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HIGHLIGHTS

e PM, 5 levels are 2 times higher than the
national threshold and surpass the daily
WHO guidelines.

e The PMF model disentangled nine
sources contributing to the total PMy s
mass at the sampling site.

e Anthropogenic sources strongly impact
the PM, 5 and the oxidative potential in
Hanoi.

o Traffic, biomass burning, and heavy oil
fuel are the sources ruling the oxidative
potential of PMj s.

e The largest exposure benefits may be
achieved via reductions in fossil fuel
combustion emissions.
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ABSTRACT

A comprehensive chemical characterization of fine particulate matter (PM5 5) was conducted at an urban site in
one of the most densely populated cities of Vietnam, Hanoi. Chemical analysis of a series of 57 daily PMa s
samples obtained in 2019-2020 included the quantification of a detailed set of chemical tracers as well as the
oxidative potential (OP), which estimates the ability of PM to catalyze reactive oxygen species (ROS) generation
in vivo as an initial step of health effects due to oxidative stress. The PM; 5 concentrations ranged from 8.3 to
148 pg m~3, with an annual average of 40.2 + 26.3 pug m > (from September 2019 to December 2020). Our
results obtained by applying the Positive Matrix Factorization (PMF) source-receptor apportionment model
showed the contribution of nine PMj 5 sources. The main anthropogenic sources contributing to the PM mass
concentrations were heavy fuel oil (HFO) combustion (25.3 %), biomass burning (20 %), primary traffic (7.6 %)
and long-range transport aerosols (10.6 %). The OP activities were evaluated for the first time in an urban site in
Vietnam. The average OP, levels obtained in our study were 3.9 + 2.4 and 4.5 + 3.2 nmol min~! m~> for OpP™"
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and OP*A, respectively. We assessed the contribution to OPP™T and OP* of each PMy 5 source by applying
multilinear regression models. It shows that the sources associated with human activities (HFO combustion,
biomass burning and primary traffic) are the sources driving OP exposure, suggesting that they should be the first
sources to be controlled in future mitigation strategies. This study gives for the first time an extensive and long-
term chemical characterization of PM; 5, providing also a link between emission sources, ambient concentrations
and exposure to air pollution at an urban site in Hanoi, Vietnam.

1. Introduction

Atmospheric aerosols are complex mixtures of particulate matter
(PM) and gases that are directly and indirectly emitted into the atmo-
sphere from natural and anthropogenic sources. In the last decades, PM
concentration trends have experienced a decrease in Europe and the
USA (Aas et al., 2024; USEPA, 2022). However, this trend is not
observed to the same extent in tropical and subtropical urban areas,
where exposure to ambient PM is a leading environmental risk factor
(Fang et al., 2020; Vohra et al., 2022). Additionally, >40 % of the global
population resides in urban areas in the tropics, with high urbanisation
rates and population growth (Vohra et al., 2022). Urban expansion
impacts air quality and climate, as megacities represent an over-
whelming contribution to air pollutant emissions (Duren and Miller,
2012; Zhang et al., 2020). Therefore, gaining a deeper understanding of
the sources, levels, seasonal trends, and evolving patterns of population
exposure in these rapidly expanding urban areas is essential for a more
comprehensive assessment of the air pollution issues and the effective
implementation of reduction strategies.

Among these tropical cities, Hanoi presents one of the two largest
economies in Vietnam and one of the most rapidly growing and densely
populated cities in South East Asia. In recent years, the country has often
been ranked as one of the most polluted areas in the world (Wolf et al.,
2022). As the economic hub of the country, Hanoi has experienced
substantial population growth, urban expansion, industrial develop-
ment, and an intensification in the number of vehicles on its roads (Hien
etal., 2020; Ly et al., 2018; Vuong et al., 2021). Specifically, road traffic,
open biomass burning, coal burning and industrial activities were found
to release a large amount of pollutants into the atmosphere in the city
(Cohen et al., 2010; Hien et al., 2021). Vietnam experienced one of the
fastest growth in coal consumption over 2011-2021, at an average rate
of 11 % per year (Do and Burke, 2023), which strongly contributed to
the emission of gases and particles, accounting for around 72 % of the
total CO5 emissions from fuel combustion in the country (IEA, 2023).
Similarly, the transport sector is still increasing, with motorcycles ac-
counting for 86 % of the total vehicle fleet in the country and with >5
million vehicles registered in Hanoi (GSO, 2020).

Hanoi, the capital of Vietnam, is located in the north of the country
and is influenced by the subtropical monsoon climate (Huu and Ngoc,
2021). It has two main marked seasons: winter (November to March)
and summer (May to September), and two transitional seasons in be-
tween. In 2021, the population of Hanoi was estimated to be over 8
million people, making it the second most populous city in Vietnam after
Ho Chi Minh City (GSO, 2020). The geographical location of Hanoi,
coupled with meteorological conditions, further exacerbates air quality
challenges, making Hanoi a target of extended episodes of poor air
quality. Several studies have investigated the chemical characterization
of atmospheric pollution in Vietnam and the effect of meteorological
factors on PM concentrations (Anh et al., 2020; Cohen et al., 2010;
Dominutti et al., 2023b; Hien et al., 2021, 2011, 2022; Kim Oanh et al.,
2011; T.N.T. Nguyen et al., 2023; G.T.H. Nguyen et al., 2023; Thuy et al.,
2018). However, an extensive characterization of PM using multiple
source tracers is still needed, including, at the same time, ionic, metallic,
and organic compounds, in order to better identify the main sources
affecting air pollution. In that way, source apportionment receptor
models demonstrated their ability to further extract information by
variable reduction techniques. Positive Matrix Factorization (PMF) is a

robust receptor model that has gained importance in recent years for its
ability to disentangle the contributions of various pollution sources to
PM concentrations using chemical tracers (Belis et al., 2019; Borlaza
et al., 2022b; Hopke, 2016; Hopke et al., 2020; Mardonez et al., 2023;
Weber et al., 2019).

In addition, substantial evidence supports positive associations be-
tween PM exposure and adverse health outcomes, affecting various or-
gans, including cardiovascular and respiratory diseases (Chen et al.,
2021; Chen and Hoek, 2020; Manisalidis et al., 2020; Thurston et al.,
2016; Weichenthal et al., 2016) or premature deaths (Brunekreef et al.,
2021; Fischer et al., 2015). Such studies primarily rely on PM mass
concentration, but it is important to note that a single PM property alone
may not be sufficient to encompass the full scope of PM toxicity, as it is
influenced by chemical composition, size, solubility, and surface char-
acteristics. The OP refers to the intrinsic ability of PM to generate
oxidative stress and damage within biological systems (Ayres et al.,
2008; Cho et al., 2005). It has been shown to integrate several PM
characteristics as size (Grange et al., 2022; in 't Veld et al., 2022),
composition (Calas et al., 2018; Charrier et al., 2015; Weber et al., 2021)
and surface area (Uzu et al., 2011). Furthermore, epidemiological
studies are on-going to test its predictive capacity towards health effects
in comparison to PM mass (Borlaza et al., 2022b; Fang et al., 2016;
Marsal et al., 2023; Weichenthal et al., 2016). A few studies have
evaluated the OP activities in the region, such as in Beijing, China
(Campbell et al., 2021; Oh et al., 2023), South Korea (Oh et al., 2023),
Chiang Mai, Thailand (Ponsawansong et al., 2023), Hangzhou, China
(Wang et al., 2019), and Jinzhou and Tianjin, China (L. Liu et al., 2018;
W. Liu et al., 2018). They integrate different temporal measurements,
from seasonal to annual, and they have characterized the PM mass and,
in some cases, the chemical composition of PM samples. Nevertheless,
no studies have integrated the deconvolution of OP activities, associ-
ating this with the main PM sources impacting the atmospheric
concentrations.

