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tmeclanahan@wes.org advances allowed us to develop a spatially resolved proxy for predicting numbers of trop-

ical nearshore marine taxa. A diverse marine environmental spatial database was used to
model numbers of taxa from ~1000 field sites, and the predictions were applied to all 7039
6.25-km? reef cells in 9 ecoregions and 11 nations of the western Indian Ocean. Our proxy

Article impact statement: Number and spatial
resolution of areas prioritized for conservation were
greatly increased by predictions from an
environment—taxa proxy model. for total numbers of taxa was based on the positive correlation (#* = 0.24) of numbers of

taxa of hard corals and 5 highly diverse reef fish families. Environmental relationships indi-
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on our total species proxy with those identified in 3 previous priority-setting reports and
with the protected area database. Our method identified 119 locations that fit 3 numbers of
taxa (hard coral, fish, and their combination) and 4 spatial delineations (nation, ecoregion,
province, and reef clustering) criteria. Previous publications on priority setting identified 91
priority locations of which 6 were identified by all reports. We identified 12 locations that
fit our 12 criteria and corresponded with 3 previously identified locations, 65 that aligned
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INTRODUCTION

Latrge-scale evaluations of biodiversity often fail to articulate
fine-scale spatial variability due to limited, biased, and vari-
able sampling relative to the numbers of taxa and the area of
coverage (Molinos et al., 2016; Selig et al., 2014). Priority bio-
diversity areas may, therefore, often reflect biases in sampling
efforts rather than local realized taxonomic diversity (Table 1).
Therefore, identifying priotity areas for biodiversity conserva-
tion can be influenced by limits set by sampling rather than
actual patterns of biodiversity. For example, large-scale taxo-
nomic diversity maps of corals often reflect the patchy and
incomplete nature of species occurrence sampling (Kusumoto
et al., 2020). Yet, these distributions of biodiversity and asso-
ciated maps often play important roles in where conservation
resources are distributed and the quantity of those resources
(Beger et al.,, 2015). We devised an environment—number-of-
taxa machine learning model (boosted regression tree [BRT])
to address sampling and species selectivity limitations that ate
common among pootly sampled locations. We also refined the
spatial resolution relative to past efforts to assist in the current
movement toward smaller scale governance and protected areas
in poor tropical countries.

Past efforts to prioritize conservation spending have relied
on coarse-scale data, a limited number of focal species, and
underlying sampling biases. A common method to estimate
numbers of taxa has been to first use species presence—absence
information and a limited number of environmental variables to
establish species’ niches, distribution polygons, and cumulative
overlapping species distributions (Table 1). Second, the cumula-
tive frequency of species sampled in a spatial delineation is used
to estimate numbers of taxa but often at coarse scales, such as
an ecoregion or subregion. Finally, consultant and expert-based
opinions are frequently used to guide conservation spending
decisions.

In the western Indian Ocean (WIO), previous identification
of priority conservation locations has frequently been influ-
enced by the existence of large-bodied and space-requiring
species (mammals, turtles, seabirds), remoteness, or nesting
locations (EAME, 2004; Everett & van der Elst, 2015; Obura
et al., 2012). These approaches do not address smaller scales
and more complex taxa and environmental subtidal niche and
associated distribution patterns. Past methods have frequently
provided planners with coarse biodiversity distribution maps,
which are often weakly predictive of local population metrics,

with at least 1 past report, and 28 that were new locations. Only 34% of the 208 marine
protected ateas in this province overlapped with identified locations with high numbers
of predicted taxa. Differences occurred because past priorities were frequently based on
unquantified perceptions of remoteness and preselected priority taxa. Our environment—
species proxy and modeling approach can be considered among other important criteria
for making conservation decisions.

Africa, biodiversity proxy, environmental drivers, marine spatial planning, taxa richness, spatial modeling

such as numbers of taxa (Kusumoto et al.,, 2020; Lee-Yaw
et al., 2022). We believe modern biodiversity and conserva-
tion spending on priority mapping needs to better account for
species’ niches, or their required environment and habitats, the
area required to support viable populations, and the scale of
threats and conservation spending (Pilowsky et al., 2022). To
begin this process, we evaluated the potential overlap between
consultancy-based and protected area-designated locations with
the first provincial environment—numbers of taxa model. The
comparison allowed us to test the efficacy of past prioritiza-
tion exercises and determine whether current marine protected
areas (MPAs) overlap with locations with high numbers of taxa.
Thus, we asked whether these coarse-scale or umbrella species
approaches work to include the most taxa-diverse sites (Branton
& Richardson, 2011).

The relevance of biodiversity conservation to ecosystem
services, such as fisheries and shoreline protection, should
benefit from a focus on more common, small-bodied, and
ecosystem-service-providing species. Moreover, refining biodi-
versity predictions to smaller spatial scales can provide more
actionable and economically appropriate goals (McClanahan,
2023). Therefore, we developed a proxy and model for numbers
of subtidal tropical marine taxa, mapped this proxy at 6.25 km?
in the WIO, and compared it with the above consultancy and
protected area designations found in the World Database of
Protected Areas (WDPA) (https://www.protectedplanet.net/
en/thematic-areas/wdpartab=WDPA). We asked whether and
how the outcomes of the environment—taxa predictions of the
numbers of taxa would correspond with past recommendations
and current MPA designations.

METHODS

We sought to improve understanding of finer spatial and taxo-
nomic scales of variability in the tropical WIO. We developed a
status quo empirical model to predict number of taxa observed
in field data with their relationships to numerous environmental,
demographic, and management variables. The environmental
variables compiled for all 7039 ~6.25-km? cells were then
used to predict numbers of taxa in the mapped coral reef
cells (Figure 1). We then used the analyses to identify high-
biodiversity locations at 4 spatial scales, namely, provincial,
ecoregional, national, and spatial clustering scales. Spatial clus-
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(Continued)

TABLE 1

Human

Environmental

Geographic

Taxonomic
group

Weaknesses Citation

Identified priority locations

influences

influences

Methods

scope

Selig et al., 2014

Assumptions of overlapping

None Low and high Coral Triangle, Madagascar

Richness, rarity,

Global

Diverse set of

polygons and coarse resolution

human

distribution polygon
overlaps, and 10%

marine

populations

species

area threshold

Roberts et al.,

Low spatial replication or

Coral Triangle, southern India, South

None

None

Richness and endemism

Global

Diverse set of

2002

completeness; coarse spatial

Africa, Red Sea, Mascarene Islands

marine

priority location resolution

species

Spalding, 2010

Assumptions of overlapping

Central Indo-West Pacific

None

None

Species distributions

Global

Mangroves

polygons and coarse tesolution

and polygon overlaps

Short et al.,

Assumptions of ovetlapping

Tropical Indo-Pacific (East Africa, south

None

None

Species distributions

Global

Seagrass

2007

polygons and coatse resolution

Asia, and tropical Australia to the

and polygon overlaps

eastern Pacific)

Note: Terms applied in a Google Scholar search in 2022: Africa, western Indian Ocean, species distribution, diversity, richness, and so forth.
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tering identified neighborhoods of dense numbers of taxa,
referred to as biodiversity hotspols.

