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Abstract: An automatic method of landform mapping applicable to large continental areas is presented, based on 
30-meter SRTM (Shuttle Radar Topography Mission) data and combining texture analysis using Fourier 2D peri-
odograms (FOTO method) with a set of morphometric variables. This integrated strategy was applied to the whole
Congo Basin and adjacent regions in Central Africa, where landscapes and landforms mapping remains heteroge-
neous and partial with existing expert maps differing in aims and scales. Through the FOTO method, a principal
component analysis (PCA) on obtained Fourier r-spectra yielded six textural features, which were further combined 
with seven morphometric criteria into a global PCA. A k-means classification from these output results provided an
automatic mapping of 12 landform classes (at a final resolution of 900 m) which were successfully interpreted in
terms of geomorphological meaning together with some hydrological and soil attributes. Finally, comparison of our 
landform map with existing, independent geomorphological sheets revealed a good spatial congruence. Overall, our 
method proved effective to depict landform assemblages at regional or continental scales based on complementary
textural information and morphometric parameters. As such, it could serve as a sound basis for further predicting
and mapping soil units at the landscape scale, given the close soil-landform imbrications and interactions at the
catena level. It could serve as well as a predictive variable for biodiversity measures and biomass estimates, espe-
cially in the humid tropics where environmental data are lacking whilst ecological modelling is urgently needed to
support land planning and forest management.
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1	 Introduction

Geomorphological maps have potential applications 
in many fields including geomorphology, ecology, soil 
science, hydrology, agriculture and civil engineering 
(Drăguţ & Eisank 2012), each of which has historically 
been involved with the classification and mapping of 
landforms as an essential component of land systems 
and landscapes. For instance, in landscape ecology 
studies, geomorphological heterogeneity is considered 
as an important driver of ecological complexity and 
biodiversity patterns at alpha, beta and gamma levels 
(Burnett et al. 1998, Nichols et al. 1998, Tukiainen et al. 

2019). In tropical rainforests like Amazonia, geomor-
phological diversity (or geomorphodiversity: Panizza 
2009) proved to be a key factor in accounting for dif-
ferences in floristic richness, forest structure and car-
bon stocks together with edaphic variations (Figueiredo 
et al. 2014, Guitet et al. 2015a, Guitet et al. 2015b, Gui-
tet et al. 2016). Links between landforms and soil sys-
tems are also well recognized (Birkeland 1999, Gerrard 
1992, Schaetzl & Anderson 2005). Geomorphological 
mapping, which was implemented by many scientists 
from the French School of pedology, has illustrated its 
efficiency for soil mapping in tropical regions, with 
direct applications for land evaluation and agronomic 
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purposes (“morphopedological mapping”: Bétard & 
Bourgeon 2009).

Historically, geomorphological maps were produced 
manually by visual interpretation of aerial photographs 
or topographic maps at various resolutions and scales, 
with aims and methods specific to each country and 
proper to each author. Consequently, it is impossible to 
compare them without a continuous and homogenous 
mapping basis. It also hinders their use for interpret-
ing broad scale biogeographic patterns or for designing 
consistent land resource maps. Yet, the availability and 
accessibility of remotely sensed Digital Elevation Mod-
els (DEMs), and the improvement of processing tech-
niques have made possible to develop geomorphometry, 
with the fundamental operation of extracting param-
eters and objects from DEMs (Pike et  al. 2009). Gen-
eration of high-resolution DEMs has recently led to a 
paradigm shift in geomorphometry (Drăguţ et al. 2011, 
Evans 2012), with growing interest to classify and map 
minor landforms, either natural or anthropogenic, at very 
fine scales (e.g., landform extraction and mapping from 
LiDAR DEMs (De Matos-Machado et al. 2019, Ortuño 
et al. 2017). Paradoxically, available global Digital Sur-
face Models (DSM), with coarser resolution, such as 
those of the Shuttle Radar Topography Mission (SRTM) 
exist for a longer time than high-resolution DEMs and 
have proved efficient in the field of ecological modelling 
(Amatulli et al. 2018, Moudrý et al. 2018) but are still 
underused from this perspective of landform mapping. 
Although DSMs provide top of vegetation elevation data 
and are not Digital Terrain Model (DTM) i.e. elevations 
at ground level, their use for producing broad-scale geo-
morphological maps is worth considering (e.g., Iwahashi 
& Pike 2007, Bugnicourt et al. 2018).

Methodological developments of automated or semi-
automated processing of DEMs are more than ever 
required to elaborate robust and consistent landform 
maps at broad scales (Drăguţ & Eisank 2012, Iwahashi 
& Pike 2007), given the huge surfaces to cover and the 
necessity of iterative processes to implement and assess 
the classification of continuous topography. In this paper, 
we use the term landforms to define areal geomorphic 
objects as detected on DEMs (with x/y coordinates) and 
having a third dimension in z (Evans 2012). Automated 
or semi-automated detection of geometric signatures on 
DEMs (Pike 1988) may allow us to further identify land-
form types. Geometric signatures are defined by Iwa-
hashi and Pike (2007) as “a set of measures that describes 
topographic form to distinguish geomorphologically dis-
parate landscapes”, whereas landform types are defined 
by MacMillan et al. (2000) as “assemblages of repeating 
patterns of landform elements with characteristic pat-
terns and scales of repetition”. In a recent study, Bug-
nicourt et al. (2018) combined the Fourier-based textural 

ordination (FOTO) method (Couteron 2002) with geo-
metric signatures of a set of morphometric variables to 
characterize 16 landform types in a humid tropical region 
of 220,000 km2 (French Guiana and Amapa, Brazil). To 
our knowledge, this method has not been tested in other 
contexts. The generic principles on which the method 
relies makes it attractive to adapt and test with respect to 
other situations, possibly over broader areas in the humid 
tropics for which geomorphic information is lacking.

This is the case of Central Africa, where the Congo 
Basin straddles six countries and includes the world’s 
second largest continuous area of tropical forests behind 
Amazonia. This region is experiencing a context of 
growing demand for resource assessment and land-
use planning, with major environmental issues such as 
destruction of peatland forests and associated huge soil 
carbon stocks (Dargie et  al. 2017). Consequently, this 
region needs landform classification and mapping at a 
regional scale, but available geomorphological maps 
are old and expert-based products with aims, scales and 
methods specific to each individual study, that prevents 
any map generalization.

The main goal of this paper is to promote the valid 
and robust use of a combined textural-morphometric 
approach dedicated to landform classification and map-
ping at very broad scales, with application to the whole 
Congo Basin and surroundings in Central Africa. The 
proposed method is an adapted version of the automatic 
method developed in reference to a smaller portion of 
tropical South America by Bugnicourt et  al. (2018). 
Comparisons to existing maps based on expert knowl-
edge are integrated parts of the method without constitut-
ing a validation process as such. The objective is not to 
reproduce these expert maps but rather to produce a syn-
thetic, homogeneous map able to render the most inter-
pretable, fairly consensual geomorphic elements of the 
experts’ works for subcontinental scale landform depic-
tion. By comparing, we aim at assessing to what extent 
our map may sustain similar interpretation as experts, 
while addressing the very large, unmapped areas, in fact 
most of Central Africa. We hypothesized that (1) textural 
and morphometric descriptors are complementary and 
their combined use allows sensible and homogeneous, 
automated landform-type mapping over very large areas; 
(2) the general map of landform classes obtained is in its
broad line consistent with the expert-based maps that had
specific aims and methods, and is therefore relevant to
provide a wall-to-wall geomorphological mapping over
Central Africa.

In this paper, we first describe the processing flow 
from the SRTM, that features the textural analysis asso-
ciated with the calculation of morphometric parameters 
followed by a general PCA as to arrive at a final clas-
sification of 12 landform classes. Secondly, we interpret 
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the 12 landform classes and compare them with exist-
ing expert maps that concerns some parts of the studied 
region. Finally, we check for possible biases from for-
est-savanna mosaics due to the use of the SRTM (i.e. a 
DSM), before discussing the overall results.

2	 Materials and methods

2.1	 Study area
Our study area encompasses the Congo Basin and adja-
cent regions, including the following six countries: 
Gabon, Cameroon, Central Africa Republic, Republic 
of Congo, Democratic Republic of Congo and Equato-
rial Guinea, with a total surface of ca 2,696,500 km² 
(Fig. 1A). The area extends from the Atlantic Ocean to 
the West (Gulf of Guinea) to the western shoulder of the 
Albertine Rift Valley to the East, and spans the equator 
between 7° N and 5° S. It is centered on the Congo Basin 
which harbors the world’s second largest continuous area 
of rainforest behind Amazonia (Verbeeck et  al. 2011). 
This includes a variety of forest types pigeonholed into 
broad bioclimatic (wet, moist, dry forests) or functional 
forest classes (evergreen, deciduous) as reviewed by Fay-
olle et al. (2014), and several studies have underlined the 
link between certain of those types and geological sub-
strates (Fayolle et al. 2012, Réjou-Méchain et al. 2008). 
The study area is bisected by the equator, and therefore 
displays little seasonal variation within 1° North or South 
of the equator. Seasonality increases with distance from 
the equator, with two rainy seasons including very high 
rainfall alternating with two drier seasons. The climate 
remains warm and humid with mean temperatures rang-
ing from 22 °C to 30 °C and average rainfall between 
1200 and 2600 mm per year (Leroux 2001).

Topographically, the center of the Congo Basin 
forms a huge depression with little relief variation – 
named “Cuvette Centrale” or Central Basin – drained by 
the Congo River and its tributaries. These low wetlands 
are covered by extensive peat soils beneath swamp for-
est vegetation, recently considered as the largest peat-
land complex in the tropics (Dargie et  al. 2017). At 
the periphery of the Congo Basin, the altitudes of this 
flat-lying topography progressively increase toward 
surrounding plains and plateaus (e.g., Batéké, Carnot-
Gadzi and Mouka-Ouadda plateaus) through succes-
sive stepped topographic levels, from 200 m a.s.l in the 
Central Basin to 1,000 m a.s.l. on its highest margins. 
Toward the Atlantic Ocean, a collection of mountainous 
massifs and chains forms a marginal bulge (Mayombé, 
Crystal and Chaillu mountains) above a narrow coastal 
strip (Petit 1990). To the North, these mountains extend 
into the Cameroon range where the Mount Cameroon 

constitutes the most prominent peak culminating at 
4,040 m a.s.l.

