

Soil Science Division

ACSAD / R 24 / 1979

ANALYSIS OF PLANT MATERIAL

Determination of Co, Cu, Fe, Mn, Zn, by
Atomic Absorption Spectrometry

Laboratory Training Manual No. 3
ACSAD training courses on fertility

Damascus - 1979

THE ARAB CENTER
FOR THE STUDIES OF ARID ZONES AND DRY LANDS
(ACSAD)

THE ARAB CENTER

For The Studies of Arid Zones & Dry Lands

(A C S A D)

P. O. Box. 2440 Damascus Syria
Cable : ACSAD - Damascus Phon { 457684
750401 457001

ACSAD Is an intergovernmental autonomous Organization , established by the Arab League in 1971 with its headquarters in Damascus , Syria . It may open branch offices in other Arab States .

Its main objectives include regional research programmes and studies related to arid zones such as water resources, soils, plants and animal production as well as :

- training of Arab scientists
- exchange of knowledge and experience among Arab States
- cooperation with other Arab and International Organizations

The head of the executive authority is the Director General

The Administration Board is composed of country representatives, one from each participant Arab Country.

ACSAD Publishes Research Papers (P) and Scientific reports (R) which are distributed Free or by exchange on request.

Member States in The Arab Center :

The Hashemite Kingdom of Jordan

Democratic Republic of Sudan

The Saudi Arabia Kingdom

Republic of Iraq

Syrian Arab Republic

Egypt Arab Republic

State of Kuwait

Republic of Lebanon

Jamahyria Libyan Arab Popular Socialist

United Arab Emirates

Sultanate of Oman

State of Qatar

The Kingdom of Morocco

People's Democratic Republic of Algeria

Islamie Republic of Mouritania

Palastin

- Analysis of Plant Material -

Determination of Co, Cu, Fe, Mn, Zn, by
Atomic Absorption Spectrometry

Jean - Olivier Job *

- Laboratory Training Manual No. 3 -
ACSD training courses on fertility

* ORSTOM - Senior Chemist ACSAD - ORSTOM Cooperation Program

Damascus

1980

Analysis of Co, Cu, Fe, Mn, Zn

In Plant Material by Flame AAS

Contents:

Introduction

I. Preparation of Samples

1. Cleaning
2. Digestion

II. Instrumental Variables

1. Copper
2. Cobalt
3. Iron
4. Manganese
5. Zinc

III. Precision of Results

1. Definitions
2. Evaluation of Individual Error
3. Precision of Plant Analysis in AAS
 - a- Intra-Laboratory Characteristics
 - b- Inter-Laboratories Characteristics

IV. Standards

V. Definitions

VI. Bibliography

1. Copper	3. Manganese	5. Transition Elements
2. Cobalt	4. Zinc	6. Books - Manuals

Introduction

The present paper deals with technical aspects of flame atomic absorption spectrometric measurements of some micronutrients in plants. These elements are presently determined on a routine basis in many laboratories but nevertheless their determination is not free of problems especially to newcomers in the field of AAS. Our purpose is to facilitate the approach of analytical work by presenting a survey of data made available by existing collaborative studies and inter-laboratories cross-checking of methods. In a first part are presented preparation of samples and ashing technique which have been recognized to be the simplest and the safest. Then, for each element are described the AAS instrument variables which are the parameters on which depend the signal of the instrument. It has to be born in mind that each instrument has its own characteristic. Each one is provided with a manufacturers cook-book describing for each element the optimum values of the instrument settings. It should be said that optimum values represent a compromise between requirement which differ from one user to another and are not necessary the best ones in a particular problem. They represent the safest approach at an initial stage, but the analyst can make systematic improvements of the performance of his instrument by knowing the effect of each adjustment on signal reading.

For each element are given, for the main line and the most common flame, (the first listed under "flame" heading) the characteristics of the curve ; detection limits (d.l), sensitivity (s), concentration giving 100 milliabsorbance (d 100), maximum concentration corresponding to linear calibration (m).

Secondary lines are given for information, for in trace elements, the most sensitive line is invariably the only suitable one.

Interferences are listed only for the sake of drawing attention on possible problems to be expected. It is of prime importance to know that interferences are matrix-dependant, and that no general mathematical formulation is possible at the present stage of knowledge. There are few ways of diminishing suspected interferences (addition of releasing agents, ionic buffer, stoichiometry of flame ...) but in no case, it should be omitted to compare results by running a standard of similar composition to unknown .

Finally some data on precision of AAS measurements are presented. They will help the analyst to evaluate the quality of his results as compared to those of experienced laboratories working on similar material.

Definitions of terms used in AAS literature are listed in paragraph 7. A selected bibliography, choosed among more than a thousand papers published every year on atomic absorption ends these short comments on Co, Cu, Fe, Mn and Ni determination in plant material.

I. PREPARATION OF SAMPLES

1. Cleaning

As soon as possible after they have been collected, plant organs are washed few seconds with 1% solution of Teepol, immediately rinsed three times with deionized water and dried for 24 hours at 65°C. Samples are then dried two hours at 100°C, and finely grinded. A fineness of about 0,2 m/m is sufficient to insure a representative sample in most cases without mechanical losses during weighing and ashing.

It is a safe practice to use a grinder fitted with a different bowls and heads for each sample, or to thoroughly clean the grinder between samples to avoid contamination-domestic coffee mixer-grinders have been found convenient and inexpensive for this use.

2. Digestion

The following method is the official one adopted by the " Comite Interinstituts pour l'etude des plantes par le diagnostic foliaire " in Europe.

- Dry the finely ground material (less than 0,2 m/m) for 16 hours at 70 - 80°C.
- Cool 30 min. in a dessication
- Transfer 2g in a platinum capsule
- Place the capsule in a cool furnace, raise temperature to 450°C over at least three hours, (the raise between 250° and 300° on one hand and 360° to 450° on the other hand has to be done more slowly).

- Maintain at 450° for two hours. Cool away from air drafts
- Moisten the ash, which should be whitish, by 2 ml dist water and about 2 ml HCl; heat until fumes appear.
- Filter on ashless filter paper into 100 ml graduated flask
- Rinse 3 times with 5 ml warm water (30 - 40°)
- Allow to drain completely, fold the filter paper, ignite it in this original capsule for 30 min. at 550°C max.
- Take up in 5 ml hydrofluoric acid
- Heat to dryness gently on hot plate, not exceeding 100°C
- Take up in 1 ml conc. HCl
- Transfer to the 100 ml vol. flask and the platinum crucible make up, to the mark.

This solution is convenient for determination of Ca, Mg, K, Na, Fe, Mn, Cu, Zn, and phosphorus.

Note 1: Finely ground plant material being rather hydroscopic, the weighing should be rapid, it is recommended to weight quickly but accurately any weight from 1,8 to 2,2 gr and to apply the necessary correction factor to the result during calculation of results.

Note 2: Contamination of sample occurs mainly during the preparation and digestion of sample, (MIZUIKE, PINTA). For this reason, and because the final accuracy of results depend greatly on a good mineralisation, it is recommended to assign a skillfull technician to this task.

Note 3: A reagent bank and a standard sample of known composition are run together with every batch of samples.

II. INSTRUMENT PARAMETERS

1. Copper
2. Cobalt
3. Iron
4. Manganese
5. Zinc

- Copper -**Cu**

n = 59

f(Cuo/Cu) = 1,251

• Ei = 7,72

m = 63,646

1/f = 0.798

• Do = 4,9

Introduction: If concentration in plant is higher than 6 ppm, no concentration step is needed and direct reading may be used.

Absorption:Stock Solution: for 1000 ppm Cu prepare:

- 1,000 gr metallic Cu dissolved in 3 ml conc. HNO_3 . Adjust to 11.
- 3,929 $\text{CuSO}_4 \cdot 5\text{H}_2\text{O}/1$.
- 3,798 gr Cu (NO_3)₂, $3\text{H}_2\text{O}/1$. The latter solution should be standardized by complexometry.
- Organic Solutions:-from Bis (1 phenyl, 1-3 butanediono) Copper II.
-from copper - Cyclohexanebutyrate.

Lamp Current:

- Maximum precision : 60-80% of max. lamp current
- Maximum sensitivity : 40-50% of max. lamp current
- Optimum : 60 % of max. lamp current

Flame: Air/Acet. stoichiometric or leanAir/Prop. gives a better sensitivity (50 to 100% increase of the signal as compared to Air/ C_2H_2).Burner height:

- Average of 11 m/m in Air/Acet. stoichiometric flame and single slot premix burner (asp. rate 4-6 ml/min.) Burner height affects the stability of the signal and linearity of the standard curve.

Ei :

Do :

Main line characteristics concentrations: (cf. definitions chap.V)

- 324,75 nm (not a resonance line)

$$d_1 = 0,006 \quad s = 0,06 \quad d_{100} = 1 \quad m = 4 \text{ to } 6$$

Table of Lines:

Wavelength (nm)	r.s	range (ppm)	Energy levels (cm ⁻¹)	Reson. Line	f	band- pass (nm)
324,75	1	0.06-6	0-30784	No	{ * 0.74 + 0.62	0.5
327,40	1/2	-	0-30535	Yes	+ 0,38	0.5
217,89	1/5			No	+ 0,011	0.3
218,2	1/5			No		0.3
216,51	1/6					0.3
222,57	1/15		0-44916	No	0,004	0.15
249,22	1/100		0-40114	No	-	0.5
244,16	1/300	0-40944				1

Interferences:

- A very large excess (more than 3000 ppm) of transition elements give a depressed reading.
- Virtually no other interferences in Air/Acetylene flame.

Signal:

One of the better of all elements. The signal is used to calibrate instruments and detecting noises which are instrument-dependant.

