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Abstract Extreme flood events have regional differences in their generating mechanisms due to the
complex interaction of different climate and catchment processes. This study aims to examine the capability of
climate drivers to capture year-to-year variability in global flood extremes. Here, we use a statistical attribution
approach to model seasonal and annual maximum daily discharge for 7,886 stations worldwide, using season-
and basin-averaged precipitation and temperature as predictors. The results show robust performance of our
seasonal climate-informed models in describing the inter-annual variability in seasonal and annual maximum
discharges regardless of the geographical region, climate type, basin size, degree of regulation, and impervious
area. The developed models enable the assessment of the sensitivity of flood discharge to precipitation and
temperature changes, indicating their potential to reliably project changes in the magnitude of flood extremes.

Plain Language Summary Successfully modeling the changes in magnitudes of flood events is
challenging due to the complexity of flood-driving processes, which vary depending on region and season. Here,
we examine how seasonal precipitation and temperature can describe changes in the flood magnitudes.
Although we only consider these basic climate factors as predictors, our climate-informed models consistently
show a good performance in capturing the year-to-year variability in the magnitude of seasonal and annual
flooding events across 7,886 stations worldwide. These results show the suitability of seasonal precipitation and
temperature as proxies for different climate and catchment processes leading to flooding.

1. Introduction

In the last two decades, flooding affected 1.6 billion people globally and incurred $651 billion in economic costs,
the highest and the second highest of any other environmental hazards, respectively (CRED & UNDRR, 2020).
As warming trends are globally expected to continue over the 21st century, flood damages are expected to in-
crease in the future (e.g., Alfieri et al., 2017; IPCC, 2021) in light of climatic and socio-economic changes (Merz
et al., 2021; Wasko, Sharma, & Pui, 2021). Therefore, addressing questions about changes in flooding has
important socio-economic consequences for our adaptation and mitigation strategies.

The detection of trends in flood extremes has received much attention in hydrology. However, it remains a
challenge to achieve consensus on the detection of changes because of its lack of evidence (e.g., Archfield
et al., 2016), sensitivity to data length (e.g., Do et al., 2017), and strong variations by basin alteration (e.g.,
Hodgkins et al., 2019), climate region (e.g., Slater et al., 2021), and catchment size (e.g., Bertola et al., 2020).
Furthermore, extrapolating flood extremes directly from these findings for future projection is not reliable
because the historical trends might not be representative of future conditions, especially if we do not understand
the physical processes responsible for these changes (e.g., Do et al., 2020; Kim & Villarini, 2024; Mallakpour
et al., 2018; Schlef et al., 2018; Villarini & Wasko, 2021; S. Zhang, Zhou, et al., 2022).

With this background, there is a growing interest in the attribution of changes in flood extremes based on un-
derstanding the driving flood processes (e.g., Alifu et al., 2022; Kim & Villarini, 2023a; Merz et al., 2022;
Prosdocimi et al., 2015). Flood generating mechanisms vary geographically and seasonally depending on the
climate drivers (e.g., summer monsoon, snowmelt, rain-on-snow, tropical cyclone). Together with various
physical processes, antecedent soil moisture is an important factor in flood generation worldwide (e.g., Berghuijs
et al., 2019; Stein et al., 2021; Tramblay et al., 2022; Wasko et al., 2020a). As such, climate variability and its
feedbacks with the land surface play a significant role in determining flood mechanisms. Furthermore, climate
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variability can affect changes in flood magnitude not only by itself (Liu et al., 2022), but also by shifting flood-
generating processes (Jiang et al., 2022; Kemter et al., 2020; Tarasova et al., 2023).

This study aims to examine how climate drivers can describe changes in the magnitude of flood extremes
worldwide. Despite the complexity of the flood generating mechanisms, Kim and Villarini (2023a) showed that
seasonal precipitation and temperature are the key predictors as proxies for different physical processes to
describe the changes in flood extremes across the conterminous United States (U.S.). Here we extend the sta-
tistical attribution framework developed by Kim and Villarini (2023a) to the global scale and assess how well the
seasonal climate predictors describe seasonal and annual maximum daily discharges worldwide.

