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Abstract

The development of insecticide resistance in mosquitoes of public health importance has

encouraged extensive research into innovative vector control methods. Terpenes are the

largest among Plants Secondary Metabolites and have been increasingly studied for their

potential as insecticidal control agents. Although promising, terpenes are insoluble in water,

and they show low residual life which limits their application for vector control. In this study,

we developed and evaluated the performances of terpenoid-based nanoemulsions (TNEs)

containing myrcene and p-cymene against the dengue vector Aedes aegypti and investi-

gated their potential toxicity against non-target organisms. Our results showed that myrcene

and p-cymene showed moderate larvicidal activity against mosquito larvae compared to

temephos an organophosphate widely used for mosquito control. However, we showed sim-

ilar efficacy of TNEs against both susceptible and highly insecticide-resistant mosquitoes

from French Guyana, hence suggesting an absence of cross-resistance with conventional

insecticides. We also showed that TNEs remained effective for up to 45 days in laboratory

conditions. The exposure of zebrafish to TNEs triggered behavioral changes in the fish at

high doses but they did not alter the normal functioning of zebrafish organs, suggesting a

good tolerability of non-target organisms to these molecules. Overall, this study provides

new insights into the insecticidal properties and toxicity of terpenes and terpenoid-based for-

mulations and confirms that TNE may offer interesting prospects for mosquito control as

part of integrated vector management.

Introduction

Over the past decade, Aedes Borne Diseases (ABDs) such as dengue, zika, chikungunya, and

yellow fever have become a global concern due to their emergence or re-emergence [1]. These

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0293124 February 7, 2024 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Duarte JL, Duchon S, Di Filippo LD,

Chorilli M, Corbel V (2024) Larvicidal properties of

terpenoid-based nanoemulsions against the

dengue vector Aedes aegypti L. and their potential

toxicity against non-target organism. PLoS ONE

19(2): e0293124. https://doi.org/10.1371/journal.

pone.0293124

Editor: Pedro L. Oliveira, Universidade Federal do

Rio de Janeiro, BRAZIL

Received: June 3, 2023

Accepted: September 10, 2023

Published: February 7, 2024

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0293124

Copyright: © 2024 Duarte et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper.

https://orcid.org/0000-0002-7276-3686
https://orcid.org/0000-0002-6698-0545
https://orcid.org/0000-0003-0995-3257
https://doi.org/10.1371/journal.pone.0293124
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0293124&domain=pdf&date_stamp=2024-02-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0293124&domain=pdf&date_stamp=2024-02-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0293124&domain=pdf&date_stamp=2024-02-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0293124&domain=pdf&date_stamp=2024-02-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0293124&domain=pdf&date_stamp=2024-02-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0293124&domain=pdf&date_stamp=2024-02-07
https://doi.org/10.1371/journal.pone.0293124
https://doi.org/10.1371/journal.pone.0293124
https://doi.org/10.1371/journal.pone.0293124
http://creativecommons.org/licenses/by/4.0/


diseases pose a significant threat to over half of the world’s population, resulting in thousands

of deaths annually, mainly in the Americas, South-East Asia, and Western Pacific regions [2].

Beyond their direct impact on human health and well-being, ABDs may cause tremendous

economic impact [3, 4], recently estimated to be US$ 150 billion over the period 1970–2017

[5].

Aedes aegypti L. is the primary dengue vector, with a widespread distribution worldwide, a

high vectorial capacity, due to its close association with humans in urban settings [6]. Ae.
aegypti distribution has increased recently due to global changes [7] and it may be more preva-

lent in temperate regions such as Europe due to the presence of suitable conditions for estab-

lishment [8]. The strategies for effectively controlling Ae. aegypti essentially rely on

environmental management, community participation, and on the use of larviciding and spa-

tial spraying (in case of outbreaks) [9].