- * Landolt : Oscillator Strength
- + Price : " "

Enhancing solvents: (Allan 1961)

- When compared to an aqueous solution the following enhancement factors are obtained:

40% Acetone, 20% isobutanol : 2.3

8% Acetone : 3.5

MIBK : 4 (independantly of any extraction factor)

Ethyl-Acetate : 5

Emission: Main Line 327,40 : max. sensitivity

Sec. Line 324,70 : less sensitive

Both lines have to be used in conjunction with the minimum bandpass and max. photomultiplication.

Flame: N-oxide/acet. Lean (best sensit.)

Air/Acet. Steoch (less sensit.)

Extraction Systems:

- APDC/MIBK (Allan - Fishman - Trent)

- APDC/Etylamine Ketone

Cu is used to check the completeness of extraction prodedures (Allan).

Concentration in nature: (in ppm)

- Soils : - General range: 2-200
- Dry Lands : 0.01-0.02 (mean 0.04)

- Plants: - General: 1-25 (AUBERT-PINTA)
- Mais : 1,5 to 7,5 (RAZMILIC)

- Waters: - Drinking : max.: 1 ppm
- Irrigat. : max.: 0.5 ppm

Precision:

- SINGH (19770 reports a relative standard deviation varying from 20 to 30% for six differents plants analysed by ten different laboratories.
- PINTA (1974) reports a relative standard deviation varying from 4 to 20% on different plant materials (ten different samples) analysed by seventeen laboratories using the CII method presented in this paper.
- The measurement itself, as appreciated by the r.s.d of ten successives peaks obtained at close interval without modefyng instrument parameter is around:

1% at 500 mA level

2% at 1500 mA level

Comparison with other methodes:

- The respective usual sensitivities of AAS, Molecular Absorption (MA), Polarography and Flame Emission Spectrometry (FE) are:

M.A : 0.02 (ppm)

AAS : 0.05 (ppm) Dithiocarbamate

POL : 0.4 (ppm)

F.E : 0.5 (ppm) (327,4 mm)

2 - COBALT -

Co

n = 27

$f(\text{Co o/Co}) = 1,2714$
 $1/f = 0,7864$

$Ei = 7,86$

Introduction:

A concentration of 0.3 ppm in dry material of plant gives 0.003 microgram per ml of solution (1 gr of plant being ashed and digested in a final 100 ml volume). This value lies far below the detection limit of flame AAS. A preconcentration will be necessary. This first step is described in the literature given at the end. The data given below refer to aqueous solution, independently of any preconcentration step.

Absorption:

Stock Solution: a 1000 ppm Co solution is given by:

- 1,000 gr of fine metal dissolved in a minimum of conc. HCl
- 4,038 gr of $\text{CoCl}_2 \cdot 6\text{H}_2\text{O}/1$
- 4,937 gr of $\text{Co}(\text{NO}_3)_2/1$

Since both these salts are highly hygroscopic, check titration by complexometry is necessary.

Lamp Current: depends on analytical line:

- 240,72 nm: the decrease of sensitivity with lamp current being sharp, a low current must be used for best sensitivity.
- 242,49 nm: the sensitivity decreases only slightly as lamp current is raised, therefore a high current (80% of max. permissible) should provide both good sensitivity and good precision.
- For most medium intensity Co hollow cathod lamp, the photon noise is as great as the lamp fluctuation noise.

Flame: - Air/Acet. : stoichiometric - (the most stable)
- Air/Acet. : reducing (the most sensitive)
- Air/Propan. : reducing
- N-oxyde/Acet: gives better results than other combinations either in AA or in Fe mode.

Main Line:

1. 240,725 nm (minimum bandpass for low concentrations)
- For low concentration of Co this is the best line but strong curvature appears after 5 ppm due to the impossibility of isolating other neighbouring lines.

Characteristics: $d_1 = 0.03$ $d_{100} = 1,5$
 $s = 0.1$ $m = 5$

2. 242,493 nm (medium bandpass). This line is used for higher concentrations.

Secondary lines:

Line nm	r.s.	range mgr/l	energy levels <u>cm⁻¹</u>	Reson.	f	band- pass nm
242,493	0.8	2-50	0-41226	No	0.19	
241,46	0.5	1-100	816-42269	No		
252,136	0.3		0-38649	No	0.19	
243,58	0.3					0.5 nm
304,40	0.08					
• 352,685	0.06	100-2000	0-28346	Yes		
346,580	0.03					0.15
341,263	0.03					0.15
347,402	0.02					0.15
301,76	0.01					0.5
391,0	0.005					

Interferences:

- Non specific absorption around the main line (240 nm) is corrected either by background correction or by measuring non specific absorbance at 238,8 nm and "Subtracting" it from the final result.
- No noticeable interferences in diluted solutions.
- Interferences of Fe, Ni, Ca in high concentration (1500 ppm Ni produces a 50% decreases in the signal (Pinta).

Characteristics of the signal:

- Noisy and extremely dependant on flame and HCl settings.

Enhancing solvents:

- 1% Fe solution in 5% HClO_4 produces an 25% increase in signal at 10 ppm level (Pinta).
- 70% isopropanol is a solvent doubling sensitivity for the 240,73 nm line.
- Ethyl. propionate increases sensitivity 50 times (Sachdev).

Emission:

- Main line: 345,35 nm sensitivity: $s = 0.5$ ppm
- Flame : Air/Prop. (best flame)
- : N-oxyde/acet. (2 m/m red feather only)

Extraction procedures:

- MPDC/MIBK (Brooks - Burrel - Fishman - Sprague)
- 2 Nitroso - 1 Naphtol/Chloroform/MIBK (Simmons)
- 1 Nitroso - 2 Naphtol/Methanol/MIBK (Binnerts)
- Dithizone - /Ethyl-propionate (Sachden)

Concentration in natural products (ppm)

- Soils : General : 1 - 40 (average 4 - 6)
Dry lands : 0.01 - 0.14 (mean 0.06)
Ultra basic:
- Plants: General : 0.01 - 1
Animal feed: 0.05 - 0.5

Precision - Accuracy:

- The same solution passed 10 times in the system at close intervals shows a minimum relative standard deviation of:
0.5% at 500 m Abs. level
1.0% at 250 m Abs. level
- Relative standard deviation of six replicates using complexation, with 0.5% ethanolic solution of 2 nitroso, 1 naphtol extraction with chloroform and transfer in MIBK vary from 1.7% (0.08 ppm level) to 9.6 (0.0 ppm level) in wheat and yellow lupin (SIMMONS).

Comparison with other methods: (sensitivities given in $\mu\text{g/l}$)

- Atomic Absorption 0.1
- Molecular Absorption 0.05 (Nitroso-R-salt)
- Polarography 1.0
- Flame Emission 0.5 (345,4 nm)

3 - Iron -

Fe

Fe	n = 56	m = 55,847	$f(Fe_2O/Fe_2) = 1,429$	$1/f = 0.299$
			$f(FeO/Fe) = 1,286$	$1/f = 0.7773$

Stock solution (1000 ppm Fe)

- 1,000 gr pure Fe in 5 ml HCl conc. (add. few drops of MnO_3 conc.); adjust to 1 l.
- 7,021 gr $(NH_4)_2Fe(SO_4)_2 \cdot 6H_2O$, dissolv. adj. to 1 l.
- 4,840 $FeCl_3 \cdot 6H_2O/l$, control Fe concentration by complexometry.
- Organic: Tris (1-phenyl 1,3 butanedione) iron III.

All stock solution must be kept in a dark place in polythene container.

Lamp current:

- max. precision is close to max. current.
- max. sensitivity is 70% of max. current. (For precision work one shall use the maximum lamp associated with the minimum slit width which can be used without the photon noise becoming dominant).

Flame:

C_2H_2/Air Lean (make the yellow fringe just disappear).

Reducing flame gives maximum sensitivity but also max. interferences.

Main Line: 248,327 nm

$dL = 0.01$ $s = 0.1$ $m = 5.10$ (for 0.2 nm bandpass)

This line is used in conjunction with the smallest bandpass possible.

Increasing the slit width leads to loss of sensitivity due to neighbouring non absorbing lines.

Table of Lines:

Wavelength (nm)	r.s.	range ppm	energy levels cm ⁻¹	Reson. Yes/No	f	Optim. bandpass nm
248.327	1	1-15	0-40.2570		0.34	0.2
248.819	1/2	2-20	416-40.594	No	-	id.
252.285	1/2	2-20	0-39.626	No	0.30	id.
271.902	1/3	2-20	0-36.767	No	0.15	relat. large
302.064	1/4		0-33.096		0.08	
			416-33.507			
252.74	1/5		416-39.970	No		
371.994	1/8	10-100	-	-	0.01	0.3 nm very stable
269.69	1/9	-	-	-	-	-
385.991	1/12	-	-	-	0.034	0.3 nm doublet
344.06	1/100	-	-	-	0.055	-
392.03	1/250	-	-	-	-	0.3 -

Interferences:

- Especially from Si and PO₄, in C₂H₂/air flame. This chemical interference is depending on instrument settings and is reduced by increasing flame temperature (enriching in air).
- With C₂H₂/Air oxydant (very lean), Fe interferences are decreased but sensitivity is reduced.
- Interference of Si may be overcome by using a 0.2% CaCl₂ sol. as internal corrector (see annex), or by using the hotter C₂H₂/N₂O flame.

- No interference from:
 - 3000 ppm, Ca
 - 1000 ppm, Mg, SO_4 , Cl, transit metals.
 - Interference of Sodium is reported by some authors
- Background correction is necessary for 248,81 line.

Emission:

- Line : 371,99 (minimum slit-width and max. photomult.)
- Flame: $\text{C}_2\text{H}_2/\text{N}_2\text{O}$ Lean (red feather 5 m/m)

Concentrations in Nature :

- Soils : from ppm to 70% (as Fe_2O_3) in laterites
- Water :-Surface : less than 1 ppm (alcaline waters)
 - Underground : 1-3 ppm
 - Drinking water: 0.1 to 0.2 depending local regulations.
- Plants: -Range: 0.5 to 1000 ppm (maximum frequency between 100-250 ppm) (PINTA).
 - Mais : 6.2 to 24.6 in Mais (RAZMELIC).

