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e Laboratory of Functional Ecology and Environment Engineering, University of Sidi Mohamed Ben Abdellah, Fes, Morocco 
f Materials, Energy Systems Technology and Environment Laboratory, University of Ghardaia, Ghardaia, Algeria 
g Laboratory of Soil and Hydraulic, Badji Mokhtar Annaba University, Annaba, Algeria 
h Laboratoire de Modélisation en Hydraulique et Environnement (LMHE), Ecole Nationale des Ingénieurs de Tunis (ENIT), Tunis, Tunisia 
i Ecole Nationale d’Architecture et d’Urbanisme, Université de Carthage, Sidi Bou Said, Tunisia 
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A B S T R A C T   

The Maghreb countries located in North Africa are strongly impacted by floods, causing extended damage and 
numerous deaths. Until now, the lack of accessibility of river discharge data prevented regional studies on po
tential changes in flood hazards or the development of regional flood frequency estimation methods. A new 
database of daily river discharge data for 98 river basins located in Algeria, Morocco, and Tunisia, has been 
compiled, with an average of 36 years of complete records over the time period 1960–2018. A peaks-over- 
threshold sampling of flood events is considered first to detect trends in the annual frequency and the magni
tude of floods. The trend analysis results revealed no significant changes in flood frequency or magnitude at the 
regional level, with only a few spurious trends due to isolated extreme or clustered events. An envelope curve 
relating maximum floods for a range of catchment areas in North Africa has been developed, for the first time in 
this region with such a large database. Then, regional estimation methods for flood quantiles were compared. 
The regional estimation from multiple catchment characteristics (including soil types, land use, elevation, and 
geology) was performed by comparing two multiple linear regression methods, Stepwise regression and Lasso 
regression, and a machine learning algorithm, Random Forests. Results indicate a better performance of the Lasso 
regression to estimate flood quantiles at ungauged locations, with mean absolute relative errors close to 50 % and 
relative bias close to 20 %. The most relevant catchment predictors identified by the regression models are the 
topographic wetness index, which provides better estimates than catchment area, but also altitude, mean annual 
rainfall, and soil bulk density. The results of this study could be useful to improve operational procedures for 
sizing hydraulic structures at ungauged sites.   

1. Introduction 

North Africa is a region severely affected by floods where there are 
twice as many fatalities related to floods in Algeria, Morocco, and 
Tunisia than in Spain, France, and Italy in the last decades, as reported 
by the International Disaster Database (https://www.emdat.be/). 

Nevertheless, it is also a region where there is little knowledge about 
floods, not only in terms of temporal trends but also in regional esti
mation methods, to contribute to the mitigation of the adverse effects of 
these episodes (Boutaghane et al., 2022; Loudyi et al., 2022). In 
particular, in a context of data scarcity and a low density of the hy
drometeorological networks, it is of uttermost importance to develop 
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reliable regional flood frequency methods to estimate flood quantiles at 
ungauged locations, for dams, bridges, and different types of infra
structure constructions, and also to protect people against destructive 
floods such as those recorded in Tlemcen and El Bayadh (Algeria) at the 
beginning of September 2023, which killed eight people, and those 
recorded in Libya on 11 September 2023, with several thousand fatal
ities. Table 1. 

Flood frequency analysis is a widely applied methodology to esti
mate the return levels at different locations based on statistical distri
butions fitted to annual maximum discharge or peaks-over-threshold 
data (Stedinger, 1993; Pan et al., 2022), that can be expanded to 
ungauged locations to estimate flood quantiles regionally (GREHYS, 
1996; Svensson and Jones, 2010). A great variety of regional methods 
have been developed, either using geographic proximity or catchment 
characteristics to estimate flood quantiles at a target location (Burn, 
1990; Farquharson et al., 1992; Hosking and Wallis, 1993; Burn, 1997; 
Meigh et al., 1997; Ouarda et al., 2001; Pandey and Nguyen, 1999; 
Salinas et al., 2013; Wazneh et al., 2015; Desai and Ouarda, 2021). 
These approaches mostly rely on two steps (Ouarda et al., 2001), first the 
identification of homogeneous regions, that can be contiguous or not, 
based on catchment similarity, and second, the regional estimation 
using multiple regressions (Pandey and Nguyen, 1999; Svensson and 
Jones, 2010) or machine learning techniques (Shu and Burn, 2004; 
Desai and Ouarda, 2021) using catchment attributes. A popular method 
is the Index Flood (Dalrymple, 1960), which relies on regional distri
butions scaled by an index, usually taken as the mean annual flood. Yet, 
several studies have shown that this method is not optimal in semi-arid 
and arid regions (Salinas et al., 2013). While most of these well- 
established methods are now routinely used in many regions of the 
world, only few studies are providing guidelines about the application of 
these methods in North Africa, hampering their use for operational 
applications. 

Several studies have reported stronger uncertainties in regional flood 
frequency analysis for semi-arid and arid regions, compared to more 
humid regions, mostly due to the very high spatial and temporal vari
ability of flood events and their precipitation triggers, but also rather 
short records available in many countries (Farquharson et al., 1992; 