As far as chemical control is concerned, organic substances, such as pyrethroids, organo-

phosphates, and to a lesser extent insect growth regulators are mainly used. However, the

extensive and repeated use of those chemicals has caused the emergence and spread of insecti-

cide resistant mosquitoes worldwide [10]. For example, recent studies have shown an increas-

ing resistance of Ae. aegypti to pyrethroids [11–14] and organophosphates [15–17] due to the

presence of target site modifications (eg kdr mutations for pyrethroids) and increased detoxifi-

cation through the overexpression of P450, GST and esterase genes [18–20]. The occurrence of

“super” insecticide-resistant Ae. aegypti mosquitoes have even been reported in Southeast Asia

due to the presence of 3 different Kdr mutations in the same individuals [21]. This rapid and

global increase in Aedes resistance makes it more difficult to control field populations with

current public health pesticides and may potentially worsen the impact of ABDs worldwide.

Moreover, chemicals can be toxic for non-target organisms and the environment [22, 23], and

as such, they are facing increasing regulatory constraints and citizen aversions.

Therefore, there‘s an urgent need for more ecological, durable, and efficient approaches to

control ABDs [24]. Natural products show interesting prospects in vector control because they

are degraded more easily and are less harmful to the environment than conventional chemi-

cals, and they may contribute to insecticide resistance management in mosquitoes [25].

Among natural products, essential oils (EO) have been extensively studied because they con-

tain suitable active ingredients for the development of plant-based insecticides [26–29]. The

monoterpenes represent about 90% of the EO composition and are the main ones responsible

for larvicidal and repellent activities [30]. The P-cymene and myrcene are hydrocarbon mono-

terpenes that already showed high potential as larvicidal agents against Ae. aegypti [25, 31–34].

However, due to the lipophilic characteristic of the terpenes and their high volatility, they may

offer a limited efficacy against mosquitoes in a natural environment.

Consequently, nanoemulsions represent a promising tool for the encapsulation, protection,

and improved solubility of lipophilic bioactive components such as terpenes [35, 36]. Nanoe-

mulsions consist of two immiscible liquids and one or more stabilizers, usually surfactant

agents, that may ensure better stability and efficacy of these molecules in water environment.

Another useful property of nanoemulsions is the controlled release of the molecules; The pro-

cess of drug release from nanoemulsion entails the movement of the drug from the oil phase to

the surfactant layer and subsequently into the aqueous phase. As the solubilized drug diffuses

out of the oil, it encounters the surrounding water, leading to nanoprecipitation. This phe-

nomenon significantly increases the drug’s surface area [37].

This study aimed to evaluate the effectiveness against insecticide-susceptible and highly

resistant Ae. aegypti mosquitoes of terpene-based nanoemulsions (TNEs) containing p-cymene

and myrcene. Biological assays were performed with successive concentrations of p-cymene

and myrcene formulations, both alone and in combination, to determine concentration-
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response plots and estimate adequate metrics. The study also investigated any cross-resistance

mechanism with conventional insecticides that may affect the effectiveness of TNEs. Finally,

we assessed the acute toxicity of these nanoemulsions against non-target organisms, specifi-

cally Zebrafish.

Material and methods

Preparation of formulations

The TENs were obtained by a low-energy method as described in DUARTE et al, 2024 [38].

Briefly, an oil phase composed of the terpene (p-cymene or myrcene) (5% w/w) was mixed

with the surfactants (Span1 80/Tween1 20) (5% w/w) (Table 1) under a magnetic stirrer and

after homogenization, the aqueous phase (90% w/w) was added dropwise. The resulting

nanoemulsions had a droplet size of approximately 120 nm and a uniform distribution of par-

ticle size. They remained stable for up to 90 days, indicating good colloidal stability.

Biological material

Two different strains of Ae. aegypti were used in the study. The susceptible reference labora-

tory strain (Bora) originating from French Polynesia has no detectable resistance mechanism

[39]. The strain is maintained at IRD for more than 20 years. The Guyana strain has been col-

lected in French Guyana (Ile Royale) and shows high levels of resistance to pyrethroids [40]

through the presence of V1016I and F1534C mutations at high frequencies and higher expres-

sion of multiple CYP450 genes [18]. The strain is also resistant to organophosphate through

higher expression of Esterase genes [40].

Larvicidal activity and cross-resistance assessment

Larval bioassays were conducted according to the standardized protocol established by the

World Health Organization [41]. The protocol involved exposing III-IV instar larvae to differ-

ent concentrations of terpenes and terpene-based formulations and recording their mortality

after 24 hours. The experiments were conducted under controlled conditions, where larvae of

Ae. aegypti (Bora strain and Guyana strains) were kept at 25 ± 2˚C, with a relative humidity of

75 ± 5%, and a light/dark cycle of 12 hours during the test. The experiments were carried out

in triplicate, with four replicates of 25 larvae (n = 100) per concentration, as well as a control.

