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ABSTRACT: Predicting and mapping coral reef diversity at moderate scales can assist spatial plan-
ning and prioritizing conservation activities. We made coarse-scale (6.25 km?) predictive models
for numbers of coral reef fish species and community composition starting with a spatially com-
plete database of 70 environmental variables available for 7039 mapped reef cells in the Western
Indian Ocean. An ensemble model was created from a process of variable elimination and selectiv-
ity to make the best predictions irrespective of human influences. This best model was compared to
models using preselected variables commonly used to evaluate climate change and human fishing
and water quality influences. Many variables (~27) contributed to the best number of species and
community composition models, but local variables of biomass, depth, and retention connectivity
were dominant predictors. The key human-influenced variables included fish biomass and distance
to human populations, with weaker associations with sediments and nutrients. Climate-influenced
variables were generally weaker and included median sea surface temperature (SST) with contrib-
utions in declining order from SST kurtosis, bimodality, excess summer heat, SST skewness, SST
rate of rise, and coral cover. Community composition variability was best explained by 2 dominant
community richness axes of damselfishes—angelfishes and butterflyfishes—parrotfishes. Numbers
of damselfish—angelfish species were ecologically separated by depth, and damselfishes declined
with increasing depth, median temperature, cumulative excess heat, rate of temperature rise, and
chronic temperature stresses. Species of butterflyfish—parrotfish separated by median tempera-
ture, and butterflyfish numbers declined with increasing temperature, chronic and acute tempera-
ture variability, and the rate of temperature rise. Several fish diversity hotspots were found in the
East African Coastal Current Ecoregion centered in Tanzania, followed by Mayotte, southern
Kenya, and northern Mozambique. If biomass can be maintained, the broad distributions of species
combined with compensatory community responses should maintain high diversity and ecological
resilience to climate change and other human stressors.
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1. INTRODUCTION scales (Parravicini et al. 2013, Pellissier et al. 2014,
Williams et al. 2015, Ceccarelli et al. 2023). Many
Patterns of coral reef fish diversity and their drivers large-scale approaches are based on compilations
are increasingly being understood at large spatial and mapping of site-based empirical observations.
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For example, compiled presence/absence observa-
tions of species are used to create polygon distribu-
tion maps that estimate total species diversity (Selig
et al. 2014, Jenkins & Van Houtan 2016, Bullock et
al. 2021). Species diversity patterns arising from this
common method produce distributions based on
extrapolations across large areas. However, suitable
environments and habitats may be lacking in the spe-
cies' ranges created by this extrapolation method.
Therefore, tests of predictive strength of this extrapo-
lative method have found it weak at locating popula-
tions of the studied species (Lee-Yaw et al. 2022).
Improved predictions could be made if the habitats
and environmental conditions that create the species'
niches were explicitly modeled across the geogra-
phies of interest. The density and distribution of
presence/absence field sampling is also expected to
influence large-scale diversity maps. Therefore,
mapped patterns may be very coarse and potentially
misleading where field sampling is sparse, which
could adversely influence conservation prioritization
decisions. Moreover, these and other conservation
prioritization methods often identify large unspeci-
fied areas, many too large to be contained in the most
common modest-sized protected areas (EAME 2004,
Obura et al. 2012, Boonzaier & Pauly 2016). Recently,
improvements in satellite coverage, environmental
proxies, and spatial modeling methods are increas-
ingly making finer-scale predictions possible (Pilows-
ky et al. 2022).

Spatially resolved habitat and environmental infor-
mation has the potential to produce more explicit
species and community distribution maps (Stephen-
son et al. 2020, Mokany et al. 2022). Increasing sat-
ellite and shipboard measurement availability can
provide environmental data to explore potential
environment—taxa associations (Tyberghein et al.
2012, Yeager et al. 2017, Assis et al. 2018). Complex
associational and regression algorithms can then map
numbers of species and community types at the spa-
tial resolution of the environmental data. Moreover,
satellite data availability has encouraged the devel-
opment of many single and multivariate proxies. For
example, there are proxies for thermal stress (Maina
et al. 2011), human influences (Maire et al. 2016),
water pollution (Andrello et al. 2022), and larval con-
nectedness (Fontoura et al. 2022) that can be used to
improve the predictive strength of models.

An advantage of an environmental modeling ap-
proach is that many of the associated variables are
expected to reflect species' niches, thereby produc-
ing more ecologically realistic distribution patterns
(Pilowsky et al. 2022). The moderate spatial resolu-

tion and wide coverage of these data sources can
assist in making finer-scale predictions than overlap-
ping species distribution polygons or cumulative spe-
cies rarefaction alternatives. Environmental model-
ing is particularly useful where there is an interest in
formally protecting biodiversity but where there is a
history of sparse field sampling, high biodiversity,
and limited information for prioritization (Parravicini
et al. 2013, McClanahan et al. 2015, Kusumoto et al.
2020, UNEP-Nairobi Convention & WIOMSA 2021).
Emerging predictive modeling tools can be used
broadly, include many potentially predictive vari-
ables, and may eventually be able to assist global-
scale conservation priorities.

The spatial scale of biodiversity conservation in
tropical marine regions is small and limited by trade-
offs between conservation and food needs. For exam-
ple, in Africa and the Western Indian Ocean (WIO),
human dependence on natural resources and the sub-
sequent unsustainable use of fish is widespread (Zeller
etal. 2021, McClanahan et al. 2023). Therefore, human
needs often limit the size and numbers of large-scale
fully protective management systems. Conservation
increasingly involves more local jurisdictions, imple-
mentation at smaller scales, and greater access by re-
source users (Cinner et al. 2012, Rocliffe et al. 2014,
Ban et al. 2023). Knowledge of fish biodiversity at this
scale is limited and mostly available for specific sam-
pled sites or management systems, such as marine pro-
tected and adjacent fished areas (McClanahan 2019).
To assist the development of large-scale species diver-
sity modeling, we used environmental modeling
methods to predict the number of fish species and
community composition. Here, satellite, shipboard,
and multivariate proxies were used to predict numbers
of reef fish species and community distributions in
the WIO faunal province for 7039 reef cells mapped at
a-6km?scale (Burke etal. 2011).

