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Abstract
Purpose of the Review Many LiDAR remote sensing studies over the past decade promised data fusion as a potential avenue 
to increase accuracy, spatial-temporal resolution, and information extraction in the final data products. Here, we performed 
a structured literature review to analyze relevant studies on these topics published in the last decade and the main motiva-
tions and applications for fusion, and the methods used. We discuss the findings with a panel of experts and report important 
lessons, main challenges, and future directions.
Recent Findings LiDAR fusion with other datasets, including multispectral, hyperspectral, and radar, is found to be useful 
for a variety of applications in the literature, both at individual tree level and at area level, for tree/crown segmentation, 
aboveground biomass assessments, canopy height, tree species identification, structural parameters, and fuel load assessments 
etc. In most cases, gains are achieved in improving the accuracy (e.g. better tree species classifications), and spatial-temporal 
resolution (e.g. for canopy height). However, questions remain regarding whether the marginal improvements reported in 
a range of studies are worth the extra investment, specifically from an operational point of view. We also provide a clear 
definition of “data fusion” to inform the scientific community on data fusion, combination, and integration.
Summary This review provides a positive outlook for LiDAR fusion applications in the decade to come, while raising ques-
tions about the trade-off between benefits versus the time and effort needed for collecting and combining multiple datasets.
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Introduction

Forest ecosystems are often characterized in terms of struc-
ture, composition, and functions [1]. Light Detection and 
Ranging (LiDAR) remote sensing (RS) has substantially 
improved our understanding of forest structure around the 
world in recent decades [2–5]. LiDAR instruments provide 
explicit three-dimensional (3D) data that have enabled 
measurements of forest structure parameters such as canopy 
height, leaf area index, and diameter at breast height across 
different scales with unprecedented accuracy [6–8].

LiDAR data can be collected from a variety of sensors and 
platforms, resulting in a range of 3D data types (mostly point 
clouds), with different point densities, accuracies, and perspec-
tives. Common LiDAR sensors can be mounted on different 
platforms including ground-based, both fixed and mobile 
[3, 9], airborne with unoccupied aerial vehicles (UAVs or 
drones), helicopters, and airplanes [10, 11], and space-based 

from satellites or the international space station [7, 12, 13]. 
The cross-scale LiDAR data collection has enabled many 
applications of tree and forest measurements, including forest 
inventories and biomass estimates [14, 15], species and habi-
tat classification, biodiversity assessment [16, 17], forest fuel 
estimates [18] and detailed 3D reconstruction of trees [19, 20].

While LiDAR instruments have developed rapidly and 
extensively, the data continue to have limitations. For exam-
ple, ground-based LiDAR data might not record all trees and 
tree tops due to occlusion [21]. Conversely, airborne and spa-
ceborne LiDAR instruments can measure the top of the cano-
pies and, in some cases, forest vertical structure, but rarely 
capture stems below canopies [22]. Moreover, LiDAR is spe-
cifically used to gather information on vegetation structure, 
but provides limited information on other important drivers 
of forest ecosystems, composition, and functioning. These 
limitations have resulted in a rapid increase in data fusion 
approaches, in which data from various instruments can be 
merged together (multi-sensor approach) to enhance the data 
and their application potential.Extended author information available on the last page of the article
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Various definitions of data fusion have been proposed [23, 
24]. Here, we focus on multi-source or multi-sensor LiDAR 
data fusion, defined as “the merging of data or derived fea-
tures from different sources (instruments/devices), of which at 
least one is LiDAR data, to improve the information content 
of the data sources and enable enhanced forest observations". 
Multi-sensor data fusion approaches have been deemed useful 
in overcoming measurement and sampling limitations from 
the original dataset to the final information extraction [25].

This review paper aims to summarize the current state-of-
the-art LiDAR data fusion approaches for forest observations 
and identify main challenges that need to be addressed to move 
forward. We consider two levels of multi-sensor data fusion in 
this review: (1) data-level fusion, and (2) feature-level fusion. 
In data-level fusion, raw datasets from various sources are 
combined into one dataset or product (e.g. merging of two 
LiDAR point clouds, one collected with ground-based LiDAR 
and the other with unoccupied vehicle laser scanner (ULS)) 
[26]. In feature-level fusion, features extracted from various 
data sources individually are merged into new features or vec-
tors (e.g. merging of structural parameters from LiDAR with 
coincident spectral parameters from hyperspectral (HS) data 
to derive a species classification) [27, 28].