2. Data
2.1. Streamflow Databases

We use four data sources providing streamflow observations and their basin boundaries: (a) Global Streamflow
Indices and Metadata archive (GSIM) (Do et al., 2018a; Gudmundsson et al., 2018a); (b) African Database of
Hydrometric Indices (ADHI) (Tramblay et al., 2021); (c) Australian Bureau of Meteorology's Hydrologic
Reference Stations (HRS); and (d) U.S. Geological Survey (USGS). The GSIM is a global collection of
metadata and indices derived from daily streamflow time series observed between 1806 and 2016 at more than
35,000 streamgages from 12 databases (Do et al., 2018a). It provides quality-controlled indices including mean,
maximum, and minimum daily streamflows for monthly, seasonal, and yearly temporal scales (Gudmundsson
et al., 2018a). The ADHI is an African database of indices computed from quality-controlled daily discharges at
1,466 stations over the period 1950-2018, including monthly time series of mean, maximum, and minimum
daily discharges. The HRS provides a high-quality, unimpacted, daily streamflow series observed to early 2019
at 467 stations across Australia. The USGS also provides daily streamflow series over the U.S. and its
territories.

From the above-mentioned data sources, we obtain the seasonal maximum mean daily discharge series between
1949 and 2019 and screen the stations as follows.

1. Only seasonal maxima based on at least 85 daily observations are considered (Gudmundsson et al., 2018a).

2. Only years with seasonal maxima for all four seasons are considered. Here we consider the water year that
starts in the season with the lowest median of seasonal maxima among the four seasons, similar to Wasko
et al. (2020b).

3. Only stations for which four seasonal maxima are available for at least 30 years are considered.

Additionally, we excluded the stations whose basin is located within a “polar” region based on the Koppen-Geiger
climate classification (Beck et al., 2018). Although GSIM provides observations from streamgages worldwide,
we use ADHI and HRS data sets for Africa and Australia, respectively, since they have more up-to-date ob-
servations with higher quality compared to GSIM. For the conterminous U.S., we use the USGS seasonal
maximum discharges up to 2019 from Kim and Villarini (2023a). As a result, a total of 8,211 stations are selected
(as mentioned below, this number is further reduced based on the modeling results). Figure S1 in Supporting
Information S1 illustrates locations, basin boundaries, basin sizes, and record lengths of the selected stations
worldwide, divided into seven regions (North America, NA; South America, SA; Europe, EU; Africa, AF;
Northern Asia, NAS; Southern Asia, SAS; and Oceania, OC).

2.2. Meteorological Data

We consider gauge-based global precipitation and temperature data for modeling flood extremes. The Global
Precipitation Climatology Center (GPCC) provides the Full Data Product (V2020) of gridded (0.25° X 0.25°)
monthly precipitations from 1891 to 2019 by interpolating 85,000+ rainfall gauges worldwide (Becker
et al., 2013; Schneider et al., 2020). From the GPCC V2020, we obtain monthly precipitation data. For tem-
perature, we use the GHCN_CAMS gridded (0.5° X 0.5°) 2 m temperature data set (Fan & Van Den Dool, 2008),
a global monthly mean land surface air temperature from 1948 to present. We calculate basin-averaged values of
monthly precipitation and temperature by taking the mean of the grid cells belonging to the basin area, and then
compute the seasonal means of these basin-averaged monthly series (hereafter referred to as basin- and season-
averaged precipitation and temperature).
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3. Method

To model the inter-annual variability in flood extremes, we apply the statistical attribution approach developed by
Kim and Villarini (2023a). For each streamgage and each season, we first develop a statistical model for seasonal
maximum mean daily discharge using climate predictors (DJF: December-February; MAM: March-May; JJA:
June-August; SON: September-November). For this, we use the nonstationary gamma distribution (or zero-
adjusted gamma distribution for observations with zero discharge values), widely used for modeling extreme
flood magnitude (e.g., Kim & Villarini, 2023a, 2023b; Miniussi et al., 2020). To attribute the inter-annual
variability in seasonal maxima, basin- and season-averaged precipitation and temperature in the season of in-
terest are used as covariates for the distribution parameters. We also consider the season prior to the season of
interest to capture lagged effects (e.g., antecedent wetness). Based on the parameterization in the Generalized
Additive Models for Location, Scale, and Shape (Rigby & Stasinopoulos, 2005), we can define location (u), scale
(o), and the probability of zero discharge occurrence (v) parameters of the gamma and zero-adjusted gamma
distribution as below:

log(u) = po + pyPeon + ppTeon + ﬂBPlag + /"4Tlag 1

log(6) = 6 + 61 Peon + 02T con + GSPlag + 64Tlag @)

v
log(m) =g+ V1Peon + 12Tcon 3)

where P, (Tcon) and P, (T',,) are basin- and season-averaged precipitation (temperature) in the concurrent and
previous seasons, respectively. Depending on the linear combination of predictors, we fit all possible models to
the observed seasonal maximum discharge series for the whole period. We then select the best one based on the
Schwarz's Bayesian criterion (Schwarz, 1978). If the distribution parameters are not estimated due to no
convergence of the fitting procedure (i.e., maximum likelihood estimation) or the maximum value of /i during the
observation period is more than 10 times the observed highest seasonal maximum discharge, we consider the
modeling not successful.