Several scientific advances have allowed finer scale pre-
dictions and maps of marine biodiversity (Kuhn & John-
son, 2013; Pilowsky et al., 2022). These include moderate
resolution (~6.25 km?) but large-scale mapping of coral reefs,
global satellite coverage of environmental variables and proxies
(<10-km steps), and predictive statistical algorithms. Specifi-
cally, we used a BRT algorithm, which can handle large amounts
of data and many predictor variables and combines decisions
from a sequence of base models to make predictions. Prior anal-
yses indicated that BRT models are often effective at handling
nonlinear relationships, account for missing values in covariates
and interactions between predictors, and have high predictive
performance (Elith et al., 2008). Combing the BRT algorithm
with environment and taxa data should improve predictions
of numbers of taxa compared with traditional rarefaction or
cumulative taxa techniques (McClanahan et al., 2024).

Study region

A digital coral reef map established the distribution of
coral reefs (https://data.unep-wemec.org/datasets/1) (Table 1;
Appendix S1) (Burke et al., 2011). Specifically, we used the WIO
map and 9 ecoregions, namely, the Northern Monsoon Current
Coast, East African Coral Coast, Seychelles, Cargados Carajos
and Tromelin Island, Mascarene Islands, Southeast Madagascar,
Western and Northern Madagascar, Bight of Sofala and Swamp
Coast, and Delagoa. The WIO faunal province also includes
11 national governance jurisdictions. Madagascar, Tanzania, and
Mozambique combined contained 43% of the 7039 total reef
cells for the province (Appendix S2).

Environmental data sources

We compiled 70 spatially complete environmental data layers
derived from satellite and shipboard measutrements (Appendix
S3). Oceanographic data included potential ecological drivers,
such as photosynthetic active radiation (PAR), pH, calcite
and dissolved oxygen concentrations, diffusion attenuation,
salinity, net primary productivity, chlorophyll-a variables, phy-
toplankton carbon, and wave height among other derivatives
(Tyberghein et al., 2012; Yeager et al., 2017). We calculated
several long-term sea surface temperature (SST) or thermal
stress metrics, including SST mean, median, range, standard
deviation (SD), skewness, kurtosis, and rate of rise taken from
National Ocean and Atmospheric Administration CoralTemp
5-km resolution daily SST observations database collected
from 1985 to 2020 (https://coralreefwatch.noaa.gov/product/
5km/index_5km_sst.php) (Liu et al., 2014). Cumulative degree-
heating weeks (DHW) was calculated from the same data set as
the sum of the maximum annual DHW for all years from 1985
to 2020. We included several composite thermal and water qual-
ity stress metrics, such as the global stress model and composite
nutrient concentrations (Andrello et al.,, 2022; Maina et al.,
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FIGURE 1 (a) Locations of sites with a large number of fish and coral taxa from southern Kenya to northern Mozambique (individual reef cells and their

number of taxa quintiles shown) and (b) provincial study area with the 119 areas of high conservation priority identified based on the 12-point environment—number

of taxa predictive models, 3 past recommendations of priority location reports (SWIOFP, Southwest Indian Ocean Fisheries Programme; protected areas taken from
the World Bank World Database of Protected Areas). The model of the relationship between the environment and the number of taxa scales locations by number of

criteria met for the 3 taxa groupings and 4 spatial delineations (Table 3). More highly resolved maps at the country level are provided in Appendix S7.

2011). Finally, we used estimates of larval dynamics, includ-
ing measures of connectivity, net flow, indegree, outdegree, and
retention, for each reef cell (Fontoura et al., 2022).

The geographic variables we evaluated included ecoregion,
nation, wilderness (>4 h travel time from a human population),
travel distance to people, shore, and ports, and market grav-
ity or the number of people living on the shore or in cities as
divided by the square of the distance or travel time (Maire et al.,
2016). We assigned cells to 4 fisheries management categories,
including unrestricted fishing (42% of cells), restricted fishing
(42%), low-compliance closures (14%), and high-compliance
closures (2%). We based management classifications on infor-

mation in published literature, the experience of the observers,
and discussions with knowledgeable observers (McClanahan
etal, 2015).

Coral data collection

We sampled corals in haphazardly located quadrats while
snorkeling or scuba diving and maintaining a near-constant
recorded depth (Appendix S4). Quadrats were visually esti-
mated or measured as ~2 m?, and all corals >5 cm in ~15-20
replicates were identified to taxa and counted (McClanahan,
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Ateweberhan, et al., 2007). Thus, we estimated the total num-
ber of taxa in ~40 m?. We identified taxa to the genus, but
we classified Porifes as massive, branching, or Porites rus and
Galaxea as either G. astreata or G. fascicularis. These growth forms
represent different life histories and ecologies important to dis-
tinguish in this province. We sampled 1001 well-distributed sites
and recorded 67 taxa (Appendix S4). Sixteen observers con-
tributed to the database, but 3 observers sampled 939 of the
1001 sites and had nonsignificant differences between them. We
also recorded the habitat type of sites as reef edge, reef crest,
reef flat, or reef lagoon.