This study used the PMF model to conduct a source apportionment
analysis of PMy 5 to investigate their major emission sources in Hanoi,
Vietnam. Our work includes an extensive chemical characterization of
PM, 5, including a wide range of ions, metals, sugars, organic acids,
HuLiS (Humic-Like Substances), PAHs (polycyclic aromatic hydrocar-
bons), and also OP measurements. Following the deconvolution of
sources of PMj 5 mass, the OP of the PM5 5 sources is evaluated using
multilinear regression models to assess the exposition of the population
to the emission sources. The outcomes of this study, by discerning the
principal sources to be targeted due to their major impact on exposure,
have significant implications for air quality policies in Hanoi and other
rapidly growing urban areas facing similar challenges. Finally, our work
contributes to the broader scientific understanding of PMj 5 sources and
their OP in Southeast Asia countries, improving our knowledge to
reduce urban air pollution in this populated area or the world.

2. Material and methods

PM, 5 samples were collected on the rooftop (30 m above ground
level) of the University of Science and Technology of Hanoi, located in
the urban area of Hanoi, Vietnam (21.0489°N, 105.8011°E, Fig. 1). The
sampling site was selected to be representative of the urban atmosphere,
subjected to various PM emission sources responsible for the air pollu-
tion episodes in the city. Being substantially above ground, the results
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may however represent a lower limit of the concentrations experienced
by the population.

2.1. PMy 5 sample collection

Samples were collected using a Staplex High Volume Air sampler
equipped with a PM5 5 head. The sample collection took place once a
week for a 24-h period using quartz fiber filters (Staplex Type TFAQ810
of 20 x 25 cm). Quartz filters were prebaked at 500 °C for 12 h before
use to remove any trace of volatile contaminants. A total of 57 exposed
filters were collected between September 2019 and December 2020.
After collection, filter samples were wrapped in aluminum foil, sealed in
zipper plastic bags, and stored at a temperature < 4 °C until further
chemical analysis.

2.2. Chemical analyses

Chemical characterization of atmospheric PM was performed for
many elements and components using a range of instrumental tech-
niques on sub-sampled fractions of the collected filters. This provides the
concentration of the major chemical constituents by mass and specific
chemical tracers of sources needed for the source apportionment anal-
ysis. The chemical characterization includes measurements for EC-OC,
major ions and a large range of organic acids, sugars, sugar alcohols
and anhydrosugars, trace elements, Humic-Like Substances (HuLiS), and
PAH.

The carbonaceous content of the aerosol samples, including organic
carbon (OC) and elemental carbon (EC), was quantified directly on
subsamples of 1 cm? of filter with a thermo-optical transmission method
on a Sunset Lab analyzer at IGE (Birch and Cary, 1996), following the
procedure reported in the EUSAAR2 protocol (Cavalli et al., 2010).
Aqueous extracts from filters were analyzed at IGE to determine the
concentration of approximately 11 soluble inorganic anions and cations,
including nitrate, chloride, phosphate, sulfate, sodium, ammonium,
potassium, magnesium and calcium, as well as about thirty light organic
acids (C1 - C7). This analysis was carried out using dual ion chroma-
tography coupled to mass spectrometer (IC-MS).

Anhydro-sugars (including levoglucosan, mannosan, and gal-
actosan), sugar alcohols (arabitol, sorbitol, mannitol), and glucose were
detected and quantified in the aqueous extract at IGE using High-
Performance Liquid Chromatography followed by pulsed ampero-
metric detection (HPLC-PAD). The HuLiS were analyzed at IGE ac-
cording to a protocol described in detail by Baduel et al. (2010). Briefly,
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the water-soluble fractions of PM, 5 samples were passed through a
weak anion exchange resin and concentrated without pre-treatment.
The HulLiS are collected manually, and the carbon content is subse-
quently analyzed with a TOC analyzer (Shimadzu) by catalytic burning
at 680 °C followed by non-dispersive infrared detection of the evolved
COa,.

The analysis of metals and metalloids (MM) was carried out in a
clean laboratory (ISO5) at MIO using bi-distilled (HCl and HNOg) or
ultrapure commercial (HF) acids, ultrapure water and teflon (PFA) vials.
After the acid digestion, samples were diluted using HNO3 (2 %) before
the analyses. Ag, Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sb, Sn, Ti, U, V
and Zn were quantified using an inductively-coupled plasma mass
spectrometer (ICP-MS). More details can be found in Chifflet et al.
(2024).

In this work, we also determined 20 parent PAHs, and 18 groups of
alkylated PAHs. The extracts were analyzed by gas chromatography
(Trace ISQ, Thermo Electron) equipped with mass spectroscopy detector
with helium as carrier gas.

All these analyses are described in detail in SI.1. A series of 10 field
blanks was also collected during the campaign, and the average of the
field blank series was removed from the analytical value for each
chemical species for the calculation of atmospheric concentrations.

2.3. Oxidative potential

The OP analyses were performed on punches taken in the same PMj 5
filters, extracted in a simulated lung fluid (SLF) mixture solution
composed of a Gamble+DPPC (dipalmitoylphosphatidylcholine) (Calas
et al., 2018) to closely simulate exposure conditions. Two different OP
assays were applied to the samples: the Dithiothreitol (DTT) and the
Ascorbic Acid (AA) assays. In order to minimize the effects of the
nonlinearity of OP determination with varying PM mass for OP DTT
(Charrier et al., 2015), filter punch surfaces were adjusted for each
sample to obtain iso-mass extraction at 25 pg mL™!. DTT is a chemical
surrogate to cellular reducing agents to mimic in vivo interactions of PM
and biological oxidants. When in contact with PMj 5 extracts, the DTT
depletion was obtained by titrating the remaining DTT in the solution
with 5,5-dithiobis-(2-nitrobenzoic acid) (DTNB) to produce a yellow
chromophore (5-mercapto-2-nitrobenzoicacid or TNB). The samples are
processed in a 96-well plate (CELLSTAR, Greiner-Bio), and the DTT
consumption (nmol min 1) was obtained by the TNB absorbance at 412
nm wavelength using a plate spectrophotometer (TECAN Infinite M200
Pro) at 15 min intervals for a total of 30 min. The AA assay uses ascorbic
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Fig. 1. Location of Hanoi in Vietnam and the sampling site (red dot, 21.0489°N, 105.8011°E) in Hanoi. Map designed with NOAA data (NOAA, 2006).
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acid as an antioxidant, which naturally prevents the oxidation of lipids
and proteins in the lung lining fluid (Valko et al., 2005). The con-
sumption of AA (nmol min ') in the assay is assessed by measuring the
transfer of electrons from AA to oxygen (O3). Similar to the DTT, the
reaction is followed into a UV-transparent 96-well plate, and the
absorbance was measured at 265 nm using the same plate reader.

The procedures are based on the ones developed by Calas et al.
(2018) and Borlaza et al. (2021a). The intrinsic absorbance of each
sample extraction was subtracted before adding the reactants, and were
also blank corrected for filter material, as described in Calas et al.
(2018). All samples were injected in triplicates, and samples were
reanalyzed if the variability was above 10 %. The results presented are
the means of such triplicates.