After selecting the best model for each season and station, we employ a Monte Carlo approach to simulate annual
maximum daily discharge series by combining four seasonal models. Since the driest and wettest seasons are
different geographically worldwide (Figures S2 and S3 in Supporting Information S1), we consider the water year
whose beginning season is the season with the lowest median of seasonal maxima. For every year, we first
generate one seasonal maxima from each of the four selected seasonal models and select the largest one as the
annual maximum value. By iterating this step 1,000 times, we obtain the distribution of annual maximum daily
discharge series over the whole observation years (see Kim & Villarini, 2023a for details). To assess the model
performance in describing the inter-annual variability of flood extremes, we calculate the Spearman correlation
coefficient between observations and the median (i.e., 50th percentile) of the modeled seasonal and annual
maximum discharges. Furthermore, we conduct leave-one-out cross-validation to evaluate the model perfor-
mance. For each season, we estimate the parameters of the best model excluding one seasonal maximum value at
the time and predict its value based on the values of the predictors for the given year. We iterate this process for
each year to obtain a time series of seasonal and annual maxima for the period of record. We then compute the
Spearman correlation coefficient between the cross-validated time series and observations.

Finally, we perform sensitivity analyses to examine how the changes in seasonal climate predictors affect the
changes in the magnitude of flood extremes. This data-driven approach is relevant to assess flood elasticity to
climate drivers (Y. Zhang et al., 2023). We set changing conditions, adding climate drivers one by one, starting
with the most important one. Because the tendency of temperature change is generally similar throughout seasons,
we consider both T,

drivers: (a) only P, changes (Conl); (b) both P, and Py,, change (Con2); and (c) all four climate drivers

and Tj,, changes at once. Consequently, we set three conditions for changing climate

change (Con3). Considering the range of projected changes in globally averaged annual land precipitation (Lee
et al., 2021), we limit the change in precipitation to 10%, and do the same for temperature. We conduct Monte
Carlo experiments by varying the climate predictors between —10% and 10% for each condition and season,
allowing us to explore the sensitivity of the annual maximum discharges to changes in the drivers. Here we repeat
the simulations 10,000 times to obtain more reliable flood quantiles with a lower annual exceedance probability
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Figure 1. Maps and boxplots (dark gray) showing the model performance in simulating annual maximum discharge for 7,886
stations classified into seven regions. Red crosses represent the 325 stations removed due to the failure of the seasonal
models. The boxplots also show the correlation coefficient based on leave-one-out cross-validation (light gray boxes) and
seasonal models for DJF (blue boxes), MAM (green boxes), JJA (orange boxes), and SON (yellow boxes). In the boxplot, the
limits of the box (whiskers) represent the 25th and 75th (5th and 95th) percentiles, while the line inside of the box indicates
the median.

(AEP). For a given AEP (e.g., the 0.01-AEP refers to the 0.99 quantile), we obtain the median of the flood

AEPy. we then calculate its relative changes (rAQEY) based on the QAP
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4. Results and Discussion

Out of 8,211 stations, we evaluate the model performance for 7,886 stations with no model failure in all seasons.
Our statistical approach performs well in reproducing the inter-annual variability of annual maximum discharges
worldwide, having a correlation coefficient larger than 0.56 for half of the stations for all seven regions (Figure 1).
OC shows the best performance, with 75% of the stations having a correlation coefficient larger than 0.7, followed
by AF and NA, with the median correlation coefficient of 0.67 and 0.66, respectively. For the performance of the
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Figure 2. Covariate selection ratio of location parameter (u) of the seasonal models depending on four climate types.

seasonal maxima, there are differences across the regions (colored boxplots in Figure 1). While OC and AF show
similar performances regardless of season, NAS and SAS show limited performances especially in the DJF
season, with the median correlation coefficients of 0.36 and 0.23, respectively. Given that the DJF season is the
driest season for most stations in these regions (Figure S2 in Supporting Information S1; e.g., Yao et al., 2010), we
want to examine if the climatic conditions of the basins affect the model performance. To do this, we stratify the
results depending on four climate types (Tropical, Arid, Temperate, and Cold) (Figure S4 in Supporting Infor-
mation S1). Although the DJF season shows the lowest performance among the four seasons regardless of climate
type, our seasonal models generally perform well, with a median correlation coefficient larger than 0.53 for all
climate types and seasons. This good seasonal performance leads to a good performance in simulating annual
maxima, with 75% of the stations having a correlation coefficient larger than 0.5 for all climate types. Cross-
validated annual maxima also exhibit good skills, with median correlation coefficients in the range of 0.49—
0.76 and 0.54-0.61 depending on regions and climate types, respectively (light gray boxes in Figure 1 and Figure
S4 in Supporting Information S1). These results indicate the robustness of our statistical approach in capturing the
year-to-year variability of annual maximum discharges regardless of climate types.

