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U-Pb carbonate dating reveals long-lived activity of proximal
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Abstract

Syn-rift extensional faults play a significant role during the early stage of rifting.
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process. Previous assessments of the structural and temporal evolution of rift-related
faults of the Adria proximal margin have primarily relied on indirect biostratigraphic
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during the Alpine orogeny. In this study, in-situ U-Pb geochronology was applied
on syn-kinematic calcites to unravel the activity of the Amora Fault, a remarkable
example of a Jurassic growth fault unaffected by the Alpine orogeny. The obtained

Funding information ages, spanning from Hettangian to Callovian, extend the AF activity beyond

Ministero dell'Uni ita e della Ri . . . . .
inistero definiversita e defla Ricerca the previously established Early Jurassic time. This chrono-structural model has
significant implications on the role of major extensional faults in focusing deformation

throughout the rift system's evolution.
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1 | INTRODUCTION crustal depths (Bertotti et al., 1993; Berra & Carminati, 2009;

Figure 1b).

The rifting of the Alpine Tethys began in the Early Jurassic (Late
Hettangian) because of the propagation of the Central Atlantic rift-
ing, which marks the onset of Pangea break-up (Chenin et al., 2022;
Frizon De Lamotte et al., 2015; Manatschal et al., 2022; Manatschal
& Bernoulli, 1998; Winterer & Bosellini, 1981). This major stretching
event affected the central Southern Alps (cSA; Figure 1a), which be-
came the proximal domain of the Southern Adria margin. This latter
was characterized by deep basins and structural highs and bounded
by N-S trending extensional faults forming the Lombardian Basin
(Bernoulli, 1964; Bertotti et al., 1993; Figure 1b). The main faults

were characterized by listric geometries rooting at middle-upper

Temporal and structural evolution of fault systems of the
Lombardian Basin has long been inferred based on field geomet-
rical relationships recording syn-depositional tectonics revealed
by drastic changes in facies and sediment thickness distribution.
Recently, absolute dating of brittle structures has become possi-
ble with the advent of in-situ carbonate U-Pb geochronology via
LA-ICPMS (Bilau et al., 2023; Nuriel et al., 2017, 2019; Roberts &
Walker, 2016). When dating carbonate phases to reconstruct fault
activity, it is fundamental to link the carbonate precipitation event to
fault kinematics and to provide robust evidence that the dated ma-

terial formed contemporaneously to fault activation or reactivation
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(Roberts & Holdsworth, 2022). This requires a pre-dating multidis-
ciplinary screening protocol, including structural, microstructural,
petrographic and stable isotope characterization, which has all been
implemented in this work.

This study aims at constraining the onset of Jurassic rifting
event in the Lombardian Basin of the cSA by employing U-Pb LA-
ICPMS radiometric dating of fault-related calcites. The Amora Fault
(AF; Figures 1b and 2b,c) stands out as an ideal candidate, since it
represents a persistent, long-living, growth fault that broadly es-
caped later tectonic reactivation during the Alpine compressions.
Integration of structural, stratigraphic, geochemical and geochro-
nological data shed new light on the geodynamic activity of one of
the main extensional structures related to the onset of the Jurassic

rifting.

2 | GEOLOGICAL SETTING

Placed south of the Periadriatic Fault, the cSA consists of a
polyphase S-verging fold-and-thrust belt active at upper crustal
levels since Late Cretaceous (Schénborn, 1992; Zanchetta
et al., 2015; Figure 2a). The Amora Fault is part of a broader N-S
trending fault system displacing the Mesozoic succession of the
southern portion of cSA (Figures 1b and 2). A wealth of data
(Bernoulli, 1964; Berra et al., 2009; Berra & Carminati, 2009;
Bertotti et al., 1993) documents that the AF and related faults
are extensional structures controlling the evolution of the Adria
passive margin since the inception of crustal stretching leading to
the opening of the Alpine Tethys.

The onset of extensional regimes in the cSA is recorded by tec-
tonic collapse of Upper Triassic to Hettangian shallow sea carbonate
platform facies (pre-rift succession; Jadoul & Galli, 2008; Figure 2b)
due to the activation of N-S trending normal faults separating sub-
siding basins from structural highs (Bernoulli, 1964; Gaetani, 1975;
Bertotti et al., 1993; Figures 1 and 2).