The OP results can be represented using two different metrics.
Hereafter, the OP mass-normalized by the mass of PM; 5 (ng) is denoted
OP,,, which represents the intrinsic OP property of 1 pg of PM, and the
OP volume-normalized by the sampled air volume (m?) is denoted OP,,
which represents the OP per m® of air.

2.4. Data analysis

Since total PMj 5 mass was not measured during the field campaign,
it was reconstructed from the chemical components, following Eq. (S1)
in the Supplement information.

2.4.1. Source apportionment

Source apportionment of PMs 5 samples was conducted using the
software PMF5.0 of the U.S. Environmental Protection Agency (U.S.-
EPA, Norris et al., 2014). Briefly, PMF is based on the factor analysis
technique (Paatero and Tapper, 1994) applying a weighted least-squares
fit algorithm. The PMF aims at solving the mass conservation between
the measured species concentrations and emission sources as a linear
combination of factors, following the equation Eq. (S2).

To identify and quantify the main PMys sources in Hanoi, 35
chemical species or groups of species were used as input variables. They
integrate EC, ions (Na®, K*, NHj, Mg2+, Ca%*, NO3 ~, SO%~ and Cl"),
metals (Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Sb, Sn, V and Zn), and organic
tracers including sugars (levoglucosan, polyols (sum of arabitol and
mannitol)), organic acids (MSA, 3-MBTCA, phthalic acid), HuLiS, and
PAHs (assembled in 5 groups) as detailed in Table S1. The organic
carbon was used to calculate OC* by subtracting the carbon content in
the different organic markers included in the PMF input data (as detailed
in Eq. (S3)). The selection of these input variables proceeds from our
large experience at conducted PMF in various environments but also
from a large number of tests conducted on this data set.

The estimation of uncertainties of the input variables were calculated
using the equation proposed by Gianini et al. (2012), as detailed in Eq.
(S4). Finally, those species exhibiting a signal-to-noise ratio (S/N)
higher than 2 were classified as “strong”, those lower than 0.2 were
rejected, and those with S/N between 0.2 and 2 were considered as
“weak” variables. The PMj 5 reconstructed mass was qualified as a total
variable (with corresponding uncertainties increased by a factor of 3 and
determined as a “weak” variable) to evaluate the contribution of the
identified factors to PM; 5 mass.

The factors were identified based on the presence of chemical
markers, as detailed in Table 1. Based on precedent knowledge of the
geochemistry of the sources, some constraints were applied to improve
the chemical profiles of sources to disentangle possible mixing between
factors and reduce rotational ambiguity. The validation of the factors
also follows the recommendation of the “European guide on air pollu-
tion source apportionment with receptor models” (Belis et al., 2019).
The estimation of PMF uncertainties was obtained in both the baseline
and constrained runs using the bootstrap (BS) and shift (DISP) functions
available on the EPA PMF5.0 software (Brown et al., 2015).
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Table 1
Summary of PMF-resolved sources and their specific tracers.

Identified factors Specific tracers used

Levoglucosan, K*, PAH3-4, OC, HuLiS
EC, Cu, Sb, Sn, PAH5

NO3, NH; SO32, phthalic acid, MSA
Cl-, NHj, Na*, NO3

Ca* Al, Fe, Mg

As, Cd, Cr, Mn, Pb, Zn

3-MBTCA, Polyols

PAH1-2, As, Cd, Pb, Sb

V, Ni, HuLiS, OC, Na*

Biomass burning

Primary road traffic

Long range transport

Long range Cl-rich industrial
Mineral dust

Industrial

Primary and secondary biogenic
Coal burning

HFO- combustion

2.4.2. Potential contribution source function (PCSF)

The potential contribution source function (PSCF) provides infor-
mation about the prevailing geographical origins of the PM sources
obtained from the PMF model. The PSCF represents the probability that
an air parcel may be responsible for high concentrations measured at the
receptor site, associating the concentrations time series (i.e., temporal
contributions of PMF factors) with back trajectories (Ashbaugh et al.,
1985; Polissar, 1999; Waked et al., 2014b). In brief, at each grid cell (i),
the probabilities of the association are calculated as follows:

PSCF; = 4 a

ij

where n; represents the total number of back trajectories passing
through each cell, and mj is the number of back trajectories passing
through the same cells associated with measured concentrations over an
arbitrary threshold (Waked et al., 2014b). This threshold is usually set
empirically, the 75th percentile of the temporal contribution of each
factor was chosen as it offers the best geographical representativeness.
This means that only the top 25 % of samples are used to define the main
source regions for a given source factor. The program is written in py-
thon3 and is available online (Weber, 2018).

2.4.3. OP deconvolution

In order to link the OP to the different PM, 5 sources obtained by the
PMF model, a deconvolution was conducted using a multiple linear
regression (MLR) model. For that, we applied the approach proposed by
Weber et al. (2021), where OPPTT and OP*A are the dependent variables,
and the PMF source contributions are the explanatory variables,
following the equation (Eq. (2)).

OPy, = G x P+¢ @)

where OP, is the observed OP (DTT or AA) in nmol min ! m3, G
represents the matrix of the PM sources mass contribution obtained from
the PMF (in pg m~>), p are the coefficients (nmol min~* pg™!) for the
intrinsic OP and ¢ is the residual (in nmol min~! m~2). This residual term
€ accounts for the difference between the observations and the model
(Weber et al., 2021). In addition, a constant term for the intercept (no
unit) is computed by the model.

A weighted least-square regression (WLS) model was further devel-
oped to consider the uncertainties of the OP observations. The un-
certainties were estimated by bootstrapping the solutions 700 times,
randomly selecting 70 % of the samples each time to account for possible
remaining extreme events or seasonal variations of the intrinsic OP per
source (Weber et al., 2021).

Finally, the contribution of the sources to the OP (nmol min ! m~%)
was obtained following Eq. (3):

G = Gy x By, 3

where k is the source evaluated, G is the sources' contribution from PMF
(ng m~3), and B is the intrinsic OP of the sources (nmol min~! pg™?1). The
uncertainties of G were calculated by applying the p uncertainties
obtained from the 700 bootstraps.
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3. Results and discussion
3.1. PMj 5 concentrations and composition

The reconstructed PM3 5 mass (PMy 5 recons) ranges from 8.3 to 148
pg m >, with an annual average of 40.2 + 26.3 pg m~° (from September
2019 to December 2020). This average mass concentration is similar to
those observed in another study for a similar period in Hanoi (46 pg m ™3,
Makkonen et al., 2023).

Fig. 2 shows the average chemical relative abundance of the PMy 5
components obtained in our study. Organic matter (OM) is the largest
contributor to PMj 5 composition, estimated to account for 51 % of the
PM, 5 annual mass concentration. It is followed by the contributions of
SO4 2, NO3, NHJ and metals, with annual averages of 18 % for SOZ 2, 8%
for NO3 and 6 % for NHJ and for metals. These ions are commonly
observed as major PM components and known as tracers of secondary
inorganic aerosols, suggesting the influence of long-range transport
sources (Petit et al., 2015; Querol et al., 2004; Weber et al., 2019).
Previous studies in Vietnam evaluating the chemical composition of
particles have also found a strong contribution of metals, mainly Zn, Al,
Fe, Pb, and Cu (Chifflet et al., 2024, 2018; Hien et al., 2021, 2022;
Nguyen et al., 2022). While some previous studies have shown that some
metals present higher loading in the coarse than the fine fraction (Fussell
etal., 2022; Gietl et al., 2010), their presence in the PMj 5 composition is
a good indicator of the sources impacting this urban site in Hanoi.