From a geological viewpoint (Fig. 1B), the Congo 
Basin is a broad downwarp centered on the Congo craton, 
with thick accumulations of near-horizontal sediments 
of Meso-Cenozoic age, mainly deposited in continental 
(lacustrine, fluvial) conditions with few marine incur-
sions (Giresse 2005). This extensive sedimentary cover, 
dominated by sandy deposits and sandstone lithologies 
(e.g., Sables Ocres and Grès Polymorphes Series of 
Cenozoic age), appears in sharp contrast with the var-
ied basement rocks outcropping at the periphery of the 
basin. Remnants of the Archean nuclei, also known as 
the “West Central Africa” craton (Milesi et al. 2006), are 
well represented to the West of the study area (southern 
Cameroon, Equatorial Guinea, Gabon and Congo): they 
are composed of various granite-gneiss complexes and 
greenstone belts. These Archean remnants are juxtaposed 
with folded Proterozoic belts (“Pan-African” belts) char-
acterized by the presence of wide NE-SW-trending shear 
zones. All the rocks in these belts are metasedimen-
tary and volcano-sedimentary (various kyanite schists 
and gneisses, migmatites, amphibolites and quartzites) 
together with metaplutonic rocks of amphibolite to 
granulite facies. Finally, the Cameroon Line located to 
the Northwest defines a 1000-km-long line of volcano-
capped swells of basaltic composition, both lying on 
land and in the Gulf of Guinea, and usually interpreted 
as related to an underlying mantle plume (Burke 2001). 
Such a complex geological setting with varied litholo-
gies and tectonic styles is prone to high geomorphologi-
cal heterogeneity, as expected on our landform mapping.

2.2	 Data
All the analyses necessary to produce the landform map 
of Congo Basin were carried out from Shuttle Radar 
Topography Mission (SRTM) dataset at 1 Arc-Second 
Global (30 m), acquired by NASA in February 2000 and 
made available with the considered resolution in 2013. 
The SRTM data were collected by a single-pass interfer-
ometric synthetic aperture radar system (Band C) (Farr 
et al. 2007). These data have the specificity to represent 
ground surface topography as well as features above the 
ground including man-made structures and vegetation. 
For constant vegetation height as is the case over large 
forests, SRTM data can be approximated as a DEM with 
a vertical accuracy of ca 10 m (Bourgine & Baghdadi 
2005). Although forests are by far the most extended veg-
etation form in the study area, there are also landscapes 
covered by open vegetation (savannas, grasslands, etc.) 
or more critically by forest-savanna-mosaics. A post-hoc 
assessment of possible problems was made by evaluat-
ing the extent of such mosaics in the various landform 
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Fig. 1.  Location and geological setting of the study area. A: Topography of the study area with the main physiographic units 
adapted from Petit (1990); Area covered = 2,696,502 km². B: Simplified geological map of the study area adapted from 
Thiéblemont (2016).
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classes we defined and mapped (see below). For the 
selected study area, we downloaded 239 tiles of SRTM 
Version 3.0 Global 1 in geographic projection WGS84 on 
http://dwtkns.com/srtm30m/ (access date: 01/02/2020) 
which we then assembled into a final single image.

In order to benchmark the interpretability of our land-
form map, we used different existing maps drawn by 
previous authors from expert-based work. These ancient 
maps, that stemmed from diverse objectives, cover all or 
parts of some of the Congo Basin countries, and have 
therefore different scales and various thematic classifi-
cations (Table 1). They follow methods and aims spe-
cific to each region or country making them difficult to 
harmonize or compare. But such maps are complemen-
tary in terms of geographical coverage and from a scalar 
viewpoint.

At a fine scale, the map produced by Vallerie (1995) 
covers the south of Cameroon. At broader scale, the map 
produced by Martin et al. (1981) covers the entire Gabon. 
These two maps aimed to represent soil-landform cate-
gories (or “morphopedological units”). At medium scale, 
the map produced by Boulvert in 1996 covers all the 
Central African Republic and represents geomorphologi-
cal features. This map was provided by the map library 
of IRD (http://sphaera.cartographie.ird.fr/) in georefer-
enced image format. Petit (1990) produced a large-scale 
morphological map that covers all Central Africa. These 
four maps were based on photo-interpretation and/or 
by sketching from expert knowledge. Two recent maps 
were also used for comparison with our final product: the 
Peatland probability map covering the Cuvette Centrale 
Wetlands by Dargie et al. (2017) from an array of remote 
sensing data (http://www.afritron.org/en/peatland) and 
the worldwide topography map made by Iwahashi and 
Pike (2007) from digital processing of SRTM data (http://
gisstar.gsi.go.jp/terrain/front_page.htm).

2.3	 Methods
To address the mapping of landforms at the very broad 
scale of the Congo Basin, we adapted the automatic 

method developed in tropical South America by Bug-
nicourt et  al. (2018). Briefly, we analyzed the textural 
information (Couteron et al. 2006) of SRTM using a mul-
tiscale approach as to assess areal geometric signatures. 
Then we combined main textural features and a set of 
common morphometric criteria also derived from SRTM 
data in order to provide complementary information on 
the relief dimension in z (Evans 2012). Figure 2 shows 
the workflow that summarizes the different steps leading 
to the final landform map.

2.3.1	 Textural analysis
The textural analysis of SRTM allowed us to extract 
geometric signatures. We used Fourier-based textural 
ordination (FOTO) method (Couteron 2002) to analyse 
the texture. This method has extensively been used for 
vegetation mapping (Couteron 2002, Proisy et al. 2007), 
land-use/cover studies (Couteron et al. 2006), and more 
recently for regional-scale extraction of geomorphic 
signatures from SRTM data (Bugnicourt et  al. 2018). 
The detailed description of the method is provided in 
Couteron (2002), and we here just recall the main out-
lines regarding its present application. FOTO subdivides 
the SRTM image in square windows and analyses spatial 
variations of the SRTM grey levels through the Fourier 
two-dimensional periodogram. The size of the window 
expresses a trade-off between homogeneity of the land-
forms depicted through textural features and sufficient 
extent to characterize large landforms. Considering the 
wide size range of landforms usually displayed, we used 
here two window sizes (29 and 299 SRTM pixels, cor-
responding to two different scales of ca 1 km and ca 
10 km) centered on the pixels of the same overall grid. 
Bugnicourt et al. (2018) found that 9 km windows were 
large enough to render broad landforms (e.g. mountains 
and main ridges), while texture gradients using a sub-
stantially smaller size (6 km) did not provide important 
information regarding intermediate-sized landforms. To 
complement the 10 km-window analysis we therefore 
selected a second size being one order of magnitude 

Table 1.  Characteristics of existing maps. * Percentage of the area of the map made by the expert in relation to the total area 
of our study area
Area Type Author Scale Date % Cover 

Map*
Southern Cameroon Soil map Vallerie (1995) 1 : 500 000 1995 2
Gabon Soil map Martin et al. (1981) 1 : 2 000 000 1981 10
Central Africa Morphology map Petit (1990) 1 : 14 000 000 1990 64
Central African Republic Geomorphological map Boulvert (1996) 1 : 1 000 000 1996 3
Cuvette Centrale wetlands Peatland probability map Dargie et al. (2017) 1 : 9 000 000 2017 36
Africa Topography Iwahashi & Pike (2007) 1 : 100 000 000 2007 100

http://dwtkns.com/srtm30m/
http://sphaera.cartographie.ird.fr/
http://www.afritron.org/en/peatland
http://gisstar.gsi.go.jp/terrain/front_page.htm
http://gisstar.gsi.go.jp/terrain/front_page.htm
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below (1 km) as to improve accuracy in depicting small 
landforms. Moreover, we also used sliding windows that 
overlap to increase the output spatial resolution of tex-
tural features up to 900 m for both window sizes. In each 
window, the 2D Discrete Fourier Transform is applied 
on SRTM values leading to the calculation of the 2D 
periodogram. FOTO then summarizes the 2D periodo-
grams by calculating azimuthally averaged r-spectra that 
are assembled in a matrix in which windows are rows 
and spatial frequencies are columns. R-spectra directly 
express the broken-down of image variance for the har-
monic spatial frequencies of Fourier analysis. A stan-
dardized principal component analysis (PCA; Manly & 
Alberto 2016) is performed on this matrix to compare 
r-spectra and thereby texture over a very large number of 
windows. In so doing, PCA orders windows along tex-
ture gradients and very often the first axis opposes the 
coarsest textures to fine textures while the second axis 

often characterizes intermediate textures that are fre-
quently opposed to heterogeneous windows. At the end, 
we kept the first three axes of the two scales of analysis 
(1 km and 10 km windows) as new synthetic variables 
that summarize textural variation. We combined the two 
triplets of PCA axes into a general PCA of texture and use 
the resulting scores of windows as final textural features 
for use in subsequent analyses. Those scores were also 
submitted to k-means clustering into 12 textural classes.

2.3.2	� Computation of morphometric parameters 
and final classification

In addition to textural features, we selected and used 
seven morphometric criteria as to render elevation mag-
nitude and topographic variation in windows. Such crite-
ria, also derived from SRTM data (see the complete list, 
calculation methods and related references in Table 2) 
and display strong complementarity with textural features 

Fig. 2.  Workflow of the main steps of the methodology (A) and processing steps 
towards automated landform classification (B).
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(Bugnicourt et al. 2018). Under the ESRI ArcGIS 10.7.1 
® software, we calculated the terrain slope and the 
Height Above the Nearest Drainage (HAND) index, this 
last being a proxy for estimating local soil water condi-
tion (Rennó et al. 2008). Slope convexity was calculated 
using SAGA 2.3.2® software, while the other indices 
(Dissection, Altitude, Smoothness and Roughness) were 
computed by using the free statistical software package 
R 3.6.3. All the seven criteria were computed at a spa-
tial resolution of 900 m. Finally, we applied a “Global 
PCA” on the seven morphometric criteria and the six tex-
ture variables from the FOTO analysis. We pursued by a 
k-means classification with 12 output classes.

2.3.3	 Map inter-comparison
We referred to the aforementioned set of maps based 
on expert knowledge, to make comparisons with the 
results of our automated mapping approach. However, 
this comparison should not be considered as a validation 
process. First, the reference maps entail subjectivity. Sec-
ond, though integrating geomorphological reasoning, the 
authors of the maps pursued varied objectives in terms of 
areas covered and topics, which are distinct from ours. 
Yet, all the maps we used for comparison did integrate 
some geomorphological reasoning, and our aim while 
comparing is to assess to what extent our mapping is able 
to retrieve broad common geomorphic patterns whose 
mapping may be useful for a variety of topics related to 
tropical landforms and landscapes.