Fish data collection

We counted fish in designated areas with either repeated cit-
cular methods (154 m?) or belt transects of 100, 250, and
500 m? according to the methods selected by the investigators.
Each observer’s methods are described in their foundational
papers (Chabanet et al., 2016; Friedlander et al., 2012; Gra-
ham et al., 2020; McClanahan, 1994). Three of us were single
individual observers (A.E, N.G., and T:M.), whereas 2 were
small groups that shared the same methods and leaders (H.B.
and P.C.). We pooled or averaged adjacent replicates such that
the final units were number of species per ~ 250, 300, 462,
and 500 m%. We evaluated the observer method and sampling
area effects by including them in the BRT solutions and set-
ting them to a constant via partial effects methods when making
modeling predictions (see below). We extracted the number of
species for the 5 selected families known to be good proxies
for total fish diversity (Acanthuridae, Chaetodontidae, Labridae:
Scarinae, Pomacanthidae, and Pomacentridae) (Allen & Wernet,
2002). We estimated total biomass as the summed weights of
the individual species or families based on length estimates and
known length—weight relationships. We sampled 313 species in
the 5 families among 1201 transect sites in the WIO province.
Coral and fish transect sampling were largely done in the same
locations, and differences in total sample sizes occurred when
one of the 2 censuses were not completed.

Variable selection

The total number of species in all reef cells was based on the
relationship between the environment and the number of taxa
(environment—number-of-taxa model) based on separate coral
and fish field data sources, units, and models (Appendices S3
& S4). Therefore, the following procedutres were developed
to find the most predictive environmental variables for each
taxon. First, we used standard variable choice procedutes and
evaluated Spearman rank collinearity between predictor vari-
ables (Appendix S5). Following recommendations for reducing
collinearity, variables that had a correlation coefficient >0.7
were further examined for potential elimination (Dormann
et al.,, 2013). Thereafter, multicollinearity was investigated using
variance inflation factors (VIFs), with a VIF acceptance cut-
off of <5. If after these 2 processes, a potentially eliminated

variable had prior good evidence from the scientific literature
of being causative, it was not eliminated but used to create an
alternative model, referred to as models 1 and 2, as advised
by Araujo and New (2007). Common SST metrics are a good
example of the problem of strong correlations and the potential
problems of eliminating variables that potentially have impor-
tant causative relationships. Temperature variation metrics are
measures of chronic and acute stress (i.e., SD, skewness, and
kurtosis), which are highly but not linearly correlated with mean
temperature, and frequentlycorrelated with biodiversity (Chaud-
hary et al., 2021; McClanahan, 2020a). In the final predictive
mapping, we used the averages of the 2 models and weighted
the predictions by the R* of the individual models. Decisions
and the variables included in the 2 models are in Appendix S3.
By this process, we reduced the number of potential environ-
mental vatiables (# = 70) to 35 for corals and 37 for fish to be
included in the next variable selection and strength step, or the

BRT model building.

Modeling the number of taxa predictions

We used the BRT models to look for associations between
the environmental data and the empirical number of fish and
coral taxa field data. Users are required to input 5 hyperpa-
rameters that control its performance and complexity. These
include number of trees, minimum number of observations in
tree node, learning rate (determines the contribution of each
tree to the expanding model), tree complexity (allows for vari-
able interactions), and bagging fraction (i.e., random proportion
of training data used). We evaluated the predictive perfor-
mance of 400 possible models with varying combinations of
the hyperparameters: minimum number of observations in node
(5, 8, 10, 15), learning rate (0.001, 0.01, 0.1, 0.3), tree com-
plexity (range 1-5 by 1), and bag fraction (0.5-0.75 by 0.05).
The hyperparameter combination that produced the smallest
Poisson deviance and produced >1000 trees was used to fit
subsequent numbers of fish species and coral taxa BRTs (i.e.,
number of trees = 5000, learning rate = 0.01, tree complex-
ity = 3, minimum observations in node = 8, bag fraction = 0.5).
A 10-fold cross-validation was conducted to determine the opti-
mal number of trees needed to minimize deviance and maximize
predictive performance.

Model performance

We evaluated model performances by splitting the data into a
70% training set and a 30% testing set to calculate the R* and
root mean square error (RMSE) for training and testing data
sources (Kuhn & Johnson, 2013). We further validated the mod-
els with the full data set and applied 5 times repeated 10-fold
cross-validation to calculate performance metrics. The 10-fold
cross-validation created 10 subsets of the data and randomly
selected 90% of each subset for model training and 10% for
testing. In repeated 10-fold cross-validation, the process was
repeated 5 times, thus model performance was evaluated based
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on 50 random subsets of the data. We then calculated perfor-
mance metrics for each subset and averaged them to give a
single metric (Kuhn & Johnson, 2013). The BRT models had
similar B2 and RMSE between training and testing with a 70
to 30 split and the repeated 10-fold cross-validation procedures
(Appendix S0).

The influence of the number of predictors used in the
model was also investigated through recursive feature elimi-
nation (analogous to backward selection) of the final models
and a 10-fold cross-validation (Kuhn & Johnson, 2013; Miller,
2002). For each model, we plotted the RMSE profile, which
showed the number of predictors with the minimum RMSE
within 1 SE of the minimum RMSE (Breiman et al., 1984). We
retained models with the full set of preselected predictors with
collinear variables removed because BRT models have embed-
ded methods of variable selection that minimize the influence of
noninformative predictors (Elith et al., 2008). The BRT model
fitting and performance evaluation used the caret 6.0-93 and
gbm package 2.1.8 in the R statistical programming language
(Greenwell et al., 2020; Kuhn, 2015; R Core Team, 2021). We
further evaluated model spatial autocorrelation in the raw num-
bers of fish and coral taxa and the BRT model residuals via a
Moran’s 7 test (Moran, 1950) with the ape package in R (Par-
adis & Schliep, 2019). The raw numbers of taxa values for both
fish and corals showed evidence of positive spatial autocorre-
lation, which was not detected in the model residuals. We used
pdp package 0.8.1 to create partial dependence plots to present
associational relationships between each strong predictor and
numbers of taxa (Greenwell, 2017).

The model above was then used to model numbers of taxa in
mapped cells without empirical data. This procedure required
making comparisons for which some key local variables were
held constant, namely, depth, observer, observer methods, and
fish biomass. Preferably, these held-constant variables should
represent 2 maximum value or a point above a saturation
response, such as the most efficient or experienced observer and
the depth and biomass containing the most taxa. Holding them
constant allowed direct comparisons of the environmental fac-
tors that could influence the number of taxa in the 6.25-km?
cells. These would be variation in water temperature, light, and
chemical properties of the water among other factors. Thus, the
prediction is the expected number of taxa under the influence
of environmental factors in the absence of confounding local
factors in the data, such as depth and fishing intensity. There-
fore, we examined the taxa relationships for peak or saturation
points with biomass and depth. Numbers of fish taxa associ-
ations with biomass saturated at ~500 kg/ha and 10-m depth
(McClanahan, 2022). Numbers of coral taxa also peaked or sat-
urated at 10 m. Therefore, for the partial effect predictions for
each cell, we held fish biomass constant at 600 kg/ha and depth
at 10 m. To minimize the observer and method effect, we chose
the transect area with the most replicates held constant, which
was 500 mz, and the observer with the most obsetrvations per
country. One observer did most of the fish sampling in most
countries (7 = 613), and 2 observers with nonsignificant differ-
ences did most of the coral sampling (# = 771). Therefore, we
based most predictions in most countries on these 2 observers’

partial effects except in the smaller samples of Reunion and
South Africa, where these 2 observers did not collect data.