Precision:

- a. Minimum standard deviation (WEIR - KOFLUK)
 - The same liquid sample is nebulized in the same instrument without modifying instrument settings (which are supposed to be optimum).
 - Rel. stand. deviation is: - 0.2% at 500 milli abs. level
 - 0.5% at 250 milli abs. level
 - 0.5% at 750 milli abs. level
- b. Reproducitivity: (BROWN - SKONGSTAD - FISHMAN)
 - Three different laboratories using air/acetylene at 248,3 nm found a relative standard deviation of 6,6% at 0.39 mgr/l level, when analysing the same water sample, (BROWN - SKONGSTAD - FISHMAN).

c. Inter-laboratories variation:

During inter-laboratories tests made on plant material, the following results are reported:

	n	p	r-s-d	Concentration (ppm)
SINGH :	10	6	11 to 20%	unknown
PINTA :	18	12	6 to 15%	9 to 1100

n representing the number of laboratories analysis p
differents plant standard sample. The 18 laboratories
of the second line using the same CII method of sample
preparation.

Comparison with other methods: (sensitivity)

AAS : 0.1 ppm
M.A : 0.05 ppm
POL : 1.0 ppm ortho - phenanthroline
F.E : 0.5 ppm (371,99 nm)

4 - Manganese -

Mn

Mn n = 12 A = 54,938 f(MnO/Mn) = 1,2912 1/f=0.7444 Do=4
f(Mn₂O₃/Mn) = 1,4360 1/f=0.6960 Ei=7,43

Introduction: Mn can be generally determined in plant without extraction or pre-concentration step.

Absorption:

Stock solutions: for 1000 ppm Mn:

- 3,607 gr MnCl₂/l or 3.076 gr/l MnSO₄, 4H₂O in water.
- 1,000 gr metallic Mn in minimum conc. HCl, complete with water to 1l.
- Organometallic: Mn - cyclohexanebutyrate.

Lamp Current:

Sensitivity deesn't change too much with lamp current therefore current should be set to the value giving the best precision (80% max. current).

Flame:

- C₂H₂/air: Reducing (best sensitivity, but also max. interferences).
- C₂H₂/air: Oxydizing (best precision).
- C₃H₈/air: Best stability (without noticeable loss of sensitivity).
- C₂H₂/N₂O: Lean, 5 m/m red feather, suitable for 403,08 nm.

Burner height:

5 to 8 m/m for C_2H_2 /air oxidizing.

Main Line: 279,482 nm (0.15 nm bandpass)
 $d_1 = 0.005$ $s = 0.05$ (air/acetylene)

Select the minimum possible bandpass to isolate the triplet
 $279,48 - 279,83 - 280,11$.

Triplet: 279,48 - 279,83 - 280,11 (bandpass 0.7 nm)
 $d_1 = 0.002$ $1 = 0.1$

The three lines of the triplet having the same sensitivity it
is possible to use the three of them together without the usual
loss of linearity, (bandpass 0.7 - 0.8 nm).

Table of Lines:

Wavelength (nm)	f.s	Energy levels (cm ⁻¹)	Range (mgr/l)
279.482	1	0 - 35770	1 - 10
279.482	1	0 - 35726	1 - 10
280.108	1 to 1/2	0 - 35696	2 - 20
403,976	1/20	0 - 24802	10 - 100
222,2	1/50	-	- too far in UV.
321.70	1/2000		

Interferences:

- Si even in low concentrations; correction by addition of 50 to 2000 ppm $CaCl_2$ to standard arid sol. (PLATTE & MARCY).
- Phosphate perchlorates, transition metals (Fe in excess of 25 ppm), in reducing flames .
- No interference of 1000 ppm from Na, K, Ca, Mg.

- After addition of 200 mgr/l Ca, no interference of 1000 ppm sulfate, chloride, phosphate, nitrate, nitrite, bicarbonate, silica, EDTA, Ni, Zn, Cr, B, Pb, Mg, Na.

Emission:

403,08 nm using a lean C_2H_2/N_2O flame.

Addition of Ca in plant material is generally unnecessary, since Ca concentration is usually 200 times more than Mn. Emission is as sensitive as absorption.

Concentration in nature: (as ppm)

- Soils : 0-1% (MnO)
- Plants: - range : 5-5000 ppm
- grasses: 50-300
- Maize : 6-10 etc...
- Water : - surface : less than 0.5
- drinking: less than 0.1

Comparison with other methods: (comparison of sensitivities in ppm)

- Atomic Absorption : 0.02
- Molecular Absorption : 0.2
- Polarography : 0.4 (MnO_4^-)
- Flame Emission : 0.05

Precision:

- Analysis made on the same water samples, on different apparatuses by 18 laboratories given a relative standard deviation of 15% at the level of 0.30 mgr/l.
- Analysis made by ten laboratories on six plant samples gave coefficient of variation lying between 10 and 20% (SINGH).
- CII method applied by 18 laboratories on 12 standard plants gave variation coefficient ranging from 3 to 8.5 for concentrations ranging from 60 to 650 ppm, (PINTA) .

- 21 -

- Zinc -

Zn

Zn n = 38 A = 65,37 $f(ZnO/Zn) = 1,2447$ $1/f = 0.8034$ Do = 4
Ei = 9,39

Absorption:

Stock solution: 1000 ppm

- a. 1,000 gr Zn dissolved in 3 ml of conc. HCl, adjusted to 1 l.
- b. 1,245 gr ZnO, few drops of water, dissolved in diluted HCl, adjusted to 1 l.
- c. Zn - cyclohexanebutyrate.

Lamp Current:

- sensitivity decreases sharply as lamp current increases.
- max. sensitivity 50% max. lamp current.
- max. precision 80% max. lamp current.

Flame:

- C_2H_2 /air: Reducing (fuel rich), or stoeck. (no difference in sensitivity by changing the ratios of gases).
- C_3H_8 /air: (flame absorbing), more sensitive than C_2H_2 /air.
- Caution : Flame absorption noise is important at low wavelength (flame noise becoming much greater than lamp noise). It is therefore important to shield the flame from air-draft.

Burner geight:

6 m/m for C_2H_2 /air flame,

Main Line:

213,86 nm (min. bandpass to exclude the 213,60 line of Cu, always present in HCl emission.

$$s = 0.02 \text{ ppm} \quad m = 1 \text{ ppm} \quad d_{100} = 0.5 \text{ ppm}$$

(Data given for isopropanol 50% and C_3H_8 /air flame).

Table of Lines: (Zn exhibits very few lines)

Wavelength (nm)	r.s	range (ppm)	energy levels	f	band-pass	Res.
213,86	1	0.5 - 10	0-32502	1.2	Minim.	
307,6	1/1000		0-46745	0.00017		Yes

Interferences:

- With elements found in plants no interference occurs in air/acet. flame.
- More than 500 ppm Si or Al interferes.
- Effect of Sulfuric and perchloric acid is diversely reported matching concentrations of standards and samples is a good precaution.
- Non specific absorption of the flame may be corrected by measuring the absorption at 228,8 nm wavelength of Cadmium.

Enhancing solvents:

- 50% isopropanol.

Emission:

- 213,86 m/m (minimum bandpass)

Flame $\text{N}_2\text{O}/\text{C}_2\text{H}_2$

Precision:

- The best range for measurement is 250 - 500 milliabsorbances. The following characteristics are reported.
 - a) For the same solution, same apparatus, same adjustments, the relative standard deviation (r.s.d) of ten consecutives measures is: (WEIR - KOFLUK)
 - 0.75% at 500 mA level
 - 1% at 250 mA level
 - 2% at 750 mA level
 - b) For the same solution, different instruments in 19 different laboratories, using 213,8 nm line and Air/Acetylene flame.
r.s.d = 25% at 0.112 mg/l level .
 - c) For the same ten plant samples prepared by 11 different laboratories, using the same technique of ashing, PINTA reports a r.s.d ranging from 6 to 20% for concentration ranging from 12 to 125 ppm.
 - d) SINGH reports an inter-laboratories order of variations lying 11 to 20% for six cross-checks made by ten laboratories on the same plant material.

Comparison with other methods, (sensitivities given as ppm are compared) :

- Molecular Absorption: 0.01 (dithizone)
- Atomic Absorption : 0.02
- Polarography : 0.2
- Flame Emission : 50 - 100 (213,9 nm)

III. PRECISION OF RESULTS

- 1- Definitions
- 2- Evaluation of Individual Errors
- 3- Precision of Plant Analysis in AA Spectrometry

A- Intra-Laboratory Characteristics

- a- Final Analytical Result (r.s.d₀)
- b- Preparation of Sample (r.s.d₁)
- c- Sampling

B- Inter-Laboratories Characteristics

- a- Final Analytical Results (R.S.D₀)
- b- Preparation of Sample (R.S.D₁)

III. PRECISION OF RESULTS:

1. Definitions

During the course of an analytical procedure, each step is a source of an individual error. The resultant total error is the statistic sum of individual ones.

We suppose that each step of analysis leads for each sample to a partial result expressed as a number x . We also assume that when n samples are submitted to the same treatment, results $x_1, x_2, x_3 \dots x_n$ are normally distributed around a mean value \bar{x} . Then, s being the estimate of the standard deviation and \bar{x} the mean value, we express the precision as $100s/\bar{x}$ (relative standard deviation or r.s.d.). Providing a sufficient number of measures, s and \bar{x} are constants for a given population. Should one parameter of the population change, s and \bar{x} will change also and we have to consider the population as being a second one. Each population is represented by three numbers: r.s.d (x, \bar{x}) .

2. Evaluation of individual errors

For each analytical process we may define a finite number of steps, each one being associated with an individual error. These may be listed according to the increasing value of their r.s.d. :

- 1- Final analytical measurement
- 2- Preparation of sample
- 3- Sampling

Each step being in turn divided into several ones; for instance: step 2 may be divided into sieving-digestion-evaporation-extraction ...