Salinas et al., 2013; Smith et al., 2015). Regional flood growth curves for 
arid regions are displaying flood distributions with a much heavier tail 
than in other climate zones, with the heaviness of the tail increasing 
with aridity, challenging a reliable estimation of the probabilistic model 
parameters to estimate flood return levels (Farquharson et al., 1992; 
Padi et al., 2011a; Zaman et al., 2012; Guo et al., 2014; Metzger et al., 
2020). In North Africa, a small number of studies have applied flood 
frequency techniques, and even fewer regional flood frequency 
methods, mostly with a very limited number of stations (Farquharson 
et al., 1992; Abida and Ellouze, 2006, 2008; Ellouze and Abida, 2008; 
Chérif and Bargaoui, 2013; Zemzami et al., 2013; Zoglat et al., 2014; 
Benameur et al., 2017; Zkhiri et al., 2017; Meddi et al., 2017; El Alaoui 
El Fels et al., 2018; Karahacane et al., 2020; Saidi et al., 2020; Bou
messenegh and Dridi, 2022). For instance, focusing on regional studies 
only, the seminal paper of Farquharson et al. (1992) about regional flood 
frequency in arid areas contains only 13 stations in Algeria, Morocco, 
and Tunisia and similarly, there are 8 stations in Padi et al. (2011) over 
the same countries. At the national or basin scales, Zhiri et al. (2017) 
considered 5 stations of the Tensift basin in southern Morocco, Ellouze 
and Abida (2008) 48 stations in Tunisia, and Meddi et al. (2017) 57 
stations in northern Algeria. The three studies mentioned above 
considered the index flood method with geographically contiguous 
regions. 

The objective of this study is first to check for trends in flood fre
quency or magnitude in the largest ever-built database of time series of 
river runoff in North Africa with long records, and second to test 
regional estimation methods for flood quantiles adapted to ungauged 
basins, for this area under a Mediterranean semi-arid climate. After the 
data collection presented in section 2, the methodology in terms of flood 
sampling, trend detection, local frequency analysis, and regional esti
mation methods for flood quantiles are presented. In section 3 are pre
sented the results and discussion and in section 4, the conclusion and 
perspectives. 

2. Data collection 

We compiled an unprecedented database of 98 catchments (Fig. 1) in 
North Africa that have at least 30 years of daily discharge records be
tween 1960 and 2018, and we excluded years with more than 10 % of 
missing data. The minimum record length is 15 years, the mean record 
length is 36.5 years, and the median is 37 years. The median catchment 
area is 688 km2, ranging from 27 km2 to 7500 km2 with only 7 basins 
larger than 3000 km2. The mean annual precipitation is 539 mm/year, 
computed from the CRU database (Harris et al., 2020), ranging from 
137 mm/year to 960 mm/year for the wettest areas, located in North
western Morocco and Eastern Algeria/Northwestern Tunisia. The mean 
annual evapotranspiration is high, on average 1316 mm, with a low 
variability between 1126 mm/year to 1793 mm/year, which charac
terizes these semi-arid basins. The aridity index (ie. the ratio of annual 
precipitation to potential evapotranspiration) is below 0.5 for 65 basins, 
indicating semi-arid conditions, and below 0.2 for 7 stations, corre
sponding to arid conditions. The 33 basins with an aridity index higher 
than 0.5, indicative of dry sub-humid conditions, are mostly located 
along the Atlantic or Mediterranean coastlines. The main criterion for 
the selection of basins was the absence of large dams or regulation 
structures that may affect the river discharge and flood regime. We used 
the Global Reservoir and Dam Database (GRanD) (Lehner et al., 2011) to 
exclude stations where large dams are present. However, this database is 
not a complete inventory of all dams and reservoirs in North Africa 
(Sadaoui et al., 2018). For this study, the dam identification approach 
already used by Sadaoui et al. (2018) has been extended to the whole 
Maghreb using satellite imagery to cover all the basins in North Africa. 
The approach is based on the manual digitalization of additional res
ervoirs that were not already included in the GRanD database. The 
identification of these reservoirs was made from Google Map satellite 
images visualized into the QGIS software. This approach enabled the 

Table 1 
Catchment properties.  

Abbrev. Description Data source 

CN Curve Number Ross et al., 2018 
10.1038/sdata.2018.91 

AWC Available Water Capacity  
Harmonized World Soil Database,  
Wieder et al., 2014 
https://doi.org/10.3334/ORNLDAAC/ 
1247 

BD Bulk density 
Clay % Clay 
Gravel % Gravel 
Sand % Sand 
Silt % Silt 
GWd Groundwater depth McDonald et al., 2012 

https://doi.org/10.1088/1748-9326/7 
/2/024009 

GWp Groundwater productivity 
GWs Groundwater storage 
MaAlt Maximum altitude Hydrosheds, Lehner et al., 2013 

10.1002/hyp.9740 SLP Mean slope 
MeAlt Mean altitude 
TWI Topographic Wetness Index Sørensen et al., 2006 

10.5194/hess-10-101-2006 
Forest % Forest  

ESA CCI LandCover 
http://www.esa-landcover-cci.org/ 

Urban % Urban 
Crop % Cropland 
CropIr % Cropland irrigated 
Grass % Grassland 
Shrub % Shrubland 
Sparse % Sparse 
Bare % Bare land 
Area Area 
P Mean annual precipitation CRU, Harris et al., 2020 

10.1038/s41597-020-0453-3 T Mean annual temperature 
PET Mean annual potential 

evapotranspiration  
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identification of small hillside reservoirs and dams. 
Several catchment attributes have been extracted from available 

databases, after the delineation of the catchment boundaries using the 
HydroShed digital elevation model with a 300 m spatial resolution 
(Lehner and Grill, 2013). All these attributes have been averaged to the 
catchment scale to obtain one attribute per basin. From the HYS
OGs250m database (Ross et al., 2018), we extracted the Curve Number, 
which is an empirical dimensionless parameter indicating the runoff 
response characteristic of a drainage basin, with lower numbers indi
cating low runoff potential and larger numbers increased runoff poten
tial. Soil data were extracted from the Harmonized World Soil Database 
(Wieder et al., 2014), to obtain soil characteristics such as the bulk 
density, available water capacity, and the proportion of clay, sand, and 
silt. Several quantitative attributes of the groundwater have also been 
retrieved, including groundwater depth, productivity, and storage 
(MacDonald et al., 2012). We also considered the Topographic Wetness 
Index (TWI), first introduced in the Topmodel formulation (Beven and 
Kirkby, 1979). The TWI is defined as ln(a/tan β), where tan β is the local 
slope of the ground surface and a is the upslope area. Basins with a large 
(small) upslope area receive a high (small) index value and are expected 
to have relatively higher (lower) water availability. Steep locations, 
such as mountain areas, have a small index value and are expected to be 
better drained than lowlands (Sørensen et al., 2006). In addition, several 
land use classes have also been extracted: forest, urban, cropland, 
grassland, shrubland, and sparse and bare areas (ESA, 2017). Finally, 
mean annual precipitation, temperature, and evapotranspiration have 
been computed from the CRU v4 dataset (Harris et al., 2020). 