The research described below was a collaborative ef-
fort to explore environmental relationships with a
proxy coral reef fish assemblage. Our model made
predictions based on an empirical census of 5 com-
monly sampled species-rich families previously found
useful for estimating numbers of species at large scales
(Allen & Werner 2002). Two metrics of fish biodiversity
were modeled: number of fish species and community
composition richness. We focused on the potential as-
sociations and responses of these taxonomic metrics
to relevant oceanographic data and commonly eval-
uated climatic change, water quality, and human re-
source extraction variables. We asked which of the
many available environmental variables contribute to
making good predictions and how these predictions
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compare with those commonly preselected for study-
ing human and climate impacts. Moreover, we used
spatial clustering methods to identify locations with
high densities of biodiverse reefs that may benefit
from conservation efforts. The investigation was un-
dertaken to better understand fish—environment asso-
ciations and the specific strengths of climate change,
water quality, and human-use variable relationships.

2. MATERIALS AND METHODS

The study builds on several methodological ad-
vances that have made it possible to evaluate biogeo-
graphic patterns of reef fishes in the WIO. These in-
clude: (1) moderate-resolution mapping of coral
reefs, (2) global satellite coverage of environmental
variables that are potential proxies for biodiversity,
(3) increased scale of field data collection and col-
laboration, and (4) machine learning algorithms
capable of evaluating and calculating partial effects
that allow making fair comparisons when evaluating
numerous variables and locations. These 4 emergent
tools allowed us to evaluate and map our proxy of
numbers of fish species in the WIO coral reefs.

2.1. Study region

We used recent iterations of coral reef maps to
establish reef distribution patterns (https://data.
unep-wcmece.org/datasets/ 1) (Burke et al. 2011). Spe-
cifically, we used the map of the WIO composed of
~7039 cells (each 6.25 km?) distributed among 9
ecoregions, namely the Northern Monsoon Current
Coast, East African Coral Coast, Seychelles, Carga-
dos Carajos/Tromelin Island, Mascarene Islands,
Southeast Madagascar, Western and Northern Mad-
agascar, Bight of Sofala/Swamp Coast, and Delagoa.
Empirical data were only available for 6 of the more
accessible ecoregions, but we used the model from
these data to predict values in the 3 unsampled
ecoregions. Therefore, predictions for Cargados
Carajos/Tromelin Island, Southeast Madagascar,
and Bight of Sofala/Swamp Coast should be seen
as unconfirmed but testable predictions. The WIO
faunal province also includes 9 national govern-
ance jurisdictions, with Madagascar, Tanzania, and
Mozambique having the most coral reefs cells (43%)
(Text S1, Fig. S1 in the Supplement at www.int-res.
com/articles/suppl/m730p059_supp.pdf). The scale
of this map aligns well with the scale of the environ-
mental data described below.

2.2. Environmental data sources

Environmental data compilations accessed several
sources from satellite and shipboard measurements
and multivariate compilations (Table 1, Table S1).
Environmental oceanographic layers included those
expected to influence marine organisms, such as
wave energy, photosynthetic active radiation (PAR),
light diffusion attenuation, pH, calcite, dissolved
oxygen, salinity, net primary productivity, chloro-
phyll @, and phytoplankton carbon (Tyberghein et al.
2012, Yeager et al. 2017). Additionally, several water
temperature or thermal stress metrics were used,
including sea surface temperature (SST) mean,
median, range, standard deviation, skewness, kurto-
sis, and rate of rise, as well as cumulative degree-
heating weeks (DHW) (https://coralreefwatch.noaa.
gov/product/5km/index_ S5km_ sst.php). Kurtosis and
skewness are metrics that reflect chronic and acute
stress on marine organisms and, along with tem-
perature ranges and standard deviations, have been
shown to influence coral cover, loss of coral sym-
bionts, and other coral reef community metrics
(Ateweberhan & McClanahan 2010, Safaie et al. 2018,
McClanahan 2020). Water chemistry metrics of dis-
solved oxygen, salinity, pH, and calcite concentra-
tions are expected to reflect conditions known to
affect fish health and distributions (Gallo et al. 2020,
Pinheiro et al. 2021). Two multivariate integrated
metrics of thermal stress and water quality were in-
cluded (Maina et al. 2011, Andrello et al. 2022). Hab-
itats were assigned to grid cells based on the most
common habitat observed in each cell from satellite
image observations. Finally, for each cell, we used
several layers that measure connectivity, including
average net flow, indegree, outdegree, and retention
metrics that are expected to influence numbers of
species (Fontoura et al. 2022). Fish census observers
also recorded local site metrics including depth and
habitats, recorded as reef edge, reef crest, reef flat, or
reef lagoon. Field-based habitat classifications were
used to build the model, but predictions were based
on the dominant habitat type in each cell.

Several geographic variables were retained inde-
pendently of the larger and objective variable selection
process to evaluate a common practice of preselecting
variables of human and climate change concern.
Human-influenced variables included were nation,
wilderness (>4 h travel time from a human popula-
tion), and travel distance to either people living on
coastlines or in cities. These are referred to as gravity
to a coastal population and city or the number of
people living on the nearest shore or cities divided by
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a constant plus the square of the distance or travel
time (Maire et al. 2016). Population and city gravity
metrics were log transformed to better visualize pat-
terns. The ecoregion was also evaluated as a potential
variable but had low predictive strength. Mapped reef
cells were assigned 4 fisheries management categories
comprised of unrestricted fishing (42%), restricted
fishing (42%), low compliance closures (14%), and
high compliance closures (2%). These classifications
were based on information in published literature, the
experience of the data providers, and discussions with
knowledgeable observers (McClanahan et al. 2015).