Mapping biodiversity hotspots

We used the BRT model predictions to model numbers of taxa
in all 7039 6.25-km? reef cells. The resultant numbers of taxa
predictions for both models used averages weighted by their
R? values to create an ensemble prediction for numbers of fish
species and coral taxa in each reef cell. We mapped the ensem-
ble predictions of the full WIO provincial data in quintiles and
identified cells with the top 20% of values (80—100% quintile)
for fish and corals, which we considered biodiversity hotspots.
We combined numbers of fish species and coral taxa ensem-
ble predictions by calculating their g scores and averaging each
reef cell’s value to create a biodiversity proxy. Additionally, we
mapped the combined biodiversity proxy in quintiles to identify
the top 20% positive g scores. The above procedure was con-
ducted at the WIO provincial-, ecoregional-, and national-scale
delineations.

Further, we conducted an optimized hotspot analysis in
ArcGIS 10.3 on the ensemble numbers of fish species and coral
taxa predictions at the scale of the WIO province (ESRI, 2022).
We used the Getis—Ord Gi* statistic for hotspot analysis to iden-
tify the location of statistically significant spatial clusters of high
(hotspots) and low values (coldspots) in a defined neighborhood
distance (Ord & Getis, 1995). The Gi* statistic for each reef
cell is essentially a g score, and statistical significance is estab-
lished by comparing the local sum of the reef cell and its defined
neighbors proportionally with the sum of all reef cells. If the dif-
ference of the local sum to the expected local sum is too large
to be the result of random chance, then a statistically significant
g score is established (ESRI, 2022). A high positive g score with
a between-cell neighborhood with p < 0.10 indicated a hotspot
(spatial clustering of high values), whereas a low negative g score
and low p indicated a coldspot (spatial clustering of low val-
ues). A score near zero indicated a lack of spatial clustering. The
resulting p values were corrected for false discovery rates that
can arise from spatial dependency and multiple testing (Ord &
Getis, 2001). We used the optimized hotspot analysis and relied
on several strategies to determine the optimum parameter set-
tings for the analysis based on the data provided, such as the
neighborhood distance for clustering, The ensemble predictions
were evaluated for peak incremental spatial autocorrelation, and
no peaks were found in numbers of fish and coral taxa predic-
tions. Therefore, the average distance to 30 nearest neighbors
was used to establish the neighborhood distance for the analysis
(~25.5 km).

Prioritizing locations

We mapped the locations of past WIO provincial MPA priori-
tization reports and WDPA borders to compare them with our
locations identified for their high numbers of taxa. A location
was defined here as a cluster of reef cells between 2 human
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settlements or geographic points on an internet (Google) map.
We used settlement names that were recognizable to nationals
and generally evenly spaced on Google maps. Our site selection
criteria were based on the 3 taxa criteria, which were the indi-
vidual cells’ number of fish and coral taxa and their combined
biodiversity proxy (g scores). Locations were delineated to deter-
mine the location of the top 20% number of taxa locations at 4
scales, which included the province, ecoregion, and nation and
the reef clustering criteria. Thus, combining the 3 taxa and 4
spatial delineation scales produced a maximum ranking of 12,
which allowed all locations to be ranked from 0 to 12.

We then compared our rankings with locations identified in
3 past prioritization plans undertaken in the WIO province.
The East African Marine Ecoregion, World Heritage Report for
the WIO Province, and the Southwest Indian Ocean Fisheries
Programme (SWIOFP) reports identified 12, 14, and 59 pri-
ority locations, respectively. We either split or combined them
to make their sizes directly comparable with the same spatial
scale or resolution of our locations. We then compared the
matches in spatial overlap between our locations with high num-
ber of species and the 3 reports delineated at the above 4 spatial
scales. The number of coastal and marine protected areas in
the province and each nation were determined from WDPA
database and evaluated for overlap with our final 119 selections
that fit at least 1 of the 12 number of taxa and spatial criteria.

RESULTS
Empirical relationships

Numbers of coral and fish taxa were moderately and positively
correlated for the empirical site and the modeled data (# = 0.24
and »* = 0.25, respectively) (Figure 2). Differences in the inter-
cept and slope of the empirical (slope = 0.74) and modeled data
(slope = 0.65) indicated variability between the empirical and
modeled data. Modeled numbers of fishes started with more but
accumulated taxa somewhat slower than the coral taxa for the
modeled relative to field sites.

Empirical BRT models

The BRT evaluations indicated the top predictive variables for
the number of fish species were biomass, travel time to near-
est population, indegree connectivity, median SST, observer and
method, larval retention, country, and ocean primary produc-
tivity (Figure 3a). Both model options picked biomass as the
top variable, explaining 27% of the variance for model 1 and
35% in model 2. An example of differences in the ensem-
ble model variable selection methods can be seen with the
outcomes of the highly correlated vatiables of travel time to
nearest population and gravity to nearest population. We used
travel time in model 1, and it had the second highest influ-
ence of 14.4%, whereas gravity was used in model 2 and had
a lesser influence of 3.8%. In model 1, median SST, net pri-
mary productivity, DHW] and SST kurtosis were more modest

predictive variables, with 3—5% relative influences. Median SST
was strongly correlated with SST skewness, which we included
in model 2, but it was weaker and not among the top 12 vati-
ables. Larval indegree connectivity and larval retention were
positive and saturating for numbers of taxa in both mod-
els; relative importance was 3-5.5%. Observer and country
effects were included in both models and had similar rel-
ative influences that ranged from 3.7% to 5.3% for both
models. The countries of Tanzania, Mozambique, and the
France—Eparses Islands were legal jurisdictions with the high-
est numbers of species. Number of fish species increased
with biomass, travel times to people, incoming and retention
of larvae, and excess heat, but the best-fit relationships indi-
cated saturating effects. Responses were more unimodal for
median SST, net primary productivity, light attenuation, and SST
kurtosis.