The conclusions reached apply whatever the number of steps.

3- Precision of plant analysis in AAS:

A-Intra-laboratory characteristics

a- Final analytical results : (r.s.d₀)

When the same solution is passed n times through the same AAS spectrophotometer under optima conditons, the smallest value possible of r.s.d is around 0.5%, the following general rule applies:

At the level of 500 milliabsorbance (optimum):

- r.s.d₀ 0.5% is excellent
- r.s.d₀ 1-1.5% is normal
- r.s.d₀ 2.5% and more is poor.

These values differs only slightly from one element to another one:

Ex: 1. Fe:

r.s.d₀ = 0.2% at 500 mA
r.s.d₀ = 0.5% at 250 mA
r.s.d₀ = 1.0% at 1000 mA

2. Mn:

r.s.d₀ = 0.25% at 25 ppm over 100 consec. determination, (Perkin Elmer information, No. L-445).

3. Zn:

r.s.d₀ = 0.75% at 500 mA
r.s.d₀ = 1% at 250 mA
r.s.d₀ = 2% at 750 mA

b- Preparation of sample (r.s.d₁):

The same (standard) sample being prepared by the same standard method in the same laboratory, and passed n times through the same AAS spectrophotometer under optimum conditions:

Cu - r.s.d₁ = 5% (150-500 milliabsorbance, n greater than 20 CII direct method)

Cu - r.s.d₂ = 6.2% (150-500 mA, n = 18 - CII ashing, followed by solvent-extraction).

These values are from Laporte, Kovacsik, Bellanger (op.cit).

c- Sampling:

Not surprisingly, few data are available from the literature. The r.s.d value of sampling step depends on so many factors that no data are of general use. Furthermore the "True Value" is not easy to define at this stage.

B- Interlaboratories characteristics

a- Final analytical results:

The same sample is analysed by the same method by different laboratories using the same technique but different equipment:

Values reported for R.S.D₀ differs from one element to another. The following values have been reported. (BROWN - SKONGSTAD - FISHMAN).

- Iron : R.S.D₀ (n= 3 c=0.39 mgr/l) = 6.6%
- Manganese: R.S.D₀ (n=18 c=0.30 mgr/l) = 6.7%
- Zinc : R.S.D₀ (n=19 c=0.112 mgr/l) = 25%
- Copper : R.S.D₀ (n=19 c=0.119 mgr/l) = 39%

b- Preparation of samples: (R.S.D₁)

The same standard sample is analysed by the same method by different laboratories .

(Results from PINTA and 24 Europeens laboratories grouped in "Comite Inter-institut des techniques analytiques de diagnostie foliaire, C.I.I").

Copper:

Plant	R.S.D ₁ %	Level ppm	Number of det. n
Codia discolor	22,6	4,8	12
Artichoke	17,3	7	12
Coton	9,6	15	12
Olive tree (leaf)	6,8	36	12
Apple cox's(leaf)	17,5	177	17
Grape (leaf)	10	886	17

Mn :

Plant	R.S.D ₁ %	Level ppm	Number of det. n
Apple golden	10,3	47	19
Apple Cox's	4,4	136	18
Eucalyptus	5,5	569	17

Fe :

Plant	R.S.D ₁ %	Level ppm	Number of det. n
Codia discolor	8.1	88	16
Palm tree	6.2	199	16
Orange	6.9	465	17
Apple Cox's	11	1154	16

Zn :

Plant	R.S.D ₁ %	Level ppm	Number of det. n
Codia discolor	12.4	11	11
Mais	12.6	28	11
Orange	9.6	68	16
Coton	9	125	11

Most values of R.S.D₁ lie between 5 and 15% .

When the same sample is analysed by different laboratories using different methods a much higher value of relative standard deviation, may be expected (perhaps 10 to 30%).

There are few remarks of interest for the analyst:

- Horizontal variation diminishes as the analysis preceeds from sampling to final result, the precision being better at the end. On the contrary, accuracy is more and more difficult to reach as the analytical process is runing. The reason is the increasing difficulty of locating systematic errors.

IV. STANDARD SAMPLE

- Olive (leaf)
- Orange (leaf)
- Palm tree (leaf)
- Peach (leaf)
- Apple Golden (leaf)
- Apple Cox's (leaf)
- Grape (leaf)
- Artichoke (leaf)
- Cotton (leaf)
- Eucalyptus (leaf)
- Hevea (leaf)
- Maize (leaf)

It is common practice to run together with unknown sample a standard sample . This practice is used not only to optimize instrument settings, but also to detect unexpected changes occurring during treatment of samples.

Furthermore when the same standard sample has been analysed a sufficient number of time (at least 20) it may be used to prepare standard curves by successive dilutions. Interferences due to matrix effects are suppressed for sample having similar relative composition .

This chapter gives some data collected by twenty official laboratories in European countries grouped in " Comite Inter-institut d'Analyse Foliaire " (cf. PINTA).

The following table presents some results obtained by official laboratories on standard material available from C.I.I.

Plant	N%	P%	K%	Ca%	Mg%	Fe (ppm)	Cu (ppm)	Mn (ppm)	Zn (ppm)
Artichoke N	18	19	20	18	20	17	12	17	11
mean	1.970	0.154	0.989	2.974	0.400	323	7.6	111.0	16.2
S	1.13	0.009	0.114	0.147	0.022	29.9	1.32	8.1	3.2
Cordia dis-color N	17	17	19	19	19	16	12	18	11
mean	0.7	0.02	0.366	0.83	0.28	88	4.8	654	11
S	0.07	0.004	0.03	0.04	0.01	7.2	1.1	25.0	1.4
Cotton N	17	19	23	22	22	19	12	18	11
mean	3.8	0.36	1.82	3.08	0.41	417	15	218	125
S	0.15	0.02	0.07	0.19	0.02	34.7	1.4	11.3	11.4
Eucalyptus N	18	19	20	18	20	17	12	17	11
mean	1.34	0.08	0.69	1.57	0.20	102.7	8.1	570	12.8
S	0.1	0.009	0.06	0.113	0.017	8.23	1.27	31.8	2.4
Hevea N	17	19	23	22	22	19	12	19	11
mean	3.36	0.26	0.94	1.07	0.33	159	15.4	160.5	39.9
S	0.07	0.01	0.05	0.08	0.02	24	2.4	7.6	2.5
Maize N	17	17	19	19	19	16	12	18	11
mean	2.06	0.22	1.90	1.12	0.36	259	11.8	66	28
S	0.09	0.01	0.11	0.06	0.01	17	1.6	5	3

N = Number of Laboratories, (each one giving one result)

<u>Plant</u>	<u>N</u>	<u>P</u>	<u>K</u>	<u>Ca</u>	<u>Mg</u>	<u>Fe</u>	<u>Cu</u>	<u>Mn</u>	<u>Zn</u>
Olive N	17	19	23	22	22	19	12	19	11
mean	1.36	0.08	0.51	2.60	0.31	171	36	49	16
S	0.09	0.005	0.06	0.13	0.007	19	2.5	4.2	1.2
Orange N	18	19	20	18	20	17	17	17	16
mean	2.38	0.15	1.54	4.88	0.32	465	8.5	75.1	68.5
S	0.12	0.01	0.13	0.17	0.02	32	1.2	5.2	6.6
Palm N	17	17	19	19	19	16	17	18	16
mean	2.67	0.16	0.88	0.80	0.30	200	8.7	630	23
S	0.11	0.06	0.06	0.03	0.01	12.3	1.71	27.7	3.1
Peach N	15	18	19	19	20	18	17	8	16
mean	4.2	0.29	2.18	2.16	0.47	299	15	83	28
S	0.24	0.01	0.12	0.11	0.02	40	2	5	4
Golden N	15	18	19	19	20	18	17	19	16
mean	2.25	0.16	1.44	1.28	0.29	311	8.4	47	30
S	0.12	0.007	0.07	0.08	0.02	34	1.5	4.8	4.3
Cox' N	17	17	19	19	19	16	17	18	16
mean	2.05	0.18	1.04	2.1	0.29	1154	177	136	77
S	0.08	0.07	0.09	0.08	0.02	126	31	6	7.7
Grape N	17	19	23	22	22	19	17	19	16
mean	2.81	0.21	1.22	2.58	0.28	272	885	193	74
S	0.1	0.01	0.07	0.14	0.02	33	93	10	7.4

Note: Original data comprises more complete statistics (median, normality of the distribution) see PINTA, Etalons vegetaux pour l'analyse foliaire ANALUSIS, 3 - 6 - 1975 .

V. DEFINITIONS

- Absorbance
- Absorption percentage
- Accuracy
- Amplifier read. out noise
- Background correction
- Bandpass
- Curve correction
- Dark - current noise
- Detection limit
- Dissociation energy (oxyde)
- Energy level
- Flame transmission noise
- Geometrical slit width
- Interferences
- Internal standard
- Ionization potential
- Lamp flicker noise
- Mean value
- Noise
- Multi-element lamp
- Oscillator strenght
- Photomultiplier
- Photon noise
- Precision
- Reciprocal linear dispersion
- Relative sensitivity (sec.lines)
- Repeatability
- Reproducibility
- Resolution
- Resonance line
- Rich (lean)
- Sensitivity
- Standard addition
- Standard deviation
- Stoichiometry of flame
- Variance

Absorbance (A):

Decimal logarithm of the ratio of the radiant power incident on the sample to the radiant power transmitted by the sample.
(Sub-units milliabsorbance : mA)

$$\log 10 \frac{I}{I_0} = A$$

Absorption ; percentage:

$100 \frac{(I - I_0)}{I_0}$ (htis definition is not officially recognized in spectrometry). It is a pure number expressing, the ratio of incident light which is absorbed.

Accuracy:

Concept expressing the degree of difference between a measured value and the "True Value". The true value is not known but may be estimated.