2.3. Field data collection

Experienced observers counted fishes in designated
areas using either circular or belt transect methods of
100, 154, 250, or 500 m?2 described in the authors' foun-
dational methods papers (McClanahan 1994, Fried-
lander et al. 2014, Chabanet et al. 2016, Graham et al.
2020). Smaller replicates conducted close to each
other were pooled such that the final units were
number of species per ~ 250, 300, 462, and 500 m? Con-
sequently, we evaluated several strategies to account
for the differences in sampling units, including the
sampled area and using only samples with a similar
transect area (Text S2, Figs. S2 & S3). Differences in
the 5 tested models were small, but we present results
from samples collected at 500 m? using the boosted re-
gression tree (BRT) regressions and multivariate an-
alysis of similarity (ANOSIM) of species composition.

We used the number of species from 5 families sam-
pled by all observers (Acanthuridae (surgeonfish),
Chaetodontidae (butterflyfish), Labridae (wrasses)—
Scarinae (parrotfish), Pomacanthidae (angelfish), and
Pomacentridae (damselfish)), which are known to be
good proxies for the total numbers of species in regions
(Allen & Werner 2002). We separated the herbivorous
Scarinae from the other carnivorous Labridae species
in our analysis because their feeding and ecological
differences affected the community composition anal-
yses. Each observer independently estimated total fish
biomass based on the sum of the weights of all individ-
uals. Biomasses were calculated from length estimates
and known length—weight relationships compiled at
either the species or family level as per the observers'
methods. A total of 1201 transects were sampled and
967 500 m? used in the final evaluation. Transects were
surveyed throughout most of the countries and ecore-
gions in the WIO province between 1991 and 2022,
and the environmental data used for analysis corre-
sponded to the time just prior to field sampling (Fig. S1).

2.4. Data analyses
2.4.1. Species community composition analysis

To distinguish coral reef fish community distribu-
tions in the province, standard ecological multivariate
ordination was conducted. We used the canonical cor-
respondence analysis (CCA) method to evaluate the
distribution of species within the 5 families for their as-
sociations with the above environmental variables. We
further evaluated the species dissimilarity between
ecoregions by a pairwise 1-way ANOSIM using Bray-
Curtis distances. Statistical significance was assessed
with the Bonferroni correction for multiple testing.
Similarity percentages (SIMPER) procedures were per-
formed to evaluate fish families that contributed the
most to the average dissimilarity between ecoregions.
Similarities were calculated as 1 — overall average dis-
similarity between ecoregion pairs (Text S3, Table S2).
One-way ANOSIM results indicated an overall signifi-
cant difference in the per family number of species
among ecoregions (ANOSIM R = 0.11, p = 0.0001),
while pooled SIMPER analyses indicated an overall
high species similarity of 86 % among ecoregions.

2.4.2. Estimated number of species

The number of species was estimated by several
methods prior to selecting a final or best model for
presentation. Historically, rarefaction methods have
been used to account for variable species—area rela-
tionships (Gotelli & Colwell 2001). However, BRT ma-
chine learning algorithms are an alternative that
might uncover associational rather than pre-selected
equations for the species—area responses. BRT pre-
dictions can control for differences in sampled area
and other sampling or environmental factors simulta-
neously, whereas rarefaction assumes an underlying
equation or model structure. Therefore, prior to se-
lecting outputs for presentation, we evaluated 7 po-
tential models to evaluate numbers of species: 2 were
based on rarefaction methods and 5 on the machine
learning or BRT methods (Text S2). This evaluation
was undertaken to account for the effects of observer
and sampled area in the BRT model described below.
Evaluations with and without country or national
jurisdiction were included to evaluate this ‘dummy’
or non-environmental variable effect in potentially
obfuscating underlying patterns of diversity. Com-
parison of these 7 methods indicate that rarefaction
methods produced weaker fits (r? = 0.60) than the
BRT method (r? = 0.79 to 0.85) (Figs. S2 & S3). Ad-
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ditionally, national jurisdiction, a non-environmental
variable, was the top variable in the rarefaction ap-
proach. This suggests some weaknesses in rarefaction
methods. Rarefaction does not account for the partial
effects of important environmental variables and ef-
fects that may arise from different observers and
methods. The 5 BRT methods produced similar results
in their number of species prediction and top
variables. The chosen BRT variables were also those
expected by ecological theory, such as biomass,
depth, connectivity, and temperature. We therefore
present the results from the BRT model based on sam-
ples collected at 500 m?.

2.4.3. Environmental association analyses

The BRT analyses evaluated associations between
the response variables of numbers of taxa and species
community axis 1 and 2 from the multivariate species
ordination analyses (Text S4). The number of vari-
ables evaluated went through a process of variable
elimination to reduce redundancy. Furthermore, a
final ensemble model was created to avoid elimi-
nating potentially causative variables (Text S5,
Fig. S4). The structure of BRT models ensures they
are robust to autocorrelation. Nevertheless, variable
selection processes can complicate the interpretation
and fail to identify potential causative variables
(Pilowsky et al. 2022). For example, it is possible that
a potentially causative variable could be eliminated
by a small improvement in predictions by a stronger
correlational variable. Therefore, we developed en-
semble forecast models based on 2 sets of variables as
recommended by Aratjo & New (2007). Both models
included all potentially strong causative variables,
but the second model included some correlated vari-
ables eliminated in the first model suspected of
causative environmental stress relationships (i.e. SST
mean, SD, and skewness) (Table 1). By this method,
our number of fish species proxy for each cell was
the average of the 2 models weighted by their ex-
plained deviance. The elimination process reduced
the number of variables from 70 to 35 via analysis of
redundancy. Of these 35 variables, 26 were used in
BRT Model 1 while 27 were used in Model 2. Further,
11 variables were maintained because they were met-
rics commonly used to study human influences of
water quality and fishing impacts. Nine variables
were also retained because they were commonly used
to evaluate climatic change. This selective variable
retention process was undertaken to compare the
strength of associations and response relationships of

frequently preselected variables relative to a more
objective variable selection process.