During Sinemurian-early Pliensbachian, subsidence increased
rapidly in the Lombardian Basin, where lower Hettangian pre-rift
successions were conformably covered by basinal facies of the
Moltrasio Limestone (Sinemurian; Gaetani, 1975) up to 3km thick
(Mt. Generoso Basin; Bernoulli, 1964), which represent syn-rift sed-
imentation (Bertotti et al., 1993, 1999; Berra et al., 2009; Figures 1b
and 2b). Then, by the end of Pliensbachian, basins reached their
maximum tectonic subsidence that gradually decreased from
Toarcian to Aptian times (Berra & Carminati, 2009; Santantonio
& Carminati, 2011). Previous studies (Berra et al., 2009; Berra &
Carminati, 2009; Bertottietal., 1993; Incerpi et al., 2020; Manatschal
et al., 2022; Santantonio & Carminati, 2011) documented that the
main bordering faults were active between Hettangian and early
Pliensbachian (Figure 1b); later, extension shifted westward (late
Pliensbachian to Toarcian).

The AF borders a N-S trending basin (Mt. Rena half-graben;
Figures 1b and 2b,c) filled by about 1 km of basinal limestones. The AF
exhibits a vertical displacement of more than 600 m, juxtaposing the

Significance Statement

The present manuscript investigates the onset of Jurassic
rifting in the proximal Adria margin, employing a novel
approach that integrates structural and biostratigraphic
information with in-situ U-Pb dating of syn-tectonic
calcite. This innovative integrated methodology highlights
the long-lived nature of extensional faults active at shallow
crustal levels in the Italian Southern Alps, confirming
the existence of well-preserved Jurassic fault systems
that escaped subsequent reactivation during the Alpine
orogeny. Moreover, it represents a significant advance
in understanding the long-term behaviour of extensional
faults. Specifically, the application of in-situ U-Pb dating
of syn-tectonic calcites provides crucial insights into the
timing of fault activity. These results contribute not only
to the understanding of the geological evolution of the
Italian Southern Alps but also to the current knowledge
regarding the application of U-Pb dating of carbonates
in timing past fault activity. This work stems from several
years of fieldwork in the region and has not been published

previously.

Moltrasio Limestone to the Zu Limestone (Figure 2b,c). Sedimentary
breccias reworking older units and m-thick slumps characterize the
base of Moltrasio Limestone in the AF hangingwall (Lb; Figures 2b,
3d,e). The latter shows, together with the overlying Domaro
Limestone, a marked increase in thickness up to 650m in Mt. Rena
half-graben. The lowermost Jurassic succession is remarkably thin-
ner in the AF footwall (Mt. Poieto high; Figure 2b) or totally missing
(Nese high; Figure 1b; Bersezio et al., 1997; Casati & Gaetani, 1968).
West of Mt. Poieto-Nese structural high, the Concesio Group is re-
placed by the Sogno Formation (Figure 1b; Bertotti et al., 1993, Erba
et al., 2022), suggesting that the AF forms the boundary of a N-S
trending structural high.

3 | SAMPLES AND METHODS

Fault-related samples come from Zu Limestone, upper Norian to
Rhaetian in age. The analysed samples were collected from high-
angle, dip-slip N-S trending normal faults with displacements of
up to a few metres from arrays of domino-style tilted blocks and
Andersonian horst and graben structures, in the AF footwall
(Figures 2c and 3). Samples are mainly fracture-filling carbonate
cements from bed-normal syn-tectonic veins (tension gashes), as well
as calcite cements filling stylolites or forming stepped slickenfibres.
Geometric relationships between mesoscale faults and carbonate
veins were investigated to identify rift-related syn-tectonic
carbonate cements. Striated faults were also analysed in terms of
palaeo-stress reconstruction by means of Win-Tensor (Delvaux &
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FIGURE 1 (a) Tectonic map of Northern Italy. The dashed lines define the borders between basins and highs during the Mesozoic
rifting. The black rectangle includes the central Southern Alps (cSA) area, and the blue W-E transect illustrates the location of the section
in B (after Berra & Carminati, 2009). (b) Architecture of the Lombardian Basin at the end of the Early Cretaceous (modified from Berra &
Carminati, 2009). CG-Concesio Group and So-Sogno Formation. [Colour figure can be viewed at wileyonlinelibrary.com]

Sperner, 2003; Figure 3b,g, see also Supporting information S1).
Moreover, statistical analysis of slump folds was applied following
the methodology described by Naves De Lima Rodrigues et al. (2021)
to strengthen the relationship between the AF and the sedimentary
record (Figure 3f and Supporting information S1).