In order to make the existing maps comparable with 
our landform map, we had to do some reinterpretation 
work. First, some maps covering limited areas were 
too detailed such as the soil map of South Cameroon of 
Vallerie (1995) with 22 map units represented. We took 
opportunity of the explicit reference of the soil units to 
geomorphology (“morphopedological approach”: Bétard 
& Bourgeon 2009, Birkeland 1999, Gerrard 1992) to 
reduce this number of entities to 11 and renamed them 
in terms of landform units. Second, the units of the geo-
morphological map of the Central African Republic 

(Boulvert 1996) represent a mixture of geological and 
geomorphological names that are not comparable as 
such. So it was necessary to interpret some geological 
entities in terms of geomorphological units in agree-
ment with the legend of (Boulvert 1996). For instance, 
the rocks of the Precambrian complex (crystalline facies, 
crystallophyllian and basic rocks) are geologically fairly 
homogeneous and are, from a geomorphological view-
point, linked to more or less degraded elements of the 
“surface centrafricaine” (Burke & Gunnell 2008), while 
carbonate facies correspond to a low-relief karstified sur-
face belonging to the Ouganbian piedmont. We georef-
erenced and digitized parts of the South Cameroon and 
Central African Republic maps (footprints corresponding 
to our map) and the entire maps of Gabon and Central 
Africa under ESRI ArcGIS 10.7.1 ® software. We finally 
cross-referenced them with our landform map of Congo 
Basin and produced contingency tables from cross-clas-
sification. To ease the analysis of the contingency tables, 
we computed corrected frequencies (Equation 1) that 
basically are ratios of observed to expected areas in the 
cells of the contingency tables. Namely,

��� � � � � � ���
�� �� � � ��� Eq. 1

where nij is the area classified in cell i, j, ni+ is the total 
area relating to class i and vice-versa for n+j. n++ is the 
total studied area. We then considered fij-1, so that val-
ues greater than zero reflect a correspondence between 
two categories of the compared maps and vice-versa for 
negative values. We finally used a Chi-square test per cell 
(Sokal & Rohlf 1981) on the contingency tables to high-
light cells with significant departures of fij above 1 and 
corresponding positive associations between the classes 
of the two maps under comparison.

2.3.4	� Checking for possible biases from forest-
savanna mosaics

As post-hoc assessment we cross-referenced our final 
map of 12 classes with Global tree cover (treecover2010, 

Table 2.  Morphometric parameters retained in the methodology.
Criteria Factor Computation Reference
Dissection Relative elevation range (max elev. - min elev.) / mean elev. Bugnicourt et al. (2018)
Elevation Mean elevation Mean value at 900 m resolution
Convexity Mean convexity Saga: Terrain surface convexity
Smoothness Area with gentle slope Number of pixels with slope <15% Guitet et al. (2013)
Roughness Area with steep slope Number of pixels with slope >30% Guitet et al. (2013)
Slope Mean slope Mean value at 900 m resolution
HAND Height Above Nearest Drainage Mean value at 900 m resolution Rennó et al. (2008) and Guitet 

et al. (2013)
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https://glad.umd.edu/dataset/global-2010-tree-cover-
30-m, access date: 01/03/2021) which are per pixel 
(0.09 ha) estimates of percent maximum (peak of grow-
ing season) tree canopy cover derived from annual grow-
ing season composite Landsat 7 ETM+ data. We sampled 
300,000 points and produced histograms to study the 
distribution of tree canopy cover in each of our geomor-
phological classes. We thereby looked for the classes in 
which savanna–forest mosaics significantly occur, as to 
investigate to what extent variation in vegetation height 
(generally less than 40 m) may bias the geomorphic 
features that were most distinctive of a class, and may 
thereby induce a risk of confusion with other classes.

3	 Results and interpretation

3.1	 Textural gradients and classes
Both window sizes yielded analogous textural gradients 
through the PCA axes ordinating r-spectra. The first axes 
expressed a gradient between coarse vs. fine texture, 
and a second axis reflected an opposition between rather 
homogeneous patterns of intermediate texture and het-
erogeneous patterns integrating both fine and coarse tex-
ture (Appendix E). In spite of a large contrast in window 
size, the two systems of axes proved thus inter-correlated, 
though the larger window size allows integrating larger 
patterns while the smaller size enabled finer distinctions 
in the fine-grained domain. The relevance of synthetizing 
the two systems of axes through a general PCA was thus 
verified and the resulting scores provided a safe basis for 
defining textural classes through k-means clustering.

In Fig. 3, we present some arbitrarily selected win-
dows which typify the 12 textural classes as to illus-
trate the link between visual perception and shapes of 
spectra. In log-log coordinates, we expect self-similar 
patterns (i.e. fractal-like), devoid of any dominant peri-
odicity to display fairly linear spectra indicating a rapid 
concentration in spectral power (i.e. variance fractions) 
for large wavelengths (Bugnicourt et al. 2018, Couteron 
et al. 2006) as for instance with classes 6 and 11. Con-
versely, departures from a straight line point towards 
spatial periodicity through characteristic wavelengths. 
For instance, spectra displayed for classes 8, 3, 10, 2 and 
12, show a levelling-off when approaching large spatial 
wavelengths (e.g. a change in slope at ca 1 km for class 
10). This means that wavelengths just below the cut-
ting point or around the spike (e.g. class 1) concentrate 
more variance than expected for a self-similar patterns 
and thus points towards characteristic features of strong 
periodicity. This is mainly observed when approaching 
large wavelengths and therefore clearer from the larger 

window size (set B), though already perceptible with the 
smaller size (A).

3.2	� Integrating the morphometric 
parameters

Figure 4 shows the results of the Global PCA (G-PCA) 
integrating the six synthetic textural features along with 
the seven physiographic criteria (for detail of each cri-
teria, see the Table 3). The eigenvalues of the three first 
axes (Fig. 4A) reached 27%, 23% and 18% respectively, 
accounting all together for 68% of variance explained. 
The correlation circle (Fig. 4B) shows that axis 1 is 
mainly composed by Dissection, Convexity and Rough-
ness on the negative side opposed to Smoothness and 
the first axis of FOTO at 10 km scale (fine textures) on 
the positive side. The second axis mainly relates to tex-
tural features (only elevation is notably correlated) and 
mainly opposed the second and third axes of FOTO for 
the two scales 1 and 10 km. As a result, physiographic 
criteria are mainly correlated with axis 1 while textural 
features are rather correlated with axis 2, thus showing 
their complementarity.

When we projected a sampling of the 12 k-means 
classes along the two first axes of G-PCA (Fig. 4C), we 
noted that axis 1 opposed the classes “low wet plains” 
and “high wet plains” (classes 1 and 5 respectively, right 
side) to the classes “high mountain ranges” and “low-
medium mountain ranges” (classes 11 and 12 respec-
tively, left side). Classes 1 and 5 have extremely flat 
reliefs (mean slope of 3.65%, Table 3) and show high 
wetness (i.e., mean HAND = 13.4 m, Table 3). Classes 11 
and 12 are characterized by the highest elevation (mean 
of 737 m a.s.l.; Table 3) and steep slopes (mean of 29.5%, 
Table 3). Roughness, Convexity and Dissection are there 
the highest. Moreover, in terms of texture, classes 11 
and 12 show a coarser grain and spectra suggesting self-
similarity while classes 1 and 5 have spectra marked by 
small spatial wavelengths (see also Fig. 3). Axis 2 sepa-
rates the “Tablelands” represented by the classes 6 and 
4 with low roughness values (bottom, mean elevation of 
588 m a.s.l., Table 3) from the “Foothills” represented 
by Class 2 (top). Foothills are characterized by moderate 
slope gradients (16.07%, Table 3), intermediate eleva-
tions (mean of 389 m a.s.l.) and a moderate Dissection 
(0.21, Table 3). Their texture is characterized by the rela-
tive importance of patterns of intermediate wavelengths 
(1–5 km) determining humped-shaped spectra (Fig. 3). 
On the contrary, the high tablelands suggest self-simi-
larity (Fig. 3) and notably associate coarse and fine tex-
tures, while displaying high Smoothness (mean of 871.7, 
Table 3) and low Dissection (mean of 0.07 m, Table 3). 
The remaining classes located around the origin of the 
two axes show intermediate characteristics (class 7 and 

https://glad.umd.edu/dataset/global-2010-tree-cover-30-m
https://glad.umd.edu/dataset/global-2010-tree-cover-30-m
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Fig. 3.  Samples of typical windows with associated Fourier r-spectra for illustration of the 
landform classes at two scales of textural analysis: 1 km (A) and 10 km (B) for the same 
region. For both sets, the spectra expressed shares of image gray-level variance (Y-axis) 
for spatial wavelengths (abscissa, in meters). For both window sizes (A) and (B), win-
dows are ranked from fine-grained to coarse-grained patterns. Patterns characterized by 
a strong relative contribution of intermediate textures are placed in the middle of the set.
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Table 3.  Morphometric characteristics of the 12 landform classes. We used mean to describe the classes in the text. We used 
standard deviation to check that the classes were sufficiently homogeneous. Class 11 (high mountain ranges) of our map does 
not appear within the area covered by Dargie’s map; SD: Standard Deviation; * = significant p-value for positive corrected 
frequencies of Chi-square by cell test
Class Landform unit Dissection 

(m)
Convexity Elevation 

(m)
HAND  

(m)
Slope  
(%)

Smoothness Roughness

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
1 Low wet plains 0.0 0.0 40.2 5.4 327.2 40.8 9.2 15.6 3.1 0.7 898.1 11.1 0.1 1.4
2 Foothills 0.2 0.1 47.0 2.0 389.7 197.5 91.2 66.9 16.1 2.8 465.0 110.4 79.8 57.5
3 Coastal and 

interior plains
(coastal 
dominant)

0.1 0.1 43.6 2.9 311.0 177.5 27.8 26.9 7.3 2.0 824.2 67.5 1.9 5.4

4 Dissected 
tablelands

0.1 0.0 43.7 1.6 569.9 148.5 66.3 43.3 8.0 1.8 809.4 67.1 2.9 6.4

5 High wet plains 0.0 0.0 41.5 3.7 349.2 98.5 17.6 28.6 4.1 1.2 890.8 20.0 0.2 2.0
6 Tablelands 0.1 0.0 42.2 1.9 607.0 166.7 92.4 70.0 5.9 1.7 871.7 41.2 1.0 4.6
7 High hills and 

crests
0.2 0.1 45.3 1.8 592.9 249.2 159.5 120.2 13.9 2.5 564.9 104.7 55.6 45.5

8 Coastal and 
interior plains
(interior 
dominant)

0.1 0.0 42.7 2.4 399.3 123.7 33.3 28.2 5.8 1.5 866.7 38.0 0.7 3.3

9 Water 0.0 0.0 0.3 3.0 7.9 48.8 0.1 0.9 0.0 0.3 899.8 1.8 0.0 0.3
10 Low hills and 

plateaus
0.1 0.0 45.1 1.5 507.3 119.6 56.7 36.2 10.1 2.1 718.0 94.2 8.8 12.8

11 High mountain 
ranges

0.3 0.2 46.6 2.1 933.2 482.9 563.1 338.9 35.1 7.7 125.1 83.9 509.7 150.0

12 Low-medium 
mountain ranges

0.3 0.1 47.0 2.2 540.4 273.2 218.6 143.4 23.9 3.6 272.2 91.6 270.9 93.7

10). The complex of “Coastal and interior plains” (coastal 
dominant: class 3; interior dominant: class 8) is charac-
terized by an intermediate hand index (about 30.55m) 
and a fairly high smoothness index (about 845.5 m). 
These two classes (3 and 8) are very similar topographi-
cally but differ in terms of geographical location, along 
with a slightly higher mean elevation for class 8. Finally, 
class 9 corresponds to water bodies.