Model performances were evaluated using the sta-
tistical guidelines of randomly splitting the datainto a
70% training set and 30% testing set and calculating
the Theil's U-statistic, percent deviance explained
(analogous to R?), and Pearson's correlation coeffi-
cients presented in Table S3 (Kuhn & Johnson 2013).
To make fair comparisons of the BRT predictions for
each cell, we held fish biomass (600 kg ha_1), coral
cover (30%), and sampled area (500 m?) constant for
the final analysis and mapping.

2.4.4. Hotspot predictions

We searched for locations where groups of reefs
with high and low diversity exist using an optimized
hotspot analysis. We used the Getis-Ord Gi* statistic
to identify statistically significant spatial clusters with
high (hotspots) or low numbers of species (coldspots)
within a defined neighborhood distance (ESRI 2022a).
The method used z-scores of the predicted number of
fish species and p-values corrected for false discovery
rates potentially arising from spatial dependence and
multiple testing (Ord & Getis 1995). Specifically, a
high positive z-score with a low p-value (p < 0.10) indi-
cated a hotspot, a low negative z-score with a low p-
value indicated a cold spot, and a score near zero indi-
cated a lack of spatial clustering (Ord & Getis 2001).
The optimized hotspot analysis can use several stra-
tegiesto determine the optimum parameter settings for
the analysis, including the neighborhood distance for
clustering. The peak incremental spatial autocorrela-
tion, and the average distance to 30 nearest neighbors
were among the strategies evaluated (ESRI 2022b). No
peaks of spatial autocorrelation were identified in the
predicted number of fish species. Therefore, a neigh-
borhood distance of ~25.5 km based on the average
distance to the nearest 30 neighbors was used.

3. RESULTS

Below are the results of (1) observed site and eco-
regional number of species and composition analyses,
(2) local site-, climate-, and human-influenced vari-
able associations with number of species and commu-
nity composition richness, and (3) predicted number
of species and hotspots by ecoregions and nations.
Pearson's correlation for the 30 % testing of the models
was 0.80 for both Model 1 and Model 2 (Text S6). For
the full data, the correlation was 0.89.
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3.1. Site and ecoregional analysis of
empirical data

Species composition of the empirical
data was similar (81—89%) among eco-
regions when comparing sampled sites
(Table S2). The most similar and most
central ecoregions in this province
were the well sampled East African
Coral Coast and the Western and
Northern Madagascar ecoregions. The
peripheral Mascarene Islands were the
least similar to these 2 core ecoregions.
The modestly sampled Delagoa was
least similar to the Mascarene Islands,
but not different from other ecore-
gions. Individual fish families contrib-
uted between 15 and 18% to the overall
ecoregional dissimilarities. Pomacan-
thidae, Pomacentridae, carnivorous
Labridae, and herbivorous Scarinae
had the highest contribution, while
Acanthuridae and Chaetodontidae had
the lowest overall contribution to eco-
regional dissimilarities.

The unconstrained CCA of the ob-
served number of species per family
separated sites by the 6 taxonomic
groupings shown in Fig. 1. The East
African Coral Coast and Western and
Northern Madagascar ecoregions
were most similar and therefore the
most centrally located ecoregions in
the CCA plot. While there were few
samples from the Monsoon Coast of
northern Kenya, they were associated
with higher relative numbers of Scari-
nae. Madagascar had lower concor-
dance among sites, suggesting high
spatial variation. The Mascarene Is-
lands were associated with higher rel-
ative numbers of Pomacentridae spe-

Fig. 1. Canonical correspondence analysis
(CCA) of empirical field data for coral reef
cells using the square root of the number of
species per unit area in the 6 proxy families
in the 6 studied ecoregions. (a) Associations
with key environmental variables; SST: sea
surface temperature; DHW: degree-heating
week. (b) Continuous human variables; TT:
travel time. Other variables as in Table 1.
(c) Human categorical variables
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cies and thus distributed furthest left on the first CCA
axis. In contrast, the Delagoa ecoregion was distrib-
uted to the right side of this axis, having greater
numbers of Pomacanthidae species. Therefore, sites
adjacent to the Coral Coast were most similar with a
strong band of similarity extending seaward from
Tanzania towards northwestern Madagascar.

The Acanthuridae and carnivorous Labridae spe-
cies were the most centrally located families. The first
CCA axis separated sites by the numbers of Pomacen-
tridae and Pomacanthidae. The second CCA axis sep-
arated sites by the numbers of Chaetodontidae and
Scarinae. Therefore, positive values on axis 1 indi-
cated more species of Pomacanthidae and fewer
Pomacentridae and for axis 2 more Scarinae and fewer
Chaetodontidae.

Numbers of species and the community axes sep-
arations were associated with climate- and human-
influenced variables (Fig. 2). Biomass was the most
influential variable, and total, Pomacanthidae, and
Scarinae species numbers increased with biomass
(Fig. 3). These patterns were reflected in the fisheries
management associations, with numbers of Poma-
canthidae and Scarinae species highest in high-
compliance fisheries closures; Pomacentridae species
numbers were highest in restricted fishing and low-
compliance closures, and Chaetodontidae were high-
est in fished sites.

3.2. Local site- and human-influenced variable
associations

Predictive strengths of numbers of species and com-
munity composition indicated the importance of the
common variables of biomass; depth; SST kurtosis,
bimodality, skewness, median, and rate of rise; and
coral cover (Table 1). Therefore, these variables were
included when evaluating models that retained cli-
mate (i.e. DHW) and human impact (i.e. travel time
and nutrients) variables (Fig. 2). The human-
influenced model had stronger predictive variables
than the climate model, especially given that bio-
mass, the strongest variable, was largely associated
with fishing impacts. The top non-biomass variables
were gravity to people and sediments, with lesser
importance of travel time to cities and people, city
gravity, nutrients, reef tourism value, and fisheries
management (Fig. 2b).