The contribution of OM is in the same range as those observed in
Vietnamese urban areas in previous studies (Cohen et al., 2010; Hai and
Kim Oanh, 2013; Makkonen et al., 2023). From the total OM mass ob-
tained, only 18 % was chemically characterized with our analyses,
which is dominated by the contribution of HuLiS (51 %), followed by
other organic acids (22 %), oxalate (13 %), and anhydrous mono-
saccharides (12 %).

Science of the Total Environment 923 (2024) 171466
3.2. Temporal evolution of PM» 5 concentration and composition

The national regulation of air quality in Vietnam (QCVN 05, 2013)
stipulates the 24-h and annual average PMj 5 limit values (50 pg m >
and 25 pg m 3, respectively). The annual average obtained in this study
was about twice the national limit value. Additionally, the time series of
PM; 5 shows exceedances of the 24-h Vietnamese PM; 5 limit during 17
days of our field campaign (Fig. S2). Moreover, the daily ultimate
guideline value of the World Health Organization (WHO, 2021; 5 ug
m %) was surpassed on all the samples obtained during this study by a
factor up to 29 (Fig. S2). These exceedances were mainly observed
during winter (up to 148 pg m >, Table $3) when the higher concen-
trations were first associated with adverse meteorological conditions.
Previous studies have shown that the winter season is commonly char-
acterized by lower boundary layer height and frequent calm winds,
affecting the dispersion of pollutants (Hai and Kim Oanh, 2013; Kim
Oanh et al., 2006; G.T.H. Nguyen et al., 2023). Moreover, during winter
months, Hanoi is affected by the northeast monsoon regime, bringing
long-range transported particles affecting the PM; 5 concentrations (G.T.
H. Nguyen et al., 2023). The spring data also showed the impact of the
COVID-19 restrictions as a lockdown was implemented in Vietnam in
April 2020 (Vuong et al., 2021). Unfortunately, we had no data during
the lockdown period with no sampling possibility.

The temporal evolution of the PM; 5 mass follows a marked sea-
sonality, with higher concentrations during winter and lower concen-
trations observed in summer months (Fig. S2). This behavior was also
observed for some chemical components with higher concentrations
measured during the winter months, such as HuLiS, OC, EC, K, NO3,
levoglucosan, mannosan, phthalic, glutaric, succinic and adipic acids,
and the sum of PAHs (Table S4). Most of these species are commonly
related to emissions of biomass-burning processes (levoglucosan, man-
nosan, K, OC, HuLiS, PAHs) or associated with atmospheric processing

MSA (1.56 mg.ggy)
Oxalate (22.66 mg.ggk)

| Glucose (0.95 mg.gg)

22%

Organic acids (39.43 mg.ggh)
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Fig. 2. Annual average compound relative abundance of PM 5 in the urban site in Hanoi, Vietnam.
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(organic acids, NO~3).

OC and EC concentrations ranged between 2.2 and 34.6 pg m™~> and
0.29-4.65 pg m >, respectively (Table S3). The average concentrations
of both compounds (9.08 + 6.22 (OC) and 1.30 + 0.95 (EC) pg m’?’) are
in the same order of magnitude as those reported in Wuhan, China (10.4
and 2.2 pg m~3, Zheng et al., 2020), in Hanoi (11.6 and 3.6 pg m >,
Makkonen et al., 2023) and Pha Din, Vietnam (11.1 and 2.41 pg m3,
Nguyen et al., 2021). The OC to EC concentration ratios were commonly
adopted in the literature to evaluate the contribution from different
combustion emission sources. Ratios between 0.8 and 1.4 were attrib-
uted to vehicular and traffic-related emissions (Lee et al., 2006; Tao
et al., 2012), aratio of 2.7 was found for coal combustion (Watson et al.,
2001), and 5.7 was reported for open rice straw burning (Kim Oanh
et al., 2011). In the case of biomass burning-influenced aerosols, ratios
between 4.8 and 6 were reported in the literature for the region (Chuang
et al., 2013; Lee et al., 2016; Li et al., 2013; Pani et al., 2019). The
average ratio obtained in our study was around 7, suggesting the in-
fluence of biomass burning or more aged and processed aerosols.
Furthermore, strong correlations were obtained between the biomass-
burning tracers such as levoglucosan and OC (r = 0.92, p-value
<0.001), mannosan and OC (r = 0.89, p-value <0.001) and K™ and OC
(r = 0.84, p-value <0.001), indicating the potentially strong impact of
these combustion sources on the concentrations of the overall organic
fraction of PM.

Contrarily, arabitol and mannitol were the only species showing
higher concentrations during summer months (Table S4). However,
their concentrations are lower than those observed in previous studies in
Europe (Bauer et al., 2008a; Golly et al., 2018; Pietrogrande et al., 2014;
Samaké et al., 2019a; Srivastava et al., 2018) and for some samples,
lower than the detection limits. As shown in previous studies, the
contribution of polyols is mostly observed in the coarse fraction, with a
maximum for particle diameters >2.5 pm (Elbert et al., 2007; Samaké
et al., 2019b). This is certainly one limitation in detecting the total mass
of polyols and other primary biological aerosols at this sampling site in
Hanoi.

However, many species do not show any seasonal pattern, with quite
constant concentrations over the sampling period (Table S3). Several
ions, like SOF~, Na™, Ca?t and Mg?*, present quite similar concentration
levels over the period of observation. The same behavior for metals such
as Al, Fe, and V could suggest that their sources contribute equally
throughout the year (Table S4). Similarly, many organic acids, such as
malic, malonic, oxalate and MSA, present large but constant concen-
trations, possibly indicating the sustained impact of atmospheric pro-
cessing for ageing PM observed at the sampling site, whatever the season
(Table S4).

3.3. Source apportionment of PM3 5 sources

The PMF model was applied using 35 chemical atmospheric com-
pounds selected from the whole dataset. The best-constrained solution
consists of 9 factors: primary traffic, biomass burning, coal burning,
industrial, heavy fuel oil (HFO) combustion, long-range transport, long-
range Cl-rich Industrial, primary and secondary biogenic and mineral
dust. These factors were selected using the specific tracers already
determined in previous PMF studies (Borlaza et al., 2022a; Borlaza et al.,
2021b; Mardonez et al., 2023; Vorosmarty et al., 2023; Waked et al.,
2014a, 2014b; Weber et al., 2019) and detailed in Table 1. Other solu-
tions with a smaller or greater number of factors (6 to 11 factors) were
investigated but were less clearly defined, presented lower statistical
performances, or factors merging was often observed. The linear
regression between the concentration of modelled PMs 5 from the final
constrained PMF solution versus the measured PMj s presents good
statistical parameters with a slope of 0.90 and a regression coefficient of
R? = 0.95, meaning the model reconstructs 90 % of the measured
concentrations.

The use in PMF studies of several rarely used organic proxies of
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sources has been recently discussed in the studies of Borlaza et al.
(2021b) and Mardonez et al. (2023). Including organic acids such as 3-
MBTCA, MSA, phthalic acid, and polyols helps in the determination of
additional sources or allows to better constrain the ones obtained
without organic tracers, such as secondary biogenic oxidation, primary
traffic, and MSA-rich. The PAH compounds were introduced for the PMF
in several groups, following the method applied by Mardonez et al.
(2023). Our study included 5 PAHS groups following the correspon-
dence between species (Fig. S3) and their association with different
emission sources reported in the literature, as discussed in the sections
below (Feng et al., 2019; Ravindra et al., 2008; Shin et al., 2022; Chen
et al., 2017; Valotto et al., 2017; Wang et al., 2015). While several
combustion sources can produce each of the PAHs and also present some
reactivity in the atmosphere, some extent of association with specific
sources can be demonstrated with their processing within a PMF study.