Temephos, an organophosphate insecticide commonly used for larval control, was used as the

reference product.

Concentration-response curves were determined against both susceptible and pyrethroid

resistance colonies of Ae. aegypti (Bora and Guyana) in order to assess potential cross-resis-

tance. The resistance ratios (RR50/RR95) were determined by comparing the LC50/95 obtained

on the resistant strain and the susceptible ones. According to WHO RR50< 5 indicates a sus-

ceptible population; RR50from 5–10 indicates moderate resistance and RR50> 10 indicates

high resistance [42] In our case, evidence for cross-resistance was demonstrated if resistance

ratios (RR50/95) exhibited confidence limits excluding the value of 1.

Table 1. Composition of the monoterpenes nanoemulsions.

Monoterpene (%) Tween 20 (%) Span 80 (%) Water

P-cymene-NE 5 4.7 0.3 90

Myrcene-NE 5 4.3 0.7 90

NE: Nanoemulsion

https://doi.org/10.1371/journal.pone.0293124.t001
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Interactions between monoterpenes

The existence of synergism between p-cymene and myrcene or Cym-NE and Myr-NE was also

investigated by using the combination index (CI) described by Chou and Talalay (1984) [43],

using the CalcuSyn software (Chou and Hayball 1996). This isobologram-based method is par-

ticularly well adapted to analyse multiple drug effects [44]. The combination index gives a

quantitative measure of the interactions (synergism, antagonism, and summation) occurring

between two insecticides. A CI = 1,<1, and>1 indicates an additive effect, a synergistic effect,

and an antagonistic effect, respectively [45].

Residual activity of terpene-based formulations

For the residual activity, a stock solution of the TENs was prepared in the concentration of 40

mg/L and stored in a climatic chamber with controlled conditions (temperature: 27˚C and Rel-

ative humidity: 80% and a light/dark cycle of 12 hours). Larval bioassays were carried out as

previously described using a single dose of 40mg/L at different intervals of time (1, 7 15, 30,

and 45 days) and mortality was recorded at 24H post-exposure.

Toxicity in a non-target organism

Animals. The animals used were adult zebrafish (Danio rerio) of the wild AB type, sup-

plied by the company Pisciculture Power Fish, located in Itaguaı́-RJ, Brazil. They were main-

tained in the Zebrafish Platform of the Drug Research Laboratory of the Federal University of

Amapá, (UNIFAP- Brazil), with an adaptation period (40 days), a circadian rhythm of 12

hours, (light period from 7:00 a.m. to 7:00 p.m.), with controlled temperature (23 ± 2˚C), and

receiving commercial fish food (Alcon Colors, Santa Catarina, Brazil) twice a day [46]. The

animal health and behaviour were monitored during all the analysis period (24 hours) and all

researchers involved in the experiments have training in animal care. The experiments were

authorized by the Ethics Committee on Animal Experimentation of the Federal University of

Amapá (Brazil), registration number 006/2021.

Acute oral toxicity study. The acute toxicity evaluation of Cym-NE and Myr-NE in adult

zebrafish was determined using the Limit Test as recommended by the Organization for Eco-

nomic Cooperation and Development (OECD) 425 [47], with adaptations. The animals were

separated into treatment groups (5 animals/group), kept fasting for 24 hours, weighed, and

treated orally according to the methods described by [48]. Cym-NE was administered at doses

of 2000 and 1750 mg/kg and Myr-NE at a dose of 2000 mg/kg, orally by gavage method, with

the aid of a volumetric pipette (HTL Lab Solutions Co.), the volume was calculated according

to the animal’s weight [49].

Behavioural analysis and mortality. After the gavage procedure, the animals were

observed for behavioral changes. The observed behavioral changes were classified as Stage I:

increase in swimming activity; Spasms; tremors in the tail; Stage II: circular swimming; loss of

posture; Stage III: clonus; loss of motility; animal still at the bottom of the aquarium and death

[46]. In the absence of a response to mechanical stimulation and the absence of movement of

the operculum, the animal was considered dead [46, 49]. At the end of the observations (24

hours) the animals underwent euthanasia in anesthetic cooling, according to the American

Guidelines of the Veterinary Medical Association for Animal Euthanasia [50].