3. Methodology 

3.1. Flood event sampling and trend analysis 

We extracted flood events based on a peaks-over-threshold sampling, 
leading to an average number of one flood event per year. Indeed, as 
noted previously by several studies, the use of annual maximum flood 
can lead to a biased sample containing very low discharge values for dry 
years (Farquharson et al., 1992; Zaman et al., 2012; Tramblay et al., 
2022). To ensure event independence, which is a prerequisite for 
applying flood frequency analysis methods, we conducted a de- 
clustering approach based on two rules, first a minimum of 3 days be
tween two consecutive flood peaks, and second, between two consecu
tive peaks, the discharge must drop below 2/3 of the smallest peak (Lang 
et al., 1999; Tramblay et al., 2022). 

Then, the presence of trends was tested by applying the Mann- 
Kendall test for trends (Mann, 1945) to the flood event magnitudes. 
To test trends on flood occurrence (ie. the number of floods per year), as 

an alternative to a Poisson regression since for most stations the data are 
over-dispersed with the variance exceeding the mean of flood counts, we 
applied a Negative binomial regression (Hilbe, 2011; Bhunya et al., 
2013), framed as a Generalized Linear Model with time as a covariate. 
To assess whether there is a significant trend in the number of floods per 
year, a deviance test has been applied to compare the model with or 
without time as a covariate. For trend detection, we consider the 5 % 
significance level. 

Finally, to avoid detecting spurious trends related either to the large 
number of repeated tests or possible cross-correlations between the 
different stations (Wilks, 2016), we implemented a False Discovery Rate 
procedure (Benjamini and Hochberg, 1995) to assess the field (or 
regional) significance of the trend results. The false discovery rate (FDR) 
procedure introduced by Benjamini and Hochberg (1995) is meant to 
identify a set of at-site significance tests by controlling the expected 
proportion of falsely rejected null hypotheses that are actually true. 
Several studies have shown that the FDR approach is robust to cross- 
correlations between locations and can work with any statistical test 
for which one can generate a p value (Wilks, 2016). The FDR method is 
applied to the Mann-Kendall test results to check if the trends are 
regionally significant. The detected trends are regionally significant if at 
least one local null hypothesis is rejected according to the global (or 
regional) significance level, αglobal (Wilks, 2016). For consistency with 
the local trend analysis, the global significance level is also set to 5 % in 
the FDR procedure. 

3.2. Local frequency analysis 

The Generalized Pareto (GP) distribution (Pickands, 1975) is fitted to 
the peaks over threshold flood series for each station. The cumulative 
distribution function of the GP distribution is: 

F(x) = 1 − exp
[

−
x − q0

α

]

forκ = 0 (1)  

F(x) = 1 −
[

1 − κ
x − q0

α

]− 1/κ

forκ ∕= 0 (2)  

where x is the data, α is the scale parameter, κ is the shape parameter and 
q0 the threshold. 

The Maximum likelihood (ML) estimation method for the GP 
parameter is widely used, but several studies have reported some limi
tations of the ML estimation approach in the context of short records and 
arid areas (Metzger et al., 2020). For this reason, two estimation ap
proaches deemed more robust for the model parameters have been 
compared: the L-Moments (Hosking and Wallis, 1987) method (LMOM) 

Fig. 1. Map of the 98 catchments selected located in North Africa.  
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and the Generalized Maximum Likelihood (GML) method. The GML 
relies on a prior for the shape parameter to avoid unrealistic values 
(Martins and Stedinger, 2000, 2001, El Adlouni et al., 2007). The prior 
for κ has a beta distribution (with shape parameters α = 3 and β = 6) 
with a mode at − 0.1, and the shape parameter values are in the range 
[− 0.5, +0.5]. As recommended by Martins and Stedinger (2000), the 
distribution of the prior distribution has been reevaluated using the 
regional flood information available in the present study. To do so, the 
values of the shape parameters obtained with the L-Moments approach 
have been compared to the prior distribution provided by Martins and 
Stedinger (2001) to assess its validity in the study area. 

To compare the different GP parameter estimation methods, the 
confidence intervals for the computed quantiles are obtained from a 
parametric bootstrap, which should be preferred for small to moderate 
sample sizes (Kyselý, 2008). To assess the uncertainty extent, a 
normalized uncertainty range is defined as the ratio of the difference 
between the 97.5 % and the 2.5 % bounds to the estimated return level 
(Metzger et al., 2020). 

3.3. Regional estimation of flood quantiles 

We use multiple linear regression (MLR), which is the most common 
technique in RFFA (Pandey and Nguyen, 1999) to estimate flood 
quantiles from catchment characteristics. In the present work, several 
catchment predictors are considered, that may introduce multi
collinearity, causing the regression coefficients to be unreliable with a 
high variance. The consequence would be a poor performance of the 
model for new data, which would be a problem when such a model is 
tailored for ungauged basins. Therefore, we use two variable selection 
techniques, stepwise regression and Lasso regularization. Stepwise 
regression is a method for adding and removing predictors from a linear 
model, based on their statistical significance in explaining the response 
variable. The method begins with an initial model and uses forward and 
backward stepwise regression to determine a final model. At each step, 
the function searches for predictors to add or remove in the model based 
on the value of the sum of squared errors and the p-value of an F-statistic 
to test models with and without a potential term at each step. Lasso is a 
regularization technique that includes a penalty term that constrain the 
size of the estimated coefficients (Tibshirani, 1996). It is a useful method 
to reduce the number of predictors and provide shrinkage estimates with 
lower predictive errors than ordinary least squares. The method relies on 
the estimation of λ, a non-negative regularization parameter. As λ in
creases, the number of predictors considered decreases. The optimal 
value of λ is obtained by a 10-fold cross-validation and computing the 
Deviance of the model fit to the response with different λ values, which 
is equivalent to maximizing the λ-penalized log likelihood. 