To identify what climate drivers are responsible for the changes in the magnitude of seasonal maximum dis-
charges, we investigate the selected covariates for the location parameter of each seasonal model. Figure 2 shows
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the percentage of stations where the climate covariates are selected for the location parameter depending on
climate type and season. P, is the most selected covariate with a positive coefficient at more than 67% of stations
for all seasons and climate types, indicating that seasonal precipitation in the concurrent season of interest is

without doubt the most important climate driver for flood extremes. P, is followed by P,,,, which is selected

con
consistently worldwide with a positive coefficient. On the other hand, temperature is selected less often and shows
a different pattern across the globe compared to precipitation. Ty,, is generally selected at more stations than T,
and has a negative coefficient. Given that precipitation and temperature clearly have positive and negative re-
lationships with soil moisture, respectively, the selection of Py,, and T,, highlights their significant role in flood
generation as proxies of antecedent wetness; 7j,, is more frequently selected in the MAM and JJA seasons. These
results point to the role of lagged climate predictors as a proxy for snow accumulation and melt in the snowmelt-
dominated basins such as the northern U.S. (Welty & Zeng, 2021) and Europe (Berghuijs et al., 2019). NAS and
SAS present the lowest covariate selection ratio in the DJF season (Figure S5 in Supporting Information S1), with
no covariate selected for the location parameter at more than 30% of stations. In other words, at many of the
stations, the best DJF model has a time-invariant location parameter, resulting in the poor performance of the
model for this season in describing the year-to-year variability in flood magnitudes. The lack of covariate se-
lection for the location parameter may be due to the limited suitability of our selected climate predictors in
explaining the physical processes responsible for flood extremes in DJF in these regions. Nevertheless, given that
the DJF season rarely contributes to the annual maxima in NAS and SAS (Figure S6 in Supporting Informa-
tion S1), the limited performance of the DJF models does not impact the overall modeling of the annual maxima,
which is the focus of this study.

We further examine if there is any difference in the climate covariate selection between concurrent and lagged
seasons depending on basin-averaged aridity calculated from the Global Aridity Index and Potential Evapo-
transpiration Database—Version 3 (Global-AI_PET v3) (Zomer et al., 2022). Figure S7 in Supporting Infor-
mation S1 shows the total covariate selection ratio of the location parameter for the four seasonal models
depending on the four aridity classifications (UNEP, 1997). P, is selected at 79.4% of the stations in the arid
regions, and from 76.5% to 90.3% as the basins become wetter (i.e., from semi-arid to humid). On the other hand,

con

P, is selected only at 31.3% of stations in the arid region, which is only slightly more than half as many as in the
other aridity classes. Compared to precipitation, temperature does not exhibit a strong dependence on aridity.
Only in the arid region, however, T, is selected more often than 7},,. These results indicate that the drier the
region, the smaller the influence of the lagged effects of precipitation and temperature (e.g., antecedent wetness)

compared to their concurrent ones.

The flood response to climate drivers can be affected by physical characteristics of a river basin such as topo-
graphic (Edokpa et al., 2022) and anthropogenic (Konrad, 2016) factors closely related to rainfall-runoff pro-
cesses (e.g., time of concentration, soil infiltration). Therefore, we examine how the performance of our climate-
informed models is affected by the basins' physical characteristics. Here we consider the basin size, dam density,
and average depth of dam capacity (i.e., dam storage capacity/basin size) available from the streamflow databases
we considered (Figures S1 and S8 in Supporting Information S1). We also consider the ratio of impervious areas
from the global impervious-surface data set (GISD30) (X. Zhang, Liu, et al., 2022). When we stratify the results
depending on these four characteristics (Figure 3), it is difficult to find any clear pattern, suggesting that the
climate drivers we considered have a greater influence on the inter-annual variability in the magnitude of flood
extremes compared to the effect of basin size, dam density, average depth of dam capacity, and impervious area.