Histopathological analysis. For histopathological analysis of the intestine, liver, and kid-

neys, the animals were fixed in Bouin solution for 24 hours and decalcified in EDTA solution

(Tetraacetic Ethylenediamine Acid, Sigma Co., São Paulo, Brazil) for 48 hours. The samples

were dehydrated in a series of alcohols (70, 80, 90, and 100%), diaphanized in xylol, and

included in paraffin. The samples were sectioned in 5 μm using a microtome (Brand Rotary
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Microtome Cut 6062, Slee Medical, Germany), and histopathological analysis was performed

after the tissue sections were cordoned with hematoxylin and eosin, as described by Souza

et al., (2016) [46]. The images were analyzed under Olympus BX41-Micronal Microscope and

photographed with MDCE-5C USB 2.0 (digital) camera.

Assessment of histopathological changes. The Index of Histopathological Changes

(IHC) was calculated according to the levels of tissue alterations observed in the gills, liver, and

kidneys. The changes were classified as levels I, II, and III, and the IHC value indicates whether

the organ is healthy (0 to 10), with changes from mild to moderate (11 to 20), with moderate

to severe changes (21 and 50) or containing irreversible changes (> 100) [51, 52]. Thus, the

indexes were calculated according to the following equation:

I ¼
Xna

i� 1
aiþ 10

Xnb

i� 1
biþ 102

Xnc

i� 1
ci

N

Where: a: first stage changes; b: second stage changes; c: third stage changes; na: number of

changes considered as the first stage; nb: number of changes considered as the second stage;

nc: number of changes considered as the third stage; N: number of fishes analysed per

treatment.

Statistical analysis

For larval bioassays, LC50 and LC90 values with their 95% confidence intervals were calculated

from a log dose–probit mortality regression line using the SPSS software (IBM, USA). The

results of acute oral toxicity obtained were expressed as the mean ± standard deviation (SD) of

each experimental group. The ANOVA test was applied, followed by the Tukey test. The signif-

icance level considered was 5% (p < 0.05). The software used was the Prisma1 Graph Pad

(version 5.03).

Results

Larvicidal activity of terpenes and cross-resistance studies

Bioassay data for the susceptible mosquito strain are shown in Table 2 and Fig 1. Temephos

(reference product) showed high insecticidal activity against susceptible mosquito larvae, with

a LC50 and LC99 of 0.001 and 0.00177 mg/L, respectively.

On the other hand, myrcene and p-cymene, showed moderate larvicidal activity against the

susceptible Bora strain with LC50 values of 12.8 and 13.3 mg/L, respectively, and LC99 values of

29.5 and 47.9 mg/L, respectively.

Table 2. Larvicidal activity of monoterpenes, free and in nanoemulsions, against Ae. aegypti L. (Bora strain) after 24 hours of exposure using the WHO larval

bioassay.

n X2 df p value LC50 (mg.L-1) (95%CI) LC99 (mg.L-1) (95%CI)

Temephos 3362 6.7 5 0.244 0.001 (0.00102–0.00108) 0.00177 (0.00168–0.00188)

Myrcene 3351 20 4 <0.001 12.8 (8.8–15.3) 29.5 (25.0–42.1)

Myr-NE 3352 44.7 5 <0.001 13.3 (7.1–17.8) 47.9 (36.9–79.9)

P-cymene 3366 188.3 5 0.003 16.0 (14.8–17.0) 29.4 (26.5–34.3)

Cym-NE 3356 9.00 4 0.061 14.0 (13.4–14.7) 24.7 (22.6–27.8)

n represents the total number of larvae used. The assays were performed in triplicate. X2 -Chi-square value; df–degree of freedom, LC50-99 –Lethal concentration (50 and

99%), 95% CI- 95% Confidence interval. Myr-NE Myrcene Nanoemulsion; Cym-NE; Cymene Nanoemulsion

https://doi.org/10.1371/journal.pone.0293124.t002
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The nanoemulsification process did not significantly affect the overall efficacy of the mono-

terpenes as LC50 and LC99 values of Myr-NE and Cym-NE did not differ than the one’s of the

free monoterpenes (Table 2).