In addition to MLR we also tested Random Forest (RF), a machine 
learning technique based on a bootstrap aggregation of classification 
and regression trees (Breiman, 2001, 1996; Breiman et al., 2017). It 
generates a bootstrap sample from the original data and trains a tree 
model using this sample. The procedure is repeated many times, and the 
bagging’s prediction is the average of the predictions. RF are fast to 
compute with a moderate sample size, non-parametric, and robust to 
noise in the predictor variables, they are able to capture nonlinear de
pendencies between predictors and dependent variables, and can 
simultaneously incorporate continuous and categorical variables (Tyr
alis et al., 2019). Despite these advantages, they have been seldom used 
for regional flood frequency analysis (Desai and Ouarda, 2021). The 
main drawbacks are the complexity of interpreting the outputs and RF 
cannot extrapolate outside the training range. An out-of-bag predictor 
importance estimation by permutation (Hastie et al., 2009) has been 
applied to estimate the relative influence of each predictor. 

For validation purposes, we compared two strategies, the first is a 
leave-one-out procedure (also called Jack-Knife), which consists of 
removing successively each basin and estimating flood quantiles with 
the remaining basin. The second approach is a k-fold cross-validation, 

where data is split randomly into 100 equal-size datasets, with 70 % 
of the data for model calibration and 30 % for validation. Different in
dicators are computed between the estimated and reference quantiles; 
the correlation I, the mean absolute error (MARE), and the relative bias 
between the observed (qo) and estimated (qe) flood quantiles: 

r =
Cov(q0, qe)

σqoσqe
(3)  

MARE =
1
n
∑n

t=1

⃒
⃒
⃒
⃒
qe − qo

qo

⃒
⃒
⃒
⃒ (4)  

Bias =
1
n

∑n

t=1

(
qe − qo

qo

)

(5)  

4. Results and discussion 

4.1. Flood event characteristics and trends 

Flood events in North Africa tend to occur mostly during the 
extended winter season, from October to February, with a maximum 
occurrence in December and January for the majority of stations. The 
main driver for these floods is heavy rainfall events, even in the case of 
the few mountainous basins where the majority of severe floods do not 
occur during the snowmelt season (Zkhiri et al., 2017; Saidi et al., 2020). 
Regional envelope curves for maximum floods have been provided for 
Mediterranean catchments in southern Europe (Gaume et al., 2009; 
Tarolli et al., 2012; Amponsah et al., 2018), semi-arid to arid basins in 
USA and Israel (Metzger et al., 2020), or Australia (Zaman et al., 2012) 
but have never been provided for North Africa, or using a few stations 
and an extended area encompassing several African regions (Farqu
harson et al., 1992; Padi et al., 2011b). These curves can be elaborated 
with the maximum floods at different sites, in terms of specific 
discharge, that are related to the catchment area using a log-linear 
relationship, allowing comparison across different regions. The two 
parameters obtained for this relationship in North African basins 
(Fig. 2), the multiplier coefficient (131) and the exponent (-0.67), are 
more similar to those obtained in the Eastern Mediterranean (127 and 
− 0.62) from Tarolli et al. (2012) than in the Western Mediterranean 
(120 and − 0.4) from Amponsah et al. (2018). Consequently, the ob
tained envelope curve is quite consistent with other curves obtained for 
other Mediterranean regions. 

The results of the trend analysis show significant, at the 0.05 sig
nificance level, upward trends in flood intensity at 6 stations, and 

Fig. 2. Regional envelope curve for maximum specific discharge in North Af
rican basins. 
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downward trends at 5 stations (Fig. 3). Similarly, for the annual 
occurrence, an increased flood frequency is detected in 16 stations and a 
decrease in 5 stations. However, looking at these results individually 
station by station, the detected trends appear rather spurious, related 
either to the clustering of flood episodes during some years or individual 
events with a very large magnitude influencing the trend detection. This 
qualitative statement is supported by the fact that none of the detected 
trends are regionally significant, according to the False Discovery Rate 
procedure applied to the pvalues of the trend detection tests. These re
sults are consistent with those obtained with a fewer number of stations 
(Khomsi et al., 2016; Tramblay et al., 2020), suggesting that the 
observed increase in the vulnerability to flood episodes in the region is 
likely not due to an increased flood hazard (Dahri and Abida, 2020). In 
this context of strong interannual and spatial variability among stations, 
trend detection is a difficult exercise, and results of individual tests could 
be misleading, thus regional approaches should be preferred. Overall, 
the present results suggest an absence of trends in flood severity or 
frequency at the regional level. Nevertheless, it should be pointed out 
that this result obtained from daily flow series does not imply that floods 
have not changed over time, particularly their instantaneous charac
teristic. For instance, several studies have reported changes in flood 
characteristics in various regions (Zhang et al., 2022), notably in Africa 
and in the Mediterranean (Tramblay et al., 2022, 2023), and this aspect 
should be further investigated. 