Evaluations of numbers of coral taxa indicated the impor-
tance of observers and methods with a relative importance of
15% in both models (Figure 3b). Sixteen observers were com-
pared, whereas 77% of the sampling was done by 2 observers
with small nonsignificant differences. Thereafter, depth, SST
skewness, excess heat, the climate stress model, and SST kut-
tosis all had relative influences of >5%. The SST skewness was
retained in model 2 and was stronger than the SST median in
model 1. Cumulative excess heat and the climate stress model
were negatively correlated and both were the fourth- and sixth-
ranked variables, respectively. When evaluated separately, they
had relative influences of 6—7%. Numbers of coral taxa peaked
at 20-30 DHW in model 1 and increased nearly linearly with
climate stress in model 2. Current velocity and the composite
nutrient delivery index were positively correlated, and velocity
was retained in model 2 and was stronger than the nutrient
metric used in model 1. Numbers of coral taxa were high for
low current velocity and declined as wave energy, salinity, and
dissolved oxygen increased. In model 2, the rate of rise in
SST was more sinusoidal for both models; it was stable up
to 0.015°C before it declined. Country as a variable displayed
differences between models, notably for Mozambique, Sey-
chelles, France—Mayotte, and Mauritius. The highest numbers
of taxa were predicted for Tanzania and declined south to South
Africa, Reunion, Madagascar, France—Eparses Islands, Kenya,
Comoros, Mozambique, Mauritius, and Seychelles. Thus, the
number of coral taxa increased with depth, centralized SSTs,
and the climate stress model, which is a multivariate metric that
reflects thermal radiation (light, UV, temperature, etc.). Num-
bers of coral taxa declined as warm water skewness, excess heat,
waves, current velocity, dissolved oxygen, and salinity increased.

Richness and hotspot locations

A cell-based map of the richest taxa region in Tanzania and sur-
roundings indicated high numbers of taxa in the top 2 quintiles
in most reefs of East African Coral Coast ecoregion (Figute 1a).
Comparing our identified locations at all 4 scales with past
reports showed the large areas and wide coverage of some past
prioritization recommendations, differences in the spatial reso-
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lution of the priority location predictions, and, when comparing
studies, often differences in identified locations (Figure 1b).
Finer scale maps of numbers of taxa g scores at the provin-
cial, ecoregional, and national and clustering delineations are
in Appendix S7a. The provincial delineation identified the
Affrican continent from northern Mozambique to southern
Kenya. However, Kenya had a few top quintile taxa reefs further
north in Watamu Marine National Park. Some exceptions were
among some nearshore and high-water retention area, such as

Relationship between coral and fish taxa for (a) empirical and (b) modeled data (specific cells and best-fit lines with 95% confidence intervals

the bay in northern Pemba, leeward of Unguja (Zanzibar), the
nearshore islands north and south of Dar es Salaam, and the
northern Bight of Sofala in northern Mozambique (Figure 1a;
Appendix S8). Other top quintile sites extended from northern
Mozambique offshore to the Lazarus Bank, Comoros, and May-
otte islands. The islands off northwestern Madagascar, such as
Mitsio Island and north to Diego Suarez, were largely in the
second highest quintile. The farthest off-continent islands of
Seychelles in the north and Reunion toward the south and much
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FIGURE 3 Twelve environmental variables used in the 2 combined models associated with the number of (a) fishes and (b) coral taxa based on the boosted
regression tree partial plots. Shown are the relative importance for both models (graphs with 2 lines, variable used in both models; graphs with one line, variable
eliminated due to high correlation with a variable in another model and therefore used in only one model).

of southern Madagascar were among the lowest number of taxa inance of positive g score deviance in the East African Coral
sites. Coast (Table 2). Only the Bight of Sofala had positive deviance;

When reef cells were delineated and subsequently scaled at peak numbers of taxa occurred in the north on the boundary
the ecoregional level, a shift in scaling reflected the cells position with the Coral Coast and in some offshore reefs at the southern
relative to the ecoregional maximum (Appendix S7b). Pooling chain of the Primeiras Islands. The northern Monsoon Coast

and evaluating sites at the ecoregional scale indicated the dom- was the third-ranked region. It had patchy numbers of taxa
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TABLE 2

Model predictions for the mean (+SE: standard error) numbers of fish species and coral taxa by province, ecoregion, and nation and in hotspots

(high densities of high-diversity reefs) and coldspots (low biodiversity and reef clustetring).

Number of coral taxa ~ Mean g score Number of mapped reef

Number of fish species (SE) (SE) (SE) cells*
Province
Western Indian Ocean 35.6 (6.1) 21.0 (4.7) 0.0 (0.9) 7039
Ecoregion
East African Coral Coast 39.9 (4.5) 25.3(2.9) 0.8 (0.5) 2743
Bight of Sofala—Swamp Coast 38.7 (3.4) 20.5 (1.5) 0.2 (0.4) 113
Northern Monsoon Current Coast 32.9 (3.0) 20.5 (1.4) —0.3 (0.3) 130
Seychelles 317 (3.1) 20.4 (1.2) —0.4 (0.3) 701
Western and Northern Madagascar 33.4 (5.6) 17.9 (3.7) —0.5 (0.6) 2854
Delagoa 33.4(3.7) 17.2 (1.4) —0.6 (0.3) 96
Cargados Carajos—Tromelin Island 30.2 (3.6) 17.2 (2.1) —0.9 (0.5) 141
Southeast Madagascar 31.6 (4.9) 14.7 (1.1) —1.0 (0.5 65
Mascarene Islands 26.9 (3.1) 16.3 (2.2) —-1.2(0.4) 196
Country
Tanzania 40.4 (4.3) 25.8 (2.9) 0.9 (0.5) 1524
Mozambique 39.3 (4.9) 24.4 (3.3) 0.7 (0.6) 1180
Comoros 37.6 (4) 23.4 (1.7) 0.4 (0.4) 238
Mayotte 33.2 (4.6) 25.5(2.0) 0.2 (0.3) 269
Kenya 35.6 (3.9) 21.3 (2.4) 0.04 (0.5) 372
French Eparses Islands 38.6 (4.7) 14.8 (1.8) —0.4 (0.5) 138
Seychelles 317 (3.1) 20.4 (1.2) —0.4 (0.3) 701
South Africa 28.8 (2.3) 20.2 (0.7) —0.6 (0.1) 6
Madagascar 32.6 (5.5) 16.5 (1.9) —0.7 (0.5) 2282
Mauritius 28.2 (3.6) 16.8 (2.2) —1.1(0.4) 304
Reunion 27.6 (3.1) 16.4 (1.9) —1.1(0.4) 25
Hot- and coldspots
Hotspot 99% confidence 40.5 (4.3) 25.9 (2.5) 0.9 (0.5) 2440
Hotspot 95% confidence 38.3(3.3) 22.9(1.3) 0.5 (0.3) 336
Hotspot 90% confidence 38.0(3.1) 22.4(1.5) 0.2 (0.4) 100
Average hotspots 40.3 (4.3) 25.7 (2.6) 0.8 (0.5) 2876
Not significant 35.7 (3.4) 20.9 (1.4) 0.02 (0.4) 892
Coldspot 90% confidence 33.3(3.2) 19.5 (1.1) —0.3 (0.3) 193
Coldspot 95% confidence 329 (3.6) 19 (1.5) —0.5(0.3) 1484
Coldspot 99% confidence 29.9 (4.1) 16.7 (2) —1.0 (0.5) 1594
Average cold spots 30.4 (4.2) 16.9 (2.1) —0.7 (0.5) 3271