Fig. 3 shows the contribution of the sources attributed by the PMF to
PM, 5 mass obtained from the final 9 factors constrained solution. HFO-
combustion (25.3 %), biomass burning (20.0 %), dust (14.7 %), long-
range transport aerosols (10.6 %), and biogenic emission (9.4 %) sour-
ces were on average the highest contributors to the total PM5 5 mass for
the Hanoi sampling site. Primary traffic (7.6 %) and coal burning (6.4 %)
sources also contributed a relevant amount. Most of the resolved sources
obtained in our study are in agreement with the PMF results observed in
other urban places worldwide (Borlaza et al., 2021b; in 't Veld et al.,
2022; Mardonez et al., 2023; Waked et al., 2014b; Weber et al., 2019)
and in the region (Cohen et al., 2010; Hien et al., 2021; Makkonen et al.,
2023; T.N.T. Nguyen et al., 2023; ; Truong et al., 2022; Vuong et al.,
2023) with mainly anthropogenic sources affecting the composition of
PM in Southeast Asia. The following sections discuss briefly each source
for its contribution, temporality, and chemical profile.

3.3.1. Biomass and coal burning profiles

High loadings of OC, levoglucosan, K, PAH5, PAH3 and PAH4,
phthalic acid and HuLiS identify the biomass burning factor (Fig. 4).
Levoglucosan is formed and emitted into the atmosphere by the
incomplete combustion of cellulose during the pyrolysis of wood (Fine
et al., 2004; Simoneit, 2002). Thus, levoglucosan and K* are considered
biomass combustion tracers, used as such in many studies worldwide
(Hu et al., 2013). HuLiS comprises a mixture of primary and secondary
atmospheric products that are important contributors to the organic
mass of aerosols in rural, urban and marine environments (Baduel et al.,
2010; Salma et al., 2007).

Strong correlations are obtained between HuLiS and K" (r = 0.83, p-
value <0.001) and levoglucosan (r = 0.81, p-value <0.001), suggesting
the relationship with the biomass-burning (BB) sources but also indi-
cating the presence of more aged aerosols. Strong correlations between
BB tracers and HuLiS were also previously observed in urban areas,
suggesting residential wood burning as the main source of HuLiS in
winter (Baduel et al., 2010). A high contribution of several PAH groups
is also observed in this factor. PAH3 (Bbf + BKF + BjF) and PAH4 (BeP +
BaP) contain several 4- and 5-ring compounds previously found in the
profiles of biomass-burning emissions (Feng et al., 2019; Shin et al.,
2022; Valotto et al., 2017). PAH5 group contains perylene (Per), which
was also found to contribute to the biomass burning profiles (Feng et al.,
2019, 2023; Shin et al., 2022).

Several coal-fired power plants are located within 200 km of Hanoi,
which are large emitters of gases and particles into the atmosphere
(Koplitz et al., 2017). The coal-burning profile is characterized by a high
contribution of As, Sb, Cd, Pb, EC, PAH1 and PAH2 (Fig. 4). High loading
of As, Sb, F and mercury (Hg) from coal combustion were observed in
previous studies in Vietnam (Lewerissa and Boman, 2007), China (Chen
et al., 2013; Tian et al., 2010) and worldwide (Streets et al., 2018; Sun
et al., 2014). In a recent paper, Chifflet et al. (2024) studied the Sb/Cd
ratios from different sources in Hanoi on the same data set as the one
used in this study. The Sb/Cd related to coal use was 1.3, identical to the
one observed here in the coal burning profile (1.29). The presence of
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Fig. 3. PMF sources contribution to the total PM; 5 mass.

PAHs from coal combustion was already observed in previous studies,
where specific compounds were used as indicators of this source, such as
Phe, Flu, and Pyr (Chen et al., 2017; Shin et al., 2022; Wang et al., 2015).
This can tentatively explain the high contribution of PAH1, which in-
tegrated most of the coal-burning tracer compounds observed in the
literature (sum of Phe + Flu+Pyr). However, PAH2 integrated BaA and
Chry commonly associated with diesel and biomass burning emissions
(Feng et al., 2019; Valotto et al., 2017). Thus, a possible mixture with
other combustion sources in this factor cannot be neglected.

Coal combustion is a major source of anthropogenic Hg emissions
globally. When coal is burnt in power plants and industrial facilities, it
releases Hg into the atmosphere in several chemical forms (Outridge
et al., 2018; Streets et al., 2018; Sun et al., 2014). To evaluate the
contribution of mercury to PMs 5 sources in Hanoi, we included it as an
extra variable in an extra PMF run (not shown here). The results are
conclusive, presenting high loadings of this compound on the coal and
biomass burning profiles and minor contributions to the vehicular and
dust profiles.

3.3.2. Primary road traffic

The traffic factor is identified by its high Cu loading and the
contribution of EC, phthalic acid, Sb, Sn, Pb and PAH5 (Fig. 4). EC,
which presents its highest contribution of all factors, and OC are asso-
ciated with combustion emissions and are systematically observed in the
road traffic factors of PMF studies. An OC/EC ratio of 2.68 is obtained in
the profile, within the range (2.02 and 2.92) of a previous study in Hanoi
(Huyen et al., 2023). Similar results have also been reported in the
literature for urban areas in Bangkok, Thailand (3.52, ChooChuay et al.,
2020), 2.03 in Saitama, Japan (Kim et al., 2011), 3.2 in Hanoi, Vietnam
(Huyen et al., 2021). However, these values were higher than those
observed inside road tunnels (1.26 and 0.50 in Taiwan and China,
respectively (Huang et al., 2006; Zhu et al., 2010)) and those obtained at
a roadside (1.64 and 1.0 in Japan and Hong Kong, respectively (Cao
et al., 2006; Kudo et al., 2012)). This could suggest the influence of
secondary formation organic aerosols or some degree of mixing with
other emission sources, such as biomass or coal burning, in this factor.

Cu, Sb, and Sn are commonly associated with non-exhaust vehicle
emissions, including brake and tire wear (Amato et al., 2016; Charron
et al., 2019; Gietl et al., 2010). However, the greater emission of these
metals by non-exhaust sources is generally observed in the coarse frac-
tion between PMs 5 and PMiq (Fussell et al., 2022; Gietl et al., 2010);

thus, an underestimation of this factor cannot be disregarded in PMj 5
compared to PM.

Despite phthalic acid being associated with several anthropogenic-
derived sources, its contribution to this primary traffic factor denotes
the presence of secondary processed PM in the factor profile. Moreover,
the presence of PAHS5 integrating some tracers from gasoline emissions
(IcdP, DahA and BghiP (Feng et al., 2019; Ravindra et al., 2008; Shin
et al., 2022)) also suggests the contribution of more processed traffic
emissions, evidencing the mixture of primary and secondary pollutants
in this road traffic factor. Several constraints were tentatively applied to
the model (Table S2), but they did not allow for correctly isolating the
contribution of primary road traffic tracers, and some interferences with
the mineral dust and Cl-rich industrial factors are also observed.

