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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Sentinel-2 burned area detects higher 
fire-related loss than previous 
estimations. 

• Fires contribute to 46 % of total forest 
losses in sub-Saharan Africa. 

• Burned areas in Moist Tropical Forest 
are six times more likely to be defor-
ested than unburned ones.  
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A B S T R A C T   

Global coarse-resolution (≥250 m) burned area (BA) products have been used to estimate fire related forest loss, 
but we hypothesised that a significant part of fire impacts might be undetected because of the underestimation of 
small fires (<100 ha), especially in the tropics. In this paper, we analysed fire-related forest cover loss in sub- 
Saharan Africa (SSA) for 2016 and 2019 based on a BA product generated from Sentinel-2 data (20 m), which 
was observed to have significantly lower omission errors than the coarse-resolution BA products. Using these 
higher resolution BA datasets, we found that fires contribute to >46 % of total forest losses over SSA, more than 
twice the estimates from coarse-resolution BA products. In addition, burned forest areas showed more than 
twofold likelihood of subsequent loss compared to unburned ones. In moist tropical forests, the most fire- 
vulnerable biome, burning had even six times more chance to precede forest loss than unburned areas. We 
also found that fire-related characteristics, such as fire size and season, and forest fragmentation play a major 
role in the determination of tree cover fate. Our results reveal that medium-resolution BA detects more fires in 
late fire season, which tend to have higher impact on forests than early season ones. On the other hand, small 
fires represented the major driver of forest loss after fires and the vast majority of these losses occur in 

* Corresponding author. 
E-mail address: emilio.chuvieco@uah.es (E. Chuvieco).  

Contents lists available at ScienceDirect 

Science of the Total Environment 

journal homepage: www.elsevier.com/locate/scitotenv 

https://doi.org/10.1016/j.scitotenv.2024.170599 
Received 13 November 2023; Received in revised form 28 January 2024; Accepted 29 January 2024   

mailto:emilio.chuvieco@uah.es
www.sciencedirect.com/science/journal/00489697
https://www.elsevier.com/locate/scitotenv
https://doi.org/10.1016/j.scitotenv.2024.170599
https://doi.org/10.1016/j.scitotenv.2024.170599
https://doi.org/10.1016/j.scitotenv.2024.170599
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2024.170599&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


Science of the Total Environment 920 (2024) 170599

2

fragmented landscapes near forest edge (<260 m). Therefore medium-resolution BA products are required to 
obtain a more accurate evaluation of fire impacts in tropical ecosystems.   

1. Introduction 

Forests cover almost 30 % of the land surface and play a central role 
in the climate system through their association with core physical and 
biochemical processes, the hydrologic cycle, and atmospheric compo-
sition (Bonan, 2008). Forests are prone to several sources of disturbance 
and degradation leading to deforestation. Global gross forest losses are 
estimated at approximately 5 Mha yr− 1 (Curtis et al., 2018). Fires have 
been identified as a critical driver of forest area loss (Curtis et al., 2018; 
Liu et al., 2019; van Wees et al., 2021), especially in the sub-Saharan 
African (SSA) continent, the most affected by fires. This region is 
responsible for over two-thirds of the global area burned (Lizundia- 
Loiola et al., 2020) and for more than half of the global pyrogenic 
greenhouse gas emissions (van der Werf et al., 2017). For these reasons, 
it was chosen as a priority to derive a continental burned area (BA) 
product at 20 m resolution based on the Multi-Spectral Instrument (MSI) 
onboard the European Space Agency's Sentinel-2 (S-2) satellite. A first 
version of this dataset was produced for 2016 using a single S-2 satellite 
(Roteta et al., 2019) and a more recent one for 2019 included the two S-2 
satellites currently in operation (Chuvieco et al., 2022). The resulting 
product, named FireCCISFD20, was validated using a dedicated spatial 
sampling, obtaining significantly lower omission errors than for prod-
ucts based on coarse-resolution BA sensors (Chuvieco et al., 2022; 
Stroppiana et al., 2022). 

Among fire impact assessments, large-scale estimations of fire- 
induced forest loss are very limited and associated with several sour-
ces of inconsistency. Some authors have linked the 30-m Global Forest 
Change (GFC) dataset with associated drivers based on reference sam-
ples (Curtis et al., 2018). These authors estimated that only 22 to 29 % of 
forest loss globally was related to fires, and much less in Africa (< 2 %). 
Crop cultivation was considered the main driver of deforestation in this 
continent, resulting from the increasing demand for agricultural prod-
ucts associated with the high rate of population growth (Rudel, 2013). 
However, these estimations generally ignore fire practices such as slash 
burning, which are commonly involved during conversion to agriculture 
(Doggart et al., 2020; van Wees et al., 2021). Due to the considerable 
challenge of accurately identifying slash-and-burn fires, the mentioned 
approach focused exclusively on large burn patches that were not fol-
lowed by any subsequent conversion to cropland (Curtis et al., 2018). 
Consequently, the classification model's capacity to account for the 
contribution of smaller fires was constrained, acknowledging a sub-
stantial uncertainty. Additionally, the use of fire as a practice of con-
version whether solely or jointly with other practices (e.g. mechanical 
cutting) is always leading to similar consequences in terms of Green-
house Gas emissions, aerosol plumes, soil degradation (Davidson et al., 
2008; Pellegrini et al., 2018) and biodiversity loss (Styger et al., 2007). 
These fire-enabled practices are significantly more damaging in com-
parison with fire-free conversion methods such as slash-and-mulch 
(Davidson et al., 2008) or agroforestry systems (Clark et al., 2016). 

To account for all kinds of forest fire events, other authors aggre-
gated the GFC data to the native resolution of global fire products (500 
m) concluding with an overall estimation of fire-related forest loss of 20 
% over SSA (Liu et al., 2019; van Wees et al., 2021). This estimation is 
deemed conservative since small fires are mostly undetected in coarse- 
resolution global BA products (Ramo et al., 2021). In fact, a signifi-
cant increase of fire-related forest loss was reported, especially in the 
tropics, when active fire observations were used for BA estimations 
through a statistical model (van Wees et al., 2021). This approach pro-
vided a first estimation of 31 % of fire-related forest losses, yet omitting 
a large proportion of small, fast-spreading or low-intensity fires that the 
active fire sensor missed during the actual burning process. 

In this study, we used more accurate BA information derived from a 
higher-resolution sensor to obtain improved estimations of fire-related 
forest loss, particularly in regions with frequent and fragmented fires 
such as SSA. We cross-analysed high-resolution (≤30 m) BA and forest 
cover loss datasets generated from satellite sensors for the SSA, and 
compared the results with previous estimations based on coarse- 
resolution (≥250 m) satellite data. We defined fire-related forest loss 
as any causal relationship where fire is associated with forest loss. This 
includes situations where fire and forest loss occur simultaneously (e.g. 
wildfires), cases where forest loss follows a fire event (e.g. tree mortality 
subsequent to fire damage), and instances where forest loss precedes fire 
but both occur in the same year and typically within a couple of weeks 
(e.g. slash-and-burn). 