The above-mentioned results demonstrate the robustness of our statistical models across geographical regions,
climate types, and basins' physical characteristics. Based on these models, we examine the sensitivity of flood
extremes to changes in the climate drivers. Figure 4 shows the relative changes in the median of the 0.01-AEP

001y for changes of —10%, —5%, +5%, and +10% in the seasonal climate drivers, stratified by

med

discharge (rA
climate types. When only P, changes (Conl), the Q&S}l values change in the same direction, with ~95% of
stations showing changing ratios smaller than those in P, for all seasons and climate types. Con2 (i.e., both P

and Py,, change) shows larger changes than for Conl, even though they are generally below the percentage change

0.01

meq under these two conditions result from the selection of P,

used for the sensitivity. The rA and Py, at most

con
stations with a positive coefficient (Figure 2). When changing all four climate drivers (Con3), the overall patterns
(i.e., median of boxplots) are similar to those under Con2, but there is much more variability among stations

(orange boxes in Figure 4). To understand these results, we need to remember that T, and T},, can affect the
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Figure 3. 2D histogram of the Spearman correlation coefficients calculated between observations and the median of the fitted and simulated distributions of seasonal
(top-four rows) and annual maxima (bottom row), respectively, as a function of the basin size (first column), dam density (second column), average depth of dam
capacity (third column), and ratio of impervious area (last column). Based on data availability, the results for dam density include stations belonging to the Global
Streamflow Indices and Metadata (GSIM), African Database of Hydrometric Indices, and U.S. Geological Survey (USGS) databases, while those for average depth of
dam capacity only to the GSIM and USGS ones.

changes in flood extremes both positively and negatively, causing either a compounding or offsetting effect of the
precipitation changes. When we stratify the results depending on the seven regions, there are much more regional
and seasonal differences in the distribution of rAQ%% (Figure S9 in Supporting Information S1), suggesting that
temperature changes may modulate the effect of precipitation on flood extremes by modulating seasonally and
locally different flood generation processes (e.g., moisture-holding capacity, antecedent conditions, snowmelt).
This sensitivity analysis allows not only the identification of the key seasons controlling the changes in flood
extremes, but also understanding the potential response of annual flood peaks to changes in seasonal precipitation

and temperature.

5. Conclusions

We investigated how well season- and basin-averaged precipitation and temperature can explain the inter-annual
changes in the magnitude of flood extremes at 7,886 basins worldwide. Despite using at most only four predictors
averaged across the entire season and basin, our models showed robust performance in capturing year-to-year
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Figure 4. Sensitivity of the median of 0.01-annual exceedance probability discharge (Q,

0.01

ned) t0 changes in only concurrent precipitation (Conl; light blue boxes), both

concurrent and lagged precipitations (Con2; blue boxes), and all four climate drivers (Con3; orange boxes) depending on climate types. Each column shows the results
for four different changes (—10%, —5%, +5%, and +10%) in climate drivers, while each season's results are presented in a row.

variability in seasonal and annual maximum daily discharges regardless of the geographical region, climate type,
basin size, and dam density. These results suggest that seasonal precipitation and temperature are suitable to
characterize the complex interplays of different climate and catchment processes leading to peak discharges. The
suitability of seasonal precipitation is consistent with Liu et al. (2022), who showed that precipitation with longer
durations (e.g., 30 and 90 days) dominates the changes in global flood magnitude, while precipitation with shorter
durations (e.g., 1 and 7 days) has more limited impacts.

In addition to the robustness of our climate-informed models, they enabled a sensitivity analysis of flood extremes
to changes in precipitation and temperature. Based on our results, we should not expect that a certain percentage
of changes in seasonal precipitation would lead to the same magnitude changes in annual maximum discharge,
notably due to the strong influence of soil moisture storage in many regions (Wasko, Nathan, et al., 2021) and the
change/differing of dominant flooding mechanisms (Quintero et al., 2022; S. Zhang, Zhou, et al., 2022). Although
this study considered only 12 scenarios (i.e., 3 conditions X 4 changing rates) of changing climate drivers, these
nonlinearities in the system can be further assessed by considering more combinations and changing rates of
climate drivers. Another advantage of this modeling framework is that we do not assume a fixed seasonal
contribution to the annual maximum discharge; instead, the mixing varies from year to year to reflect the intra-
annual variability in precipitation and temperature.
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Finally, given that precipitation and temperature are commonly available from numerous global climate models,
we expect that our models can enable to reliably project changes in flood extremes as well as in their generating
processes.
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dataset can be found in Liu et al. (2021).
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