Bioassays data for the resistant mosquito strain is shown in Table 3 and Fig 1. Our finding

showed that the Guyana strain was highly resistant to temephos with RR50 and RR99 of 124

Fig 1. Concentration-response plots of terpenes against Ae. Aegypti larvae: A–Bora strain with Cym and Cym-NE; B–Bora strain with Myr and Myr-NE; C–

Guyana strain with Cym and Cym-Ne and D–Guyana strain with Myr and My-NE.

https://doi.org/10.1371/journal.pone.0293124.g001

Table 3. Larvicidal activity of monoterpenes, free and in nanoemulsions against insecticide-resistant Ae. aegypti (Guyana strain) after 24 hours of exposure, using

the WHO larval bioassay.

n X2 df p value LC50 (mg.L-1) (95% CI) LC99 (mg.L-1) (95% CI) RR50 (95% CI) RR95 (95% CI)

Temephos 2250 30.8 5 <0.001 0.150 (0.05–0.19) 0.450 (0.336–1.743) 124.44 (103.40–149.77) 253.03 (160.90–397.93)

Myrcene 2000 7.8 4 0.099 17.3 (15.0–19.0) 37.8 (33.4–46.2) 1.36 (1.22–1.53) 1.30 (1.035–1.64)

Myr-NE 2000 12.2 4 0.016 17.3 (14.9–19.0) 34.6 (30.3–43.8) 1.25 (1.07–1.47) 0.83 (0.59–1.15)

P-cymene 2000 14.5 4 0.006 21.8 (18.8–23.9) 41.8 (35.7–58.9) 1.24 (1.07–1.54) 1.55 (1.05–2.29)

Cym-NE 2000 14.9 4 0.005 21.0 (18.0–23.0) 42.1 (35.8–58.3) 1.39 (1.20–1.60) 1.84 (1.34–2.52)

n represents the number of larvae used. The assays were performed in triplicate. X2 -Chi-square value; df–degree of freedom, LC50-99 –Lethal concentration (50 and

99%), RR50-95 –Resistant ration (50 and 95%). Myr-NE Myrcen Nanoemulsion; Cym-NE; Cymene Nanoemulsion

https://doi.org/10.1371/journal.pone.0293124.t003
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and 253, respectively. Our findings showed no cross-resistance of the Guyana strain to mono-

terpenes, with RR50 and RR95 ranging from 0.83 (95%CI 0.59–1.15) to 1.84 (1.34–2.52).Once

again, no significant difference in efficacy was observed between free monoterpenes and

nanoemulsions against the insecticide resistant Ae. Aegypti colony, suggesting that the nanoe-

mulsification process does not impair the biological activity of the p-cymene and myrcene.

Interactions between monoterpenes

Here, a 1:1 ratio (myrcene:p-cymene) was adopted for the combination considering that both

terpenes had similar LC50 against both susceptible and resistant mosquitoes. Concentration-

response plots of terpenes, alone and in a mixture, are shown in Fig 2.

Our findings showed that the combination of terpenes did not kill a higher proportion of

mosquitoes than the sum of the 2 terpenes taken separately. Combination indexes (CI) ranged

from 1 to 1.5 hence indicating additive and slight antagonism at high concentrations, respec-

tively according to the classification of CHOU & TALALAY, [43] (Fig 2C and 2D). This indi-

cates that the mortality of the combination at high concentrations is lower than the expected

additive effect of the single insecticides.

Fig 2. Concentrations effect curves of the combination of A—Myrcene:p-cymene (1:1) and B -Myr-NE:Cym-NE (1:1) and Interaction curves between C—

Myrcene:p-cymene (1:1) and D -Myr-NE:Cym-NE (1:1).

https://doi.org/10.1371/journal.pone.0293124.g002
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Residual activity

The results showed that the TNEs remain effective (providing 100% mortality) up to 45 days of

storage (Fig 3), under laboratory-controlled conditions of temperature (27˚C) and relative

humidity (80%).