4.2. Local flood frequency analysis 

GP distributions have been adjusted to the flood time series extracted 
for each station. The quantiles obtained from GP distributions fitted by 
the two estimation methods of the GP model, GML and LMOM, are very 
similar, as shown in Fig. 4, top panel. Only slightly higher quantile 
values are observed for the 20-year return level for the LMOM method. 
For 100-year flood quantiles estimated by the original GML approach, 

there is a systematic negative bias compared to the L-Moments, leading 
to an underestimation of flood risk. When looking at the parameters of 
the fitted distributions, the alpha parameter is very similar between the 
two methods (Fig. 4). On the other hand, even if the values of k are also 
correlated, the values are very different. For the GML approach, the 
values of k vary between − 0.2 and 0.3 while for LMOM between − 0.6 
and 0.8. There is a much larger spread in the shape parameter value 
using LMOM, since unlike the GML, the range of possible values for k is 
unbounded. Most values of k are superior to zero with the LMOM, for 81 
stations, indicative of a Frechet heavy tail, while it is only the case for 41 
stations with the GLM parameter estimation approach. 

To investigate the validity of the prior distribution of the GLM 
approach in the study area, we compared the distribution of the shape 
parameters obtained with the L-Moment approach with the prior dis
tribution from Martins and Stedinger (2000), using the 75 stations 
having at last 30 years of complete records, to ensure a robust model 
inference. The histogram of Fig. 5 reveals that the original prior of 
Martins and Stedinger (2000) is not adapted to the distribution of the 
shape values in North Africa, notably since it underestimates the fre
quency of heavy tails. Therefore, a new prior is proposed, best approx
imated with a Normal distribution fitted to the shape parameters values, 
with parameters mu = 0.19 and sigma = 0.21. As shown on Fig. 5, the 
new prior provides a much better fit for the estimated shape parameter 
values, notably for heavy tails. As shown on Fig. 6, the modified GML 
approach with the new prior provides more comparable shape param
eters than with the L-Moment approach, and removes the systematic 
bias for the 20-year and 100-year floods observed between the two 
estimation methods on Fig. 4. 

Regarding uncertainties in the quantiles estimates, a normalized 
uncertainty range has been computed from the confidence intervals of 
the quantiles to allow comparison between the LMOM and GML ap
proaches. As shown in Fig. 7, the uncertainty range on flood quantiles is 
larger with the LMOM approach compared to both variants of the GML. 

Fig. 3. Local significant trends in flood magnitude (top) and annual frequency (bottom).  
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The median uncertainty obtained with the GML (LMOM) approach is 
0.29 (0.34) for the 2-year flood and 0.48 (0.71) for the 20-year floods. 
The difference is much stronger for 100-year quantiles, with the median 

uncertainty range for the modified GML approach close to 0.9 while for 
L-Moments it exceeds 1.2. This indicates that even if the flood quantiles 
are very similar between the two approaches, there is more uncertainty 

Fig. 4. Comparison of 20-year and 100-year quantiles computed with GPD distributions, adjusted with the L-Moment and the original GLM (using the prior of 
Martins and Stedinger, 2000) parameter estimation methods (top panels), together with the values of the shape (k) and scale (alpha) parameters of the GPD 
(bottom panels). 

Fig. 5. Histogram of the values of the shape parameters of the GPD distributions fitted to floods at 75 stations having more than 30 years of data, together with the 
prior distribution of Martins and Stedinger (2000) and the new prior. 
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in flood quantiles estimates with the L-Moments approach than with the 
GML. As a consequence, the modified GML approach is kept for the 
estimation of flood quantiles, notably to avoid an underestimation of 

floods for long return periods and reduce the uncertainty on flood 
quantiles. The uncertainty of flood quantiles increases with aridity and 
the return level, there is indeed a significant correlation between the 

Fig. 6. Comparison of 20-year and 100-year quantiles computed with GPD distributions, adjusted with the L-Moment and the modified original GLM (using the new 
prior) parameter estimation methods (top panels), together with the values of the shape (k) and scale (alpha) parameters of the GPD (bottom panels). 

Fig. 7. Comparison of quantiles uncertainty for 2-year, 20-year and 100- year return levels, computed with L-Moments, the original and the modified GML esti
mation methods. 
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normalized uncertainty range and the aridity index (rho = -0.33, pvalue 
= 7.3.10-4 for 2-year floods and rho = -0.44, pvalue = 5.6.10-6 for 20- 
year floods). There is a significant correlation (rho = -0.43, pvalue =
7.7.10-6) between the tail ratio, defined herein as the ratio of the 100- 
year and 2-year quantiles, and the aridity index, indicating that the 
tail of flood distributions is getting heavier as the aridity increases, as 
previously shown in other semi-arid to arid regions (Zaman et al., 2012; 
Smith et al., 2018; Metzger et al., 2020). Similarly, there is a weak, yet 
significant link (rho = -0.27, pvalue = 0.0057) between the k parameter 
and aridity, with higher k in the aridest areas. For the scale parameter of 
the GP distributions, there is a significant correlation with catchment 
area (rho = 0.6, pvalue = 1.7.10-7. It should be noted that the rela
tionship of GP parameters with basin attributes is highly scattered, 
preventing a robust estimation of the GP parameters for ungauged basins 
using catchment attributes. 

About flood quantiles, Fig. 8 shows the correlations between the 
quantiles with a return period of 2, 20 and 100 years with all the basin 
properties considered. It can be seen that the strongest correlations 
(with rho > 0.4) are obtained with the size of the basins, TWI, and 
catchment maximum altitude. Geological properties (GWd, GWp, GWs) 
also have correlations with flood quantiles approaching 0.4. Overall, the 
correlations are stronger with physiographic attributes rather than cli
matic attributes, such as precipitation, temperature, and evapotranspi
ration. As shown on Supplementary Fig. S1, the different variables have 
a high degree of correlation between them. For instance, the different 
geological attributes are well correlated with area and TWI, and simi
larly, several soil properties and land use fractions (Bare, Sand, Sparse, 
CN) are correlated with altitude and PET. 