Let X_0 be the mean value of n measurments, and X the estimate of the true value, accuracy is generally expressed as :

$$100 \frac{(X - X_0)}{X}$$

Note: Accuracy of a method is independant from precision, sensitivity, random errors but depends on bias, systematic error.

Amplifier read. out noise:

Noise due to electronic processing of the signal and any errors in the readout device (LIDDELL). This noise is generally negligible.

Background correction:

Device for correction of flame molecular absorption at low wavelength (below 240 nm) necessary for Sb, Bi, Cd, Cd, Co and especially Zn ; Pb .

Bandpass (spectral) :

Part of the spectrum reaching the photomultiplier after leaving the exit slit of the monochromator (usually 0.2 nm to 2 nm for most instruments).

Spectral bandpass is a characteristic of a monochromator the spectral bandpass changes according to setting of the exit slit of the monochromator depending on the geometry of the optical system.

(Also called spectral bandwidth or improperly spectral slit width).

Curve corrector:

Microprocessor insuring a constant slope of signal readout. Compensation of the loss of linearity is purely artificial and does not suppress the physical occurrence of the loss of sensitivity associated with loss of linearity.

Dark current noise:

Due to emission of electrons from the photocathode without the arrival of a photon, (LIDDELL).

Detection limit:

Minimum concentration of the measured element that can be detected with 95% probability. In practice it is the concentration for which the absorbance has a value equal to twice the standard deviation of a series of at least 10 consecutive measurements of a blank.

Dissociation energy of an oxyde:

The enthalpy energy of formation of oxydes expressed as Kilo-cal. x moles⁻¹ at 25° from the solid state. The higher the absolute value of enthalpy, the more difficult it will be to dissociate the oxyde. Enthalpy of formation of oxydes of copper, zinc, manganese is low compared to Aluminium or lanthanum oxyde.

Energy level:

Characteristic of an atom being in any state having a higher energy than ground state level. Energy levels are identified by a number of characteristics:

- a- Level above ground state: electron-volt (ex: 2,932 Ca...)
- b- Total angular momentum of electrons: J
- c- The level parity due to angular momentum of optical electron; parity is even (+) or odd. (-).
- d- Coupling mode of electron (dipolar etc...)

Energy levels are expressed in wave number (cm⁻¹).

Flame transmission noise:

Noise associated with fluctuations in transmission due to flame flicker. This noise is more important at low wavelength.

Geometrical slit width:

Geometric width of the exit slit of the monochromator, controlling the spectral bandpass reacting the monochromator (from 0.02 to 1m/m usually).

Interferences:

- Modification of the absorbance of the element to be measured.
Chemical interf.: interference due to formation of an element not easily dissociated into free atoms.
- Ionic interf.: interferences due to the loss of ground state atoms, some of them being ionized (The reverse being possible).
- Spectral int.: interferences due to the overlapping of the measured absorption line by an extraneous line or band (Mariee).

Note: Interferences are different from matrix effects although they are matrix - dependant.

Internal standard:

Technique diminishing the effet of matrix and nebulization variation by measuring simultaneously the absorbance of two elements in the same flame through a dual, channel system one element is the element to be determined, the other one is called internal standard. Effects of variations are eliminated by measuring the ratios of absorbance of the two elements.

Note: This technique requires the use of a dual channel (two HCl, two photomultipliers ..., two monochromators...).

Ionization potential:

Energy necessary to transform one atomgram of element in ground state, to the first ionic valency in electron - volt (...eV).

The lowest value is 4,16 for Dubidium

The hyhest value is 18,6 for Fluorine

Elements having an ionisation potential inferior to 7,5 ev may be partly ionized at the temperature reached by the flames used in AAS. (ie - K, Na, Ba, Li, La, Sa, Cs, Al, Ca, Cr, Mo, Pb).

Note: 1 eV = 1/27 atomic energy unit = 8565.63

values are listed for each element as E_i .

Lamp flicker noise:

Noise due to fluctuations in the output intensity of the light source (Lidell).

Mean value:

The sum of a serie of measurements divided by their number.

Noise:

Variation of a signal due to uncontrolled flicker of physical parameters (light - emission - absorption - current ...).

Multi-element lamp:

Hollow cathods lamps suitable for analyting several elements. Use of such lamps necessitate good r.l.d as spectral interference may occur. Linearity range of some elements (transition) may be shortened due to the presence of neighbouring non absorbing lines.

Such lamp exist to (Ca, Mg), (Fe, Co, Cu, Ni, Zn), etc...

Oscillator strength:

Pure number associated to absorbing wavelength, for each element in Einstein emission probability theory. This number called f is higher for strongly absorbing lines.
(ex: Zn $f = 1.2$ for 213,86 nm and 0.00017 for 307.6 nm, which as a relative sensitivity 1/1000).

Photomultiplier:

Vacuum anode - photocell with multiple cathodes which converts photons into electrical current.

Some types of photomultipliers cover the all range 200-900 nm with a loss in sensitivity near infra-red.

Special photomultiplier for working range 400-800 nm are available.

Photon noise:

(Or photomultiplier shot noise). Noise due to statistical fluctuations in the photocathode current, generated by light from the HCL.

Precision:

The measure of the agreement among test results as measured in terms of the standard deviation or relative standard deviation (or variance).

Note: Precision is independant from accuracy but mathematically defined only when the parameter measured is normally distributed around its mean value (Gauss' distribution).

Reciprocal linear dispersion:

Ratio of spectral bandpass to geometrical slit width (expressed in nm/mm). The smallest is r.l.d, the better is the resolution for a given energy falling into the photomultiplier, or in other words, the higher is the energy reaching the photomultiplier for a given spectral bandpass.

r.l.d is the most important characteristic of a monochromator. Actually values as low as 1.5 nm/mm are possible, though the average of the best values is about 2,2 nm/mm.

Relative sensitivity of secondary line:

Ratio of the sensitiviy of the most sensitive line to that of a secondary line, for an aqueous solution and optimum conditions.

Repeatability:

Standard deviation or (r.s.d) of a serie of test results carried out in the same laboratory with the same operator and the same apparatus.

Reproducibility:

Standard deviation (or r.s.d) of a group of test results carried out at several laboratories by different operators using the same method but different apparatus.

Resolution (of a monochromator):

The smallest spectral bandpass achieved by a monochromator. (Actually the best resolution being 0.02 nm with an average of 0.2 nm for most instruments). The smaller the resolution, the better the sensitivity, and the wider the range of linearity (as a rough thumb's rule).

Resonance line:

Line emitted from resonance level to ground state level. The resonance level being the level of lowest energy of an atom which can interact with the ground state by an electric dipolar transition. (The variation of J value being not more than unity).

Rich - lean:

Refers to the relative quantity of fuel in flame stoichiometry.

Sensitivity:

The general meaning is the ratio of the increment of the effect to the corresponding increment in the cause, in AAS measurement, the ratio between the measured quantity (in absorbance) to the corresponding increment in concentration (any unit, usually ppm).

The so-called "sensitivity" of AAS spectrophotometers for a given element is the characteristic concentration giving an absorbance of 44 mA (or 1 percent - absorption or 99 percent transmission).

Standard addition:

Technique which compensates for physical, and some chemical interferences of the sample matrix by the addition of a known quantity of standard to the sample. The absorbance difference between the spiked and inspiked sample gives the slope of the calibration curve. (ILL tech. bulletin 42208 - 01).

Note: Unless the "internal standard" method, this technique may be used with any spectrometer.

Standard deviation (s):

The square root of the variance, the relative standard deviation is 100 s/m , m being the mean value.
(r.s.d was formerly called variation coefficient).

Stoechiometry of flame:

Composition of flame insuring neutral reaction as far as reduction or oxydation is concerned. This term means a wider range than the chemical stoichiometric reaction occurring between fuel and oxydant.

Variance:

The sum of square of deviations from the mean value divided by the degree of freedom of the population.

VI. ANALYSIS OF Fe, Mn, Co, Cu, Zn by AAS

SELECTED BIBLIOGRAPHY

I. Copper (pg. 45)

- a. Analytical methods
- b. Copper in soils
- c. Copper in plants
- d. Copper in water and soil extracts
- e. Copper in other nat. products
- f. Interferences

II. Cobalt (pg. 52)

- a. Analytical methods
- b. Cobalt in soils
- c. Cobalt in plants
- d. Cobalt in water and soil extracts
- e. Interferences

III. Iron (pg. 54)

- a. Analytical methods
- b. Fe in soils
- c. Fe in plants
- d. Fe in water and soil extracts
- e. Fe in other natural products
- f. Interferences

IV. Manganese (pg. 56)

- a. Analytical methods
- b. Mn in soils
- c. Mn in plants
- d. Mn in water and soil extracts

V. Zinc (pg. 59)

- a. Analytical methods
- b. Zn in soils
- c. Zn in plants
- d. Zn in other natural products
- e. Interferences

VI. Transition elements (grouped pg. 61)

- a. Analytical methods
- b. In soils
- c. In plants
- d. In waters and soil extracts
- e. In other natural products

VII. Extraction procedures (pg. 65)

- a. APDC/MIBK System
- b. 2-nitroso, 1-naphthol/MIBK System
- c. Various extractants

VIII. General bibliography (pg. 67)

- a. On analysis of trace elements in soils
- b. On atomic absorption spectrophotometry
- c. Annotated bibliography

IX. List of abbreviations (pg. 69)

Analysis of Fe, Mn, Co, Cu, Zn

By Atomic Absorption Spectrometry

(Experimental Conditions and Selected Bibliography)

- Part VI -

- Selected Bibliography -

Most of the papers treating the subject of Micro-nutrient analysis by AAS include several elements together. We shall only consider, in this short bibliography, some of the transition elements, i.e. : Fe, Mn, Co, Cu, Zn.

We have chosen copper as main key word, therefore when several elements, including copper, are studied in one paper, reference has to be found under "copper" heading.