3.3.3. Biogenic sources

Sugar alcohols such as arabitol, mannitol, and sorbitol are commonly
considered tracers of primary biogenic organic aerosols (PBOA) (Bauer
et al., 2008a, 2008b; Samaké et al., 2019b; Verma et al., 2018; Yttri
etal., 2007). Biogenic sources can also be detected by the contribution of
the oxidation products from the primary organic gases. 3-MBTCA and
pinic acid are secondary organic acids produced from the oxidations of
terpenoids emitted by vegetation (Haque et al., 2023; Miyazaki et al.,
2012; Zhang et al., 2010). PMF studies recently used sugar alcohols and
organic acids to identify primary biogenic aerosols (Borlaza et al.,
2021b; Samaké et al., 2019a, 2019b; Srivastava et al., 2018; Waked
et al., 2014b; Weber et al., 2021) and secondary oxidation processes
(Borlaza et al., 2021a, 2021b). The biogenic profile obtained from our
data shows the contribution from both biogenic sources (primary and
secondary), with high loadings of 3-MBTCA, Polyols, and SOz 2 (Fig. 4).

Even if these tracers can generally help separate PBOA and second-
ary biogenic oxidation (BSOA) factors, this was not disentangled in our
study. Previous studies showed that the relative contributions of sugar-
alcohols to the fine particle OC fraction were commonly lower in PM5 5
than in PM;o (Chow et al., 2015; Samaké et al., 2019a). The low con-
centrations with ill-defined seasonality could be the reasons leading to a
mix of PBOA and BSAO in this study. Also, it is probable that the
contribution by mass of PBOA is much larger in the PM;q fraction.
Moreover, the contribution of phthalic acid and SOz 2%in this factor,
which could be formed during secondary processing from anthropogenic
sources (Wang et al., 2017; Yang et al., 2016), also suggests that this
factor includes SIA and SOA anthropogenic influences. Finally, the
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metals, indicating that the influence of other sources, such as road dust
and mineral dust particles, cannot be ignored. Overall, even if the high

contribution of biogenic tracers is observed in the factor, the PMF model
was unable to obtain a pure biogenic factor, either because of data
processing limitations or because of the actual mixing of these sources in
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the particles due to real atmospheric processes.

3.3.4. Long-range transported PM

Secondary inorganic aerosols (SIAs) refer to fine particles in the at-
mosphere that form through chemical reactions involving precursor
gases. These SIAs can include salts of ammonium sulfate ((NH4)2SO4)
and nitrate (NH4NO3), among others. This factor indeed includes a high
contribution of SIA tracers such as NO3, NHZ and SO32, but the higher
contribution of NO3 than SOZ? could indicate more local secondary
inorganic aerosols (Fig. 4). A small contribution of OC and organic
oxidation products is also observed (phthalic acid, MSA and HulLiS).
Thus, we called this factor long-range transport since the contribution of
a mixture of secondary organic and inorganic tracers is observed.

3.3.5. Mineral dust

The mineral dust factor shows a relatively high content of elements
such as Ca?*, Al, Mg?>" and Fe (Fig. 4), commonly originating from the
resuspension of soils and road dust (Andersen et al., 2007; Charron et al.,
2019; Querol et al., 2004). A significant contribution of OM and polyols
was also observed in the chemical profile of this source. As discussed in
several studies, polyols could enter the atmosphere through natural or
anthropogenic resuspension of surface soils and associated bacterial/
fungal spores (Samake et al., 2019a and references therein). This could
also be the case of other chemical species (i.e. heavy metals and HuLiS)
present in this factor in our study. Overall, our results may indicate some
mixing in this factor between terrigenous aerosols and mineral particles
linked to human activities (e.g., dust from constructions, soil resus-
pension from road transport, ...) that can be due to real processes in the
atmosphere (co-emissions) or to uncertainties in the PMF processing.

3.3.6. Long-range Cl-rich-industrial

The long-range Cl-rich-industrial factor is characterized by the high
contributions of marine tracers, such as C1~, Na™ and MSA, but also by
the presence of secondary inorganic aerosol tracers, such as NOg,
SOz 2and NHZ{ (Fig. 4). The high contribution of Cl~ could indicate
several anthropogenic origins, such as coal combustion (Cohen et al.,
2010; Park et al., 2022) or incineration process (Park et al., 2022), as
previously observed in source apportionment studies in the region. This
factor also shows a small contribution of heavy metals, suggesting the
impact of other sources that could enrich the composition of the aerosol
during transport (Fig. 4).

3.3.7. Industrial and HFO combustion factors

The industrial factor is identified by the high contribution of Zn, Pb,
Cd, Mn, ClI™ and minor loadings of other metals (Sb, Sn, Cr, As, Al and
Fe) (Fig. 4). Metals such as Fe, Mn, Pb, and Zn are known as tracers of the
iron industry (L. Liu et al., 2018; Sylvestre et al., 2017; Zhu et al., 2018).
A similar profile was also associated with metal/industrial processes
from non-ferrous smelting operations (Cohen et al., 2010; Lee et al.,
2008) and Zn smelting activities (Zhang et al., 2011). Smelting activities
in China are an important global Zn producer (Shiel et al., 2010), which
leads to the emission of As and Cd as by-products (Pacyna and Pacyna,
2001).

The HFO combustion factor is identified due to the presence of its
tracers V and Ni (Pacyna and Pacyna, 2001; Viana et al., 2009; Wu et al.,
2007), but it also contains a high contribution of Ca®* and Mg?*, Na*
and MSA, as well as SOz2. Ni and V are typical primary emission tracers
from residual HFO combustion, but the presence of tracers of aged-
marine aerosol tracers could suggest the origin of those aerosols from
shipping emissions. The V/Ni ratio has been considered in various
studies to evaluate the origins of these species. V/Ni ratios around 3-4
were commonly observed from oil combustion for ship engines
(Kotchenruther, 2017; Mazzei et al., 2008; Viana et al., 2014), and ratios
of 0.55 and 0.15 have also been found in Vietnamese coal and diesel,
respectively (Chifflet et al., 2018). Our HFO combustion factor presents
a V/Ni ratio of 0.98, suggesting a contribution from additional sources of
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HFO combustion, such as industrial, coal production or traffic emissions.
Furthermore, the strong loading of SO32and marine tracers could also
denote the influence of regional transport of aerosols enriched by
anthropogenic sources during their transport.

3.4. Temporal evolution and origins of PM2 5 sources over time

Fig. 5 shows the seasonal averages and time series of the emission
sources contributing to the PM3 5 concentrations observed in Hanoi. The
average contribution of the biomass-burning factor is around 20 %, but
it presents a maximum contribution of up to 51 % during winter.
Interestingly, the factor also displays a contribution during the summer
months, which could be related to the rice harvest season in northern
Vietnam. During the first rice harvest season, open field burning for rice
straw is observed around June, while the second burning period is
observed in October (Pham et al., 2021). This practice is very common in
the region, where farmers burn rice residues not only to clean the field
but also to gather up ash to use as fertilizer for further crops (Pham et al.,
2021). Conversely, the total coal burning factor mass presents a sea-
sonality, with higher contributions during winter and lower during
summer, which could be correlated to the increase of energy demand
during winter months.

The temporal contribution of the primary road traffic factor is quite
constant, with some higher concentrations observed in August and
September 2020 (Fig. 5), as it was observed also for copper; one of the
traffic tracers. This suggests that traffic emissions are quite constant over
the year. However, the traffic source shows a lower contribution during
spring 2020, which agreed with national restrictions during the COVID-
19 lockdown (Fig. 5).