*For each spatial delineation.

of which the highest reef cells were contained in the north-
ern Kiunga Marine Reserve in Kenya just south of the Somali
border. Modeled numbers of taxa were patchy in the Seychelles,
but most of the higher numbers of taxa were in the southern
part of this ecoregion stretching from Aldabra in the southeast
to Farquhar islands in the southwest. Some high numbers of
taxa locations were, however, predicted in the more centrally
located Les Amirantes group. The Western and Northern Mada-
gascar ecoregion had a high spread of numbers of taxa that

generally declined from west to east and north to south. There
were some notable exceptions, such as high numbers of taxa in
reef cells in the Ambohitrabo region of the southwest. Reef cells
and numbers of taxa in the Delagoa ecoregion were patchily
distributed, but some high numbers of taxa were predicted on
the border between South Africa and Mozambique. The off-
shore islands of the Cargados Carajos and Tromelin Island and
Mascarene ecoregions were among the lowest numbers of taxa
sites. There was, however, some spatial structure with Mauritius,
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which had 3 hotspots, of which 2 were in northern windward
and leeward locations and one in the southeast of the island.
The Agalega Islands in the north of the Cargados Carajos ecore-
gion were predicted to have more taxa than Saint Brandon in the
southeast.

Sites delineated at the national level indicated dominance
of high numbers of taxa locations in the Coral Coast in Tan-
zania, Mozambique, Comoros, and Mayotte (Appendix S7c).
Kenya and France—Eparses Islands were more transitional
and intermediate in numbers of taxa and were followed in
declining order by the Seychelles, South Africa, Madagascar,
Mautitius, and Reunion. National-scale identification indicated
some important transnational locations, such as the Kenya—
Tanzania and Tanzania—Mozambique, and to a lesser extent the
Mozambique—South African border.

Evaluating reefs by hot- and coldspot cluster analyses again
indicated the dominance of hotspots along the African coast-
line, with an offshore extension to western Mayotte (Appendix
S7d). A hotspot cluster was located on the Kenya—Tanzania
border extending south to several high-density reef areas in
northern Mozambique. The Western and Northern Madagas-
car ecoregion and the country of Madagascar were notable for
lacking hotspots despite having moderate to high numbers of
taxa per cell. Madagascar and the satellite islands had dispersed
reefs.

Location comparison

Summarizing the top ranked locations by 4 spatial scales and
the 3 g score numbers of corals, fishes, and the combined
proxy taxa metrics indicated 119 locations fit at least 1 crite-
rion (Figute 1b; Table 3; Appendix 8). There were 12 locations
that scored the maximum of 12 criteria. Five of these were in
Tanzania, 4 in Mozambique, 2 in Comoros, and 1 in Kenya.
Past prioritization publications agreed on 6 locations of which 3
also fit our 12 criteria. The 3 with full agreement were Mtwara—
Msimbati in Tanzania, Lazarus Bank, and Quiterajo—Arimba in
Mozambique. Two of our top locations were identified by 2
reports, namely, the Mtanga—Lindi in Tanzania and Quiongo—
Ilha Metundo in Mozambique. By multiple criteria, the border
regions between Tanzania and Mozambique were identified for
their high numbers of taxa.

The Kenya—Tanzania border region was identified by our
criteria but less frequently or less specifically by past reports.
Past reports identified very large areas, such as Pemba Channel,
Pemba, or Unguja Islands. Our scaling identified several loca-
tions from the border of Kenya or Vanga town south to Pangani
town and east to Pemba Island. All the above locations wete in
the northern section of Coral Coast ecoregion. In the Western
and Northern Madagascar ecoregion, 2 locations on the west-
ern or leeward side of Grande Comoros were identified by our
criteria and the World Heritage report. The northern windward
and leeward sides of the island of Moheli were also identified by
10 of our criteria and the SWIOFP project. Two locations on
the northwest side of Mayotte were also identified by 7 or 8 of
our criteria and the World Heritage report.

We identified 28 locations that were not selected in past
reports and 65 that were selected in 1 report. The remote
petipheral ecoregions had a few locations fitting 6 of our criteria.
These included Saint-Leu in Reunion and 3 locations in Mauti-
tius (Grand Gaube—Baie la Riviere, Grand Sable-Mahebourg,
and Cocotiers—Grand Baie). Only the Farquahr Islands in Sey-
chelles were also identified by the SWIOFP report. There
were several peripheral locations with few of our criteria that
were chosen by the other reports. For example, WWF-EAME
selected locations that included some of our low to moder-
ately ranked sites (i.e., <6 criteria). In decreasing rank, these
were Nacala—Mossuril, Bazaruto, Maputo—Machangulo, Tana
River Delta, Lamu Archipelago, Greater St. Lucia, Shebela Delta
and Bajuni Islands (Somalia), Primeiras and Segundas Islands,
and Zambezi Delta. The World Heritage report also listed
Lamu—Kiunga, Saya de Malha Bank of the Mascarene Plateau,
Bazaruto—Tofo, Iles Eparses, Antongil Bay, northeast Mada-
gascar, and some Comoros sites with similarly low rankings
by our criteria. Lastly, SWIOFP identified several locations in
South Aftica (Aliwal and Protea Shoals and Greater St Lucia
Wetland, St Croix Island, Bird Island), Mozambique (Ponta do
Ouro, Bazaruto, Tofo, Inhaca Island, Berreira Vermelha), Tan-
zania (Latham Island, Pemba Channel), Kenya (Ungwana Bay),
Madagascar (Grand Recif of Toliara, Nosy Ve, Antongil Bay),
France—Eparses Islands (Bassas da India, Europa), Mautitius
(Saint Brandon), and Seychelles (Aldabra, Aride, Cosmoledo,
Cousin, Curieuse, Desnoufs, Fregate, Mahe, and Sainte Anne)
that fit only 1 or 2 of our criteria. In many cases, these differ-
ences were due to the report’s foci on nesting turtle and birds or
sharks and marine mammals.