Toxicity of terpenes against non-target organism

The treatment of zebrafish with Cym-NE (1750 and 2000 mg/kg) and Myr-NE (2000 mg/kg)

triggered behavioral changes in zebrafish as shown in Table 4. However, mortality was

observed in the group of animals treated at the dose of 2000 mg/kg of Ne-Cym. The signs of

stress were an increase in swimming activity, tremors in the tail, loss of posture and motility,

circular swimming and permanence at the bottom of the aquarium.

The main alterations observed in the tissues were: dilation of presents vessels in villi and

hypertrophy of caliciform cells in the intestine, cytoplasmic vacuolization and nuclear atypia

in the hepatocytes, prevalence of tubular alterations, such as mild tubular hyaline degeneration

in the kidneys (Fig 4). The IHC calculated was less than 10, which classifies these organs as

normal, because the alterations recorded were not able to alter the normal functioning of the

organs.

Fig 3. Residual activity of Cym-NE and Myr-NE against susceptible larvae of Ae. Aegypti. numbers in the bars

represent the sample size tested.

https://doi.org/10.1371/journal.pone.0293124.g003

Table 4. Effect of oral treatment with Cym-NE and Myr-NE and control (water) over zebrafish behavior changes assessed in three stages.

Group Doses Stage I Stage II Stage III Total %

Control (water) 2μl 1/3 0/2 0/4 1/9 11.1

Cym-NE 1750 mg/kg 2/3 2/2 2/4 6/9 66.6

2000 mg/kg 1/3 2/2 1/4 4/9 44.4

Myr-NE 2000 mg/kg 2/3 2/2 2/4 6/9 66.6

Stage I: increase in swimming activity; Spasms; tremors in the tail; Stage II: circular swimming; loss of posture; Stage III: clonus; loss of motility; animal still at the

bottom of the aquarium and death

https://doi.org/10.1371/journal.pone.0293124.t004
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Fig 4. Histopathological changes observed in the intestine (A and B), liver (Cand D) and kidneys (E and F). In A and B intestinal tissue with caliciform cells

(CC), villi (V), Muscle layer (ML), villi degeneration (VD) and caliciform cell hyperplasia (CCHP); In C and D normal hepatocytes (H), Cytoplasmatic

vacuolization (CV), nuclear atrophy (NA); In E and F tubules (Tb), Lymphoid tissue (LT), Increase in tubular lumen (ITL), mild tubular hyaline degeneration

(THD). H&E staining, IHC in the intestine (G), liver (H) and kidneys (I) of adult zebrafish in the acute oral toxicity test performed using Ne-Cym (1750 e 2000

mg/kg) e Ne-Myr (2000 mg/kg). Data show the mean ± SD (n = 5/group). Statistical analysis was performed through one-way ANOVA followed by the post

hoc Tukey test.

https://doi.org/10.1371/journal.pone.0293124.g004
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Discussion

In this study, we investigated the larvicidal activity of myrcene and p-cymene against the den-

gue vector Ae. aegypti and their potential toxicity against non-target organisms.

Our findings showed that myrcene and p-cymene exhibited moderate insecticidal activity

against Ae. aegypti larvae when compared to the reference product Temephos. The lower effi-

cacy of terpenes against mosquitoes has been reported previously [53, 54]. For example, Lee

and Ahn (2013) reported that myrcene had a LC50 of 36 mg/L, against third-instar larvae

which is even higher than the LC50 reported in the present study [53]. In contrast, Lucia et al.

(2017) reported a lower LC50 (12.49 mg/L) for p-cymene against third instar larvae [55]. These

findings suggest that the potency of these compounds as mosquito control agents varies

according to the studies and several factors such as the source and composition of the mono-

terpenes, experimental conditions, and mosquito species probably impact on the outcomes.

Although TNEs show moderate larvicidal activity, our findings showed an absence of cross-

resistance with commonly used pesticides and this offers interesting prospects for vector con-

trol considering that mosquito resistance is becoming an increasing threat to the prevention

and control of mosquito borne diseases [8, 56]. Indeed, there’s very limited number of insecti-

cides having a different mode of action than the big “four” classes (i.e. pyrethroids, carbamates,

organophosphate, organochlorines) and TNEs could then enrich the panel of vector control

products used as part of integrated vector management.