Copper is one of the elements most frequently determined by Atomic Absorption and is used as a standard to calibrate instruments; Copper is furthermore quantitatively extracted by a number of organic solvents and its analysis may be used to check the efficiency of a solvent - extraction procedure.

Under the title " transition elements " one would find more general studies, including more than six elements. Such studies, are generally less specific for each element but may be very useful to evaluate a given extraction procedure.

I. Copper

a) Analytical Methods :

- 1 - ALLAN - (on organic solvent/Ethylamine ketone extraction)
* SA 17, 467, 1961
- 2 - BALLINGER - "The use of AA in the determination of toxic elements in agricultural products".
Pye-Unicam Analytical Conf.
Stratford/Avon 1975.
- 3 - ISAAC - JOHNSON - "Coll. study of wet and dry ashing techniques for the elemental analysis of plant tissue by AAS".
JAOAWC 58, 436, 1975
- 4 - KOROLEFF - HAAPALA - "Intercalibration of methods for the determination of Fe, Mn, Cu and Zn in Natural Water".
NORDEORSK,
Miljoevardssekr, Publication No. 10, 1974
- 5 - KUBOTA - MILLS - OGLESBY - "Pb, Cd, Zn, Cu and Co in streams and lake waters of Cayuga lake basin - N. Y.
EST, 8, 243, 1974
- 6 - PINTA (Edit.) - "Atomic Absorption Spectrometry"
- ORSTOM - MASSON (Paris) 1971
- HILGER - (London) 1975
- 7 - SLAVIN - SPRAGUE - (on Det. Limit of Cu)
AAN - 3-11-1964
- 8 - TRENT - SLAVIN - (on multiple extraction of Copper)
AAN, 4, 300, 1975

See abbreviation in appendix

b) In Soils :

9 - BALASUNDARAM - "Evaluation of different methods of measuring available copper in soils of Tamil Nadu".
Madras Agricultural Journal, 6-8-1973

10 - FORBES - "Co, Cu, Zn in yellow brown humic soils under grazed, permanent pastures".
NAJAR 19, 153, 1976

11 - KARIM - SEDBERRY - MILLER - "The profile distribution of Total and DTPA - extractable Cu in selected Soils in Louisiana"
CSSPA - 7, 437, 1976

12 - MEHLICH - BOWLING - "Advances in Soil-test methods for Cu by AAS"
CSSPA - 6, 2, 1975

13 - NISHITA - HAUG - "Water and Ammonium Acetate , extractable Zn, Cu, Cr, Co, Fe in heated soils"
SS 118, 421, 1974

14 - SABET - OMAR&AL - "Comparison of chemical methods for the evaluation of available soil Copper in calcareous soils and its relation to plant response".
CJSS 15, 1, 1975

15 - VARJU M. - "Determination of soluble Cu-content in some salt affected soils with AA method"
Agrochimie et Pedologie (Budapest)
19-3-1970

16 - WARD - BROOKS - REEVES - "Cu, Cd, Pb, Zn in Soils, stream sediments, waters and natural vegetation around the Tui Mine, Te Aroha, New Zealand"
NZJS 19, 81, 1976

c) In Plants :

17 - BOLINE - "Analysis for Cu, Fe, Cd in Plant Materials by AAS - a critical evaluation and comparison with accepted AOAC colorimetric methods"

Ph. D. thesis 1975

18 - CAMPBELL - COUP - BISHOP - WRIGHT - "Effect of elevated Fe intake of the Cu Status of grazing cattle"

NZJAG Res. 17, 393, 1974

19 - CARLONI - NAVARI - "Copper up take by some crops in relation to the copper content of the soil"

AGROCHIMIEN 18-4-1974

20 - HARA - SONODA - IWAI - "Growth response of cabbage plants to transition elements under water culture condition. Part II, Co, Ni, Cu, Zn, Mo."

SSPL, 22, 317, 1976

21 - JOHNSON - "Analysis of heavy metals and F in vegetation by extraction with conc. mineral. acids.

EL, 42, 410, 1975

22 - PIZER - CALDWELL - BURGESS - "Investigations into Cu deficiency in crops in East Anglia."

JAS, 66, 303, 1966

23 - PLANK - MARTENS - HALLOCK - "Effect of S application of fly ash on chemical composition and yield of Corn (Zea Mays) and on chemical composition of displaced soil solutions."

PS, 42, 465, 1975

24 - RAZMILIC - FIGUEROA - "Det. of Fe, Cu, Mn, Co, Ni by AAS in vegetable tissue."

IDE, 4, 57, 1976

25 - VARJU - "Sample preparation methods for the determination of trace elements in plant material."

Controle Aliment, des plantes cultivees Europ. Coll. Eur., 3th 1972

d) In Water and Soil Extracts :

26 - BOYLE - EDMOND - "Cu in surface waters south of New Zealand."

NAT. 253, 106, 1975

27 - CHADWICH - EDWORTHY - RUSH - WILLIAMS - "Eco-system irrigation as a mean of groundwater recharge and water quality improvement."

JAE. 11, 231, 1974

28 - GLASER - "The Det. of Cu in the p.p.b. range in the water of power stations with the aid of AAS."

JR. 20, 244, 1975

29 - HETZ - HUGGETT - HILL - "Behaviour of Mn, Fe, Cu, Zn, Cd, Pb discharged from treatment plant into an estuarine environment."

WR. 9, 631, 1975

30 - JAUNIAUX - DEMEYER - LE JEUNE - LEVERT - "Determination des éléments traces dans l'eau par AA après extraction par solvant utilisant le thiolthenoyl-trifluoro acetone et les B-dicetones fluorees."

BSCB. 84, 565, 1975

31 - KORKISCH - GOLD - GROSS - "Application of ion-exchange methods for the determination of trace elements in natural waters, - Part VII : Cu."

TAL. 22, 289, 1975

32 - TWEETEN - KNOECK - "S.E. Study for simultaneous det. of six traces metals in river waters,"

AC. 48, 64, 1976

e) In Other Natural Products :

Food:33 - BAETZ - KENNER - "Det. of trace met. in foods using chelating ion exchange concentration."

JAFC. 23, 41, 1975

34 - TSUTSUMI - KOIZUMI - YOSHIKAWA - "AAS Det. of Pb, Cd, Cu in foods by simultaneous extraction of the iodides with MIBK."

Bk. 25, 150, 1976

Fats:35 - JACOB - "Det. of trace amounts of Cu and Zn in edible fats and oils by acid extraction and AAS."

AC. 47, 741, 1975

Wood:36 - JOHANSON - "Det. of Cu, Cr, As and Zn in H_2SO_4 /HNO digested digested extracts of preserved wood by AAS with reference to As in Karri rail sleepers."

HOLZ. 28, 117, 1974

Beer:37 - MOLL - FLAYEUX - BAZARD - LE HUEDE - "Conc. de Fe et Cu la biere determinees par AAS avec et sans flamme."

Bios. 6, 245, 1975

Dustfall:38 - NOEL - "The use of AA in dustfall analyses for sampling verification."

AAN. 15, 104, 1976

Folder:39 - OELSCHLAEGER - SCHMIDT - BESTENLEHNER - "Determination of Cu in vegetable animal materials and in mineral foldeurs using AAS."

LF. 29, 70, 1976

f) Interferences :

40 - KINSON - BELCHER - (Interference, copper).

ACA 31, 180, 1964

41 - PATTE - MARCY - (On interferences of sulfate).

AAN 4, 289, 1965

42 - PINTA - "Atomic Absorption Spectrometry, Hilger, 1975
page 265 to 275."

43 - SINHA - BANERJEE - "Interferences in estimation of trace amounts
of Co, Cu and Zn in soils by AAS."

Technology (Sindri, India)
11, 263, 1974

II. Cobalt

a) Analytical Methods :

44 - ALLAN - (On det. of Co, Ni by AAS)
NAT. 187, 1110, 1960

45 - HARRISON - (On calibration curves)
AC. 37, 1168, 1965

46 - SPRAGUE - SLAVIN - (On APDC/MIBK extraction)
AAN. 3, 37, 1964

b) In Soils :

47 - ALBAN - KUBOTA - "A study of extractable soil cobalt of the south-eastern United States."
SSSAD 24, 3, 1960

- FORBES - (op. cit)

- NISCHITA - HAUG - (op. cit)

c) In Plants :

- HARA - SONODA - IWAI - (op. cit)

48 - HOCQUELLET - "Determination de Co dans les fourrages par AAS."
APEC 67, 495, 1974

49 - PURVES - "Simultaneous determination of Co and Fe in plant material by Automatted Method."
CSSPA 5, 261, 1974

- RAZMILIC - FIGUEROA - (op. cit)

50 - SIMMONS - "On 2 nitroso, 1 naphtol, extraction by chloroform and then by MIBK."
AC 45, 1947, 1973

d) In Water and Soil Extracts :

51 - BURRELLE - "On Co, Ni extraction in waters by AAS - preliminary study."

AAN 4, 309, 1965

e) Interferences :

- Mc PHERSON - (On interferences on metals)

- PINTA - (op. cit) pg. 88 - 103, English Edition.

III. Iron

a) Analytical Methods :

52 - MENIS - RAINS - "Extraction and det. of Fe by APDC/MIBK at PH 1,5."
AC 32, 1837, 1960

b) In Soils :

53 - ALLAN - (On Interferences by silicon)
SA 10, 800, 1959

54 - DANIELS - GAMBLE - BUOL - BAILEY - "Free Fe sources in an Aquult-Udult sequence from North Carolina."
SSSAP 39, 335, 1975

- NISHITA - (op. cit)

c) In Plants :

- CAMPBELL & Al - (op. cit)

55 - DAVID - (On Fe/Mk in plants)
AAN 1, 45, 1962

56 - FAITHFULL - "The automatic det. of Fe in herbage Keldahl digests by AAS."