We examined, across different biomes (Dinerstein et al., 2017) of the 
whole SSA region, fire impacts on forest cover change, as estimated from 
two datasets: the Global Forest Change (GFC) v.1.8 (Hansen et al., 2013) 
and two years of the FireCCISFD BA products generated from S-2 MSI 
images at 20 m resolution. Fire impacts on forest loss were estimated 
from these BA datasets and compared, for the same years and area, with 
two global BA products based on MODIS data, namely MCD64A1 
Collection 6 (at 500 m), the standard BA product of NASA (Giglio et al., 
2018), and FireCCI51 (at 250 m), created within the European Space 
Agency's Climate Change Initiative (CCI) Programme (Lizundia-Loiola 
et al., 2020), the same as the FireCCISFD's, but with a different algorithm 
and sensor. A similar comparison was performed with the GLAD fire- 
related forest loss dataset developed by the Global Forest Watch, using 
a sample-based unbiased estimator of forest loss drivers (Tyukavina 
et al., 2022). Fire-related forest loss was analysed by biome and country, 
while the assessment of the relationship between fire occurrence and 
tree cover loss included three different factors influencing deforestation: 
seasonal patterns, fire energy released and distance to forest edges. We 
hypothesised that: 1) fires with higher released energy (Fire Radiative 
Power, FRP) would imply a higher chance of forest loss; 2) late-season 
fires would be more severe, as vegetation would be drier, and there-
fore more prone to deforestation or forest dieback, and 3) burning in 
fragmented landscapes located at forest edges is more likely to trigger 
forest loss due to light penetration and drier microclimate. 

2. Materials and methods 

2.1. Main input datasets 

FireCCISFD products include two years of BA at 20 m resolution 
detected over SSA based on reflectance images acquired by the Multi- 
Spectral Instrument (MSI), onboard the S-2 satellite, complemented 
with active fire observations. The 2016 version, called FireCCISFD11, 
was generated from S-2A data in combination with the MODIS active 
fires (MCD14ML), whereas, the second version (2019), called Fire-
CCISFD20, included images acquired by both S-2A and S-2B satellites in 
order to improve the revisit time from 10 to 5 days, while MODIS active 
fires were replaced with an active fire product derived from the Visible 
Infrared Imaging Radiometer Suite (VIIRS) sensor onboard the Suomi- 
NPP satellite (Schroeder et al., 2014) and NOAA-20. VIIRS offers 
higher spatial resolution for active fires (375 m) than MODIS (1 km). 
Although we performed the analysis with the two years of S-2 data, we 
mostly focused on 2019, since in this year the two S-2 satellites were in 
orbit (S-2B was launched in 2017), and therefore the product had lower 
omission and commission errors (8.5 and 15 %), than the 2016 product 
(26.5 and 19.3 %, respectively), which was based on a single S-2 satellite 
(Roteta et al., 2019; Stroppiana et al., 2022). 

The BA algorithm for the two years have a similar structure, based on 
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multitemporal change detection over all cloud-free scenes and backs up 
to 4 previous images in the case where clouds are contaminating the 
observations. The NIR spectral band (8A) of S-2 MSI, and two spectral 
indices were used as input for the BA algorithm, the Mid-Infrared Burned 
Index (MIRBI) and the Normalized Burned Ratio 2 (NBR2). The BA 
detection process included four major steps. First, an unburnable mask 
was created based on the scene classification map, then, the three 
abovementioned variables in addition to their multitemporal difference 
were used to generate an initial burn classification by applying fixed 
thresholds. The outputs of this classification were later overlaid with the 
VIIRS Active Fire hotspots in order to obtain the confirmed burned 
pixels, which were used to compute regional thresholds. These thresh-
olds were applied for producing the final BA classification using a two- 
stage procedure, high-probability seeds were first detected and then 
neighbouring burned areas with lower probabilities were mapped. In-
tercomparisons were performed against two common global BA prod-
ucts (Chuvieco et al., 2022; Roteta et al., 2019). 

The coarse-resolution BA products were designed to provide global 
information on fire occurrence. They were generated by applying a 
hybrid approach combining MODIS active fire observations with a 
multitemporal change detection process. This process was carried out 
using a vegetation index based on MODIS SWIR bands at 500 m for 
MCD64A1 Collection 6 (Giglio et al., 2018), while MODIS 250 m NIR 
band was used in the case of FireCCI51 (Lizundia-Loiola et al., 2020). 

As for the analysis of forest cover loss, tree cover layers were ob-
tained from the Global Forest Change (GFC) v.1.8 dataset (Hansen et al., 
2013). The GFC provides the fraction of forest tree cover of the year 
2000 along with the annual changes (loss/gain) at a medium spatial 
resolution (30 m). This dataset was derived from Landsat 7 Enhanced 
Thematic Mapper Plus (ETM+) and Landsat 8 Operational Land Imager 
(OLI). Forest cover map was obtained by applying a 30 % threshold to 
convert the fraction of tree cover to a forest/non-forest binary layer 
similarly to previous studies (Hansen et al., 2020; Taubert et al., 2018). 
This binary layer was used as the baseline of forest extent in 2000, then 
the annual binary layers of forest loss/gain were used to update yearly 
tree cover extent and get the most recent one prior to the year of 
processing. 

The spatial analysis was performed based on terrestrial biomes ob-
tained from the Ecoregions2017 dataset (Dinerstein et al., 2017), which 
provides a map of Earth's 846 terrestrial ecoregions and 14 biomes. The 
SSA comprises 8 terrestrial biomes, however, due to the insignificant 
size of some of them, a reclassification to major biomes was performed. 
This reclassification was similar to the approach adopted by other au-
thors (Boschetti et al., 2016; Franquesa et al., 2022; Padilla et al., 2014), 
except for tropical forests where the merging between dry and moist 
tropical forests obscured their significant differences in terms of fire 
activity and impacts caused by fuel moisture content and therefore they 
were kept discriminated (Table A.1). 

2.2. Estimation of fire-related forest loss 

Fire-related forest loss refers to the different situations where fire is 
directly linked with the process of tree cover loss. These losses include 
irreversible forest cover conversion as well as disturbances followed by 
regrowth. In addition to forest loss observed during the year of fire 
detection, several authors found a significant tree stand-replacement 
during the succeeding years (Liu et al., 2019; van Wees et al., 2021). 
To balance the trade-off between delayed fire-induced tree mortality 
and commission errors related to tree mortality caused by factors other 
than fire, one lag year of losses was taken into account, following the 
proposal of van Wees et al. (2021). For instance, to assess fire-related 
losses of 2019, forest losses of 2019 and 2020 were aggregated. The 
GFC dataset was resampled to the 20 m resolution using the nearest 
neighbour method in the case of FireCCISFD, while in the case of coarse- 
resolution BA products, it was aggregated to the native resolution of 
each product (500 for MCD64A1 and 250 m for FireCCI51). The three 

layers of fire-related loss were then aggregated to a 0.05◦ resolution 
grid. Finally, the average value was estimated using proportional 
weights corresponding to the gross forest loss within each grid cell. This 
procedure was implemented in order to minimize the dominance of cells 
with very low forest losses (i.e. up to 90 % experienced <0.05 % of 
losses). 

Two calibration parameters served to compute uncertainty. The first 
concerns threshold values of tree cover fraction of GFC, in which 6 
different values were assessed (1, 10, 20, 30, 40 and 50 %). The inclu-
sion or exclusion of the lag year was the second parameter. Similar 
adjustments were also considered by Liu et al. (2019) and van Wees et al. 
(2021). The 95 % confidence interval was used in our study rather than 
the range between the minimum and maximum estimates. 