4.3. Regional flood frequency estimation with catchment attributes 

As shown in the previous section, the large number of predictors to 
be tested for the regional estimation of flood quantiles and the high 
degree of correlation between them requires methods able to account for 
collinearity of the predictors. This is precisely why the stepwise and the 

Lasso methods have been implemented for multiple regression, while 
the Random Forest approach is able to handle such variable de
pendencies in a non-linear fashion. In a first approach, the three 
regression methods have been applied to the whole data sample, to first 
check the most relevant predictors. For the Lasso regression, the vari
ables with non-zero weights after regularization are the soil bulk den
sity, topographic wetness index, forest, urban, irrigated crops, grassland, 
shrubland, and bare soils. For the stepwise regression, the selected 
variables were the soil bulk density, maximum altitude, topographic 
wetness index, forest, and mean annual precipitation. For the Random 
Forest model, all variables are considered, but a relative importance 
analysis (Supplementary Fig. S2) indicates that the most relevant ones 
are the topographic wetness index, altitude, curve number, soil bulk 
density, catchment area, mean annual precipitation and potential 
evapotranspiration. These results indicate the relevance of using the 
topographic wetness index, a variable selected in all three regression 
models, that has been seldom used in regional flood frequency analysis 
previously. In terms of model performance to estimate flood quantiles 
when using the full dataset (Supplementary Fig. S3), for the 2-year re
turn level, lower values of the MARE and relative bias are obtained with 
the stepwise and Lasso regression compared to Random Forest, while for 
the 20-year and 100-year return levels, the difference between the 
methods are reduced, with correlations above 0.8, MARE close to 0.4 
and relative bias between 0.12 and 0.29. 

Since the main focus of the study is to test the feasibility of estimating 
flood quantiles in ungauged locations, a jack-knife resampling has been 
applied to consider in turn all stations ungauged. The results of this 
validation shown in Fig. 9 indicate an underestimation of the quantiles 
with the RF and Lasso approach for the highest values. In addition to the 
Jack-Knife resampling, a k-fold validation was also performed. The 
reason behind the comparison between the two validation approaches is 
that models compared with k-fold cross-validation have lower variance 
than with the Jack-Knife, since there is less overlap between training 
folds and thus it leads to smaller variability. The results of the cross- 
validation are presented in Fig. 10, overall showing a similar picture 

Fig. 8. Correlations between the different physiographic attributes and the 2-year and 20-year floods.  
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as with the Jack-Knife. The best performances in terms of correlation, 
MARE, and relative bias are achieved with the two multiple linear re
gressions, stepwise and Lasso. In terms of variability across validation 
samples, the Lasso provided the less spread in the results, thus providing 
a more stable method to be used across different regions of North Africa. 
The mean absolute regional estimation errors are lowest for the LASSO 
regression for 20-year and 100-year quantiles, with MARE equal to 0.55 
(0.57) and 0.69 (0.67), respectively, with the Jack-Knife (k-fold cross 
validation) validation approach. These results are slightly better than 
those obtained in other arid regions with a similar approach, for 
example, in Iran with a relative root mean square error of 0.63 (Allah
bakhshian-Farsani et al., 2020), arid regions of Australia with a median 
absolute error of 0.69 (Zaman et al., 2012), and in the global studies of 
Salinas et al. (2013) or Smith et al. (2015), that are reporting estimation 
errors for 100-year flood quantiles for arid areas within the range of 
[0.61 1.31]. 

The estimation errors at the different stations only relate poorly to 
catchment attributes. The highest correlation is found with catchment 
area, with an average correlation (yet not significant) between the three 
regression methods of − 0.14 for Q20 and − 0.17 for Q2, indicating 

higher errors in smaller basins. Similarly, there is no relation between 
model residuals and aridity. This suggests that static catchment attri
butes are very poor predictors of the efficiency of the regional estimation 
for flood quantiles. There is also no apparent relationship between the 
bias of the different regional estimation methods and the geographical 
location of the basins (Supplementary Fig. S4). A regional characteristic 
that could explain the uncertainties in flood estimation solely based on 
catchment attributes is the importance of small-scale irrigation struc
tures in these arid regions. Different types of traditional infrastructures 
are present in Algeria (Remini et al., 2010), Morocco (Ouassanouan 
et al., 2022), and Tunisia (Berndtsson et al., 2016): the qanat (also 
named khettara, foggara, ngoula, kriga depending on the country) that are 
underground tunnels carrying water by gravity from mountain areas or 
seguia, small earthen-made or concrete surface channels deriving water 
from a river. These systems could divert up to 80 % of the river flow as 
shown in south Morocco by Ouassanouan et al. (2022), and they are also 
affected by significant water losses by evaporation, infiltration, and 
leaks in the channels that could reach 50 % (Bakache, 2017). Except for 
a few local cases, these small-scale irrigation structures are largely un
monitored, so it is very challenging to estimate with precision the water 

Fig. 9. Regional estimation of 2-year (Q2), 20-year (Q20) and 100-year (Q100) floods from different estimation methods with catchment characteristics; Random 
Forest, stepwise and Lasso multiple linear regressions. The results are presented in terms of correlation, mean absolute relative error (MARE), and relative bias using a 
jack-knife cross-validation. 
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losses from the river discharge, which can vary from one river to 
another. 

5. Conclusions 

This study is the first to propose a regional analysis of flood trends in 
the Maghreb and an approach for estimating flood quantiles in unga
uged basins. A database of 98 basins between Algeria, Morocco and 
Tunisia was compiled, including only basins with no large dams, which 
is larger and more exhaustive than any other study on the same domain. 
The results of the trend analysis do not reveal any clear upward or 
downward trend in flooding. Local trends are observed but are not sig
nificant at the regional scale. These trends seem to be linked above all to 
the high variability of floods in this region, with either very large iso
lated episodes, or very wet years with a succession of several episodes. 
An envelope curve has been proposed for estimating the maximum 
floods that can be observed in a range of different catchment areas, 
providing a robust tool for estimating maximum floods, particularly for 
sizing hydraulic structures. For the local flood frequency analysis, a 
modification of the Generalized Maximum Likelihood approach has 
been provided, with an updated prior distribution for the shape 
parameter of the Generalized Pareto Distribution to reduce the un
certainties on flood quantiles. An approach for regional estimation of 
flood quantiles has also been developed, by comparing different 
regression models with basin properties: Stepwise, Lasso multiple re
gressions, and Random forests. The results showed that flood quantiles 
for ungauged basins could be estimated regionally with an error close to 
50 %, which is an order of magnitude comparable with the uncertainty 
obtained on local quantile estimation, already high in these semi-arid to 
arid basins. 