In the climate model, after accounting for the
strong partial effect of biomass, the number of species
were best predicted by the median SST and kurtosis
with lesser importance of bimodality, cumulative

DHW, SST skewness, rate of SST rise, and coral cover
(Fig. 2a). Therefore, DHW and coral cover were mod-
erate to weak predictors of numbers of species rel-
ative to the SST background variables. These vari-
ables were also largely selected as important for the 2
community axes, but their relative importance and
response relationships varied (Fig. 2c—f).

The Pomacentridae—Pomacanthidae species axis 1
gradient indicated that sediment was the only
human-influenced variable with >10% importance.
Weaker variables included city gravity, travel time
to markets, fisheries management, nutrients, travel
time and gravity to coastal population, and tourism
value. For the climate model, the SST rate of rise and
bimodality had >10% relative importance. Weaker
variables included coral cover, SST kurtosis, median,
and skewness, and cumulative DHW. The Chaeto-
dontidae—Scarinae species axis 2 gradient indicated
human-influenced variables of population and city
gravity and sediments had >10% relative impor-
tance. Weaker variables included nutrients, tourism
value, travel time to markets and coastal population,
and fisheries management. For the climate model,
SST skewness and rate of rise had >10% relative
importance. Weaker variables included cumulative
DHW, SST bimodality, median, and kurtosis, and
coral cover. Numbers of species of Pomacanthi-
dae, Pomacentridae, Chaetodontidae, and Scarinae
were either negatively or not correlated, which ex-
plains some of the compensatory patterns (Text S7,
Fig. S95).

3.3. Boosted regression tree associations

Numbers of species and composition responses for
human and climate variables often showed similar
relationships with key environmental variables, but
they were sometimes reversed when evaluated for
community composition (Figs. 3 & 4). After account-
ing for biomass, patterns with depth indicated vari-
able responses, being unimodal for total number of
species, positive and saturating for the Pomacentri-
dae—Pomacanthidae axis, and more sinusoidal for the
Chaetodontidae—Scarinae axis. Coral cover was a
weak variable, but total numbers of species increased
with coral cover up to the maximum at 60% cover.
However, the 2 community axes were more variable,
with the Pomacanthidae species having peaks and
troughs but a steep decline at >50% cover. The
numbers of species in the Scarinae community dis-
played a u-shaped distribution, with their lowest
numbers at ~409% cover.
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Fig. 2. Relative importance of climate- and human-influenced variables (management, usage, and water quality) for 6 separate
boosted regression tree (BRT) models. Model outputs are specific to retained (a,c,e) climate- and (b,d,f) human-influenced
variables. Results present the (a,b) BRT variable importance for number of species; (c,d) canonical correspondence analysis
(CCA) community axis 1 (positive values are more speciose Pomacanthidae and fewer Pomacentridae-dominated commu-
nities); and (e,f) community axis 2 (positive values are more speciose Scarinae and fewer Chaetodontidae). See Table 1 for rel-
ative importance for all variables combined in a single model. Sediments and nutrients derived from satellite information is a
multivariate value taken from Andrello et al. (2022). SST: sea surface temperature; cumulative DHW: cumulative degree-
heating week (excess heat above summer temperature threshold); Gravity, population: gravity to nearest coastal population
(nearest coastal population/(c + travel time?)); Gravity, city: gravity to nearest city (city population/(c + travel time?)). Vertical
dashed line: hypothetical value if all variables made equal contributions to the model
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3.4. Response associations with
human-influenced variables

Fisheries management partial effects were weak
and displayed minor differences for numbers of spe-
cies with management (Fig. 4). This suggests that
biomass was the stronger driver of number of species
rather than the specific management restrictions or
their selection of sites. However, the species commu-
nity axes responses varied with restrictions and sug-
gest more Pomcanthidae and Scarinae species in the
stricter fisheries restriction categories. After biomass,
the log gravity to coastal people had the strongest
effect on numbers of species. Numbers of species of
Pomacanthidae increased while Scarinae numbers
declined with gravity to people. Gravity to cities was
weaker and showed more complex responses but
also an overall decline with number of species and
more u- and hump-shaped patterns for the Pomcan-
thidae and Scarinae communities, respectively. Sed-
imentation showed a peak in total numbers of spe-
cies at low sediment levels and more tolerance to
sediments among the Pomacanthidae community.
The Scarinae community had a u-shaped response to
high sediments, with a peak at very low levels and
modest tolerance among some species. Partial effects
of travel time to cities indicated high numbers of all
species and of Pomacanthidae species at short travel
times. Scarinae numbers had 2 peaks, one at a short
time and another at ~5 h. Travel time to humans
showed similarly high numbers at short times but the
numbers of Pomacanthidae and Scarinae declined
with increasing times. The biomass, gravity, and
travel time results combined suggest high potential
numbers of species close to shore but that human
resource extraction and biomass reduction overrides
this pattern. All 3 species responses showed
increases and tolerance to high nutrient concentra-
tions. Increasing reef tourism value was associated
with higher numbers of species but declining Poma-
canthidae numbers and a u-shaped relationship with
the Scarinae numbers.

3.5. Response associations with climatic variables

Complex species relationships were found among
the 8 retained climate variables that suggest multiple
climatic influences on species predictions (Fig. 3).
Median SST, for example, indicated that the Poma-
canthidae-associated numbers of species declined
above 28°C whereas Scarinae numbers increased for
temperatures between 26 and 27.5°C, with some de-

clines above 27.5°C. The kurtosis metric indicates the
benefits of centrally distributed temperatures for all 3
species groups, or losses of Pomacentridae- and
Chaetodontidae-associated species with chronic tem-
perature stress (i.e. negative kurtosis). When bimo-
dality was detectable (i.e. >0.55), the number Poma-
canthidae species declined, but the Scarinae had a
window where their numbers peaked with modest
bimodality. Some modest positive skewness (~0.1)
was positively associated with numbers of species.
Yet, different patterns were found for the Pomacanthi-
dae and Scarinae numbers: more hump-shaped for the
Pomacanthidae and u-shaped for Scarinae. Partial ef-
fects of increasing cumulative DHW were associated
with more species of Pomacanthidae and Scarinae
until abrupt declines were observed at 45 and
70 DHW, respectively. Rapid rates of SST rise were
associated with declining numbers of Pomacanthi-
dae-associated species, whereas the numbers of Scar-
inae peaked at ~0.02°C increase per year.