The other parameter analysed at this stage was the fraction of loss in 
burned forest, which refers to the proportion of the total forest burned 
area that experienced a forest loss. Once again, the losses of the 
following year to fire event were considered as fire is assumed to be the 
main driver of loss in such case. 

Due to the limited temporal resolution of medium-resolution satellite 
missions (~5 days for the two Sentinel-2 satellites and ~8 days in the 
case of using two Landsats), the comparison between fire and forest loss 
dates entails substantial uncertainties. Therefore, we consider forest loss 
as fire-related as long as they both occur in the same year or when fire 
precedes tree cover loss by one year (delayed mortality). 

2.3. Modelling of fire-related forest loss drivers 

In order to assess the factors driving fire-related forest loss, an 
Extreme Gradient Boosting model (XGBoost) (Chen and Guestrin, 2016) 
was implemented. The model linked four categories of variables to the 
fraction of forest loss at 0.25◦ grid cells, including fire traits, forest 
structure characteristics climatic variables and human factors. The 
model parameters were optimised using a 10-fold cross-validation 
approach and we used 80/20 train-test splits. To mitigate overfitting 
issues the “early_stopping_rounds” functionality was applied, which 
ceases the growth of trees once the log-loss stops decreasing. 

Concerning fire traits, the total forest BA was aggregated and grid 
cells with <5 ha of total BA (i.e. <0.007 % of the cell is burned) were 
ignored as they represented insignificant statistics about fire regimes. 
Areas with frequent fires such as Tropical Savanna were expected to 
exhibit higher resistance to fires and lower proportions of losses (Hoff-
mann et al., 2003). The difference between burn day (BD) and the mid- 
fire season was calculated for each native pixel and then the aggregation 
to grid cells was performed using the 75th percentile. The rationale 
behind this aggregation was to assess the symmetry of BD distribution, 
and in particular, the prevalence of late-season fires, presumably leading 
to more severe impacts (Govender et al., 2006). Depending on the 
hemisphere, fire season considerably diverges. In general terms, the 
regular fire season extends from November to February in the Northern 
Hemisphere of SSA, while most fires in the Southern Hemisphere occur 
from June to September (Ramo et al., 2021). The remaining fire-related 
variables were derived after delineating fire patches (FPs). The main 
aggregation parameter to build these FPs is the maximum burn date 
time-gap between two neighbouring pixels that has been fixed at 6 days. 
As a first step, pixels sharing the same BD are grouped into clusters under 
an eight-neighbour queens adjacency scheme. Then clusters are aggre-
gated into FPs to generate unique-ignition point FP as described in Oom 
et al. (2016). 

Self-organized criticality (SOC) (Bak et al., 1988) has been widely 
used to explain the distribution function of fire sizes (Laurent et al., 
2018; Malamud et al., 1998) following a power law: 

NFP = α.AFP
− β (1)  

where AFP refers to the area of the fire patch, NFP is the number of fire 
patches of a given size AFP, α is a normalization constant and β (Beta 
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elsewhere in the paper) is the exponent of the power law or the slope of 
fire distribution function. A value of zero for Beta indicates constant fire 
size density, while a high value translates a high frequency of small fires 
with respect to large ones. This parameter was fitted at grid cells of 0.25◦

for fires larger than 1 ha. Fire density (Density) was calculated based on 
the number of FPs within each cell. Since small fires were predominant, 
a strong skewness of the mean fire duration was observed, and therefore, 
this variable was reformulated as: 

Duration =
Durationall + Durationlarge

2
(2)  

where: Durationall is the mean duration in grid cell and Durationlarge is the 
mean duration of fires exceeding 100 ha. 

The fire radiative power (FRP) was used as a proxy for fire intensity. 
FRP estimates the radiant heat power released by fires during the 
combustion process (Wooster et al., 2005). It was derived from VIIRS 
active fires, and aggregated to the modelling grid cell by using the 
median following Laurent et al. (2019). On the other hand, a detailed 
analysis of FRP distribution by BA product was performed. The corre-
sponding value of FRP was attributed to burned pixels falling within 
375-m buffer from each active fire, and in the case a pixel overlaps with 
several active fires (i.e. from different time observations), the maximum 
value of FRP was retained. 

The impact of forest structure on forest loss was taken into account in 
the predictive model using two variables: the distance to forest edge 
(Edge-distance) and the Above-Ground Biomass (AGB). The former was 
generated by computing the proximity of fire events to the first non- 
forest pixel. The overall distribution of this feature was evaluated, and 
then aggregated by averaging. The AGB was derived from the ESA-CCI 
Biomass product (100-m) for the year 2018 (Santoro and Cartus, 
2021) and was aggregated by averaging as well. 

Climate-related explanatory variables were retrieved from the Ter-
raClimate dataset (Abatzoglou et al., 2018), from which, six variables 
were included in the model, namely the annual rainfall (Rainfall, 
mm⋅yr− 1), the annual mean maximum temperature (Tmax, ◦C), the 
annual actual and potential evapotranspiration (AET and PET, respec-
tively in mm⋅yr− 1), the annual soil moisture (Soil, mm⋅yr− 1) and the 
annual mean vapour pressure deficit (VPD, kPa⋅yr− 1). The Markham 
Seasonality Index (MSI) (Markham, 1970) was calculated based on the 
monthly precipitation. It describes the rainfall distribution over the 
year. A value of 0 % implies an equivalent distribution over the months, 
while 100 % indicates that all rainfall occurs in a single month. Monthly 
values are considered as vectors, where the magnitude is defined by the 
corresponding rainfall (Pm) and the direction, is defined by an angle θm. 
The 365 days of the year are represented by a circle (2π = 6.28 rad). The 
angle θm denotes the position of the mid-day of each month within the 
year circle (e.g., January 0.267 rad; February 0.775 rad; March 1.282 
rad, etc.). Then, these vectors are summed following: 

MSI (%) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
( ∑12

m=1Pm sin(θm)
)2

+
( ∑12

m=1Pmcos(θm)
)2

√

∑12
m=1Pm

*100 (3) 

Climate-related variables for the year of fire (2019) as well as the 
previous and subsequent ones were averaged to characterise the con-
ditions before and after fire events. 

Human factors have been identified as major drivers of deforestation 
in SSA, particularly through shifting agriculture (Curtis et al., 2018). The 
net rate of cropland expansion between 2003 and 2019 was derived 
from Potapov et al. (2022). While population density (Population, per-
sons per km2) was derived from Tatem (2017), the human development 
index (HDI), developed by the United Nations Development Programme 
as to measure nations' welfare, was retrieved from Kummu et al. (2018). 
This index ranges from 0 to 1 and could account for differences in living 
conditions of different regions and can be used as an indicator of pop-
ulation prosperity (Chuvieco et al., 2021). Finally, Gridded Livestock of 
the World (GLW 3) (Gilbert et al., 2018) was used to estimate the 

livestock density (Livestock) in Tropical Livestock Units (TLU) expressed 
as 250-kg-equivalent of animal units. The TLU coefficients were defined 
by the Food and Agriculture Organization (FAO) using a scale of 0.7 for 
cattle, 0.5 for buffaloes and 0.1 for goats and sheep (Bernardi et al., 
2019). All climate and human datasets were aggregated to the same grid 
size (0.25◦) by averaging. 