Overall, the results of the k-means classification 
allowed highlighting three major groups of landforms 
that are often found geographically associated. The first 
group is the mountainous ensemble, which differentiated 
through elevation, class 11 having a much higher altitude 
(933 m a.s.l., Table 3) than class 12 (540 m a.s.l., Table 3). 
The class 2 “Foothills” with an elevation of 389 m a.s.l. 
encircles this mountainous ensemble and marks the tran-
sition towards class 10 “Low hills and plateaus”. The 
second group is represented by wet and floodable plains 
in which moisture index (HAND) makes it possible to 
separate classes 1 and 5; class 1 being more often flooded 

(HAND = 9.21, Table 3) than class 5 (HAND = 17.64, 
Table 3). The last major group entails classes 3 and 8 as 
coastal and interior plains respectively in which elevation 
and moisture index are the main discriminating criteria.

3.3	� Interpreting the mapped landform 
units

The 12 landform classes of our final map (Fig. 5) can 
be interpreted in terms of geomorphological meaning 
together with some hydrological and/or pedological 
attributes. First, Class 1 “low wet plains” (dark blue) is 
mainly located in the Congo Basin stricto sensu. These 
core wetlands correspond to the lower altitudes of the 
inner plains of the basin occupied by flooded swamp 
forests with peat soils and traversed by slowly flowing 
rivers of the Congo watershed (Bwangoy et  al. 2010). 
They are very similar to the low-várzea areas of Brazilian 
Amazonia, which correspond to inundated forests, either 
permanently or seasonally (Wittmann et al. 2004). Class 
5 of our map belongs to the same group of inundated 
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landforms (“high wet plains”: light blue) but it occu-
pies areas of slightly higher elevation in the landscape 
(Table 3), in a way comparable to the high-várzea for-
ests of Amazonia only subjected to higher flood levels. 
Smaller wetlands have also been detected outside the 
“Cuvette Centrale”, such as in northwestern Congo, west 
of a watershed between the Ogooué basin and the Congo 
basin, where a flat piedmont surface is seasonally water-
logged (Unit 7.4 “Swampy plains” in (Schwartz & Namri 
2002). Non-inundated lowlands, equivalent to the terra 
firme rainforest domain of Amazonia, are represented 
at the periphery of the Central Congo wetlands (class 
8, in dark beige). These interior plains are mainly accu-
mulation surfaces filled with fluviatile and/or lacustrine 
sediments of Plio-Quaternary age, but they also include 
low-relief erosional surfaces like the karstic plains of the 
Oubangian piedmont (Mbaïki region, west of Bangui) 
and that of the Niari-Nyanga synclinorium (at the foot of 

the Chaillu mountains) as well as some very flat crystal-
line plains strewn with small inselbergs. Toward the sea, 
similar plains, locally underlain by laterite-capped terrig-
enous red beds (série des cirques: Giresse & Le Ribault 
1981), make a smooth transition with coastal plains of 
fluvio-marine origin and Quaternary age, mainly rep-
resented in class 3 (light beige). These coastal plains 
include both non-floodable and floodable areas (not all 
depicted at this scale).

Higher in the topography are the multiconvex land-
scapes of “low hills and plateaus” (class 10, in yellow), 
mainly shaped from highly weathered rocks of the gran-
ite-gneiss complexes of Precambrian age – a landform 
unit well represented in southern Cameroon and north-
ern Gabon. This monotonous surface of moderate eleva-
tion (500–700 m a.s.l.), typified by repeated patterns of 
convex hills (“half-oranges”) and locally dominated by 
rocky domes, corresponds to the “surface intérieure” 

Fig. 5.  Final map of landform classes of the Congo Basin and adjacent regions at 900 m of spatial resolution.
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described by Segalen (1967) in southern Cameroon. 
Toward the East, this topographic surface makes a transi-
tion with “dissected tablelands and mesas” (class 4, in 
orange) belonging to the “surface centrafricaine” on the 
territory of Central African Republic (Boulvert 1996), 
as part of the wider continent-scale “African Surface” 
(Burke & Gunnell 2008). Such eroded tablelands are 
often lateritic mesas developed from mafic basement 
rocks (gabbro, dolerite) above degraded, rolling “etch” 
surfaces that expose the weathering front. Other elevated 
areas of the Congo Basin margins are the large sand-
stone plateaus crowning the “surface centrafricaine” to 
the North (Carnot-Gadzi and Mouka-Ouadda plateaus) 
and adjoining the Mayombé mountains to the Southwest 
(Batéké plateaus): all of them coincide with the class 6 
of our landform map (unit “tablelands”, in light brown). 
Closely associated with the Batéké plateaus is a unit of 
“high hills and crests” (class 7, in dark green) which cor-
respond here to dissected areas located at the foot and 
south-west of the sandstone caprock. This unit occurs 
in other parts of the study area where it usually forms a 
system of Appalachian-like ridges and valleys shaped by 
differential erosion in alternating quartzite-schist folded 
bands (southernmost Cameroon, southeastern Central 
African Republic). The highest reliefs of the study area 
are found to the West, where they constitute a quasi-con-
tinuous N-S trending mountain range forming a marginal 
swell on the western flank of the Congo Basin (Burke & 
Gunnell 2008, Petit 1990). It includes low- and medium-
elevation mountain ranges (i.e., class 12, in dark brown) 
like the Chaillu and Mayombé massifs (600–1,200 m 
a.s.l.) together with the west-facing escarpments bound-
ing the “surface intérieure” of Cameroon and other inner 
scarps. It also comprises the highest mountains and 
volcano-capped swells of the Cameroon Volcanic Line 
(i.e., “High mountain ranges” for class 11, in black), dis-
playing the highest average values of altitude, slope, dis-
section and roughness (Table 3). The last landform unit 
(class 2, in light green) encompasses an intermediate 
landscape of foothills at the interface between mountains 
and dissected tablelands, hilly areas or coastal plains – a 
unit well represented around the Chaillu and Mayombé 
massifs.

3.4	 Comparing with existing maps
At fine scale in South of Cameroon (1:500 000), and 
despite the detailed typology of the morphopedological 
map of Vallerie (1995), the comparison with our map is 
rather consistent (Appendix A). Logically, we note strong 
agreement between our landscape units relating to moun-
tains (classes 2, 7, 11, 12) and Vallerie’s classes relating 
to similar situations (“Residual reliefs”, “high complex 
hills”, “convex hill with narrow valley”, “relatively 

rugged hill”). We also note large agreement between 
two of our units linked to plains (classes 5, 8) and the 
“Small low hill or slightly undulating plateau”, “Plain” 
and “Convex hill or plain” Vallerie’s classes, while the 
third unit (class 3) matches only with the “Plain” Val-
lerie’s class. Our most extensive unit 10, made of the 
multiconvex landscapes of “Low hills and plateau”, also 
matches with the most extended Vallerie’s class “Hill 
with heavily/widely undulating plateaus”. Despite these 
agreements, we note that our landscape units relating to 
tablelands (classes 4, 6), including our second most rep-
resented class “Dissected tablelands”, were dispatched 
into different Vallerie’s classes that have little connection 
with tablelands. This reflects the fact that Vallerie has not 
defined any typical tableland-related landscapes.

At a medium scale (1:1 000 000), our classification 
and the geomorphological map of the Central African 
Republic (Boulvert 1996) appeared consistent (Table 4, 
Fig. 6). We note strong agreement between our most 
extended unit 6 “Tablelands” and Boulvert’s classes 
(“Scarp with concave shape”, “Interfluves of the sand-
stone plateau” “Valleys of the sandstone plateau”) that 
specify the different landscape subunits of these “Table-
lands”. We note large agreement between our landscape 
units relating to high hills and crests (7) and the two 
Boulvert’s classes relating to similar situations (“Scarp 
with convex shape”, “Scarp with concave shape”). We 
also note large agreement between three of our units 
linked to plains and water (classes 3, 5, 8) and the “Pied-
mont surface”, “Alluvium-Filled Valleys”, and “Water” 
Boulvert’s classes. Surprisingly, we did not find any sig-
nificant agreement between our units linked to water and 
“Water” Boulvert’s class. We note that the most extended 
Boulvert’s class (i.e. “Centrafrican surface”) is distrib-
uted in three of our classes (4, 7, 10). This reflects the 
fact that Boulvert (1996) had grouped together different 
landscape units in this class, such as dissected tablelands, 
multiconvex low hills, and high hills and crests.

At a larger scale (1:2 000 000), our classification and 
the geomorphological map of the Gabon (Martin et  al. 
1981) appeared also consistent (Appendix B). Logically, 
we note strong agreement between our landscape units 
relating to mountains and their foothills (classes 2, 11, 
12) and Martin’s classes relating to similar situations 
(“Lambarene, Koumouna and Mayombe mountains”, 
“Crystal and Ndjole mountains”, “Chaillu mountains”). 
We also note large agreement between our units linked 
to water and plains (classes 1, 3, 5, 8, 9) and the “Coastal 
sedimentary basin” and “Ngounie-Nynaga synclinal” 
Martin’s classes. Our second most extended unit 10, 
which are the multiconvex landscapes of “Low hills and 
plateau”, also matches with the most extended Martin’s 
class “Northern and northeastern plateaus”.
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At the Cuvette Centrale wetlands in the Congo basin, 
our classification and the probability map of vegetation 
types (Dargie et al. 2017, scale at 1:9 000 000) appeared 
consistent (Appendix C). Logically, we note strong 
agreement between our landscape units relating to low/
high wet plains (classes 1, 5) and Dargie’s classes relat-
ing to swamps (“Hardwood swamp” and “Palm-domi-
nated swamp”), and water or savanna. We also note that 
the most extended Dargie’s class (i.e. “Terra firme for-
est”) is distributed in most of our classes (2, 3, 4, 6, 7, 
10) outside the water and wet plains. This Dargie’s class 
is relatively less distributed in our class 8 that we inter-
preted as non-inundated lowlands of savanna or forest 
and which indeed display rather balanced areas of these 
two vegetation types (see below).

The global scale topography 18-fold classification 
of Iwahashi and Pike (2007) at scale of 1:100 000 000 
also agrees with our classification (Appendix D). For 
example, we note a large agreement between, on the one 
hand, our landscape units relating to low/high wet plains 
(classes 1, 5) and Iwahashi and Pike’s classes relating to 
gentle slope and, on the other hand, our landscape units 
relating to mountains (classes 7, 11, 12) and Iwahashi 
and Pike’s classes relating to steep slopes.