Our study also compared the efficacy of free terpenes versus terpene-based nanoemulsions

against Ae. aegypti mosquitoes. Our findings showed that nanoemulsions did not increase the

efficacy of both myrcene and p-cymene against mosquito larvae. These results contrast with

other findings showing an enhanced insecticidal activity of nanoemulsified terpenes or essen-

tial oils compared to non-encapsulated components [57, 58]. For example, the studies by

Almadiy and Nenaah (2022) and Ferreira et al. (2020) used different essential oils and different

particle sizes for their nanoemulsions. Alamdy used Origanum vulgare essential oil while Fer-

reira et al. (2020) used the Essential Oil of Siparuna guianensis. Additionally, the particle size

of the nanoemulsions in Alamdy’s study was 60 nm while Ferreira et al. reported a particle size

of around 160 nm. Other strategies than nanoemulsions were used for the stabilization of

essential oils, for example using yeast for the encapsulation of orange oil, and this strategy

showed to be highly active (LD50 < 50 mg.L-1) against Ae. aegypti [59, 60].These differences in

the chemical composition of the essential oils and the type of the stabilization method can

affect the interaction of the terpenes or essential one’s with mosquitoes and explain the differ-

ent outcomes observed in our study compared to previous one’s.

Despite that, our study showed a residual efficacy of the nanoemulsions for at least 45 days

in a climatic chamber at constant temperature and humidity. This suggests that the use of

nanoemulsions may prevent the volatilization of terpenoids and provide long-lasting activity

as previously reported [61]. However, one bias of our study is that we couldn’t compare the

residual activity of the free terpenes versus encapsulated terpenes, due to a shortage of mosqui-

toes Moreover, it is important to highlight that laboratory conditions do not always reflect the

field situation as external factors such as sunlight, rain, pollutants, etc can strongly reduce the

residual efficacy of larvicides [62]. Further investigations are needed to assess the longevity of

terpenes and TNEs in both laboratory and simulated field conditions.

Our research also investigated whether a combination of p-cymene and myrcene may be

more effective at killing mosquitoes than each molecule used alone. The interest in using a

combination of insecticides results in the fact that it may be possible to achieve better control

of a mosquito population while reducing the doses of each compound, hence making this an

environmentally friendly and cost-effective solution [45]. Our findings however showed that
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the combination of terpenes did not kill a higher proportion of mosquitoes than the sum of

the 2 terpenes taken separately, indicating additive or even slight antagonism at high concen-

trations. These findings contrast with other studies that have reported additive to synergistic

interactions between various monoterpenes (e.g. terpinene, limonene, carvacrol, anethole, per-

oxide ascaridole, p-cymene and methyl isoeugenol) against mosquito larvae [63, 64]. It appears

that the methodology used to assess the synergy and the compositions of terpenoid combina-

tions differ between studies and results cannot be directly compared. In our study, the lack of

synergistic interactions between p-cymene and myrcene might be explained by the fact that

both terpenes act on the same target sites (i.e. mutually exclusive inhibitors) hence causing

competitive inhibition for the same receptor, especially when concentrations increased (satu-

ration of the system). More work is needed to better understand the interactions and mode of

action of terpenoids in insects in order to select best active ingredients in combination.

Finally, we investigated the potential toxicity of the p-cymene and myrcene nanoemulsions

against non-target organisms (fish) considering that these molecules may be potentially

deployed in mosquito breeding habitats. Our results showed that TNEs lead to behavioral and

histological changes in the Zebrafish at high concentrations. These alterations may lead to

changes in body weight, food consumption, behavior, blood circulation, and reproductive

functions [65]. Everds et al. (2013) state however that in toxicity trials, it is common to observe

signs of stress in animals [66] and these histological alterations are considered normal, and not

able to alter the normal functioning of the fish organs [67, 68]. Although it is unlikely that p-

cymene and myrcene pose a significant hazard to non-target organisms, there is a need to

assess their potential toxicity in simulated field conditions using the doses that may be applied

in the field.

Conclusions

Overall, our findings showed that TNEs have potential for vector control particularly as part of

integrated vector management with the scope to preserve the susceptibility of mosquito popu-

lations to public health insecticides. Our findings suggest that the incorporation of monoter-

penes into nanoemulsions is a promising approach to improve the solubility of these

substances in aqueous media without organic solvents, which reinforces the vector control

potential of these molecules.
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