Predictor features importance was estimated using the SHAP 
(Shapley Additive exPlanations) Python library (Lundberg and Lee, 
2017). The feature importance values, called Shapley values, were used 
as a proxy to evaluate the impact of each predictor variable on the 
target. These values are based on the cooperative game theory (Shapley 
et al., 1953). The model is retrained on all feature subsets S ⊆ F, where F 
is the set of all predictor features, and then an importance value is 
calculated for each feature that represents a non-zero effect on the model 
prediction. To compute the effect of a feature i in the observation j (grid 
cell in our case), for each subset S ⊆ F\{i}, a model fS∪{i} including the 
feature i is trained, and another model fS is trained with i withheld. The 
predictions from the two models are compared based on the current 
input fS∪{i}

(
xS∪{i}

)
− fS(xS), where xS refers to the values of the input 

features in the set S. The Shapley values are then computed. They are a 
weighted average of all possible differences: 

ϕi,j =
∑

S⊆F\{i}

|S|!(|F| − |S| − 1 )!
|F|!

[
fS∪{i}

(
xS∪{i}

)
− fS(xS)

]

j
(4)  

where ϕi,j refers to the Shapley value of the feature i in the grid cell j. 
This method has the potential to appropriately handle multicollinearity 
(Lundberg and Lee, 2017) conversely to feature importance approaches 
used in common machine learning models such as Random Forest (Zhou 
et al., 2021). An example of additive Shapley values is shown in Fig. A.1. 

3. Results and discussion 

3.1. Overview of fire activity in SSA forests 

The total BA estimated by FireCCISFD in 2019 was 4.8 Mkm2 (4.9 
Mkm2 in 2016), out of which approximately two-thirds occurred in 
forest covers, that is 68 % (63 % in 2016). For the entire SSA region, the 
FireCCISFD BA products detected in both years significantly higher 
forest BA than the two coarse-resolution products: 2.08 times more than 
MCD64A1 and 1.66 times more than FireCCI51 in 2019. The ratios were 
a bit lower for 2016: 1.71 and 1.38 times more, respectively (Table 1), 
because of the higher omission errors for 2016: 26.5 % (Roteta et al., 
2019) compared to 8.5 % in 2019 (Chuvieco et al., 2022), as the 2016 
product was derived from a single S-2 satellite. The underestimation by 
coarse-resolution BA products was considerably more pronounced in 
Dry Tropical Forest (DTF), where the S-2 product detected 2.5 times 
more burned forest than MCD64A1, and in Moist Tropical Forest (MTF), 
principally in 2019 where S-2 detected 4 times more forest BA than 
coarse-resolution products. Such a result confirms the significant omis-
sion rates of global BA products in tropical forest fires reported by other 
authors (Boschetti et al., 2019; Franquesa et al., 2022). In fact, for the 
same year of study (2019) and using the same validation strategy, au-
thors reported that FireCCISFD20 only omits 21.2 % of tropical forest 
fires, whereas MCD64A1 and FireCCI51 failed to detect 70.9 and 61.9 %, 
respectively (Chuvieco et al., 2022; Franquesa et al., 2022). 

All BA products confirmed that Deserts & Xeric Shrublands (DXS in 
Table 1), which are the dominant biome of the northern Sahel as well as 
the Mediterranean zone of the Cape region, have marginal forest fires 
because of fuel scarcity and low forest cover. The DXS biome contributes 
to <1 % of SSA's total BA although it covers nearly a quarter of the total 
area (Table A.1), which can be attributed to the prevalence of unburn-
able barelands and very sparse fuel-limited vegetation (Fig. A.2) 
(Krawchuk and Moritz, 2011; Mondal and Sukumar, 2016), and where 
only rare and large fire events occurring during wettest years can have 
enough fuel to burn (Hantson et al., 2017). The Med biome, which 
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covers a small area in the region (<0.5 % of SSA), shows low fire 
occurrence rates and hence contributes to a marginal proportion of the 
total BA across SSA (<0.15 %). Therefore, DXS and Med biomes were 
omitted from further analyses. 

3.2. The role of fire in forest loss 

The analysis of all BA products showed that fire is a major driver of 
land cover changes in general, and of forest loss, in particular, with a 
special evidence in the FireCCISFD datasets. When combining forest 
change for two years after burning, we estimated that on average a 
burned forest pixel had more than twice the chance to be converted to 
another land cover than an unburned pixel (2.15 times in 2019 and 2.52 
in 2016), with lower proportions for the coarse-resolution BA products, 
particularly in Moist Tropical Forest and Temperate Savanna (Fig. 1). 

Fires were found to be involved in almost half of forest losses in SSA (46 
± 3.80 % in 2019 and 47 ± 4.21 % in 2016). 

Depending on biomes and the year of study, fire-related forest cover 
loss ranged from 32 ± 1.83 % to 75 ± 3.65 % of total losses (Fig. 2). The 
lower values were found in MTF because of their dense canopy and high 
moisture, which constrain fire ignitions and limit fire spread (Krawchuk 
and Moritz, 2011). However, the relative impact of fire occurrence on 
forest losses was prominent in this biome as well (Fig. 1). In fact, in MTF 
the probability of a burned forest to change to another cover was up to 6 
times higher than for unburned areas in 2019 and 8 times higher in 
2016. It suggests that although fire activity was limited in MTF, its 
relative repercussions on forest cover were prominent, mainly because 
of the limited resistance of MTF trees to fire events (Poorter et al., 2014; 
Scheper et al., 2021). Most MTF tree species carry poor resistance 
strategies thus experiencing high mortality during fires, along with poor 

Table 1 
Fraction of burned forest per biome over the different BA products.  

Aggregated biomes Forest area in 2019 (×1000 
km2) 

Fraction of burned forest in 2019 (%) Forest area in 2016 (×1000 
km2) 

Fraction of burned forest in 2016 (%) 

FireCCISFD MCD64A1 FireCCI51 FireCCISFD MCD64A1 FireCCI51 

Tropical Savanna (TrS)  2922.7  46.6  23.8  30.3  2975.5  42.9  26.2  32.5 
Moist Tropical Forest (MTF)  2411.6  7.3  1.8  1.8  2487.1  5.7  2.2  2.7 
Dry Tropical Forest (DTF)  49.0  31.5  12.6  17.1  50.9  30.8  10.7  14.8 
Temperate Savanna (TeS)  34.0  20.6  9.0  13.6  35.6  18.7  8.3  13.0 
Deserts & Xeric Shrublands 

(DXS)  
11.4  12.4  2.7  6.2  12.4  18.3  4.4  9.7 

Mediterranean (Med)  11.5  3.0  2.2  2.0  12.0  5.6  3.5  3.3 
SSA  5440.2  28.7  13.8  17.3  5573.5  25.9  15.1  18.8  

Fig. 1. Forest loss proportions in each biome attributed to unburned and burned area (for different BA products). Unburned refers to forest areas classified as not 
burned in the FireCCISFD product. 
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post-fire recovery, observed even after several years from burning (Ferry 
Slik et al., 2002; Nikonovas et al., 2020). 

Similar findings were observed in dry forests (DTF), particularly 
during 2016 when the fraction of forest cover loss was >6 times higher 
in burned patches than in unburned ones. The conjunction of the high 
probability of forest fires to be followed by loss and the high level of fire 
occurrence in 2016 resulted in a fire contribution to forest losses 
reaching 75 %, significantly higher than in 2019 (52 ± 3.24 %). The 
extreme drought conditions prompted by the 2015–2016 El Niño 
Southern Oscillation event are likely to be the main driver of the larger 
loss of DTF from fires, since those water-limited forest ecosystems are 
very sensitive to the interannual weather variability (Ahlstrom et al., 
2015). 