Many uncertainties remain for regional flood analysis in this region. 
First and foremost, the measurement of floods in these dry environments 
is complex, not least due to the high mobility of river beds during floods, 
which necessitates regular updating of rating curves. The present study 
is based on daily discharge measurements, but it should be noted that for 
the smallest catchments but also the most arid ones, instantaneous 

discharge measurements should be considered, since in these basins the 
flood events could last only a few hours. Therefore, the flood peaks are 
likely underestimated in those basins at the daily time step. Further
more, in addition to the large dams, there are a multitude of small 
irrigation works and most of them have not been inventoried and 
monitored. Thus, it is very difficult to take into account the quantities of 
water withdrawn in the absence of measurements. Similarly, little is 
known about regional interactions between groundwater and surface 
water, notably during floods, in a context of highly increasing ground
water abstraction for urban water supply and agriculture. However, this 
work opens several new perspectives given the large database of river 
runoff compiled. There is a need to better estimate the water uptake 
from irrigation, from the local scale to the regional scale, and recent 
satellite-based approaches could provide a preliminary answer given the 
ever-increased spatial resolution of satellite sensors (Dari et al., 2021). 
In addition, an analysis of the factors linked to the succession of episodes 
within the same season or hydrological year for a given area could 
improve operational forecasting systems by improving knowledge about 
flood-generating processes (Tramblay et al., 2022, 2023) and flood types 
in this region. In fact, this type of analysis has already been carried out in 
other regions, such as Europe (Lun et al., 2020) or North America 
(Villarini et al., 2013), showing a dependence between flood occurrence 
and climatic variability. This type of analysis could be carried out in the 
Maghreb with the database developed in the present study. 
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2013. Comparative assessment of predictions in ungauged basins – Part 2: Flood and 
low flow studies. Hydrol. Earth Syst. Sci. 17, 2637–2652. https://doi.org/10.5194/ 
hess-17-2637-2013. 

Shu, C., Burn, D.H., 2004. Artificial neural network ensembles and their application in 
pooled flood frequency analysis. Water Resour. Res. 40 https://doi.org/10.1029/ 
2003WR002816. 

Smith, J.A., Cox, A.A., Baeck, M.L., Yang, L., Bates, P., 2018. Strange Floods: The Upper 
Tail of Flood Peaks in the United States. Water Resour. Res. 54, 6510–6542. https:// 
doi.org/10.1029/2018WR022539. 

Smith, A., Sampson, C., Bates, P., 2015. Regional flood frequency analysis at the global 
scale. Water Resour. Res. 51, 539–553. https://doi.org/10.1002/2014WR015814. 

Sørensen, R., Zinko, U., Seibert, J., 2006. On the calculation of the topographic wetness 
index: evaluation of different methods based on field observations. Hydrol. Earth 
Syst. Sci. 10, 101–112. https://doi.org/10.5194/hess-10-101-2006. 

Stedinger, J.R., 1993. Frequency analysis of extreme events. Handbook of hydrology. 
Svensson, C., Jones, D.A., 2010. Review of rainfall frequency estimation methods: 

Review of rainfall frequency estimation methods. J. Flood Risk Manage. 3, 296–313. 
https://doi.org/10.1111/j.1753-318X.2010.01079.x. 

Tarolli, P., Borga, M., Morin, E., Delrieu, G., 2012. Analysis of flash flood regimes in the 
North-Western and South-Eastern Mediterranean regions. Nat. Hazards Earth Syst. 
Sci. 12, 1255–1265. https://doi.org/10.5194/nhess-12-1255-2012. 

Tibshirani, R., 1996. Regression Shrinkage and Selection Via the Lasso. J. Roy. Stat. Soc.: 
Ser. B (Methodol.) 58, 267–288. https://doi.org/10.1111/j.2517-6161.1996. 
tb02080.x. 

Tramblay, Y., Villarini, G., Zhang, W., 2020. Observed changes in flood hazard in Africa. 
Environ. Res. Lett. 15, 1040b5. https://doi.org/10.1088/1748-9326/abb90b. 

Tramblay, Y., Villarini, G., Saidi, M.E., Massari, C., Stein, L., 2022. Classification of flood- 
generating processes in Africa. Sci Rep 12, 18920. https://doi.org/10.1038/s41598- 
022-23725-5. 

Tramblay, Y., Arnaud, P., Artigue, G., Lang, M., Paquet, E., Neppel, L., Sauquet, E., 2023. 
Changes in Mediterranean flood processes and seasonality. Hydrol. Earth Syst. Sci. 
27, 2973–2987. https://doi.org/10.5194/hess-27-2973-2023. 

Tyralis, H., Papacharalampous, G., Langousis, A., 2019. A Brief Review of Random 
Forests for Water Scientists and Practitioners and Their Recent History in Water 
Resources. Water 11, 910. https://doi.org/10.3390/w11050910. 

Villarini, G., Smith, J.A., Vitolo, R., Stephenson, D.B., 2013. On the temporal clustering 
of US floods and its relationship to climate teleconnection pattern. Int. J. Climatol. 
33, 629–640. https://doi.org/10.1002/joc.3458. 