According to microstructural analyses, including optical and
cathodoluminescence petrography, performed on 15 samples, all
samples were investigated for the O-C stable isotope composition
and 6 samples were selected for U-Pb dating (see Supporting in-
formation for details on sample localities, analytical methods and
procedures).

4 | RESULTS

Petrography led to the identification of several generations of
carbonate cement. To elucidate the activation and progression of AF,
U-Pb analyses were exclusively conducted on the first cement, given
by a non-ferroan calcite cement (Cal-1; Figure 4).

Cal-1 is composed of elongated-blocky or blocky crystals
(0.5-2mm) displaying a uniform dull red luminescence, like the one
of the host-rock (Figure 4). Six samples of Cal-1 from Zu Limestone
(one fault surface, two stylolites and three tension gashes) were
analysed.
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613Ccarb and 6180mb compositions of Cal-1 range from 2.5 to 3.4
%o VPDB and from -4.2 to -2.6 %0 VPDB, respectively, and are simi-
lar to those of the host-rock displaying §'°C_,, and §'°0_, ,, respec-
tively, in the range 2.9/3.6 %o VPDB and-3.5/-1.5 %o VPDB (see
Supporting information S2).

Measured U and Pb isotopic ratios display Tera-Wasserburg
linear regressions (isochrons) pointing towards a common initial

207pp/298pp composition of 0.8656+0.0062 and MSWD (mean

standard weighted deviation) between 1.7 and 5.3. All Tera-
Wasserburg diagrams show either a large spread in the U-Pb ratios
or data close to the radiogenic end-member advocating the robust-
ness of the calculated U-Pb ages (Figure S3). Ages range between
192.4+1.7|8.4Ma and 169.4 +4.6|8.6 Ma (we report both the uncer-
tainty of the lower intercept age—2c internal and the error prop-
agation—2¢ systematic; see Supporting information S3) and are

systematically younger than the host-rock stratigraphic age (late
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Norian—Rhaetian; Galli et al., 2007), even when 2¢ uncertainties
are considered. Individual Cal-1U-Pb isochrones and corresponding
ages are reported in Figures 5a,c, 6 and Supporting information S3.

5 | DISCUSSION

The new U-Pb radiometric ages presented herein (Figures 5a,c, 6 and
Supporting information S3) provide the first absolute constraints on
the onset of the Jurassic extensional regime in the Lombardian Basin,
suggesting that the AF was active across the Early and Middle Jurassic.

Stratigraphic and sedimentological evidence indicate that the
AF was active during the late Hettangian-Sinemurian, simultane-
ously with the deposition of Moltrasio Limestone (Figure 7a). Field-
based observation of wedge-shaped deposits (Figure 7a) and slump
folds statistical analysis (Figure 3d-f) in the hangingwall of the AF,
along with palaeo-stress analysis of secondary AF-related faults in
the footwall (Zu Limestone; Figure 3b,c) and hangingwall (Moltrasio
Limestone; Figure 3e,g), all point out to a rift-related Early Jurassic
activity of the AF.

Prior to this study, the timing of the Jurassic rift-associated
faults was determined based on stratigraphic and sedimentologi-
cal evidence in the Lower Jurassic units (Berra et al., 2009; Bertotti
et al.,, 1993; Mattioli & Erba, 1999; Winterer & Bosellini, 1981).
Geochronological constraints on the Early Jurassic rifting in the
Adria proximal margin of Southern Alps are limited to intra-basement

faults: ages from deformed Triassic pegmatites and mylonites in mi-
caschists and marbles range from 215 +2Ma to 185+ 1 Ma (Bertotti
et al., 1999) and partially overlap with the carbonate U-Pb dataset
obtained here (Figure 4). U-Pb geochronology data obtained by
Incerpi et al. (2020), related to the extensional activity recorded
north of the Periadriatic Fault, in the proximal margin of northern
Adria, also partially overlap (Figure 6).

All the pre-existing models suggested a Sinemurian age for
rifting in the proximal margin, ceasing of tectonic activity at the
end of Pliensbachian and shifting towards the Western Southern
Alps from the Toarcian (Beltrando et al., 2015; Berra et al., 2009;
Berra & Carminati, 2009; Manatschal et al., 2022; Santantonio
& Carminati, 2011). In the hangingwall of the AF, the Toarcian-
Bathonian succession (Concesio Group; Figure 7a) is more than
100m thick, but totally missing on the Mt. Poieto-Nese high, while
itis replaced by the Sogno Formation to the west (Figures 1b and 7a;
Bertotti et al., 1993; Mattioli & Erba, 1999). The AF was hence active
during the Middle Jurassic representing the bordering fault of the
N-S trending Mt. Poieto-Nese high. In Mt. Rena half-graben, tilted-
normal faults and slump folds are crosscut by later normal fault sets,
consistent with the same extensional event (Figure 3e,g). U-Pb ra-
diometric ages of this study, spanning from Hettangian to Callovian
times (ca. 40 Ma considering 2c systematic uncertainties; Figure 5a),
support a long-lived extensional activity. This is further supported
by decompacted subsidence curves calculated for Mt. Poieto-Nese
high and Mt. Rena half-graben (Figure 5b), showing that the age of
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differentiation between the footwall and the hangingwall of the AF
fits well with U-Pb ages (Figure 5a,b).