In tropical savannas (TrS) tree species are well adapted to fires and 
therefore the subsequent losses were lower compared to other biomes 
(only ~1 % in 2016 and 2019). Fire-adapted tree species of savanna 
ecosystems are avoidant (self-pruning or elevated canopy base height 
preventing surface fires to extend to the canopy) and resistant to fire, 
through specific life-history strategies and functional traits (Bond et al., 
2005; Pausas, 2019; Pausas et al., 2004). These species also present 
efficient resilience traits thanks to their greater allocation to coarse roots 
and their plastic responses to light in comparison with other forest 
species (Hoffmann and Franco, 2003; Hoffmann et al., 2003). These 
strategies involve sprouting and allow seedlings to survive next fires 
(Bond et al., 2005). Moreover, fire and herbivory interactions constitute 
another mechanism that facilitates tree recovery in TrS. High levels of 
grazing reduce grass fuel load, which is later reflected in a lower flam-
mability and intensity of fires, with lower tree damage and a higher 
competitive advantage for trees to acquire resources (Van Langevelde 
et al., 2003). These mechanisms reduce the impacts of fire on TrS tree 
cover loss. Nevertheless, due to the frequent and intense burning re-
gimes within this biome, fire remains the major source of tree distur-
bances and drives >60 % of forest loss. In temperate savannas (TeS) the 
abundance of temperate highland C3 grass species is generally altering 
fire spread and activity, yet in the north-eastern zone of the Highveld 
grasslands associated with important tree cover proportions, excep-
tional fire activity was observed, which highly contributed to forest 
losses (Fig. A.3). It is worthwhile to mention that the threshold used for 
forest cover fraction (30 %) excludes sparse trees in savannas (both TrS 
and TeS), which is probably the main reason for the relatively high 

uncertainties in TrS. 
On average, S-2 BA products give more than twice larger fire-related 

forest loss than the coarse-resolution products. Substantial differences 
were found in MTF, especially in 2019 where MCD64A1 and FireCCI51 
failed to estimate a significant proportion of BA (Table 1) and gave 5 and 
10 times less fire-related loss than S-2, respectively. This might also 
suggest that the lower omission errors of the 2019 version of FireCCISFD 
provided an enhanced potential to capture an additional proportion of 
small fires leading to forest damages within humid ecosystems. Signif-
icant differences were also noticed in the rates of forest loss fractions 
within burned regions detected using the different products (Fig. 1). 
These differences are mainly linked to the commission errors of coarse- 
resolution products, which engender an interference of actually un-
burned areas generally implying smaller fractions of forest loss. Addi-
tionally, the omission of small-scale fragmented burns used to clear 
forests lowers the estimations of the contribution of fire to forest loss in 
coarse-resolution datasets, which aligns with the fact that >60 % of 
small fires (<125 ha, in this reference) detected by S-2 BA in 2019 were 
missed by coarse-resolution products (Chuvieco et al., 2022). 

The comparison with the GLAD product (30 m) (Tyukavina et al., 
2022) revealed an underestimation of forest loss due to fires, 45 % less 
than our S-2 based estimations and 15 % smaller than the coarse- 
resolution BA products. The main reason of this discrepancy is linked 
to the more restrictive GLAD definition of fire as a driver of forest loss, 
based on a classification model of forest loss drivers where fire attri-
bution includes only wildfires not followed by agricultural activities 
(Tyukavina et al., 2018; Tyukavina et al., 2022). Therefore, using such 
an approach it was reported that shifting agriculture accounts for 92 % 
of forest losses in Africa, while wildfires drive no more than 1 % of these 
losses (Curtis et al., 2018). In reality, fire is strongly associated with 
shifting cultivation through slash-and-burn practices (Davidson et al., 
2008), but Earth observation sensors cannot accurately distinguish 
whether fire initiates or follows deforestation practices, given the short 
time intervals in which these events occur (typically 1–2 months). 
Moreover, burned lands (also called swiddens), particularly over fertile 
soils, are exposed to a decline of soil carbon and nitrogen with limited 
recovery over time (Pellegrini et al., 2018). 

To assess the short-term fate of fire-induced tree cover loss, NDVI 
change before and after fire has been evaluated as a proxy of forest 
productivity (Gazol et al., 2018). A notable decrease of this vegetation 

Fig. 2. Fire-related forest loss comparison between BA products. The bars refer to the average of the best estimate of fire-related loss weighted by the area of forest 
loss within each grid cell of 0.05◦. The error bars denote the 95 % confidence interval, while for GLAD, there was no uncertainty estimate provided. 
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index was constantly observed in all biomes in areas affected by forest 
losses, especially in DTF, where the drop reached 25 %. On the other 
hand, burned forests that were capable to resist fire events didn't show a 
significant NDVI drop (Fig. A.4). Such a decline in forest productivity 
confirms the adequacy of GFC to assess the fate of tree covered areas 
following fire disturbance. 

3.3. Forest loss and fire impacts at country level 

An estimated gross area of 36,690 km2 of SSA's forest cover was lost 
during the year 2019, compared to 41,170 km2 in the dry year of 2016. 
In general, the equatorial belt (5◦ N to 5◦ S), characterized by the 
prevalence of MTF, had lower fire-related forest losses, whereas in TrS 
and DTF, fire was the dominant driver associated with forest loss 
(Fig. 3B and D). 

At a country level, the Democratic Republic of the Congo (DRC) 
accounted for approximately one-third of total forest area losses in 2019 

and 2016, of which 44 and 38 % were fire-related, respectively (Fig. 4). 
This rate was noticeably high in the tropical savanna of DRC (Extended 
Data Tables A.2 and A.3) as well as in Zambia, Mozambique and Angola, 
where TrS is dominant. Forest losses in the aforementioned countries 
were associated with the largest expansion of croplands during the last 
two decades (Potapov et al., 2022), which indicates a widespread uti-
lisation of slash-and-burn farming (Kalaba et al., 2013; Montfort et al., 
2021). 

Among countries with high losses (>1000 km2), the severe drought 
of the 2015–2016 El Niño Southern Oscillation resulted in higher forest 
losses in 2016 than in 2019 in most of them, except in countries highly 
dominated by MTF (i.e. Ivory Coast, Liberia and Cameron). This finding 
is in accordance with the drought-resistance plant strategy found within 
these ecosystems during extreme climate anomalies (Bennett et al., 
2021). The case of Madagascar needed further investigations as the 
losses in 2016 were 50 % higher than in 2019. These losses were also 
associated with a large contribution of fires, reaching up to 48 % in 2016 