Wazneh, H., Chebana, F., Ouarda, T.B.M.J., 2015. Delineation of homogeneous regions 
for regional frequency analysis using statistical depth function. J. Hydrol. 521, 
232–244. https://doi.org/10.1016/j.jhydrol.2014.11.068. 

Wieder, W., Boehnert, J., Bonan, G.B., Langseth, M., 2014. Regridded Harmonized World 
Soil Database v1.2 59.234908 MB. 10.3334/ORNLDAAC/1247. 

Wilks, D.S., 2016. “The Stippling Shows Statistically Significant Grid Points”: How 
Research Results are Routinely Overstated and Overinterpreted, and What to Do 
about It. Bull. Am. Meteorol. Soc. 97, 2263–2273. https://doi.org/10.1175/BAMS- 
D-15-00267.1. 

Zaman, M.A., Rahman, A., Haddad, K., 2012. Regional flood frequency analysis in arid 
regions: A case study for Australia. J. Hydrol. 475, 74–83. https://doi.org/10.1016/ 
j.jhydrol.2012.08.054. 

Zemzami, M., Benaabidate, L., Layan, B., Dridri, A., 2013. Design flood estimation in 
ungauged catchments and statistical characterization using principal components 
analysis: application of Gradex method in Upper Moulouya. Hydrol. Process. 27, 
186–195. https://doi.org/10.1002/hyp.9212. 

Zhang, S., Zhou, L., Zhang, L., Yang, Y., Wei, Z., Zhou, S., Yang, D., Yang, X., Wu, X., 
Zhang, Y., Li, X., Dai, Y., 2022. Reconciling disagreement on global river flood 
changes in a warming climate. Nat. Clim. Chang. 12, 1160–1167. https://doi.org/ 
10.1038/s41558-022-01539-7. 

Zkhiri, W., Tramblay, Y., Hanich, L., Berjamy, B., 2017. Regional flood frequency 
analysis in the High Atlas mountainous catchments of Morocco. Nat Hazards 86, 
953–967. https://doi.org/10.1007/s11069-016-2723-0. 

Zoglat, A., El Adlouni, S., Badaoui, F., Amar, A., Okou, C.G., 2014. Managing 
Hydrological Risks with Extreme Modeling: Application of Peaks over Threshold 
Model to the Loukkos Watershed. Morocco. J. Hydrol. Eng. 19, 05014010. https:// 
doi.org/10.1061/(ASCE)HE.1943-5584.0000996. 

Y. Tramblay et al.                                                                                                                                                                                                                              

https://doi.org/10.1029/2019WR026575
https://doi.org/10.1088/1748-9326/7/2/024009
https://doi.org/10.1088/1748-9326/7/2/024009
https://doi.org/10.2307/1907187
https://doi.org/10.2307/1907187
https://doi.org/10.1029/1999wr900330
https://doi.org/10.1029/2001WR000367
https://doi.org/10.1029/2001WR000367
https://doi.org/10.1504/IJHST.2017.080959
https://doi.org/10.1504/IJHST.2017.080959
https://doi.org/10.1080/02626669709492022
https://doi.org/10.1080/02626669709492022
https://doi.org/10.1016/j.jhydrol.2020.125254
https://doi.org/10.1016/j.jhydrol.2020.125254
https://doi.org/10.1016/S0022-1694(01)00488-7
https://doi.org/10.1016/S0022-1694(01)00488-7
https://doi.org/10.1016/j.scitotenv.2022.155328
https://doi.org/10.1016/j.pce.2011.02.002
https://doi.org/10.1007/s00477-022-02174-6
https://doi.org/10.1016/S0022-1694(99)00135-3
https://doi.org/10.1016/S0022-1694(99)00135-3
http://refhub.elsevier.com/S0022-1694(24)00072-6/h0280
http://refhub.elsevier.com/S0022-1694(24)00072-6/h0280
https://doi.org/10.7202/039903ar
https://doi.org/10.1038/sdata.2018.91
https://doi.org/10.3390/w10070927
https://doi.org/10.2166/wcc.2020.069
https://doi.org/10.2166/wcc.2020.069
https://doi.org/10.5194/hess-17-2637-2013
https://doi.org/10.5194/hess-17-2637-2013
https://doi.org/10.1029/2003WR002816
https://doi.org/10.1029/2003WR002816
https://doi.org/10.1029/2018WR022539
https://doi.org/10.1029/2018WR022539
https://doi.org/10.1002/2014WR015814
https://doi.org/10.5194/hess-10-101-2006
https://doi.org/10.1111/j.1753-318X.2010.01079.x
https://doi.org/10.5194/nhess-12-1255-2012
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1088/1748-9326/abb90b
https://doi.org/10.1038/s41598-022-23725-5
https://doi.org/10.1038/s41598-022-23725-5
https://doi.org/10.5194/hess-27-2973-2023
https://doi.org/10.3390/w11050910
https://doi.org/10.1002/joc.3458
https://doi.org/10.1016/j.jhydrol.2014.11.068
https://doi.org/10.1175/BAMS-D-15-00267.1
https://doi.org/10.1175/BAMS-D-15-00267.1
https://doi.org/10.1016/j.jhydrol.2012.08.054
https://doi.org/10.1016/j.jhydrol.2012.08.054
https://doi.org/10.1002/hyp.9212
https://doi.org/10.1038/s41558-022-01539-7
https://doi.org/10.1038/s41558-022-01539-7
https://doi.org/10.1007/s11069-016-2723-0
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000996
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000996

	Regional flood frequency analysis in North Africa
	1 Introduction
	2 Data collection
	3 Methodology
	3.1 Flood event sampling and trend analysis
	3.2 Local frequency analysis
	3.3 Regional estimation of flood quantiles

	4 Results and discussion
	4.1 Flood event characteristics and trends
	4.2 Local flood frequency analysis
	4.3 Regional flood frequency estimation with catchment attributes

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A Supplementary data
	References