LP 24, 658, 1975

57 - KASHIRAD - MARSCHNER - "Fe nutrition of sunflower and Corn Plants in mono and mixed culture."

PS 41, 91, 1974

- PURVES - (op. cit)

58 - YOON - GILMOUR - WELLS - "Micronutrient levels in the rice plant
"y leaf" as a function of soil solution concentration."

SSSAP 39, 685, 1975

d) In Water and Soil Extracts :

- JAUNIAUX - (op. cit)
- HETZ - (op. cit)

59 - PIERCE - BROWN - "Autom. technique for the analysis of total
inorganic Fe by AAS."

AS 29, 489, 1975

- PINTA - (op. cit)

e) In Other Natural Products :

60 - MOLL - FLAYEUX - BAZARD - LE HUEDE -
Proj. 6, 245, 1975

f) Interferences :

- ALLAN - (On interferences by silican) (op. cit)
- ROOS - PRICE - (On interf. by citric acid) (op. cit)
- TERASHIMA - (On interf. by silicon, aluminium, manganese)
(op. cit)

IV. Manganese

a) Analytical Methods :

61 - CALKINS - (On Mn extraction by 8 hydroxy quinaldine)
AS 20, 146, 1966

62 - FELDMAN - BROSSHARI - CHRISTIAN - (On sensitivity of Mn det. in
org. solvents)

AC 39, 1175, 1967

- HETZ - (Op. cit)

63 - MANSELL RE - (Mn extraction)
AAN 4, 276, 1965

64 - MANSELL - EMMEL - (Mn extraction)
" On extraction of Mn by solvent from brines."

AAN 4, 365, 1965

65 - MEHLICH - "A new extractant for soil test evaluation of P, K,
Mg, Ca, Na, Mn and Zn."

CSSPA 9, 6, 1978

66 - OLSEN - SOMMERFELD - " On extraction of Mn diethyl-dithiocarbamate
/in MIBK, evaporated and dissolved in acetone."

AAN 12, 165, 1973

b) In Soils :

67 - FRANQUIN - " Estimation du Mn du sol en rapport avec les pheno-
menes de toxicite."

Cotons et Fibres tropicales
- XIII - 3, 1958

* Sic

68 - HOYT - WEBBER - "Rapid-measurement of plant. Available AL and Mn in acid Canadian Soils."

CJSS 53, 54, 1974

69 - LERNER - TIKHOMIROVA - PLOTNIKOVA - "AA det. of total Ca, Mg, Mn in a soil decomposed by fusion with a borax and soda mixture."

Poch 1, 222, 1975

70 - ONIANI - EGORASAVILI - "Det. of Avail. Mn in Krasnorenne soils of western Georgian -SSR-."

Agrokhimija, 9, 137, 1974

71 - RANDALL - SCHULTE - COREY - "Correl. of plant Mn with extractable soil Mn and soil factors."

SSSAJ 40, 282, 1976

c) In Plants :

72 - MORTVEDT - GIORDANO - "Crop response to Mn sources applied with ortho and polyphosphate fertilizers."

SSSAP 39, 782, 1975

73 - PINTA - "Plant standards for the analysis of leaves."
ANA 3, 345, 1975

74 - RAVIKOVITCH - NAVROT - "Effect of Mn and Zn on plants in saline soil."

SS 121, 25, 1976

75 - SAFFORD - "Effect of Mn level in nutrient solution on growth and Mg content of Pinus Radiata seedlings."

PS 42, 293, 1975

76 - SIMAN - CRADOCK - HUDSON - "The development of Mn toxicity in pasture legumes under extreme climatic conditions."

PS 41, 129, 1974

d) In Waters and Soil Extracts :

- NISHITA - (op. cit)
- PINTA - (op. cit)

e) Interferences :

- ALLEN - (op. cit)

77 - BARNET - (On effect of acid concentration.)
AC 44, 695, 1972

- BELCHER - (op. cit)

78 - PLATTE - MARCY - (On interference from Si)
AAN 4, 289, 1975

86 - WATLING - (H.R.) - WATLING (R.J.) - "Trace metals in
chloromytilus meridionalis, Marine Pollution."
Bulletin 7, 91, 1976

d) In Water and Soil Extracts:

87 - DITA - HYNE - "The depositional environmental of Zn, Pb,
Cd in reservoir sediments."
WR 9, 701, 1975

88 - ROBERTS - TURNER- SYERS - "Simultaneous extraction and det.
of Cd and Zn in waters and aqueous extracts of
soils."
ANL 101, 574, 1976

e) In Other Natural Products:

- JOHANSON - (op. cit)

f) Interferences:

89 - SINHA - BANERJEE - "Interferences in estimation of trace
amounts of Co, Cu, Zn in soils by AAS."

VI. Transition Elements
(Include total or part of Cr, Mn, Fe, Co, Ni, Cu, Zn)

a) Analytical Methods:

90 - BAGOURI - "Determination of micronutrients in calcareous soils."
Workshop soil, water, plant analyses,
-Ryadh 1976.
(ACSAD - Ministry of Agric. Saudi Arabia)

91 - KONO - NEMORI - "Extraction of Cu, Cd, Pb, Ag, Bi with Iodide/MIBK and application to AAS."
BK 24, 419, 1975

92 - LITHNER - "Pretreatment of samples (organic watter sediments, and water) for subsequent det. of heavy metals by AAS - FAO Fisheries, technical paper 1975, No. FIRI/TI 37, 41."

93 - MINEAR - "Analytical techniques for measuring and monitoring trace metals."
JAWW. 67, 9, 1975

94 - PINTA - "Methodes physiques d'analyse et de controle des Oligo-Elements."
ANUT 25, 1971

95 - RAINS - "Trace metal analyses of environmental and biological materials by AA and ES."
(Presented at American Chemical Society Nat. Meeting, Philadelphia 1975).

96 - SEGAR - CANTILLO - "Metal special identification in the environment: A major challenge for the analyst."
(Nat. Oceanic and Atmospheric Administration, ATLANTIC Oceanographi and Meteo Laboratories).

96 - WIERCINSKI - SZEWCZUK - "Preparation of samples, precision and accuracy in the AAS method."
I. Determination of Cu, Zn and Fe in serum
Med-letters 32, 297, 1976

b) In Soils :

97 - AGEMIAN - CHAU - "An AA method for the det. of 20 elements in aquatic sediments."

ACA 61, 80, 1975

98 - BRULAND - BERTINE - KOIDE - GOIBERG - "History of metal pollution in Southern California Corstal Zone."
EST 8, 425, 1975

99 - GABRIELS - "Analyse des produits horticoles des sols et eaux d'irrigation par spectrometrie d'emission et d'AA."

ANA 3, 139, 1975

100 - KRISHNAMURTY - SHPIRT - REDDY - "Trace metal extraction of soils and sediments by $\text{HNO}_3/\text{H}_2\text{O}_2$."
AAN 15, 68, 1976

101 - SANYAL - BANERJEE - CHAKRABURTTY - "Spectrophotometrie and AAS assaying of met. micronut. in soils with biuret as reagent."

26th conference - 1975
Pittsburgh.

102 - STANTON-Mc DONALD - "Application of automated analysis to the determination of Zn, Pb, Mo and Ni in extracts of soils."

CI 1961 (Pg. 1406-1407)

103 - Van - DRIEL - "Determination of heavy metals in soil and plants using AAS."

Dutch A.S. working group conf. 16-1-1976
Amsterdam.

c) In Plants :

104 - ELLIOT - TRAVIS - Mc GALLA - "Soluble cations beneath a feedlot and an adjacent cropped field."
SSSAJ 40, 513, 1970

105 - GARCIA - BLESSIN - INGLETT - CARLSON - "Physical, chemical characterisation and heavy metal content of corn grown on sludge - treated strip - mine soil."
JAFC 22, 810, 1975
(1)

106 - HARA - KIBOKU - "AAS of Cr (VI) by using SE with potassium benzylxanthate - MIBK."
Bunseki Kagaku - 24, 718, 1975
(2)

107 - HARA - SONODA - IWAI - "Growth response of cabbage plants to transition elements under water culture conditions."
I- Ti, V, Cr, Mn, Fe
SSPN 22, 307, 1978

108 - Mc CARTHY - DAVEY - "Nutritional problems of Pinus Taeda L. (Lublolly-Pine) growing on pocosin soil."
SSSAJ 40, 582, 1976

- VAN DRIEL - (op. cit)

d) In Water and Soil Extracts:

- AGEMIAN - CHAU - (op. cit)

109 - GUY - CHAKRABARTI - "Analytical techniques for speciation of heavy metal ions in the aquatic environment."
(59th Canadian chemical conf., London, Ontario - 1976, Canada)

110 - KORKISH - SORIO - "Determination of seven trace elements in natural waters after separation by solv. ext. and anionexch-chromatography."
ACA 79, 207, 1975

111 - SATAKE - ASANO - TAKAGI - YONEKUBO - "Det. of Cu, Zn, Pb, Cd, Mn in brackish and coastal waters by the combinaison of chelating ion exchange separation and AAS."
Nippon Kagaku kaishi
8, 762, 1976

113 - SURLES - TUSCHALL - COLLINS - "A comparative AA study of metals in lake water."

(Int. conf. on heavy metals into environment - 1975, Toronto - Ont Canada)

114 - TWEETEN - KNOECK - "Solvent-extraction study for simultaneous determination of six trace metals in river water." AC 48, 64, 1976

e) In Other Natural Products:

Animal 115 - BESUR - SAIROS - POPOVA - PUNGOD - "AA determination of Food Cu, Mn, Zn, Fe, K, Na, Ca and Mg in some animal foods." Chim. ind. (MILAN) 58, 204, 1976

Ferti- 116 - MC BRIDE - (On official VS methods of trace elements extractors in fertilizers)

AAN 3, 144, 1964

117 - YOUDEN - (Same subject)

JAOAC 46, 55, 1963

118 - EVERSON - "Modification in the official methods for the determination of metals in feeds and fertilizers by AAS."