Fig. 3. Fire impact on forest loss from FireCCISFD calculated through two parameters: the fraction of tree cover loss within burned forests in 2016 (A) and 2019 (C), 
and fire-related forest loss for the same years 2016 (B) and 2019 (D). The former indicates the percentage of burned area that was deforested, while the latter shows 
what proportion of total deforested area was fire-related. 
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(Table A.2) even in the MTF zone. These losses are mainly attributed to 
pastureland management practices using fire to stimulate the 
encroachment grass appreciated by cattle instead of woody plants pre-
senting unpalatable lignified stems and to maintain certain vegetation 
types commonly used for subsistence foraging (Bloesch, 1999). On the 
other hand, several authors confirmed a drastic forest stand-replacement 
experienced in west SSA during the twentieth century (Fairhead and 
Leach, 1998; Rudel et al., 2009; Sayer et al., 1992). This process was 
mainly driven by cropland expansion and is still largely pronounced 
(Fig. 3A and C), especially in drier ecosystems (Brandt et al., 2018; 
Rudel, 2013). Our analysis highlights the three distinct regimes in the 
region (Fig. A.5): 1) the tropical savanna regime, represented by Guinea 
and Guinea-Bissau, which shows broad forest losses largely associated 
with the occurrence of fires (55 and 47 % in 2019 and 2016, respec-
tively); 2) the humid tropical forest regime where fires were less 
involved in forest loss despite the high rates of deforestation. Ivory Coast 
and Liberia are the major illustrative examples of this regime; 3) the 
Sierra Leonean case, which reveals a very particular pattern. This 
country represents the highest rate of forest loss (~4 % annually) and 
notwithstanding the fact that MTF losses were dominant (~70 %), forest 
fires were extensively involved in this change. This suggests that this 
country might be susceptible to a rapid expansion of the northwest SSA's 
savanna through humid forests leading to the encroachment of vegeta-
tion dominated by grasses and subject to annual fires (Leach and Fair-
head, 2000). The Sierra Leonean zone revealed the most significant 
differences between S-2 and coarse-resolution BA products in terms of 
forest loss fractions associated with the presence of fires (Fig. A.6), 
whereas high underestimations of fire-related losses reported by the 
global products were also identified across the majority of dry ecosys-
tems as well as the rainforest of eastern Madagascar (Fig. 5). 

3.4. Drivers of forest loss after fire 

Forest loss after fire events was linked to fire characteristics, forest 

structure, climate and human predictors based on an Extreme Gradient 
Boosting regression model (R2 = 0.67, RMSE = 3.61 %). The model 
indicates that fire characteristics are highly linked to the likelihood of 
forest loss. More specifically, the Beta value, used as a proxy to account 
for the prevalence of small fires, was found to have the highest pro-
portion of fire-related forest loss. The positive correlation of the Beta 
index with forest loss (Fig. 6) suggests that areas predominated by small 
fire patches are associated with a higher rate of fire-driven tree cover 
loss, in agreement with previous findings reporting the role of fire in 
forest conversion to fragmented small-scale agriculture (Doggart et al., 
2020), which represent the major fate of deforested areas in SSA (Curtis 
et al., 2018; Tyukavina et al., 2018). 

The association of small fires with shifting agriculture was confirmed 
by the positive correlation between the net cropland expansion within 
the period 2003–2019 (Crop-gain) and Beta (R = 0.14, p-value <
0.0001). This supports that slash-and-burn agriculture is deemed to 
remain driving deforestation over areas with high rates of cropland 
expansion during the last two decades. Fire seasonal date also had a 
major impact on the fate of forest cover. Fires occurring outside of the 
dry season, and particularly after it, tend to be a direct driver of forest 
stand-replacement in agreement with the findings of Krylov et al. (2014) 
who found that the majority of stand-replacement fires occur in late 
summer. The end of the fire season actually corresponds to the pre-
vailing occurrence of more intense fire events when compared to the 
early fire season in northern hemisphere Africa (Laurent et al., 2019), 
and thus affecting individual trees with more damages. Smaller pro-
portions of trees survived burning events occurring outside the fire 
season, especially in MTF and DTF (Fig. 7A). This observation was valid 
for all BA products; nevertheless, FireCCISFD detected more late fires 
than coarse-resolution products. These late fires are more frequently 
leading to tree damage than those within the fire season, and therefore 
the date of fire occurrence should be considered an important driver of 
fire-related deforestation over all biomes. The total forest burned area 
was higher in fire-adapted ecosystems such as TrS, and therefore was 

Fig. 4. Fire-related forest loss (in proportion to total forest loss) vs total forest loss (in proportion to total forested area) across countries of SSA in 2016 and 2019. 
Countries with forest losses lower than 100 km2 were not labelled. Colour of circles indicates the most affected biome by fire-related deforestation (see Table A.2). 
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associated with lower rates of forest loss. Fire intensity was another fire 
parameter driving forest losses. Actually, burn events with fire radiative 
power (FRP) higher than 1 MW⋅ha− 1 predominantly associated with 
forest losses (Fig. 7B). 

In addition to fire characteristics, forest structure variables had a 
major impact on forest loss, especially in MTF (Fig. 7D). Over the entire 
SSA, the analysis based on distances to forest edges revealed that interior 
intact forests had a tendency to be less affected by fire-induced forest 
loss, which might be the consequence of a constrained fire spread 
(Cochrane et al., 1999). On the contrary, when fires occurred nearby 
forest edges, implicitly more fragmented, deforestation was more likely 
to take place. Canopy cover on edge forests is usually less dense (Ordway 
and Asner, 2020), so light penetration through the fragmented canopy to 
the ground (Nascimento and Laurance, 2002) is facilitated, which in-
creases the dryness of the litter (Flores and Staal, 2022; Holdsworth and 
Uhl, 1997), and can make fires more intense and more damageable to 
trees (Armenteras et al., 2013; Cochrane et al., 1999). Actually, we 
found that fires occurring far from forest edge generally exhibit a low 

fire radiative power (FRP) (<1 MW⋅ha− 1) and subsequently small pro-
portions of forest loss, while 97.5 % of the lost tree covers after fires lay 
within 260 m from forest edges (Fig. 7B and C). Conversely, the Above- 
Ground Biomass (AGB) (Santoro and Cartus, 2021) impact was influ-
enced by the interaction with Beta (Fig. A.7A). Forest covers with me-
dium to large AGB levels (100–200 Mg⋅ha− 1) associated with a larger 
number of small fires tend to be prone to fire-related loss in MTF, which 
could perhaps indicate a higher exposure of productive forests to con-
version processes. AGB stocks larger than 200 Mg ha− 1 didn't show a 
significant impact. 

Climate factors (Abatzoglou et al., 2018) had a nonlinear relation-
ship with forest loss. For instance, the high tree cover losses in moist 
forests of western Sahel and eastern Madagascar were mainly observed 
along higher rainfall gradients confirming the consistent link between 
deforestation and Mesoscale Convective Systems (MCSs) over tropical 
regions with extreme rainfall (Taylor et al., 2022), while the relatively 
high losses in Highveld grasslands of south-western Africa (TeS) were 
associated with low temperatures constraint limiting tree cover 

Fig. 5. Differences of fire-related forest loss estimations: (A) FireCCISFD – MCD64A1 (2016); (B) FireCCISFD – FireCCI51 (2016); (C) FireCCISFD – MCD64A1 
(2019); (D) FireCCISFD – FireCCI51 (2019). 
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regrowth in such high-altitude ecosystems (Lehmann et al., 2011). The 
Actual Evapotranspiration (AET) was strongly positively correlated with 
rainfall (R = 0.74, p-value < 0.0001) and both parameters were linked 
with large forest losses at extreme ranges, especially the latter one 
(Fig. A.7B and C). Population density (Tatem, 2017) showed a low 
impact on forest losses and had an apparent positive impact only at low- 
density ranges (<50 persons per km2, see Fig. A.7D and E), which 
characterise rural populations (Tritsch and Le Tourneau, 2016). It might 
evidence the high pressure exerted by dense rural communities far from 
urban centres on forest ecosystems. The rest of human indicators didn't 
exhibit remarkable influence. 