Existing protected areas comparison

At the time of comparison, there were 479 coastal and marine
protected areas in the WIO province. Of the 208 that are strictly
marine, 71 (34%) overlapped with our 119 species-rich loca-
tions (Table 4). There are 271 coastal terrestrial protected areas,
of which 115 (42%) share a coastline with our selected marine
locations but without explicit inclusion or protection of marine
habitats. Of the 479 protected areas, 179 (37%) either shared
a coastline or overlapped with our locations. At the national
level, the strict overlap with matine locations varied from 4%
for South Africa, due to low coral reef coverage, to 100% for
Mozambique, due to the few numbers of MPAs but overlap with
many of our identified locations. Kenya (71%), Tanzania (66%),
and Mauritius (63%) had modest numbers of MPAs and overlap.
Countries with low to modest coverage of MPAs containing our
identified locations were Madagascar (39%), Reunion (31%),
and Seychelles (34%).

DISCUSSION

Our proxy for total benthic diversity and the predictive BRT
algorithm identified several locations of high numbers of taxa
as having potential for new conservation activities. Moreover,
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TABLE 4

Number of protected areas in the World Database on Protected Areas (WDPA) showing overlap with the 119 locations of high conservation priority

identified based on 12 biodiversity ctiteria for coastal terrestrial protected areas, strictly marine protected areas, and their combination in the western Indian Ocean

faunal province.

Number of WDPA MPAs Number (%) of WDPA sites overlapping the 119 priority areas
Nation Coastal and terrestrial ~ Marine Combined Coastal and terrestrial Marine Combined
Comoros 10 5 15 9 (90) 1 (20) 10 (67)
French Eparses Islands 0 2 2 0 1 (50) 1 (50)
Kenya 2 14 16 2 (100) 10 (71) 9 (56)
Madagascar 22 28 50 3 (14) 11 (39) 13 (26)
Mauritius 11 16 27 3(27) 10 (63) 13 (48)
Mayotte 18 7 25 15 (83) 4(57) 19 (76)
Mozambique 3 2 5 2(67) 2 (100) 4 (80)
Reunion 2 13 15 1 (50) 4 (31) 5(33)
Seychelles 17 32 49 9 (33) 11 (34) 19 (39)
South Africa 75 68 143 1(1) 34 4 (3)
Tanzania 111 21 132 70 (63) 14 (66) 82 (62)
Western Indian Ocean province 271 208 479 115 (42) 71 (34) 179 (37)

these were identified by an objective measure and at finer
spatial scales than past efforts. Past efforts delineated loca-
tions at the provincial level, whereas the finer scales used here
identified additional delineations at the national, ecoregional,
and reef clustering scales. However, the method did not include
some of the past considerations such as remoteness, large ani-
mal body sizes, nesting areas, rarity, and endemism. Previous
studies of other diverse unsampled taxa, such as species asso-
ciated with seagrass and mangroves, also show some coarse
correspondence with the patterns elicited here (Table 1). For
example, many taxa evaluated in Table 1 had their highest
numbers of taxa in the East African Coral Coast Ecoregion
(Short et al., 2007; Spalding, 2010). Our methods represent a
focus on shallow-water coral-reef-associated species for com-
parison with past prioritization efforts and existing protected
area designations.

The modest fit between numbers of coral and fish taxa sug-
gested that combining the 2 faunal groups provided a general
but not accurate proxy for total numbers of species. Past stud-
ies have produced coarse predictors because they relied on
presence—absence data and overlapping polygon and cumula-
tive species distribution methods (Table 1). These methods
have been criticized for failing to articulate the high variabil-
ity in biodiversity found at finer spatial scales (McClanahan,
2023). Nevertheless, empirically testing the efficacy of our finer
scale proxy of total taxonomic richness will require sampling
and evaluating other taxa by similar methodologies. Regardless,
our approach provided a needed step to modernize predictions
based on the many available environmental variables, variable
selection, and machine learning methods. Coral and fish are
diverse and the most frequently sampled and widespread taxa
and therefore useful proxies when comparing prioritization
methods and protected areas.

The 3 past prioritization efforts often shared similar selection
choices or biases in terms of selected taxa and human threats.
Many of these selections were justifiable based on immediate
threats and needs of large-bodied, rare, space- and habitat-
requiring, sensitive, and threatened species. These decisions
focused on large-bodied species with broad distributions where
human impacts threaten the viability of their populations. Two
good examples of these conservation decisions are the dugong
(Dugong dugon), which has a moderate size population found
only at Bazaruto, Mozambique, and the leatherback turtle (Der-
mochelys coriacea), which nests only in Sodwana Bay. Our method
identified Bazaruto as a national high-diversity location. Yet,
given the lack of viable dugong populations elsewhere in the
province, past prioritization at the provincial and national levels
seems justified by the uniqueness, regardless of the species rich-
ness status. The same reasoning applies to the leatherback turtle,
given our method cannot make predictions where coral reefs
are absent. In contrast, our coral and fish selections included
smaller bodied and subtidal species that often supply important
ecosystem services of long-term value to people, such as fish-
eries production and shoreline protection. Because of the weak
overlap between past and our selection methods, the remoteness
and marine umbrella species approaches of past prioritizations
would appear to be poor proxies for total numbers of species.