3.5	� Possible influences of forest-
savanna mosaics

A first subset of our classes showed overwhelming domi-
nance of a single vegetation type (most frequently for-
est, classes 1, 2, 3, 5 and 10), but also grassland (class 
9) that precludes significant impact of vegetation height 
variability on our morphometric analysis (Appendix F). 
Among the classes that displayed both forest (high cover) 
and savanna vegetation (intermediate cover), we found 
several of them related to mountains and crests (classes 
7, 11, 12) or tablelands either dissected (class 4) or not 
(class 6). Having the distinctive criteria of these classes 
(e.g., high average elevation, dissection amplitude) being 
affected by vegetation height variations of 40 m or less 
is unlikely. Only class 8 (‘Coastal and interior plains 
(interior dominant)’) simultaneously entailed savanna 
and forest vegetation along with geomorphic signatures 
liable of being biased by vegetation height. Also singling 
out this class was the difficulty to separate floodable and 
non-floodable areas in a context of low relief energy. 
Class 8 is thus to remain under scrutiny, but apart from 
it, this analysis indicates that biases resulting from can-
opy variations are likely to be of limited influence on the 
quality of the final map.

Table 4.  Cross-classification table showing the comparison between our landform map and the geomorphological map of 
Central African Republic by Boulvert (1996). Corrected frequencies are expected to be around zero in case of independence 
between rows and columns, while a positive departure in a cell indicates association between the corresponding cells and vice 
versa for a negative departure. CvxS: Convex Scarp, CcvS: Concave Scarp, ISP: Interfluves of Sandstone Plateaus, VSP: 
Valleys of Sandstone Plateaus, CS: Centrafrican Surface, LM: Lateritic Mesas; BL: Basement Landforms, AFV: Alluvium-Filled 
Valleys, PS: Piedmont Surface. * = significant p-value for positive corrected frequencies of Chi-square by cell test
Present study Geomorphological units in Central African Republic, Boulvert (1996)
Class Landform units CvxS CcvS ISP VSP CS LM BM AFV Water PS % area
7 High hills and crests 6.26* 2.01* -0.82 0.46* -0.23 -0.28 -1.00 -0.96 -0.97 7.03
12 Low-medium mountain 

ranges edges
8.07* -1.00 -0.99 -0.96 0.67 -0.65 -1.00 -1.00 -0.97 -0.82 0.41 Coastal 

and interior 
plains
(coastal 
dominant)

6 Tablelands -0.51 0.19* 0.62* 0.22* -0.17 0.09 -0.49 -0.78 -0.75 -0.72 54.96
2 Foothills 3.31 -1.00 -1.00 -1.00 1.14 -1.00 -1.00 -1.00 -0.52 -0.93 0.15
4 Dissected tablelands -0.21 -0.44 -0.63 0.09* 0.65* 0.14* 1.75* 0.40* -0.36 -0.63 19.86
10 Low hills and plateaus -0.49 -0.93 -0.86 0.06 0.24* -0.71 2.19 3.33* 1.75* 0.60* 1.83
8 Coastal and interior plains 

(interior dominant)
-0.93 -0.83 -0.87 -0.60 -0.38 -0.14 -0.49 2.25* 3.17* 3.12* 12.22

5 High wet plains -0.99 -1.00 -0.84 -0.67 -0.89 -0.61 -1.00 4.00* 2.03* 6.66* 1.98
1 Low wet plains -1.00 -1.00 -1.00 -1.00 -0.76 -1.00 -1.00 -1.00 6.57 3.49 0.01
3 Coastal and interior plains 

(coastal dominant)
-1.00 -1.00 -1.00 -0.97 -0.96 -0.88 -0.74 0.57* 6.23* 4.49* 1.55

(coastal dominant)
9 Water -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 11.14 0.54 0.01

%area 3.76 1.28 27.72 9.58 37.27 4.14 0.42 0.53 7.21 8.10 100.00



Automated landform classification and mapping      

Fig. 6.  Comparison between the geomorphological map of Central African Repub-
lic (A) by Boulvert (1996) and our landform map (B) in a small area centered on the 
Carnot-Gadzi plateau, west of Bangui.
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4	 Discussion

The method used in this paper heavily relied on a two-
scale textural analysis of Fourier 2D periodograms 
through the r-spectra (FOTO) method (Couteron et  al. 
2006) which confirmed here its effectiveness for land-
form depiction and mapping at very large (subcontinen-
tal) scales after the regional mapping of (Bugnicourt et al. 
2018). A drawback commonly attributed to automated, 
geomorphometric analysis based on DEM datasets is the 
a priori definition of window size for the derivation of 
morphometric variables (Józsa & Fábián 2016). The size 
of the window determines the scale of the mapping and 
the overall detection of landforms, with a risk of gen-
eralization of smaller surface details or the elimination 
of larger landform elements, so changing the extent of 
window size can completely change the output results. 
In our methodology, we proceeded with a multi-scale 
processing of SRTM data, with two contrasted window 
sizes (ca 1 km and ca 10 km), when applying the textural 
analysis through Fourier 2D periodograms. Their spatial 
combination allowed the definition of new synthetic vari-
ables that summarize textural variation beyond any scale 
dependency. In spite of an important contrast in window 
size, we found inter-correlated texture features (FOTO 
PCA scores) between the two scales that thus appeared 
as robust, synthetic geomorphic signatures, with lim-
ited dependence on window size. Such texture features 
directly underlain one of the two main gradients (verti-
cal axis in Fig. 4C) expressed in our map that opposed 
classes having textures with strong contributions of 
intermediate grain (top, Fig. 4C; hump-shaped spectra 
in Fig. 3) to those with heterogeneous textures (bottom; 
straight spectra in Fig. 3). Illustrations provided in Fig. 3 
make apparent that the largest window size is overall 
more efficient to distinguish between patterns, though the 
smaller size may be more accurate to depict fine-grained 
textures characterizing certain classes.

The major advantage of the textural analysis is that 
it offers the opportunity to characterize “geometric sig-
natures” (Pike 1988) conducive to the identification of 
“landform types” (MacMillan et  al. 2000). Therefore, 
the method directly permitted the detection of land-
form assemblages (for example, hilly landscapes), and 
bypassed the delineation of elementary forms (e.g., 
individual hills). Through r-spectra shapes (e.g. in log-
log scaling, Fig. 3) it also provides characteristics of 
certain families of landform assemblages. In both Bug-
nicourt et al. (2018), and the present study, multi-convex 
assemblages displayed humped shaped-spectra that point 
towards ranges of characteristics wavelengths, while 
spectra from mountainous systems and dissected table-
lands tended to be straighter reflecting intricate patterns 
of very variable sizes that are barely distinguishable from 

self-similarity. There is thus a potential for comparison 
and generalization between geographic regions.

However, a DEM resolution of ~30 m did not allow 
the detection of landform types of minor extent such 
as tidal plains covered with riparian mangrove fringe, 
which were difficult to separate from the rest of the 
coastal plains. The lack of topographic variation in such 
configurations of low-altitude plains is a classical prob-
lem in general geomorphometry (Evans 2012). In the 
Congo Basin, this difficulty was pointed by Bwangoy 
et al. (2010) in their attempt to discriminate the wetland 
areas from non-inundated (terra firme) lowlands. The 
same difficulty arises from our work in local situations 
of very low relief topography (coastal areas, central 
basin), despite the use of a specific index (HAND index: 
Rennó et al. 2008) in order to discriminate wetlands and 
non-wetlands. This difficulty is partially a scale-depen-
dent problem, because the SRTM DEM is probably too 
coarser in spatial and vertical resolution to detect minor 
elevation changes. Moreover, strong spatial variations in 
vegetation height can easily blur such small changes. But 
it appeared in our case that savanna-forest landscapes 
are barely notable in about half of our classes, which are 
mainly covered by close canopy forests. Such mosaic 
landscapes also seem unlikely significantly biasing the 
geomorphic signatures of most of the remaining classes, 
which relate to ranges of elevation variability clearly 
above maximal contrast in vegetation height. Only one 
class among 12 (#8, ‘Coastal and interior plains (interior 
dominant)’) is to remain under scrutiny as liable to be 
locally affected by forest-savanna landscapes in some of 
the areas where we detected it. However, we can overall 
consider that canopy variation is probably of low influ-
ence on the geomorphic features at the grain size we used, 
especially when applying the textural analysis (window 
sizes of 1 km and 10 km).

Despite these limitations related to the coarse reso-
lution of the SRTM data and to the macroscopic scale 
of our mapping, we globally noted a good agreement 
for categories relating to wetlands with existing maps 
of greater resolution and smaller extents, including the 
coastal areas of Cameroon and Gabon where our flood-
able units are largely reminiscent of mapped vegetation 
wetlands (Aldous et al. 2020) though our map logically 
provides coarser outlines. More broadly, we were able to 
verify the working hypothesis that our landform map is 
able to retrieve the main interpretable geomorphic fea-
tures of the different existing maps despite their vary-
ing aims and methods. The observed differences mainly 
depend on the map resolution and the typology adopted 
in the legend classification given rise to landform classes 
with different names and spatial extents. They also 
appear where an author emphasized an aspect that has no 
direct expression in geomorphometry (e.g. geology) or 
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for units that merge heterogeneous landforms (e.g. Boul-
vert’s Centrafrican surface).

Various applications may directly arise from our 
automatic method of landform classification and map-
ping. In the field of pedology, it could serve as a strong 
basis for predicting and mapping soil units at the land-
scape scale, given the close soil-landform imbrications 
and interactions at the catena level (Birkeland 1999, Ger-
rard 1992, Schaetzl & Anderson 2005). Geomorphology 
is acknowledged as a proxy for soil properties because 
it incorporates the combined effects of geology, climate 
and erosion on soil development (Guitet et al. 2015b). In 
fact, several of extant maps used landforms as proxies 
for soil catenas or for dominant soil types. Comparison 
with these existing maps (Table 4, Appendices A to D) 
indicated a strong correlation between our landform units 
and the soil units depicted on the basis of expert-based 
geomorphological analyses. With the help of automated 
processing of freely available data (SRTM DEM), our 
method may offer an alternative to the time-consuming, 
rather subjective task of manual mapping and/or aerial 
photointerpretation of landforms beneath canopy, in order 
to prepare robust soil maps at large or regional scales. In 
the broader scope of biological conservation aims and 
strategies, our method of landform depiction could also 
be applicable for predicting biodiversity metrics and pat-
terns, since it is widely accepted that geomorphodiver-
sity underpins biodiversity (Burnett et al. 1998, Nichols 
et al. 1998, Tukiainen et al. 2019) and modulates forest 
structure properties (Gourlet-Fleury et  al. 2011, Guitet 
et al. 2015a). Moreover, particular landform systems that 
reflect tectonic and climate stability are known to harbor 
specific biodiversity patterns (Guitet et  al. 2016, Ham-
mond 2005). These results obtained in the neotropics 
deserve further investigation in Africa.