As the precipitation of Cal-1 slickenfibres (180.9 +4.5|8.9 Ma)
is considered synchronous with movement along the slip plane
(Roberts & Holdsworth, 2022), this calcite represents the most reli-
able marker of syn-kinematic fault activity. However, blocky calcite
in tension gashes can still be considered a reliable marker in dating
syn-kinematic activity, since the duration between fracturing and
calcite precipitation is typically shorter than the uncertainties asso-
ciated with U-Pb dating, as suggested by Wei et al. (2023).

Recrystallization of Cal-1 crystals is not suggested by their
uniform luminescence response (Figure 4b,c) and 613Ccarb signa-
ture (Figure S2_b). Similarities in both luminescence and isotopic
signature between Cal-1 and the host-rock (Figures 4 and S2_a)
point to a closed hydrogeological system, where the calcite parent
fluids were possibly buffered by the host rock, and this corrobo-
rates U-Pb results showing a typical closed system behaviour (Bilau
etal., 2023).

According to this study, the onset of AF activity likely started
around the end of the Hettangian, that is, ca. 3Ma after the host
rock deposition, consistent with the beginning of rift activity in
the Lombardian Basin (Berra & Carminati, 2009; Berra et al., 2009;

Santantonio & Carminati, 2011; Figures 6 and 7b) and in the
Austroalpine proximal northern Adria margin (Incerpi et al., 2020;
Figure 6).When rifting shifted westward around Toarcian times
(Figures 6 and 7b; Berra & Carminati, 2009; Berra et al., 2009;
Santantonio & Carminati, 2011; Beltrando et al., 2015; Manatschal
et al., 2022), tectonic activity in the Lombardian Basin decreased,
continuing with several pulses at least until Bathonian times, when
mantle exhumation occurred in the Canavese zone (165+7Ma;
Ewing et al., 2015; Figure 6). Field-based evidence and U-Pb ages
show that the AF activity is partially coeval with rifting in the dis-
tal Adria margin (Figures 6 and 7b). Long-lived faults in extensional
settings are common. An example is the Early Cenozoic rifting
stage of the South China Sea proximal margin (Ye et al., 2018). This
event is characterized by syn-rift low-angle normal faults border-
ing half-graben basins, recording two different tectonic stages (Hao
et al., 2021): (i) formation of wedge-shaped half-graben strictly
bounded by faults and (ii) later sedimentation slightly controlled
by faults. A similar evolution can be also inferred in the study area:
(i) deposition of the upper Hettangian-Pliensbachian succession,
during the main activity of the AF (Figure 7a) and (ii) deposition of
the Toarcian-Kimmeridgian succession, whose thickness is still con-
trolled by the AF (Figure 7a).
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This study highlights the high potential of an integrated approach,
based on multiscale structural and stratigraphic analyses combined
with in-situ U-Pb dating of syn-tectonic calcite veins and slickenfi-
bres, in shedding new light on fault activity at shallow crustal levels.

The integrated multidisciplinary approach used in this study al-
lowed the reconstruction of:

(i) the geometrical features and kinematics of one of the main Early
Jurassic extensional growth faults in the central Southern Alps
and

(i) the duration of fault activity, constrained by U-Pb ages that span

from Hettangian to Callovian.

The proposed chrono-structural model implies a multi-stage evo-
lution of the Amora Fault system. In the first stage, the Amora Fault
bordered a strongly subsiding half-graben characterized by high sed-
imentation rates. Later, extension decreased though it still controlled
syn-tectonic sedimentation. The activity of the AF better defines the
evolution of the Southern Alps, where the extensional tectonics shifted
from the Lombardian Basin to the distal margin of southern Adria since
the Late Pliensbachian-Toarcian. Therefore, as documented by the data
collected along the AF, the extension persisted in the Lombardian Basin,

being synchronous with activity in the distal margin of Adria.
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