JAOAC 58, 158, 1975

119 - RAZMILIC - FIGUEROA - "Det. of trace el. in nat. and mineral fertilizers by AA."

IDESIA 4, 143, 1976

Food 120 - TSUTSUMI - KOIZUMI - YOSHIKAWA - "Dry ashing method of various foods for SE-AAS."

BK 25, 155, 1976

Fruit juice 121 - CHIRICOSTA - BRUNO - CLASADONTE - "Determination of the mineral constituents of Sicilian citrus-fruit juices by AAS."

Ezzenze Deriv - Ayrum, 44, 259, 1974

V. Zinc

a) Analytical Methods:

- BALLINGER - (op. cit)
- 79 - KORKISCH - GOLD - GROSS - (Tit. cit. Part VI. Zn)
TA 22, 281, 1975
- MEHLISCH - (op. cit)
- NISHITA - HAUG - (op. cit)

b) In Soils :

- 80 - IRELAND - "Effect of the Earthworm *Dendrobena Rulsida* on the solubility of Pb, Zn and Ca in heavy-metal contaminated soil in Wales."
JSS 26, 313, 1975
- 81 - SINGH B.R.-STEEENBERG - "Intractions of micronutrients in barley grown on Zn polluted soils."
SSSAP 39, 674, 1975
- 82 - TAKKAR - MANN - "Evaluation of analytical methods for estimating available zinc and response of maize to applied zinc in major soil series of Ludhiana Punjab (India)."
AG 19-5-1975

c) In Plants:

- ISAAC - JOHNSON - (op. cit)
- 83 - KANG - OKORO - "Response of flooded rice grown on a vertisol from Northern Nigeria to Zn Sources and methods of application."
PS 44, 151, 1976
- 84 - Mc KEE - "Response of plotted slash pine seedlings on imperfectly drained coastal plain soil to additions of Zn."
SSSAJ 40, 586, 1976
- 85 - OELSCHLAEGER - SCHMIDT - "Det. of Zn in vegetable animal materials and in mineral fodders, using AAS."
LF 27, 85, 1975

VII. Extraction Procedures

a) APDC / MIBK System :

122 - BRLLKS - PRESLEY - KAPLAN -

1)"Determination of Co in saline waters by AAS combined with APDC/MIBK extraction".

ACA 38, 1967

2)"APDC/MIBK extraction systems for the determination of trace elements in saline waters by AAS". TA 14, 1967

123 - BURREL - " Determination of Ni and Co in natural waters by AAS - A preliminary study".

AAN 4, 309, 1965

124 - FISHMAN - MIDGET - " Extraction techniques for determination of Co, Ni, Pb in fresh waters by AAS in trace inorganics in waters."

Anal. Chem. Soc. Advances in Chemistry Serie No. 73 - page 230

125 - FISHMAN - DOWNS - " Methods for analysis of selected metals in waters by AAS us Geol. Survey ".

Water Supply paper No. 1540 C

126 - KINDRADE - VAN LOON - " Solvent extraction for use with flame AAS spectroscopy ".

127 - MANSELL - (on extraction of Mn by APDC/MIBK system PH 3)
AAN 4, 276, 1965

128 - MANSELL - EMMEL - " Trace metal extractions from brines with APDC and oxime ".

AAN 4, 365, 1965

- SPRAGUE - SLAVIN - (op. cit)

b) 2 nitroso 1 naphtol/MIBK

129 - SIMMONS (W.J) - (on extraction from plant material)

AC 45, 1947, 1973

130 - BINNERTS - BOOM - " Quick and sensitive cobalt determination in liver material with AAS ".

Tijdschrift Voor Diergenes Kunde
93, 1968

c) Various extractants:

Dithizone:

131 - SACHDEV - WEST - " Concentration and determination of traces of metal ions ".

ACA 44, 1969

hydroxyquinaldine:

132 - CALKINS - (On Mn extraction by 8 hydroxyquinaldine)
Applied Spectroscopy 20, 146, 1966

diethyl-dithiocarbonate:

133 - OLSEN - SOMMERFIELD - (Mn extracted by Dicthyl Dithiocarbonate, in MIBK evaporated and dissolved in acetone).

AAN 12, 165, 1973

Several:

134 - TWEETEN - KNOECK - " Solvent extraction study for simultaneous determination of six trace elements in river waters ". AC 48, 64, 1976

VIII. General Bibliography

a) On analysis of trace elements in soils:

135 - AUBERT - PINTA - "Les elements traces dans les sols."
ORSTOM - PARIS 1971, (French-English)

136 - COPPENET - "Rappel chronologique des principaux travaux
effectues en France, Annales Agronomiques - 21,5 -
numero special "les oligo-elements en France."

137 - PINTA - "Recherche et dosage des elements traces."
DUNOD - PARIS 1962 (726 p.)

b) On Atomic Absorption Spectrophometry:

138 - M. PINTA -"Spectrometrie d'Absorption Atomique - ORSTOM/MASSON."

(in French) 1971 ISBN 085 274 2258
(in English) 1975 Adam Hilger - London

c) On Bibliography:

- Annotated bibliography on Soils, Fertilizers and Plant nutrition: Commonwealth Agricultural Bureau.

- S 1090 Availability of copper and zinc in soils (1962-1966)
- S 1532-3R Zinc in soils (1966-1968) and (1969-1971) 156 ref.
- S 927 R Copper in soils and plant nutrition (1956-1965) 155 ref.
- S 1535 R Copper in soil (1969-1971) 81/ref.
- S 676 R Manganese in soil (1956-1963) 91/ref.
- S 1658 Minor elements in soils (1966-1969) 192 ref.
- S 1657 Minor elements in soils (1970-1973) 238 ref.
- SA 1898 Extraction methods in soil analysis (1973-1976) 144 ref.
- SB 1839 Leaf analysis as a guide to plant nutrient status - (1960-1975) 597 ref.
- SA 1875 Toxicity in soil (1957-1974) 187 ref.

List of Abbreviations

AAN	: Atomic Absorption Newsletters
AAZ	: Annals of Arid Zones
AC	: Analytical Chemistry
ACA	: Analytical Chemica Acta
AFEG	: Annales de la Falsification et de l'Expertise Chimiques
AG	: Agrochimia
AGRO	: Annales Agronomiques
AJ	: Agronomy Journal
AJAR	: Australian Journal of Agricultural Research
AJSR	: Australian Journal of Soil Research
AJSS	: Australian Journal of Soil Science
AL	: Analytical Letters
AML	: American Laboratory
ANA	: Analusis
ANEA	: Annales de Edafologia Y Agrobiologia
AN(L)	: Analyst
ANUT	: Annales de la Nutrition et de l'Alimentation
ATRO	: Agronomie Tropical
AS	: Applied Spectroscopy
BAFES	: Bulletin de l'Association Francaise d'Etude du Sol
BSCB	: Bulletin de la Societe Chimique Belge
CAB	: Commonwealth Agricultural Bureau
CAPS	: Current Advances in Soil Sciences
CC	: Cereal Chemistry
CCM	: Clay and Clay Minerals
CEB	: Cebedeau
CFT	: Coton et Fibres Tropicales
CGEO	: Chemical Geology
CI	: Chemistry and Industry
CIEN	: Cientifica
CINST	: Chemical Instrumentation
CJS	: Canadian Journal of Spectroscopy
CJSS	: Canadian Journal of Soil Science
CM	: Clay Mineral (Formerly Clay Mineral Bulletin)
CSIRO	: Commonwealth Scientific and Indeess Des Organisations
CSLT	: Canadian Society of Laboratory Technologists
CSR	: Chemical Society (London) Review
CSSPA	: Communication in Soil Science and Plant Analysis

EA : Electro Chimica Acta
EL : Environmental Letters
ELAC : Electroanalytica Acta
EJSS : Egyptian Journal of Soil Science
EP : Environmental Pollution
ESC : Environment Science and Technology
FZAC : Fresenius Zeitschrift Fuer Analytische Chemic
GEODR: Geoderma
HOLZ : Holzforshung
IAN : Instrument and Apparatus News
ICE : Indian Chemical Engeneer
IJAC : Indian Journal of Applied Chemistry
IJAR : Indian Journal of Agricultural Research
JAOAC: Association of Official Analytical Chemists Journal
JAE : Journal of Applied Ecology
JAFC : Journal of Agriculture and Food Chemistry
JARE : Journal of Arid Environment
JAS : Journal of Agricultural Science
JAWA : Journal of American Water Works Association
JFS : Journal of Food Science
JRC : Journal of Radioanalytical Chemistry
JSFA : Journal of Science of Food and Agriculture
JSS : Journal of Soil Science (Oxford)
LF : Landwirtschaftliche Forschung
LP : Laboratorium - PRAXIS -
MA : Mikrochimia Acta
MAJ : Madras Agricultural Journal
MC : Marine Chemistry
MPB : Marine Pollution Bulletin
NAT : Nature
NZJA : New Zealand Journal of Agriculture
NZJAR: New Zealand J. of Agricultural Research
NZJS : New Zealand Journal of Science
ORSTOM:Office de la Recherche Scientifique et Technique
Outre-Mer
POCH : Pochvedenie
PS : Plant and Soil
SA : Spectrochimica Acta
SACP : Society for Analytical Chemistry Proeedings
SAF : Sols Africains
SAJSS: South africa Journal of Soil Science
SF : Soil and Fertilizers
SLF : Schweizerische Landwirtschaftliche Forschung

SS : Soil Science
SSPL : Soil Science and Plant Nutrition
SSS : Soviet Soil Science
SSSAP: Soil Science Society of America Proceedings
TAL : Talanta
TAG : Tropical Agriculture
TE : La Technique de l'Eau
TEC : Technology
XRS : X-Ray Spectrometry
WASP : Water, Air, Soil Pollution
WR : Water Research
WRS : Water Resources Research