5	 Conclusion

The initially stated aim of this research was to test an 
adapted version of the automatic method proposed 
by Bugnicourt et  al. (2018), in order to classify and to 
map landforms in a very large area (i.e. subcontinen-
tal scale) centered on the Congo Basin, Central Africa. 
Results from this study demonstrate the usefulness of a 
combined approach involving texture analysis (FOTO 
method) and morphometric calculations, with the SRTM 
dataset serving as input for deriving Fourier r-spectra and 
topographic indices. Our cartographic results match the 
main patterns of existing geomorphological maps and 
classifications, and the statistical evaluation indicates 
that most of our landform classes share the interpreta-
tions of expert-mapped units at different scales. In order 

to better discriminate wetlands and non-wetlands in local 
contexts of very low relief such as the coastal areas or the 
inner central basin, further investigations based on finer-
resolution DEM and some hydrological metrics will be 
necessary for producing more precise maps of floodable 
areas. Future work will also be dedicated to the inclu-
sion of the landform map results into wider objectives of 
using environmental predictors to infer soil units, forest 
types, forest structure, forest biomass and carbon storage 
at the scale of the whole Congo Basin.

An interesting prospect to improved applications of 
the method is the release of recent global databases on 
earth surface altimetry, notably ALOS World 3D (https://
portal.opentopography.org/raster?opentopoID=OTA
LOS.112016.4326.2, acces date: May 24th 2021) which is 
reported as more reliable than the SRTM, specifically, for 
deriving hydrological networks and indices of the HAND 
type (Courty et al. 2019), even though ALOS World 3D 
is also a DSM and not a DTM.

So far, our method has been applied and tested in two 
different areas of the humid tropics, in the Eastern Guiana 
shield (Bugnicourt et al. 2018) and in Central Africa (this 
study). We believe our method is sufficiently generic to 
help with most landform systems on Earth since it built 
and developed in accordance with the fundamental idea 
of Iwahashi & Pyke (2007) that automatically extracted 
texture information is useful for global mapping of land-
forms. We however acknowledge that most of our experi-
ence is thus far centered on old cratons in tropical regions 
where mountain systems are quite marginal. Addressing 
low-relief regions in other morphoclimatic zones (e.g. 
cold regions: Patagonia, Scandinavia) or younger relief 
systems may request adapting window sizes for texture 
or refining some of the geomorphic criteria.

Acknowledgements: This work is part of the International 
Joint Laboratory “DYnamics of land eCOsystems in Central 
Africa in a context of global changes: IJL DYCOFAC”. The 
mapping presented in this paper is part of the 3DFORMOD 
project ‘Combining remote sensing and 3D forest modelling to 
improve tropical forests monitoring of GHG emissions’ (EU-
H2020 – FACCE ERA-GAS, grant agreement No 696356). We 
also acknowledge synergies with the DynAfFor project sup-
ported by a French Fund for the Global Environment (grant 
numbers Nos. CZZ1636.01D and CZZ1636.02D).

References

Aldous, A., Schill, S., Raber, G., Paiz, M. C., Mambela, E., & 
Stévart, T. (2020). Mapping complex coastal wetland mosa-
ics in Gabon for informed ecosystem management: Use of 
object‐based classification. Remote Sensing in Ecology and 
Conservation, 7(1), 64–79.https://doi.org/10.1002/rse2.161

https://portal.opentopography.org/raster?opentopoID=OTALOS.112016.4326.2
https://portal.opentopography.org/raster?opentopoID=OTALOS.112016.4326.2
https://portal.opentopography.org/raster?opentopoID=OTALOS.112016.4326.2
https://doi.org/10.1002/rse2.161


        G. Viennois et al.

Amatulli, G., Domisch, S., Tuanmu, M.-N., Parmentier, B., 
Ranipeta, A., Malczyk, J., & Jetz, W. (2018). A suite of 
global, cross-scale topographic variables for environmental 
and biodiversity modeling. Scientific Data, 5(1), 180040. 
https://doi.org/10.1038/sdata.2018.40

Bétard, F., & Bourgeon, G. (2009). Cartographie morpho-
pédologique: De l’évaluation des terres à la recherche 
en géomorphologie. Géomorphologie Relief Processus 
Environnement, 15, 187–198.

Birkeland, P. W. (1999). Soils and geomorphology. New York: 
Oxford University Press.

Boulvert, Y. (1996). Etude géomorphologique de la République 
Centrafricaine: carte à 1/1000000 en deux feuilles Ouest 
et Est.

Bourgine, B., & Baghdadi, N. (2005). Assessment of C-band 
SRTM DEM in a dense equatorial forest zone. Comptes 
Rendus Geoscience, 337(14), 1225–1234. https://doi.
org/10.1016/j.crte.2005.06.006

Bugnicourt, P., Guitet, S., Santos, V. F., Blanc, L., Sotta, E. D., 
Barbier, N., & Couteron, P. (2018). Using textural analy-
sis for regional landform and landscape mapping, Eastern 
Guiana Shield. Geomorphology, 317, 23–44. https://doi.
org/10.1016/j.geomorph.2018.03.017

Burke, K. (2001). Origin of the Cameroon line of volcano-
capped swells. The Journal of Geology, 109(3), 349–362. 
https://doi.org/10.1086/319977

Burke, K., & Gunnell, Y. (2008). The African erosion surface: 
A continental-scale synthesis of geomorphology, tecton-
ics, and environmental change over the past 180 million 
years. Geological Society of America, 201, 1–66. https://
doi.org/10.1130/2008.1201

Burnett, M. R., August, P. V., Brown, J. H., & Killingbeck, 
K. T. (1998). The influence of geomorphological het-
erogeneity on biodiversity I. A patch-scale perspec-
tive. Conservation Biology, 12(2), 363–370. https://doi.
org/10.1046/j.1523-1739.1998.96238.x

Bwangoy, J.-R. B., Hansen, M. C., Roy, D. P., De Grandi, G., & 
Justice, C. O. (2010). Wetland mapping in the Congo Basin 
using optical and radar remotely sensed data and derived 
topographical indices. Remote Sensing of Environment, 
114(1), 73–86. https://doi.org/10.1016/j.rse.2009.08.004

Courty, L. G., Soriano-Monzalvo, J., & Pedrozo-Acuna, A. 
(2019). Evaluation of open‐access global digital elevation 
models (AW3D30, SRTM, and ASTER) for flood model-
ling purposes. Journal of Flood Risk Management, 12(S1), 
e12550. https://doi.org/10.1111/jfr3.12550

Couteron, P. (2002). Quantifying change in patterned semi-arid 
vegetation by Fourier analysis of digitized aerial photo-
graphs. International Journal of Remote Sensing, 23(17), 
3407–3425. https://doi.org/10.1080/01431160110107699

Couteron, P., Barbier, N., & Gautier, D. (2006). Textural ordi-
nation based on Fourier spectral decomposition: A method 
to analyze and compare landscape patterns. Landscape 
Ecology, 21(4), 555–567. https://doi.org/10.1007/s10980- 
005-2166-6

Dargie, G. C., Lewis, S. L., Lawson, I. T., Mitchard, E. T., Page, 
S. E., Bocko, Y. E., & Ifo, S. A. (2017). Age, extent and 
carbon storage of the central Congo Basin peatland com-
plex. Nature, 542(7639), 86–90. https://doi.org/10.1038/
nature21048

De Matos-Machado, R., Toumazet, J.-P., Bergès, J.-C., Amat, 
J.-P., Arnaud-Fassetta, G., Bétard, F., … Jacquemot, S. 
(2019). War landform mapping and classification on the 
Verdun battlefield (France) using airborne LiDAR and mul-
tivariate analysis. Earth Surface Processes and Landforms, 
44(7), 1430–1448. https://doi.org/10.1002/esp.4586

Drăguţ, L., & Eisank, C. (2012). Automated object-
based classification of topography from SRTM data. 
Geomorphology, 141, 21–33. https://doi.org/10.1016/j.
geomorph.2011.12.001

Evans, I. S. (2012). Geomorphometry and landform mapping: 
What is a landform? Geomorphology, 137(1), 94–106. 
https://doi.org/10.1016/j.geomorph.2010.09.029

Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., 
Hensley, S., … Roth, L. (2007). The shuttle radar topogra-
phy mission. Reviews of Geophysics, 45(2).

Fayolle, A., Engelbrecht, B., Freycon, V., Mortier, F., Swaine, 
M., Réjou-Méchain, M., … Gourlet-Fleury, S. (2012). 
Geological substrates shape tree species and trait distri-
butions in African moist forests. PLoS One, 7(8), e42381. 
https://doi.org/10.1371/journal.pone.0042381

Fayolle, A., Swaine, M. D., Bastin, J.-F., Bourland, N., 
Comiskey, J. A., Dauby, G., … Plumptre, A. J. (2014). 
Patterns of tree species composition across tropical African 
forests. Journal of Biogeography, 41(12), 2320–2331. 
https://doi.org/10.1111/jbi.12382

Figueiredo, F. O., Costa, F. R., Nelson, B. W., & Pimentel, T. P. 
(2014). Validating forest types based on geological and land-
form features in central Amazonia. Journal of Vegetation 
Science, 25(1), 198–212. https://doi.org/10.1111/jvs.12078

Gerrard, J. (1992). Soil geomorphology: an integration of 
pedology and geomorphology. London: Chapman and Hall.