Past prioritization studies focused on reproductive and
nesting locations or key habitats. However, the widespread
migrations of many of these focal species suggest limits to
local area protection to ensure population viability. For example,
some species, such as the southern humpback whales (Megaptera
novaeangliae) and most nesting birds, have broad ranges. Species-
specific management applied across their migratory ranges may
be mote critical than establishing specific location. Neverthe-
less, mating and nesting sites can be critical for many species and
therefore a good criterion for making conservation decisions.
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However, weak concordance with our proxy again suggests
limits to coverage of total species protection when using nest-
ing criteria. Mammals and birds are the taxa typically used as
proxies but are generaly poor predictors of total diversity (Bran-
ton & Richardson, 2011; Roberge & Angelstam, 2004). Our
selection of coral and fish taxa indicated a positive correlation
between taxa, despite their responding to different environmen-
tal influences. However, this overlap of coral reef taxa is less
common when compared with past prioritization choices that
relied on other, often large, animals and remoteness. Moreover,
the aesthetic values of taxa may be a poor proxy for establish-
ing conservation priorities (Langlois et al., 2022). Nevertheless,
although our methods and maps ate useful in tropical locations
with reefs, other approaches will be required outside of reefs
habitats.

Past consultancy efforts have selected only priority locations
at the faunal province delineation. The scale of delineation deci-
sions can, however, be quite important in terms of the numbers,
areas, and distribution of selected sites (Grace et al., 2022). Past
reports selected from 36 to 47 locations in the WIO province
that matched our mapping and spatial scale of selection. Yet,
we identified 119 locations when we used our 4 scales of spa-
tial delineation and finer spatial resolution (Appendix S7). Thus,
multiple delineations and finer scales increased the numbers of
identified high-richness sites. Despite the large and coarse scale
of most past reports, there was seldom agreement among them;
only 6 of the 91 past selections overlapped. Therefore, there is
a concern that common prioritization decisions are subjective
or anecdotal. Thus, high-resolution data, proxies, and predictive
models provide a more objective alternative.

Numbers of taxa are only one of many potential metrics that
should be considered for conservation planning and actions
(Beger et al,, 2015). Moreover, many priority decisions will
need the support of national and local governments. Thus,
out provision of national-level delineations should better pro-
voke political engagement in decision-making. For example,
some remote islands and Madagascar lacked locations with
high numbers of taxa when evaluated at the provincial delin-
eation. Large distances from source populations and sparse
reef clustering reflect the geomorphological conditions found
in Madagascar. These biogeological factors are outside the
control of national governments and should not prevent the
establishment of national and local priorities. Moreover, the
ecoregional delineation helped to identify high numbers of taxa
in transboundary areas that should provoke intergovernmental
cooperation.

Past prioritization decisions represent the historical focus on
planning large-scale protected areas (Wells et al., 2016). Yet, the
generally poor overlap (34%) between MPAs and high numbers
of taxa sites found here suggests inadequacy in fully protect-
ing locations with high numbers of species. Moreover, this
past approach of multiple use management in larger protected
areas is losing favor to small- or community-scale proposals
(McClanahan et al., 2016; Rocliffe et al., 2014). High resource
dependency and low funding for conservation in this province
have often undermined the effectiveness of large, protected
areas, where outcomes seldom differ from effective national

fisheries restrictions (McClanahan et al., 2015). Thus, evaluat-
ing finer scales of biodiversity should be helpful for identifying
high-species-richness locations under the existing social needs—
conservation tradeoffs (McClanahan, 2023). One provocative
finding is the notable overlap (42%) between our identified
locations and coastal terrestrial protected areas. Extending
biodiversity protection offshore from these coastal terrestrial
parks could include more species than purely marine-focused
efforts.

The smaller ~6.25-km? scale of our analyses relative to past
efforts should be useful for the current governance and conser-
vation actions. Moreover, species functions, ecological services,
and vulnerabilities are among key current priority concerns and
include fisheries production, shoreline protection, and local bio-
diversity conservation. A global analysis by Auber et al. (2022)
showed that vulnerability generally declined as species richness
increased for fishes but not marine mammals. It is expected
that ecological functions provided by fishes and corals align well
with policies that prioritize ecological services. Indeed, sustain-
ing high and stable fish catches is a major concern throughout
this province (Kerwath et al., 2013; McClanahan, 2021). In
contrast, past ptioritization criteria relying on visible and chatis-
matic species may better promote ecotourism, but they also
face the problems of economic limits and instability in poor
countries (Spash, 2021). Therefore, decision-makers need bio-
diversity information that includes the services and economics
of food production, shoreline protection, and tourism potential
(McClanahan et al., 2016; Perry et al., 2018).

Several technical advancements in conservation science are
represented in our approach and outcomes (Pilowsky et al.,
2022). Nevertheless, the availability of field data and collab-
oration among experienced observers were core prerequisites
for our analyses. Fortunately, the collaborators used meth-
ods that wete comparable (McClanahan, Ateweberhan, et al.,
2007; McClanahan, Graham, et al., 2007). Moreover, the BRT
algorithm’s ability to control for variable effects can account
better for observer, sampling, and differential impacts on fish
biomass. These variables need to be held constant when mak-
ing predictions of potential undetlying richness for comparisons
between cells. In the case of fishes, our BRT simulations held
biomass high and constant among cells for making compa-
rable evaluations. Therefore, predictions were not influenced
by local biomass depletion by variable fishing impacts. The
observer effect was also controlled for in the coral distribu-
tion analyses by making predictions based on the experienced
observer who sampled the most in each country. These were
largely 3 or 4 observers who contributed the most data and
knew the fauna best in the sampled countries. The flexi-
bility and ability to control for many specific factors when
making predictions are key strengths of the BRT algorithm.
Cleatly, ground-truthing the model predictions will be an impor-
tant next step in testing the efficacy of the identification
process.

Tests of model performance indicated good predictive abil-
ity. Yet, when making predictions for many cells on large scales,
there is the possibility of overfitting and missing important local
conditions, especially below the ~6.25-km” scale. Moreover,
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the model cannot account for local unmodeled variables, such
as damaging fishing methods or point-soutce effluents. Never-
theless, access to 70 relevant variables, variable selection, and
cross-validation methods represents a considerable advance in
marine spatial modeling. Challenges remain to test predictions
and account for human and other local factors not currently
available at large scales. The outcomes will, however, depend
on the metrics and values of the assessments, such as ecological
functions of taxa, their various values, uniqueness, evolution-
ary relatedness, and threats (Auber et al., 2022; Brooks et al.,
20006; Parravacini et al., 2014). These and additional concerns
are not well addressed by presence—absence compilations and
maps. Ultimately, decisions to act on the numbers of taxa find-
ings will depend on governance bodies and their institutional
values and conservation goals.
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