The study evidences the potential of medium-resolution BA datasets 
such FireCCISFD and GFC to enhance our understanding of fire impacts 
on forest loss over coarse-resolution products, particularly, in tropical 
regions dominated by small fires. Nevertheless, some limitations should 
be acknowledged. Notably, due to the tremendous computational re-
sources involved in the product generation, the FireCCISFD datasets 

only cover two years (2016 and 2019), hindering a comprehensive long- 
term assessment of fire history and impacts. Furthermore, the GFC 
dataset keeps track of forest gains only until 2012, subsequently, the 
young trees were overlooked. The GFC was also found to have low 
sensitivity to sparse tree covers (Reiner et al., 2023). Actually, up to 30 
% of additional tree cover was detected using high-resolution nano-
satellites (<3 m spatial resolution), which would increase the estimation 
of forest loss fractions after fires as these areas are highly fragmented 
(Reiner et al., 2023). Ultimately, distinguishing between shifting agri-
culture techniques solely reliant on fire and those involving fire along 
with other mechanical operations (i.e., cutting part of or the integrity of 
the tree before burning) using common medium-resolution data sensors 
is extremely challenging and therefore in all of these cases fire was 
considered as a driver of loss. 

Fig. 6. Importance of drivers of forest loss after fire in 2019. (A) The mean of absolute values of impact of each predictive variable on forest loss. The sign in 
association with the colour indicates the direction of impact based on the correlation with the predictions (red positive, blue negative); (B) Distribution of the 
predictive variable's values according to their impact on the predicted forest loss; (C) Geographical distribution of the most important predictor variables explaining 
forest loss per grid cell; (D) Proportions of the most important predictor variables explaining forest loss per biome. The impact values are derived from the Shapely 
feature importance analysis of the XGBoost model. 
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4. Conclusions 

This study presented different perspectives to compare medium- and 
coarse-resolution BA products over SSA, the most burnable region 
worldwide. The emphasis was dedicated to the assessment of fire im-
pacts on forest loss and degradation. The discrepancies in estimations 
derived from both resolution products were significant but varied 
depending on biomes and the particular characteristics of regions. In any 
case, our study reveals that the quantification and the understanding of 
the relationship between fires and tropical deforestation need to be 
based on higher spatial-resolution BA datasets (≤30 m) rather than 
those currently used, which are based on coarse-resolution sensors. The 
substantial omissions of small fires used to clear forests for various 
purposes, ranging from shifting agriculture to pastureland management 
to industrial commodities, remain the main reason that might explain 
the differences found in this paper between medium and coarse- 
resolution data estimations. We found that MTF biome was extremely 
vulnerable to fire events, and that global BA products noticeably 
underrepresent the impacts of fire on this ecosystem. The interannual 
comparison of forest loss responses to extreme drought caused by 
anomalous climate events such as the 2015–2016 El Niño Southern 
Oscillation event revealed positive feedback (i.e. an increase of loss) in 
dry forest ecosystems and an important resistance of moist rainforest. 
However, the impact of fire has significantly exacerbated forest loss, 
especially in Madagascar, in which we found higher fire-related forest 
stand-replacement not only in DTF but also in the tropical rainforest 
(MTF). The review of policy-making strategies with regard to forest 
conservation is highly encouraged and must be prioritized in parallel to 
the socio-economic strategies to attain consistent and sustainable 

development goals. Similar recommendations can be raised about the 
situation of the Democratic Republic of the Congo, Zambia, 
Mozambique, Angola and western countries of the Sahel, particularly 
Sierra Leone, which seems to present a massive expansion of savanna 
fire regimes over moist forest ecosystems. Fire size distribution, as 
measured by the Beta coefficient, confirm the dominant role of small 
fires, generally associated with slash-and-burn agriculture in defores-
tation across the SSA, while the analysis of fire season and intensity, as 
well as forest density, complements our understanding of the impact of 
fires on forest ecosystems. In fact, fires occurring towards forest edges, 
which are associated with intense fire flames, as well as late-season fires 
had higher probabilities of forest loss. With that regard, S-2 allowed 
better detection of less intense fires towards the late season and frag-
mented forest edge than coarse-resolution products. The assessment of 
long-term tree cover fate along with fire occurrence using medium- 
resolution datasets would present a great potential to generalise the 
results of this study and evaluate particular trends and patterns. More-
over, it would allow to disentangle forest losses solely triggered by fires 
from losses involving the use of other drivers prior to burning such as 
mechanical clearing and felling widely used in slash-and-burn 
conversions. 
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Appendix A

Fig. A.1. Example of additive Shapely values explaining the predictions of forest loss. The grid cell was located in Ghana (MTF). The predicted forest loss value (f(x) 
= 15.119 %) was significantly higher than the mean (E[f(X)] = 3.04 %). Rainfall and Beta had higher values than their respective means and contributed to the 
increase of forest loss by 5.61 and 2.8 %, respectively (positive correlation), while Edge-distance that is negatively correlated with the target, was leading the rate of 
forest loss to decrease by 1.69 %. Without the latter variable, the model expects to estimate a forest loss rate of 16.809 %. 

Fig. A.2. Proportions of land cover types per biome in 2019.   
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Fig. A.3. Impact of fire on Temperate Savanna trees in 2016. (A) Biomes; (B) Area of forest loss; (C) Fire-related loss.  

Fig. A.4. NDVI change between before and after fire year (2019). The dots represent the biome mean of annual composite medians. The error bars denote the 
standard deviation.  
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Fig. A.5. West SSA's regimes. (A) Biomes and countries; (B) Forest loss fraction; (C) Fire-related forest loss. The maps were based on data of 2019.   
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Fig. A.6. Differences of estimations of the fraction of tree cover loss within burned forests: (A) FireCCISFD – MCD64A1 (2016); (B) FireCCISFD – FireCCI51 (2016); 
(C) FireCCISFD – MCD64A1 (2019); (D) FireCCISFD – FireCCI51 (2019).  
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Fig. A.7. Partial dependence plots of some predictor variables with their impact on forest loss predictions. (A) AGB; (B) AET; (C) Rainfall; (D) Population with the 
99.99 percentile of values as an x-axis limit; (E) Population filtered with a maximum of 200 persons per km2. Except for E, all the other plots were limited to the 99.99 
percentile along the x-axis. The colour indicates the interaction with Beta, the most dominant variable explaining forest loss predictions.  

Table A.1 
Reclassification scheme of terrestrial biomes.  

Aggregated biomes Original Dinerstein's ecoregions Proportion of SSA (%) Proportion of SSA BA (%) 

2019 2016 

Tropical Savanna (TrS) Tropical & Subtropical Grasslands, Savannas & Shrublands 
Flooded Grasslands & Savannas (latitude 23◦ S to 23◦ N)  

60.62  88.49  88.71 

Moist Tropical Forest (MTF) Mangroves 
Tropical & Subtropical Moist Broadleaf Forests  

13.23  8.23  7.39 

Dry Tropical Forest (DTF) Tropical & Subtropical Dry Broadleaf Forests  0.71  1.42  1.61 
Temperate Savanna (TeS) Montane Grasslands & Shrublands 

Flooded Grasslands & Savannas (latitude >23◦ S or 23◦ N)  
2.13  1.04  1.08 

Deserts & Xeric Shrublands (DXS) Deserts & Xeric Shrublands  22.82  0.78  1.06 
Mediterranean (Med) Mediterranean Forests, Woodlands & Scrub  0.46  0.04  0.15   
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Table A.2 
FireCCISFD estimations of fire-related forest loss across SSA countries in 2016. Fire-related forest loss is estimated within biomes of each country (columns 2–5). 
Columns 7–10 indicate the contributions of the different biomes to the total forest losses by country. The biome with the highest contribution is used in Fig. 4. 