3.6. Regional and hotspot predictions

The predicted number of proxy species for all reef
cells per 500 m? indicated the highest numbers of spe-
cies in the East African Coral Coast at 42.6 = 3.0 (SD)
and the lowest in the Mascarene Islands at 28.2 = 2.2
(Table 2, Fig. 5a). Tanzania was the overall highest
ranked nation (43.1 = 2.4) followed by Mayotte
(France) and Mozambique. Madagascar had the most
reef cells (n = 2282) but was ranked ninth for numbers
of species as a nation. The western and Northern
Madagascar ecoregion was ranked fourth, but the
total numbers of species was reduced by the seventh
ranked Southeast Madagascar ecoregion. Mozam-
bique had 3 ecoregions, and they ranked first, third,
and fifth to produce a high overall national ranking.
The French Southern Territories and Comoros Islands
ranked fourth and fifth in terms of numbers of species
but with a low number of reefs cells (n = 376). Kenya
also had about the same number of reefs cells, but
its 2 ecoregions ranked first and sixth, which results
in a seventh overall ranking for all cells combined.
Seychelles ranked second at the ecoregion level but
fifth as a nation. The more peripheral countries of
South Africa, Mauritius, and Reunion were ranked
eighth, tenth, and eleventh, respectively. Therefore,
the combined countries of Tanzania and Mozambique
had the largest reef areas and highest numbers of
local species.

Many of the highest-density provincial clusters of
species were restricted to the African coastline and
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Table 2. Predicted numbers of species per ~500 m? for the 6 studied families

4. DISCUSSION

(mean, SD) by province, ecoregion, nation, and high and low number of species

cluster locations. Number of cells are those that fall within the categories of prov-
ince, ecoregion, nation, and hotspot classifications. See Fig. 5a for distributions
at the cell level and Fig. 5b for distribution of hot- and coldspots

Patterns in the numbers of fish spe-
cies and community composition were
predicted for 7039 modest-sized reef

Proxy for predicted

number of species
Province
Western Indian Ocean province 38.6 (6.3)
Ecoregion
East African Coral Coast 42.6 (3.0)
Seychelles 39.2 (4.0)
Bight of Sofala/Swamp Coast 38.7 (1.8)
‘Western and Northern Madagascar 36.2 (4.9)
Delagoa 35.5(1.9)
Northern Monsoon Current Coast 34.9 (1.4)
Southeast Madagascar 32.6 (3.9)
Cargados Carajos/Tromelin Island 31.8 (2.9)
Mascarene Islands 28.2(2.2)
Nation
Tanzania 43.1 (2.4)
Mayotte 41.9 (2.8)
Mozambique 41.8 (3.5)
Comoros 40.3 (2.4)
French Southern Territories 40.2 (4.2)
Seychelles 39.2 (4.0)
Kenya 37.1 (3.0)
South Africa 36.3 (1.0)
Madagascar 34.7 (4.4)
Reunion 27.6 (3.1)
Mauritius 29.5(3.1)
Species hot- and coldspots
Hotspot 99% confidence 43.0 (2.5)
Hotspot 95% confidence 40.9 (2.1)
Hotspot 90% confidence 40.2 (1.9)
Average hotspots 42.3 (2.5)
Not significant 38.7 (2.1)
Coldspot 90% confidence 36.7 (1.7)
Coldspot 95% confidence 36.2 (2.3)
Coldspot 99% confidence 32.4 (3.3)
Average coldspots 32.8 (3.4)

Number of cells in the Western Indian Ocean
reef cells Province. In general, the highest
numbers of species were predicted to
occur where there was high biomass
7039 (>500 kg ha~!), high coral cover
(>50%), slow rates of SST rise, low
2743 gravity or impact with people, a narrow
T?é range of nutrients and sediments, mod-
2854 erate depths (5—12 m), and median
9 SSTs (27—28°C). Human impacts were
130 more influential than climate impacts,
65 particularly considering the central
141 importance of biomass. This diversity
196 exists in the presence of many tem-
perature-modifying factors, including
1524 some bimodality, positive skewness,
269 .
1180 and cumulative excess heat. The com-
238 munity richness of the studied fish
138 families was not positively related.
701 Therefore, variations in biomass and
372 environmental factors cause shifts in
6 species composition to partially com-
2%22 pensate and maintain high levels of
304 total diversity. Weak or negative corre-
lations between Pomacentridae and
3136 Pomacanthidae and Scarinae and
255 Chaetodontidae species numbers were
177 responsible for this species compensa-
3568 tion. Species niches and several envi-
965 ronmental changes were often mod-
17819 ified by biomass and depth, indicating
2946 the important roles of the taxa's life
2506 histories for community change and
adaptation.

located in the Coral Coast ecoregion (Fig. 5b). These
included a cluster on the Kenya—Tanzania border
that extended south to include several high-density
reef areas in northern Mozambique. The Western
and Northern Madagascar ecoregion and the nation
of Madagascar were notable for lacking diversity
hotspots despite having high numbers of species per
cell. Here, hotspots were limited to a longitudinal
band stretching from the Comoros and Mayotte
Islands to the Ankivonjy area in NW Madagascar.
This resulted from the sparsity of dense neighbor-
hoods of specious cells, which was also observed in
other island nations.