Biogenic emissions present a slightly higher contribution during the
transition seasons, fall and spring, but globally, their contribution is
quite constant over the year, including some peaks at the beginning of
the winter (Fig. 5). Conversely, the temporal evolution of long-range
transport aerosols shows a lower contribution during the summer
months. This behavior was also observed in a recent PMF study in Hanoi,
and it was related to the increase of wet removal and gas-phase equi-
librium of NH4NO;3 favoring the gas phase during summer months
(Makkonen et al., 2023).

The dust factor shows a seasonal evolution with generally high
concentrations and contributions in the summer months and a lower
contribution during the fall season (Fig. 5). This could be explained by
higher predominance of air masses coming from southern areas (Laos,
Cambodia and Thailand), which could indicate the contribution of dust
from these regions, increasing the loading of the dust factor during
summer months. HFO combustion and industrial sources do not show
any markable seasonal tendency over the year of measurements. A
slightly higher average contribution is observed for HFO combustion in
the spring season, but the temporal evolution does not show any clear
trend during our observations.

In order to assess the origin of air masses of the different sources, a
potential source contribution function (PSCF) analysis was performed
(Fig. S5). The HFO combustion presents a well-defined contribution of
air masses with marine origins. Although the ratio of HFO combustion
tracers (V/Ni) is not fully representative of this source, our PSCF analysis
clearly shows the contribution of sources located on the coast and in the
East Vietnam Sea (i.e., shipping emissions). On the other hand, the
origin of Cl-rich Industrial factor is not as well-defined. The PSCF pattern
indicates that the origins of this factor present a strong regional
component mainly affected by long-range transport from China, but also
in less extent from southern countries (Thailand and Cambodia) and
marine origins (Fig. S5). Due to the high loadings of Cl™ in this factor
and air masses reaching from China, a contribution from coal-burning
and industrial sources cannot be ignored.

Regarding the coal burning factor, the spatial evaluation shows a
strong contribution from northern air masses passing through Vietnam
and China. These trajectories show the prevailing origins from the areas
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Fig. 5. Top: seasonal contribution of PM, 5 sources. Bottom: temporal evolution of PM, 5 sources in Hanoi, Vietnam, during 2019-2020.

where the coal-fired plants are located, confirming the origin of this
factor (Do and Burke, 2023; Truong et al., 2019). Conversely, the min-
eral dust factor presents a pattern that indicates the higher contribution
from the southern region of Southeast Asia (Thailand, Cambodia, and
Laos), which might be linked to the influence of southeast monsoon
during summer (Hai and Kim Oanh, 2013).

3.5. Distribution of carbonaceous species between PMF sources

As previously discussed, the OM represents the highest fraction of the
PM, 5 composition, making up 51 % of the total PM; 5 mass in our study.
The contribution of OC, EC and HuLiS dominates this fraction. The
contributions of the different sources to these chemical species are quite
similar. As shown in Fig. S4a, the chemical profiles of the sources show
that OC distribution is mainly dominated by combustion sources
(biomass burning, HFO combustion and traffic) and processed PM (long-
range transport PM and primary/secondary biogenic). In the case of EC,
a similar distribution is observed, but the dominant sources are associ-
ated with primary emissions such as traffic, coal burning, HFO com-
bustion and biomass burning. As for HuLiS, the highest contribution is
from biomass burning, followed by long-range transported PM, HFO
combustion and industrial sources. Previous studies have identified
biomass burning (Baduel et al., 2010; Lin et al., 2010; Mayol-Bracero
et al.,, 2002) and secondary formation (Altieri et al., 2008; Lin et al.,
2010) as the main sources of HuLiS, agreeing with our results.
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Identifying the main sources of HuLiS is important since their role in the
formation of ROS such as hydroxyl radical (-OH) and other ROS (O,
H0,, -O2—) has been previously demonstrated, evidencing their impact
on the OpP™T activity (Lin and Yu, 2011; Ma et al., 2018; Verma et al.,
2015).

3.6. Oxidative potential of PM> 5 in Hanoi

The OP of PM is analyzed for the first time in Vietnam with this
study. The volume-normalized OP (OP,) values are interesting when
evaluating exposure or epidemiological outcomes, while the mass-
normalized OP (OPy,) is a more adapted metric when evaluating the
drivers of chemical composition for OP (Bates et al., 2019; Campbell
et al., 2021; Dominutti et al., 2023a). Average OP,, values obtained in
our study were 3.9 + 2.4 and 4.5 + 3.2 nmol min~! m~ for OPP™T and
OP™\, respectively. As observed in previous studies, OP, values pre-
sented higher average values during winter, reaching up to 13.1 and
16.5 nmol min ! m~3 for OPP™T and OP™", respectively.

Our OPP™T values are higher than those reported in previous PMa 5
studies in the region, such as in Beijing, China (2.9 nmol min~! m~3,
Campbell et al., 2021, summer and winter observations and 2.39 nmol
min~' m~3, Oh et al., 2023, 2018-2020 winter observations), in Korea
(1.34 nmol min~! m_g, Oh et al., 2023, 2018-2020 winter observa-
tions), in Chiang Mai, Thailand (1.75 nmol min~! m~3, Ponsawansong
etal., 2023, haze and non-haze periods in 2018-2019) and in Hangzhou,
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China (0.62 nmol min~! m’g, Wang et al., 2019, seasonal data 2017).
However, our average OPY™T values were lower than those observed in
Jinzhou and Tianjin, China (4.4 and 6.8 nmol min~! m~3, respectively,
W. Liu et al., 2018, annual observations 2015-2016).

A wide variability is observed in the values obtained in the literature.
It is important to note that several studies have evaluated the OP of PM
by different OP assays and OP methods within the same OP assay.
However, up to now, there is no standardized procedure for each OP
assay. Thus, comparing OP results between different sites should be
taken with caution. Fig. S6 shows the average concentrations of PMj 5
with the average OP, values for DTT and AA assays obtained in different
places in studies conducted in our group, using the same protocols and
analytical methods. Our average values for both OPv assays in Hanoi are
higher than those observed in Chongqing, China (3.7 and 3.8 nmol
min~! m’3), in Bern, Switzerland (1.0 and 1.4 nmol min ! m’e'), Bar-
celona, Spain (1.2 and 1.0 nmol min~! m~%) but lower than those ob-
tained in Delhi, India (8.9 and 8.8 nmol min ! m3) (Fig. S6).

The contribution of each of PM, 5 sources on the overall OP in Hanoi
is obtained with a WLS regression model. The observed and recon-
structed time series of the OP\]?TT and OP(}A (in nmol min~! m™3) are
shown in Fig. 6. A good consistency is obtained, with a high coefficient
of determination for DTT (R = 0.88) and a lower value for AA (R®> =
0.72). Some underestimations of the model are observed during summer
months when the volume-normalized OP presents higher values. Inter-
estingly, the measured OPP™T values were quite similar over the year,
only with some higher peaks during winter when maximum PM mass
concentrations are also observed.