Giresse, P. (2005). Mesozoic–Cenozoic history of the Congo 
basin. Journal of African Earth Sciences, 43(1-3), 301–315. 
https://doi.org/10.1016/j.jafrearsci.2005.07.009

Giresse, P., & Le Ribault, L. (1981). Contribution de l’étude 
exoscopique des quartz à la reconstitution paléo-
géographique des derniers épisodes du Quaternaire littoral 
du Congo. Quaternary Research, 15(1), 86–100. https://
doi.org/10.1016/0033-5894(81)90116-2

Gourlet-Fleury, S., Rossi, V., Rejou-Mechain, M., Freycon, 
V., Fayolle, A., Saint-André, L., … Picard, N. (2011). 
Environmental filtering of dense-wooded species con-
trols above-ground biomass stored in African moist for-
ests. Journal of Ecology, 99(4), 981–990. https://doi.
org/10.1111/j.1365-2745.2011.01829.x

Guitet, S., Freycon, V., Brunaux, O., Pélissier, R., Sabatier, D., 
& Couteron, P. (2016). Geomorphic control of rain-forest 
floristic composition in French Guiana: More than a soil 
filtering effect? Journal of Tropical Ecology, 32(1), 22–40. 
https://doi.org/10.1017/S0266467415000620

Guitet, S., Herault, B., Molto, Q., Brunaux, O., & Couteron, P. 
(2015a). Spatial structure of above-ground biomass limits 
accuracy of carbon mapping in rainforest but large scale 
forest inventories can help to overcome. PLoS One, 10(9), 
e0138456. https://doi.org/10.1371/journal.pone.0138456

Guitet, S., Pélissier, R., Brunaux, O., Jaouen, G., & Sabatier, D. 
(2015b). Geomorphological landscape features explain flo-
ristic patterns in French Guiana rainforest. Biodiversity and 

https://doi.org/10.1038/sdata.2018.40
https://doi.org/10.1016/j.crte.2005.06.006
https://doi.org/10.1016/j.crte.2005.06.006
https://doi.org/10.1016/j.geomorph.2018.03.017
https://doi.org/10.1016/j.geomorph.2018.03.017
https://doi.org/10.1086/319977
https://doi.org/10.1130/2008.1201
https://doi.org/10.1130/2008.1201
https://doi.org/10.1046/j.1523-1739.1998.96238.x
https://doi.org/10.1046/j.1523-1739.1998.96238.x
https://doi.org/10.1016/j.rse.2009.08.004
https://doi.org/10.1111/jfr3.12550
https://doi.org/10.1080/01431160110107699
https://doi.org/10.1007/s10980-005-2166-6
https://doi.org/10.1007/s10980-005-2166-6
https://doi.org/10.1038/nature21048
https://doi.org/10.1038/nature21048
https://doi.org/10.1002/esp.4586
https://doi.org/10.1016/j.geomorph.2011.12.001
https://doi.org/10.1016/j.geomorph.2011.12.001
https://doi.org/10.1016/j.geomorph.2010.09.029
https://doi.org/10.1371/journal.pone.0042381
https://doi.org/10.1111/jbi.12382
https://doi.org/10.1111/jvs.12078
https://doi.org/10.1016/j.jafrearsci.2005.07.009
https://doi.org/10.1016/0033-5894%2881%2990116-2
https://doi.org/10.1016/0033-5894%2881%2990116-2
https://doi.org/10.1111/j.1365-2745.2011.01829.x
https://doi.org/10.1111/j.1365-2745.2011.01829.x
https://doi.org/10.1017/S0266467415000620
https://doi.org/10.1371/journal.pone.0138456


Automated landform classification and mapping       97

Conservation, 24(5), 1215–1237. https://doi.org/10.1007/
s10531-014-0854-8

Hammond, D. S. (2005). Guianan forest dynamics: geomor-
phological control and tropical forest change across diverg-
ing landscapes. In D.S. Hammond (eds.),Tropical forests 
of the Guiana shield: ancient forests in a modern world 
(p. 343–379). CABI Publ. Wallingford UK, https://doi.
org/10.1079/9780851995366.0343

Iwahashi, J., & Pike, R. J. (2007). Automated classifica-
tions of topography from DEMs by an unsupervised 
nested-means algorithm and a three-part geometric sig-
nature. Geomorphology, 86(3-4), 409–440. https://doi.
org/10.1016/j.geomorph.2006.09.012

Józsa, E., & Fábián, S. Á. (2016). Mapping landforms and 
geomorphological landscapes of Hungary using GIS tech-
niques. Studia Geomorphologica Carpatho-Balcanica, 50, 
19–31.

Leroux, M. (2001). The meteorology and climate of tropical 
Africa. Springer Science & Business Media.

MacMillan, R. A., Pettapiece, W. W., Nolan, S. C., & Goddard, T. 
W. (2000). A generic procedure for automatically segment-
ing landforms into landform elements using DEMs, heuris-
tic rules and fuzzy logic. Fuzzy Sets and Systems, 113(1), 
81–109. https://doi.org/10.1016/S0165-0114(99)00014-7

Manly, B. F., & Alberto, J. A. N. (2016). Multivariate statisti-
cal methods: a primer. Chapman and Hall/CRC. https://doi.
org/10.1201/9781315382135

Martin, D., Chatelin, Y., Collinet, J., Guichard, E., Sala, G.-H., 
& Le Rouget, G. (1981). Les sols du Gabon: pedogenese, 
repartition et aptitudes: cartes a 1: 2.000. 000.

Milesi, J. P., Toteu, S. F., Deschamps, Y., Feybesse, J. L., 
Lerouge, C., Cocherie, A., … Cailteux, J. (2006). An over-
view of the geology and major ore deposits of Central 
Africa: Explanatory note for the 1: 4,000,000 map “Geology 
and major ore deposits of Central Africa.”. Journal of 
African Earth Sciences, 44(4-5), 571–595. https://doi.
org/10.1016/j.jafrearsci.2005.10.016

Moudrý, V., Lecours, V., Gdulová, K., Gábor, L., Moudrá, L., 
Kropáček, J., & Wild, J. (2018). On the use of global DEMs 
in ecological modelling and the accuracy of new bare-
earth DEMs. Ecological Modelling, 383, 3–9. https://doi.
org/10.1016/j.ecolmodel.2018.05.006

Nichols, W. F., Killingbeck, K. T., & August, P. V. 
(1998). The influence of geomorphological hetero-
geneity on biodiversity II. A landscape perspective. 
Conservation Biology, 12(2), 371–379. https://doi.org/ 
10.1046/j.1523-1739.1998.96237.x

Ortuño, M., Guinau, M., Calvet, J., Furdada, G., Bordonau, 
J., Ruiz, A., & Camafort, M. (2017). Potential of airborne 
LiDAR data analysis to detect subtle landforms of slope 
failure: Portainé, Central Pyrenees. Geomorphology, 295, 
364–382. https://doi.org/10.1016/j.geomorph.2017.07.015

Panizza, M. (2009). The geomorphodiversity of the Dolomites 
(Italy): A key of geoheritage assessment. Geoheritage, 1(1), 
33–42. https://doi.org/10.1007/s12371-009-0003-z

Petit, M. (1990). Les grands traits morphologiques de l’Afrique 
centrale atlantique. Paysages Quat. L’Afrique Cent. Atl. 
Off. Rech Sci Tech O.-M. ORSTOM, Paris, p. 20–30.

Pike, R. J. (1988). The geometric signature: Quantifying 
landslide-terrain types from digital elevation models. 
Mathematical Geology, 20(5), 491–511. https://doi.org/ 
10.1007/BF00890333

Pike, R. J., Evans, I. S., & Hengl, T. (2009). Geomorphometry: 
A brief guide. Developments in Soil Science, 33, 3–30.

Proisy, C., Couteron, P., & Fromard, F. (2007). Predicting and 
mapping mangrove biomass from canopy grain analy-
sis using Fourier-based textural ordination of IKONOS 
images. Remote Sensing of Environment, 109(3), 379–392. 
https://doi.org/10.1016/j.rse.2007.01.009

Réjou-Méchain, M., Pélissier, R., Gourlet-Fleury, S., Couteron, 
P., Nasi, R., & Thompson, J. D. (2008). Regional variation 
in tropical forest tree species composition in the Central 
African Republic: An assessment based on inventories by 
forest companies. Journal of Tropical Ecology, 24(6), 663–
674. https://doi.org/10.1017/S0266467408005506

Rennó, C. D., Nobre, A. D., Cuartas, L. A., Soares, J. V., 
Hodnett, M. G., Tomasella, J., & Waterloo, M. J. (2008). 
HAND, a new terrain descriptor using SRTM-DEM: 
Mapping terra-firme rainforest environments in Amazonia. 
Remote Sensing of Environment, 112(9), 3469–3481. 
https://doi.org/10.1016/j.rse.2008.03.018

Schaetzl, R., & Anderson, S. (2005). Soils: Genesis and 
Geomorphology. Cambridge: Cambridge University Press. 
https://doi.org/10.1017/CBO9780511815560

Schwartz, D., & Namri, M. (2002). Mapping the total organic 
carbon in the soils of the Congo. Global and Planetary 
Change, 33(1-2), 77–93. https://doi.org/10.1016/S0921- 
8181(02)00063-2

Sokal, R. R., & Rohlf, F. J. (1981). Biometry: the principles and 
practice of statistics in biological research.

Tukiainen, H., Kiuttu, M., Kalliola, R., Alahuhta, J., & Hjort, J. 
(2019). Landforms contribute to plant biodiversity at alpha, 
beta and gamma levels. Journal of Biogeography, 46(8), 
1699–1710. https://doi.org/10.1111/jbi.13569

Vallerie, M. (1995). CAMEROUN, SUD – PÉDOLOGIE. 
1:500000. Atlas régional Sud-Cameroun.

Verbeeck, H., Boeckx, P., & Steppe, K. (2011). Tropical forests: 
Include Congo basin. Nature, 479(7372), 179. https://doi.
org/10.1038/479179b

Wittmann, F., Junk, W. J., & Piedade, M. T. (2004). The várzea 
forests in Amazonia: Flooding and the highly dynamic geo-
morphology interact with natural forest succession. Forest 
Ecology and Management, 196(2-3), 199–212. https://doi.
org/10.1016/j.foreco.2004.02.060

Manuscript received: December 23, 2021
Revisions requested: April 14, 2022
Revised version received: May 25, 2022
Accepted: June 2, 2022

https://doi.org/10.1007/s10531-014-0854-8
https://doi.org/10.1007/s10531-014-0854-8
https://doi.org/10.1079/9780851995366.0343
https://doi.org/10.1079/9780851995366.0343
https://doi.org/10.1016/j.geomorph.2006.09.012
https://doi.org/10.1016/j.geomorph.2006.09.012
https://doi.org/10.1016/S0165-0114%2899%2900014-7
https://doi.org/10.1201/9781315382135
https://doi.org/10.1201/9781315382135
https://doi.org/10.1016/j.jafrearsci.2005.10.016
https://doi.org/10.1016/j.jafrearsci.2005.10.016
https://doi.org/10.1016/j.ecolmodel.2018.05.006
https://doi.org/10.1016/j.ecolmodel.2018.05.006
https://doi.org/10.1046/j.1523-1739.1998.96237.x
https://doi.org/10.1046/j.1523-1739.1998.96237.x
https://doi.org/10.1016/j.geomorph.2017.07.015
https://doi.org/10.1007/s12371-009-0003-z
https://doi.org/10.1007/BF00890333
https://doi.org/10.1007/BF00890333
https://www.researchgate.net/journal/Developments-in-Soil-Science-0166-0918
https://doi.org/10.1016/j.rse.2007.01.009
https://doi.org/10.1017/S0266467408005506
https://doi.org/10.1016/j.rse.2008.03.018
https://doi.org/10.1017/CBO9780511815560
https://doi.org/10.1016/S0921-8181%2802%2900063-2
https://doi.org/10.1016/S0921-8181%2802%2900063-2
https://doi.org/10.1111/jbi.13569
https://doi.org/10.1038/479179b
https://doi.org/10.1038/479179b
https://doi.org/10.1016/j.foreco.2004.02.060
https://doi.org/10.1016/j.foreco.2004.02.060


