flow cyt
ometer. FACS profiles were analyzed using flowCore 
(Hahne et al. 2009). To harvest the samples of G1 and 
90 min following release into S phase, cells were filtered using 
a cell strainer, dried with filter sheets, and then flash frozen in 
liquid nitrogen. To break the cells, Precellys Zirconium oxide 
beads were added to the frozen cell pellets. Cells were dis
rupted by shaking 3 times at 5800 rpm for 20 s using the 
Precellys Evolution machine. Cells were frozen in liquid nitro
gen between each disruption. DNA extraction, sonication of 
DNA, and construction of libraries for next-generation se
quencing were done as for the sperm and vegetative nuclei.

Isolation of DNA from nuclei and library preparation
Genomic DNA was extracted using QIAamp DNA Micro Kit 
(56304) following the provider “Small Volumes of Blood” 
protocol. DNA was diluted to 10 ng in 50 μl of an elution buf
fer (10 mM Tris-HCl, pH 8.0) in microTube AFA Fiber tubes 
(520052). Samples were sonicated in Covaris E220 programed 
to 80 s/10 Duty/140 PIP/200 cycles. A total of 25 μl of the 
sonicated DNA was used for library preparation using 
the NEBNext Ultra II DNA Library Prep Kit for Illumina 
(E7645S), with a final amplification of 12 PCR cycles. 
Libraries were sequenced on Illumina Novaseq or Nextseq 
machines, with at least 10 million paired-end reads per 
library.

Processing of DNA-Seq libraries
All next-generation sequencing data used in this work were 
processed in the same way, including the previously pub
lished datasets. To avoid detecting effects attributed to tech
nical differences in sequencing mode and coverage, sequence 
reads were down-sampled to 107 paired-reads using seqtk 
v1.3 and trimmed to 50 bp for both R1 and R2 using Trim 
Galore v0.6.2 (–hardtrim5 50). Reads were then further 
trimmed using Trim Galore v0.6.2 (–paired –fastqc). Reads 
were then mapped to the TAIR10 genome using bowtie2 
v2.3.5.1 with default parameters (Langmead and Salzberg 
2012). Aligned reads were converted to indexed-sorted 
bam using samtools v1.10 (Danecek et al. 2021), and dupli
cate reads were filtered out using Picard v2.18.27 
MarkDuplicates option. Coverage per 10 kb or 100 kb bins 
of the genome were calculated using DeepTools v3.3.1 (-of 
bedgraph) (Ramírez et al. 2016). The procedure described 
above was wrapped in a Nextflow pipeline (Di Tommaso 
et al. 2017), and was uploaded to GitHub. Genomic coverage 
per sample per bin size was then normalized to the same to
tal signal and log2 transformed. Previously published data on 
genomic DNA from Col-0 roots (1001 Genomes Consortium 
2016) were downloaded from SRA, accession number 
SRR1945757, and data for early, middle, and late S-phase cells 
labeled with EdU along with G1-phase cells (Concia et al. 
2018) were downloaded from SRR3931891 to SRR3931900.

Accession numbers
All sequencing data were deposited to SRA under accession 
number PRJNA914255. Accession numbers for the men
tioned genes are as follows: CDT1a (At2g31270); CYCB1;1 
(At4g37490); CYCB1;2 (At5g06150); CYCB1;3 (At3g11520); 
CYCB1;4 (At2g26760); Histone1-1 (At1g06760); HTR10 
(At1g19890); LIG1 (At1g08130); ORC1a (At4g14700); ORC1b 
(At4g12620); ORC2 (At2g37560); PCNA1 (At1g07370); and 
PCNA2 (At2g29570).
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