The intrinsic OP (OPp,) denotes the ability of each PM source to
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induce oxidative stress. These values are obtained by the regression
coefficients () of the MLR model (Fig. S7) and represent the OP activ-
ities attributed to each microgram of each source (nmol min~* pg™Y), for
each day of observation. The PM3 5 sources present mean intrinsic values
(obtained from 700 bootstraps) ranging from 0.03 to 0.38 nmol min~!
pg ! for the OP2IT and 0.003 to 1.26 nmol min~* pg~! for the OPAA,
Among the sources, long-range Cl-rich Industrial and Coal burning show
the highest variability, as observed in the bootstrapping procedure, with
contrasted IQ values (Fig. S7). Based on the model, the most influential
sources are Cl-rich Industrial (0.37 nmol min~! pg™?), primary traffic
(0.16 nmol min~! pg™!), biomass burning (0.12 nmol min~" pg~?), and
HFO combustion (0.12 nmol min~! pg’l) for OPETT, and Cl-rich In-
dustrial (1.26 nmol min~! pg™1), primary road traffic (0.76 nmol min~!
pg 1), mineral dust (0.14 nmol min~! pg~!) and biomass burning (0.13
nmol min~! pg™1) for OPA2. In both cases, it indicates a strong impact of
anthropogenic sources on the OP in Hanoi. Globally, the intrinsic OP
values are in the same order of magnitude as those reported in previous
studies for anthropogenic sources obtained in receptor models in studies
worldwide (Bates et al., 2015; Borlaza et al., 2021a; Daellenbach et al.,
2020; Dominutti et al., 2023a; Paraskevopoulou et al., 2019; Verma
et al., 2014; Weber et al., 2021; Zhou et al., 2019).

In the following section, we approach a global assessment of the
source contributions to OP. Fig. 7 reports the overall OP exposure
through the median daily contribution of PMy5 sources to OP. In
epidemiological studies, median values are often used to discuss the
population's chronic exposure, avoiding the impact of low or high air
pollution events that highly influence the mean value. It can be noted
that the rankings of the sources in terms of exposure in Fig. 7 differ from
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161 $— Obs.
14 A Model
I R?2=0.88
121 y= 0.94x + 0.07
t 10
£ £
a g 2
a £ 8- ) | ? ?
(Shre] }b e I ®
E 6 R L\ | 0 R ®
4§ \ - )
41 R A | /s A A A \ @ ,,/1
v 5 S | A A S » & 'Y/
2 @ ® ) SR Y \{ ] ia < - ~ b
w v ¢ h &
2019-11 2020-01 2020-03 2020-05 2020-07 2020-09 2020-11 2021-01
OP AA
20.0 7 $— Obs.
17.5 1 Model
) ¢ R2=0.71
15.0 A y= 0.91x + 1.07
T 12.51
< E D ®
aE - @ J
% % 10.0 ° ® \
E 751 A R & ]
£ 3 |
I & ® 2 2 P
5.0 1 | & & ® % N R W /
\ 4 v _ e . o
251 b\ \ ] R M = A
® s & ] .
- e ®
0.0 1 T T T T T T T T
2019-11 2020-01 2020-03 2020-05 2020-07 2020-09 2020-11 2021-01

Fig. 6. Temporal evolution comparison of the OP, DTT and AA observed and modelled using the WLS MLR model. The equation of the line and goodness of fit (R%)

between observed and modelled OPs are displayed.
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OPPTT sources contribution in all period
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OPA4 sources contribution in all period
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Fig. 7. Median daily contributions of OP,, from the sources of PM, s, using MLR analysis, and 95% confidence interval of the median (error bar).

their contributions to PM mass concentration. HFO-combustion is the
major source contributing to the daily median OP2™" (0.83 nmol min~*
m~3), which is almost twice as much as the second source biomass
burning (0.51 nmol min ! m’3), followed by road traffic (0.32 nmol
min~! m’3), mineral dust (0.26 nmol min~! m’3) and coal burning
(0.17 nmol min~! m~3). Similar results are also observed for the daily
median OP2A, with a major contribution of primary road traffic (1.50
nmol min~! m’3), followed by HFO combustion (0.80 nmol min~! m’3)
and biomass burning (0.54 nmol min~! m~3). It can be noted that the
highest PM sources driving OP, exposure agree for both OP tests. The Cl-
rich industrial source, whit the highest intrinsic OP (OPy,), presents a
low contribution in the OP exposure (OPy) due to low mass concentra-
tions of this factor. Overall, these results suggest that HFO combustion,
road traffic and coal burning should be the foremost emission sources to
be regulated in order to reduce the exposure of the population in Hanoi
to oxidant PM.

Our results also reveal that some sources contributing significantly to
the total mass of PMj 5, such as mineral dust or long-range transported
aerosols, are not among the main contributing sources to OP. This
reallocation of OP, sources underlines the importance of taking into
account the PM redox activity in addition to their mass concentration
when considering Air Quality on health (Borlaza et al., 2021a; Dael-
lenbach et al., 2020; Weber et al., 2021). Finally, the low contribution to
both industrial sources on the OP exposure could be due to the mix of
this source in several PMF factors, as discussed above. These aspects
should be further investigated in future studies incorporating longer-
term measurements for coarse particles and other OP assays.

3.7. Limitations and strengths of the study

The main limitation of this study is the small number of PM samples
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obtained and included for the PMF analysis. This impacts the assessment
of the sources since, for some periods (i.e. during the COVID-19 lock-
down), the number of samples was scarce, impacting the PMF factors'
results and the assessment of temporal evolution. The evaluation limited
to the fine fraction of the particles (PM;5) also has some limitations in
evaluating some emission sources, such as primary biogenic organic or
vehicular non-exhaust aerosols, which are commonly predominant in
the coarse fraction of the PM.

However, our study encompasses a comprehensive chemical char-
acterization of fine PM in the region, including several organic com-
pounds that were evaluated for the first time together (i.e. HuLiS, a wide
range of PAHs, sugars, and organic acids). Additionally, this study pre-
sents the deconvolution of OP of PM; 5 samples in Vietnam for the first
time, evaluating the emission sources that could affect the health of
populations exposed to air pollution. These results disclose important
information about the crucial sources to be targeted in order to reduce
the potential oxidative damages due to fine particle exposure in Hanoi.

4. Conclusions

This work presents an extensive analysis of the chemical character-
ization of PMy s, their emission sources and their OP based on 1-year
monitoring in an urban site in Hanoi. Average annual concentrations
of PMy 5 are 2 times higher than the annual national threshold and
surpass all the measurements of the daily recommendations from the
WHO stricter guideline for PM5 5. Meteorological conditions seem to
have an effect on the levels of PM observed, with higher concentrations
observed during winter also affected by the northeast monsoon regime,
bringing long-range transported particles. However, the seasonality is
not observed on all the compound time series, and some chemical spe-
cies present stable concentrations throughout the year.
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By applying different statistical techniques, such as a source appor-
tionment model, we were able to disentangle that HFO combustion,
biomass burning, mineral dust, long-range transport PM and biogenic
sources were the highest contributors to the total PMy 5 mass at the
sampling site for this period. Furthermore, an important contribution to
PM mass was also observed for coal burning and road traffic sources,
whose contribution could be affected due to the COVID-19 restrictions
enforced during the sampling period.

Our OP results depict higher OP activity than is observed in previous
studies in the region. Moreover, according to the results from our
deconvolution multilinear model, Cl-rich Industrial, primary road
traffic, biomass burning and HFO combustion are the main sources
governing the ability of PMj 5 to induce oxidative stress. The last three
sources also drive OP exposure, impacting the health of populations,
which have positive associations with heart disease mortality in a pre-
vious epidemiology study (Thurston et al., 2016).

Our results clearly display the strong impact of anthropogenic
sources on the PMy 5 mass and the OP in Hanoi and suggest that the
largest exposure benefits from PM; 5 air pollution control strategies may
be achieved via reductions of fossil or solid fuels combustion exposures
(road traffic, biomass burning, HFO combustion and coal burning).

Further research is required to address other PM sources and PM
sizes, providing longer-term monitoring of air quality and the develop-
ment of this kind of study in other urban areas of Southeast Asia.
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