        G. Viennois et al.

Appendices

Appendix A.  Cross-classification table with computation of corrected frequencies for comparison between our landform map 
and the soil map of South Cameroon by Vallerie (1995). CHNV: Convex Hill with Narrow Valley, HUP: Hill with heavily/widely 
Undulating Plateaus, MUH: Moderately Undulating Hill, VGUP: Very Gently Undulating Plain, SLH: Small Low Hill, SUP: 
Slightly Undulating Plateau; * = significant p-value for positive corrected frequencies of Chi-square by cell test; Classes 1 (low 
wet plains) and 9 (water) of our map do not appear within the area covered by Vallerie’s map.
Present study Soil mapping units in Southern Cameroon, Vallerie (1995)
Class Landform 

units
Residual 
relief

High
complex
hills

CHNV Relatively
rugged
hill

HUP Hill
or
plain

MUH VGUP Convex
hill or
plain

SLH
or
SUP

Plain % 
area

12 Low-medium 
mountain 
ranges

11.52* 5.62* 0.36* 0.78* -0.48 -0.70 -0.97 -0.90 -1.00 -0.94 -0.99 3.45

11 High moun-
tain ranges

0.91* 4.30 -0.01 -1.00 -0.02 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 0.33

7 High hills 
and crests

2.34* 2.28* 0.35* 3.11* -0.18 -0.50 -0.19 -0.55 -0.79 -0.83 -0.93 12.64

2 Foothills 1.78* 1.54* 0.77* 0.90* 0.05 -0.70 -0.72 -0.92 -1.00 -1.00 -1.00 1.28
10 Low hills and 

plateaus
-0.94 -0.66 -0.05 -0.75 0.24* -0.18 -0.27 -0.09 -0.73 -0.76 -0.88 41.29

4 Dissected 
tablelands

-0.79 -0.51 0.06* -0.38 -0.10 0.68* 0.62* 0.45* -0.17 -0.39 -0.25 33.40

3 Coastal 
and inte-
rior plains 
(coastal 
dominant)

-1.00 -1.00 -0.95 -0.50 0.16 -0.81 -1.00 -0.14 2.54 1.78 3.71* 0.55

6 Tablelands -0.55 -0.93 -0.77 0.40* -0.15 -0.71 0.68* -0.10 5.43* 4.86* 4.54* 2.32
8 Coastal 

and inte-
rior plains 
(interior 
dominant)

-1.00 -0.99 -0.90 0.07* -0.49 -0.66 -0.74 0.19* 7.81* 10.33* 9.44* 4.42

5 High wet 
plains

-1.00 -1.00 -1.00 -1.00 -0.98 -1.00 -1.00 -0.80 7.77* 5.44 22.81* 0.31

%area 0.86 6.43 6.68 1.93 58.71 8.55 2.99 8.71 0.73 0.82 3.59 100.00
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Appendix B.  Cross-classification table showing the comparison between our landform map and the soil map of Gabon 
by Martin (1981). CSB: Coastal Sedimentary Basin, NMS: Ngounie Nyanga Syncline, LKMM: Lambarene, Koumouna and 
Mayumbe massif, CMNM: Crystal Mountains and Ndjole Moutains, CM: Chaillu Mountains, FB: Francevilliens Basin, HHB: 
High Hills of Batéké, NP: North Plateaus. * = significant p-value for positive corrected frequencies of Chi-square by cell test
Present study Soil mapping units in Gabon, Martin et al. (1981)
Class Landform units CSB NNS LKMM CMNM CM FB HHB NP % area
9 Water 4.35* -0.95 -0.87 -1.00 -1.00 -1.00 -1.00 -1.00 1.23
1 Low wet plains 4.35 -1.00 -0.75 -1.00 -1.00 -1.00 -1.00 -1.00 0.10
5 High Wet plains 2.85* 1.23* -0.65 -0.98 -1.00 -0.97 -0.99 -0.78 1.71
3 Coastal interior plains (coastal 

dominant)
2.33* 0.61* -0.39 -0.87 -0.88 -0.26 -0.98 -0.72 16.78

8 Coastal interior plains (interior 
dominant)

-0.20 3.83* -0.47 -0.89 -0.76 -0.04 -0.65 -0.32 5.02

11 High mountain ranges -0.93 -0.44 2.21* 3.80* 1.90* -0.85 -1.00 -0.95 2.54
2 Foothills -0.10 -0.13 0.48* 0.35* 0.42* 0.45* -0.88 -0.41 22.99
12 Low-medium mountain ranges -0.93 -0.26 1.24* 1.70* 1.75* -0.15 -0.36 -0.80 16.44
7 High hills and crests -0.82 0.00* -0.33 -0.05 -0.24 1.00* 2.97* -0.18 8.51
6 Tablelands -0.78 -0.68 -0.97 -1.00 -0.92 -0.50 17.73* -0.65 1.33
10 Low hills and plateaus -0.88 -0.91 -0.93 -0.92 -0.76 -0.27 -0.81 2.00* 19.28
4 Dissected tablelands -0.96 -0.88 -0.95 -0.96 -0.89 -0.19 4.47* 1.31* 4.07

% area 18.48 9.28 4.67 5.22 17.23 14.04 4.00 27.08 100.00

Appendix C.  Cross-classification table showing the comparison between our landform map and the probability map of veg-
etation types of the “Cuvette Centrale” wetlands by Dargie et al. (2017).
Present study Probability map of vegetation types in “Cuvette Centrale”,  

Dargie et al. (2017)
Class Landform units Water Hardwood 

swamp
Savanna Palm 

swamp
Terra 
firme 
forest

% area

9 Water 143.51* -0.22 2.27 -0.61 -0.95 0.41
1 Low wet plains 0.35* 6.58* 0.32 1.04* -0.97 4.13
5 High wet plains -0.32 2.25* 1.10* 1.31* -0.63 14.82
8 Coastal interior plains (interior dominant) -0.67 -0.33 0.43* 0.51 -0.11 24.27
3 Coastal interior plains (coastal dominant) -0.94 -0.70 -0.11 -0.03 0.09* 10.63
6 Tablelands 0.16* -0.98 -0.30 -0.91 0.35* 10.54
4 Dissected tablelands -0.81 -0.97 -0.52 -0.65 0.30* 13.63
10 Low hills and plateaus -0.98 -0.99 -0.78 -0.66 0.32* 13.78
7 High hills and crests -0.87 -1.00 -0.84 -0.99 0.41* 4.92
2 Foothills -0.95 -1.00 -0.92 -0.99 0.42* 2.69
12 Low-medium mountain ranges -1.00 -1.00 -0.97 -1.00 0.42 0.17

% area 0.49 7.34 3.76 18.08 70.28 100.00
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Appendix D.  Cross-classification table showing the comparison between our landform map and the 18-classes topographic 
map of Africa by Iwahashi & Pike (2007). * = significant p-value for positive corrected frequencies of Chi-square by cell test
Present Study 18-classes topographic map in Africa, Iwahashi and Pike (2007)

Class Landform 
units

18 17 16 14 12 10 15 13 8 11 6 9 7 5 4 2 1 3 % 
area

9 Water 12.0* 3.1* -1.0 -1.0 -1.0 -1.0 -0.9 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 6.2

1 Low wet 
plains

-0.8 12.5* 34.2* 21.5* 0.4 -0.4 -0.7 -0.7 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1.4

5 High wet 
plains

-0.3 5.1* 6.1* 8.5* 7.2* 7.2* 2.5* 1.8* 0.9* -0.1 0.5* -0.5 -0.9 -0.9 -0.9 -0.9 -1.0 -1.0 6.1

3 Coastal 
interior 
plains 
(coastal 
dominant)

-0.5 -0.1 -0.7 -0.5 -0.2 0.1* 1.9* 1.8* -0.3 0.6* -0.8 0.5* -0.5 -0.7 -0.8 -0.9 -1.0 -0.9 7.2

8 Coastal 
interior 
plains 
(interior 
dominant)

-0.5 -0.5 -0.7 -0.7 1.5* 0.8* 1.1* 0.4* 2.5* 1.2* 1.2* 0.3* 0.0 -0.4 -0.3 -0.8 -0.9 -0.9 15.7

10 Low 
hills and 
plateaus

-0.9 -1.0 -1.0 -1.0 -1.0 -1.0 -0.2 0.4 -1.0 0.2* -0.9 0.8* -0.1 0.0 -1.0 -1.0 -0.9 -0.9 10.4

4 Dissected 
tablelands

-0.9 -1.0 -1.0 -1.0 -1.0 -1.0 -0.4 -0.2 -0.8 0.1* -0.9 0.3* 0.3* 0.4* -0.9 -0.9 -0.7 -0.8 15.9

2 Foothills -0.8 -0.7 -1.0 -1.0 -1.0 -1.0 -0.7 -0.5 -0.8 -0.2 -0.9 -0.1 0.9* 0.4* 0.2* -0.6 -0.1 0.5* 4.6

6 Tablelands -0.9 -0.9 -1.0 -0.9 -0.9 -0.4 -0.8 -0.5 0.0 -0.4 1.4* -0.1 0.2* 0.8* -0.3 0.5* 0.1* -0.5 20.4

7 High hills 
and crests

-0.9 -1.0 -1.0 -1.0 -1.0 -1.0 -0.9 -0.9 -0.7 -0.7 -0.7 -0.8 0.7* 0.3* 4.0* 3.1* 3.4* 2.8* 6.9

12 Low-
medium 
mountain 
ranges

-0.9 -0.9 -1.0 -1.0 -1.0 -1.0 -0.9 -1.0 -0.9 -0.8 -0.9 -0.9 0.2* -0.3 3.9* 4.6* 5.2* 7.1* 3.8

11 High 
mountain 
ranges

-1.0 -0.9 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -0.9 -1.0 -1.0 -1.0 -0.7 -0.9 7.3* 8.4* 7.7* 10.9* 1.5

% area 7.6 0.2 1.4 1.8 0.2 0.3 4.2 9.8 0.1 6.9 0.2 20.0 11.0 27.3 0.1 0.2 4.5 4.2 100.0
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Appendix E.  Specific PCA analyses on r-spectra used in FOTO: Correlation circles and illustration using arbitrary windows of 
texture gradients along axes 1 and 2 for windows of 1 km (A) and 10 km (B).
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Appendix F.  Histogram of tree cover (in percent, per pixel) for each class of our landform map.