Country Fire-related loss (%)
Distribu�on of forest
losses by Biome (%)

Forest loss 
(Km2)

DTF MTF TeS TrS Average DTF MTF TeS TrS
DRC 17.12 4.73 55.54 38.04 61.45 ~ 0 38.55 13847.14

Madagascar 63.72 47.72 41.71 53.92 11.77 88.05 0.18 3843.9
Mozambique 60.56 62.99 66.92 64.93 33.49 0.15 66.36 2521.42

Angola 87.35 2.75 64.57 58.3 58.18 0.14 0.59 1.79 97.48 2294.76
Ivory Coast 7.93 37.06 20.41 83.47 16.53 2219.11

Guinea 71.85 82.91 79.91 32.76 67.24 2178.55
Sierra Leone 70.7 75.08 71.78 81.01 18.99 1766.56

Liberia 18.52 47.5 18.6 99.27 0.73 1678.38
Tanzania 40.6 34.61 50.52 48.07 32.07 3.64 64.29 1565.24
Zambia 86.77 72.31 77.79 78.03 9.01 ~ 0 90.99 1415.29
Ghana 17.18 57.51 27.89 95.21 4.79 1205.5

Cameroon 9.69 36.19 18.83 80.64 19.36 1164.86
Congo 10.29 16.42 12.87 69.39 30.61 1149.16

South Africa 30.64 29.45 24.47 26.08 13.59 32.74 53.67 940.18
Nigeria 22.61 34.88 45.9 31.83 84.91 0.01 15.08 729.24
Uganda 37.51 10.13 46.32 43.15 25.51 0.01 74.48 686.01

Central African 
Republic 33.82 63.72 58.8 47.64 52.36 513.95

Gabon 0.45 5.16 1.44 73.01 26.99 314.71
Kenya 17.15 20.73 24.39 20.03 83.22 0.67 16.1 201.23

Ethiopia 25.13 11.95 44.23 31.22 36.53 13.21 50.26 199.54
Malawi 4.17 62.32 59.78 59.38 0.47 23.86 75.67 139.76

Guinea-Bissau 53.95 67.06 63.04 36.64 63.36 139.09
Zimbabwe 62.49 45.04 48.23 48.14 8.86 39.82 51.32 117.93
Equatorial 

Guinea 0 0 100 91.4

eSwatini 56.7 24.11 27.37 27.47 0.05 60.89 39.06 62.84
South Sudan 57.51 62.52 62.22 7.01 92.99 41.99

Togo 44.83 42.69 43.24 61.09 38.91 35.68
Chad 80.29 80.29 100 30.44

Rwanda 8.82 27.77 14.51 94.31 5.69 29.37
Benin 18.33 38.24 37.81 20.41 79.59 22.5

Burundi 15.58 26.81 19.81 81.08 18.92 16.1
Mali 58.98 58.98 100 3.01

Senegal 31.89 48.39 45.81 63.2 36.8 2.44
Somalia 47.05 60.88 50.79 63.58 36.42 0.91
Comoros 0 0 100 0.87
Lesotho 4.41 0 2.98 73.01 26.99 0.29
Sudan 74.95 74.95 100 0.27

Gambia 63.72 59.66 57.6 6.49 93.51 0.06

The colours in columns 2–5 enhance the visual interpretations of fire-related loss with purple as the low (0 %) and the red as the highest (100 %). The red values in 
columns 7–10 indicate the biome with highest rate contribution to forest loss in each country.  

Table A.3 
FireCCISFD estimations of fire-related forest loss across SSA countries in 2019. The estimations are calculated in the same way as in Table A.2. 
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Country Fire-related loss (%)
Distribu�on of forest
losses by Biome (%)

Forest loss 
(Km2)

DTF MTF TeS TrS Average DTF MTF TeS TrS
DRC 23.21 68.21 61.94 44.38 63.05 0.01 36.94 12221.87

Madagascar 47.16 43.55 22.54 43.85 19.03 70.5 0.21 2551.2
Ivory Coast 9.98 35.97 21.13 80.51 19.49 2432.26

Mozambique 54.29 40.7 64.74 61.89 38.88 0.19 60.93 2374.29
Guinea 76.62 86.73 84.01 32.88 67.12 1947.75
Angola 84.01 7.41 71.88 64.13 63.94 0.11 0.73 2.42 96.68 1745.69

Sierra Leone 67.94 83.54 71.94 85.17 14.83 1743.3
Liberia 22.83 78.95 22.91 99.58 0.42 1709.44

Tanzania 29.47 46.91 45.94 42.83 39.81 3.51 56.69 1459.28
Zambia 87.4 75.29 75.63 4.88 95.11 1247.62

Cameroon 14.33 53.91 29.2 77.34 22.66 1216.2
South Africa 27.17 32.65 30.86 27.35 13.37 29.91 56.69 930.88

Ghana 18.29 55.3 27.41 94 6 894.29
Nigeria 21.15 32.44 36.56 27.21 71.86 0.01 28.13 875.43
Congo 17.37 29.98 22.53 60.55 39.45 745.75
Uganda 28.05 32.57 30.94 21.97 78.03 644.4

Central African 
Republic 33.72 65.36 60.12 30.29 69.71 496.58

Gabon 2.95 16.24 5.87 79.44 20.56 279.54
Ethiopia 16.29 11.07 49.66 30.4 51.23 15.06 33.68 259.62
Kenya 14.62 28.73 14.42 14.9 79.84 0.87 19.29 168.01

Guinea-Bissau 64.17 77.17 73.14 33.19 66.81 143.71
Malawi 1.18 58.17 51.93 52.67 0.22 18.23 81.55 123.54

Zimbabwe 31.39 30.37 33.11 32.87 18.08 40.66 41.27 113.22
Equatorial 

Guinea 0.53 0.57 100 91.45

eSwatini 50.02 42.89 40.87 42.15 1.39 60.08 38.53 58.11
Togo 42.16 39.42 40.22 79.22 20.78 54.61
Chad 67.24 67.24 100 48.9

South Sudan 64.47 65.58 65.48 20.86 79.14 40.94
Rwanda 6.84 57.47 11.72 8.39 96.49 0.03 3.48 26.47
Burundi 13.5 13.47 13.36 75.33 24.67 24.11
Benin 38.94 34.74 34.84 1.14 98.86 9.15

Somalia 15.68 15.29 15.56 84.14 15.86 3.84
Mali 63.69 63.69 100 2.82

Senegal 56.85 49.68 50.78 63.72 36.28 2.65
Comoros 0 0 100 1.93

Sudan 56.47 56.47 100 0.56
Gambia 7.29 55.2 44.55 4.83 95.17 0.2
Lesotho 20.1 48.58 32.3 52.23 47.77 0.12

The colours in columns 2–5 enhance the visual interpretations of fire-related loss with purple as the low (0 %) and the red as the highest (100 %). The red values in 
columns 7–10 indicate the biome with highest rate contribution to forest loss in each country. 
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