4.1. Provincial patterns

The highest numbers of fish species occurred
along the continental band of the East African Coral
Coast that included southern Kenya, Tanzania, and
northern Mozambique. Both the numbers of species
proxy and high-density clusters of reefs were high.
Consequently, the top 5—10% of species richness
cells largely indicated a single ecoregion with a few
additional locations in northwest Madagascar, May-
otte, Comoros, southern Kenya, and Seychelles. The
ecoregions to the north on the African continent, or
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the Monsoon Coast, and south, or Bight of Sofala
and Delagoa ecoregions, had high numbers of spe-
cies and high similarities with the Coral Coast. Pre-
vious studies have identified some of these areas,
such as the Lamu Archipelago, Pemba Channel,
Tanga-Pangani, Mafia-Ruvuma, Mtwara-Quirimbas,
and Bazaruto-Tofo, as seascapes of high or unique
biodiversity for conservation efforts (van der Elst &
Everett 2015). However, the attributes used to select
these conservation priorities were charismatic and
visible species, including nesting turtles and birds,
coelacanths, and marine mammals.

The Western and Northern Madagascar ecoregion
and the islands of Comoros, Mayotte, and French
Southern Territories represent an off-continent ex-
tension of this continental diversity. This appears to
create a stepping-stone of islands of diversity and
similarity extending to northwest Madagascar (i.e.
Mitsio Islands). The ecoregions furthest from the con-
tinent or the Mascarene and Cargados Carajos
Islands and Southeast Madagascar appeared to be a
peripheral fauna, as evidenced by lower numbers of
species and lower similarity with the central eco-
regions on the African continent. The Mascarene
Islands are known for their isolation and high levels of
endemism, particularly among the Pomacentridae
(Roberts et al. 2003). In the well-sampled Reunion
Island, for example, 2.6% of species recorded were
endemic, and Mauritius also has several island-spe-
cific and ecoregional endemics (Fricke et al. 2009,
McClanahan et al. 2022). Predictions for the 3 unsam-
pled ecoregions (Cargados Carajos/Tromelin Island,
Southeast Madagascar, and Bight of Sofala/Swamp
Coast) should be seen as provisional estimates until
field sampling is conducted.

Previous studies using rarefaction methods for
coral taxa identified the northern Mozambique Chan-
nel for high within- and between-site diversity (Obura
et al. 2012, Ateweberhan & McClanahan 2016). This
result is confirmed here for fish species, but more spe-
cies were predicted in the northern than the southern
Mozambique Channel (Chabanet et al. 2016), notably
in Mayotte, where 759 marine fish species have been
recorded for a small volcanic island (Wickel et al.
2014). Regional currents that transport larvae have
been shown to facilitate inter-reef connectivity in
the north (Crochelet et al. 2016, Maina et al. 2020).
Previous predictions for fish have been at a coarse
scale and not clearly associated with environmental
conditions (Jenkins & Van Houtan 2016, Bullock et al.
2021). Some patterns here suggest that environmen-
tal factors are more important than ecoregion, bio-
geographic distance, size, and connectivity metrics.

Therefore, failure to use finer-scale environmental
information is expected to produce coarse and impre-
cise biodiversity and regionalization mapping. For
example, there was a high overall ANOSIM similarity
between the Mascarene Islands and Delagoa, despite
their large distance apart and locations on the oppo-
site sides of Madagascar. Therefore, environmental
conditions may be more important for faunal similar-
ity than distance and connectivity metrics.

4.2. Human-influenced variables

Biomass, which is largely expected to represent
fishing pressure, was the single overriding predictor
of numbers of species and taxonomic composition.
The other evaluated variables, such as distance to
people, travel times, water quality, tourism economic
value, and management, had lesser predictive in-
fluence. Studies of the distribution of biomass and
environmental factors in this province have found
that depth, distance to deep water, travel time, man-
agement, nation, SST metrics, reef area, and net pri-
mary productivity are the major predictors of biomass
(McClanahan et al. 2016, 2023, McClanahan 2019).
However, biomass is accounted for or normalized
here by holding it constant and using partial effect
methods when making the broader distributional pre-
dictions and comparisons of numbers of species and
community structure. Overall, managing biomass is
likely to be one of the most effective approaches to
protect fish biodiversity regardless of the specific
means to accomplish it. Methods to manage biomass
are likely to vary with the social and governance
aspects of the jurisdictions and various aspects of cul-
ture, the fisheries management authority, and human
dependence on fish resources (McClanahan &
Abunge 2016). The travel time partial effect patterns
suggest that in the absence of human pressures, the
highest diversity would be located close to shore.

4.3. Climate-influenced variables

After accounting for biomass and depth, the stron-
gest climate predictors of our species proxy were
median SST and metrics of SST variability (kurtosis,
bimodality, cumulative excess heat, skewness, and
rate of rise). These variables are often associated with
climate-change studies of coral bleaching and
changes in coral cover (McClanahan 2022a). Here,
coral cover is subordinate to the temperature variabil-
ity metrics, which suggests a direct rather than an
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indirect effect of temperature on fish via coral. More-
over, variability metrics of kurtosis, bimodality, and
skewness are influenced by locations and modify cli-
mate change impacts on corals in this province
(McClanahan & Azali 2021). Studies of coral—envi-
ronment interactions suggest complex taxa—environ-
ment interaction responses expected to create het-
erogeneous responses among reef species along the
African coastline (McClanahan et al. 2020). A fish-
eries management implication of these rankings and
future climate models is that protection of biomass
>500 kg ha=! could partially compensate for the
near-term climate-change impacts on fishes. In gen-
eral, fishes appeared to respond to environmental
stress and coral losses with shifts in species composi-
tion that can compensate to stabilize overall diversity
and ecological processes (Chabanet 2002, McClana-
han et al. 2014).

4.4. Community composition

Patterns reflected in species composition some-
times differed from our total numbers of species
proxy. Fish communities differed based on their ex-
posures to the centralization and bimodal aspects of
the SSTs, rare warm and cold water, and rates of SST
rise. Specifically, the numbers of species in the Poma-
canthidae community were associated with more cen-
tralized SST distributions, slow rate of rise, and occa-
sional weak spikes of warm water, while the Scarinae
species numbers showed less centralized distribu-
tions, associated with higher rates of SST rise, and
occasional cold and hot water. Relationships among
these communities and coral cover were complex,
with peak numbers of Pomacanthidae species at ~50%
cover and a low trough for the Scarinae at ~40% cover.
Therefore, there are likely to be changes in species
composition within these taxonomic groups as ben-
thic cover and reef calcification rates change. Species
composition also changed with depth and tempera-
ture variability metrics. Specifically, species of Poma-
canthidae increased while the Pomacentridae de-
creased with depth and Chaetodontidae declined and
Scarinae increased with median temperature. For the
Chaetodontidae—Scarinae community axis, SST rate
of rise was strong and negative for the Pomacanthi-
dae, while the Scarinae community showed more tol-
erance (Table 1). Similar patterns were seen for cumu-
lative excess heat (DHW), which is the dominant
variable used to predict climate change. It was shown
here to be a weak predictor for fish, and species ap-
pear to tolerate moderate to high levels of excess

heat. Nevertheless, reefs undergoing rapid tempera-
ture rises and experiencing excess heat are predicted
to change their species composition towards fewer
Pomacanthidae and Chaetodontidae and more Poma-
centridae and Scarinae species. An increase in herbi-
vorous fish catch has been documented from studies
of climate-degraded Seychellois reefs (Robinson et al.
2019). Complex interactions among species were
evident between depth, temperature variability met-
rics, human resource extraction, and coral, thus mak-
ing predictions based on a single climate change vari-
able problematic.

4.5. Conclusions

Our study provided a more spatially refined view of
provincial fish biodiversity than previous global,
regional, and conservation prioritization efforts. Past
efforts have used presence/absence data and over-
lapping polygons or rarefaction methods (Selig et al.
2014, Jenkins & Van Houtan 2016). These methods
are sensitive to the density of data, and this affects
subsequent spatial patterns and overlap in species
distributions, particularly when identifying centers of
biodiversity (Kusumoto et al. 2020). The environmen-
tal modeling methods used here provided an alter-
native approach by accounting for habitats and envi-
ronmental processes and their variability at smaller
scales. Environmental modeling methods should
therefore provide information to locate small to mod-
est-sized areas for conservation, often preferred or
politically feasible for protected area designations
(Boonzaier & Pauly 2016, McClanahan 2023). Spatial
environmental predictions are useful for planning
and should eventually augment the current practices
of mapping diversity from sparse presence/absence
and extrapolated species range information. The cel-
lular map predictions combined with the hotspot
algorithm provided further information to identify
reef neighborhoods of high numbers of species and
not just local diversity. High fish diversity, reef
clusters, and connectivity were positively associated
and likely to interact to maintain high numbers of spe-
cies. Clustering of reefs and common biogeographic
factors, such as continents, islands, reef area, and
retention connectivity explained some of the variabil-
ity (Crochelet et al. 2016, Maina et al. 2020). However,
the local-scale environmental and human resource
use factors were among the strongest predictors.

Species changes, compensation, and high similarity
among ecoregions suggests a high resilience in
numbers of species. The remote Mascarene and
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fand S, Ahmadia GN (2022) A global map of human pres-
sures on tropical coral reefs. Conserv Lett 15:e12858

Carajos/Tromelin ecoregions would be exceptions to

species resilience in this faunal province. Some past
tudi t that climate ch . t b ] Aratjo MB, New M (2007) Ensemble forecasting of species
studies sugges at climale change impacts may be distributions. Trends Ecol Evol 22:42—47

equal or less influential on fish species than ecologi- & Assis J, Tyberghein L, Bosch S, Verbruggen H, Serrdo EA,
cal changes attributed to reductions in biomass by De Clerck O (2018) Bio-ORACLE v2.0: extending marine
fishing (McClanahan & Muthiga 2016, Fredston et al. data layers for bioclimatic modelling. Glob Ecol Biogeogr
2023). Fortunately, long-term fisheries yields are ¢ 27:277-284

I ! . -~ & Ateweberhan M, McClanahan TR (2010) Relationship be-
maximized above or close to these biomass—ecologi- tween historical sea-surface temperature variability and
cal change points, which, if achieved, can reduce climate change-induced coral mortality in the western
stark yield gains—biodiversity loss tradeoffs (McCla- ., Indian Ocean. Mar Poll Bull 60:964—970
nahan 2018, 2022b). To date, prioritizations in this # Ateweberhan M, McClanahan TR (2016) Partitioning scler-

R K actinian coral diversity across reef sites and regions in the
region for protected area investment has focused on Western Indian Ocean. Ecosphere 7:01243
the distribution of charismatic species or connectivity ‘Ban NC, Darling ES, Gurney GG, Friedman W and others
(van der Elst & Everett 2015, Crochelet et al. 2016, (2023) Effects of management objectives and rules on
Maina et al. 2020). Yet, the relationship between con- ., marine conservation outcomes. Conserv Biol 37:e14156

.. . . . . A Boonzaier L, Pauly D (2016) Marine protection targets: an
nectivity or the presence of charismatic species with .

. T updated assessment of global progress. Oryx 50:27—35
subtidal taxa of economic importance has not been  Byllock R, Ralph GM, Stump E, Al Abdali F and others (2021)
evaluated. Connectivity appeared to contribute to Conservation status of marine biodiversity of the West-
numbers of species but was subordinate to several ?f?.fifidia§ O;fgis;UCN' Gland. http://eprints.cmfri.org.

. . in/id/eprint
othe?r environmental ‘fa(?tors. The fish assemblage 'and Burke L, Reytar K, Spalding M, Perry A (2011) Reefs at risk
environmental association undertaken here provides revisited. World Resources Institute, Washington, DC
additional information for conservation decision #‘Ceccarelli DM, Evans RD, Logan M, Jones GP and others
making. The results indicate the importance of man- (2023) Physical, biological and anthropogenic drivers of
agement of fisheries stocks near or above maximum spatial patterns of coral reef fish assemblages at regional
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Coral reef monitoring in the Iles Eparses, Mozambique
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