This paper includes two major components. The first 
component provides a structured literature review on LiDAR 
data fusion addressing the following questions:

– What are the trends in LiDAR data fusion in the last decade?
– What are the main motivations and applications of 

LiDAR data fusion?
– What are the main methods used to perform data fusion?
– What are the main gains of LiDAR data fusion?

The literature review was then analyzed by a team of 11 
international experts to address the following key questions:

– What is ‘data fusion’ and how should this term be used 
in our community?

– What are the most important lessons learned about data 
fusion in forest observations?

– What are the main challenges in data fusion for opera-
tional applications?

– What should the community focus on to move data fusion 
forward?

The experts in the team were assembled through the EU 
COST Action 3DForEcoTech; an EU initiative to bring 
together all experts on LiDAR data for forestry within the 
EU. An open call was held to solicit scientists interested in 
collaborating on this literature review. The final team was 
assembled to encompass all expertise required for address-
ing the key questions, including scientists with expertise 
on all types of LiDAR (mobile, terrestrial, airborne and 

spaceborne) and fusion with all common datasets assessed 
here (multispectral, hyperspectral, and radar).

Structured Literature Review Method

We used the Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses (PRISMA) approach [29, 30]. The follow-
ing search terms were used in the Web of Sciences database: 
LiDAR AND fus* (Topic) and forest* OR tree OR canop* 
(Topic) and structure OR height OR inventory (Topic). We 
included literature from the last decade between January 2014 
- May 2023, published in English language, and with a publi-
cation status of ‘article’ or ‘review article’. As defined in the 
introduction, we focused on multi-sensor data fusion. We did 
not consider studies that included a combination of two datasets 
from the same sensor collected at different times or at different 
locations. By limiting our search to only include the term ‘data 
fusion’ and no alternative search words, such as ‘data integra-
tion’ or ‘data combination’ (that may refer to the same process), 
we demonstrate how ‘data fusion’ is specifically used in the last 
decade. In the Discussion sub-section Data fusion, we further 
discuss the term ‘data fusion’ in relation to other terms with a 
potentially similar meaning in the LiDAR context.

Literature Search Results

The Web of Science query resulted in 664 papers (Fig. 1). 
Of these, 407 adhered to the eligibility criteria defined above 
(2014-2023, English, article or review). The abstracts of 
these 407 papers were screened by two independent review-
ers, who decided whether to include or exclude a paper 
based on two criteria: (1) some aspect of trees/forest, rel-
evant to forestry applications, was assessed, and all papers 
that solely studied crops, infrastructure or buildings were 
eliminated, and (2) the fusion must include LiDAR data.

Extracting Information from Literature

We developed a coding scheme to organize the information in 
the 151 papers in a comprehensive and understandable fashion 
that addressed the four main research questions. The coding 
scheme consisted of five main categories: general informa-
tion, geographic location, survey area, data characteristics, and 
survey goals (Table 1). In the category ‘general information’, 
we included the most pertinent information, so the paper could 
be relocated for later analysis. In ‘geographic location’, we 
included information on the continent and country/countries 
of the study areas. Regarding ‘survey area’, we included survey 
scale (i.e. global or local) and forest stand (i.e. type of vegeta-
tion surveyed). In ‘data characteristics’, we included informa-
tion on the LiDAR platform used, as well as the sensor's name 
and type. We also recorded the datasets that were fused with 
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the LiDAR dataset. Within ‘survey goals’, we included infor-
mation on the application for which the fusion was used, the 
motivation (aim) for the fusion (e.g. increasing spatial reso-
lution of data product), the type of method used to fuse the 
datasets, and reported gain of the fusion process.

Trends in Data Fusion Literature

The number of publications concerning LiDAR data fusion 
for forests demonstrates a slight general upward trend over 
the last 10 years, especially in 2022 (Fig. 2). LiDAR data 
from airborne platforms were most commonly used. These 
airborne platforms include both instruments mounted on 
UAVs and occupied aircrafts. Fusion with data from terres-
trial platforms, including terrestrial laser scanners (TLSs) 
and mobile laser scanners (MLSs), seems to be emerging 
in recent years, starting in 2016. Generally, there has been 
a slightly increasing trend in the use of spaceborne LiDAR 
sensors, with satellite papers published in 2016 and 2017 
employing data from ICESat/GLAS and the papers published 
after 2018 with data from ICESat-2 and GEDI.

LiDAR data can be fused with data collected from a simi-
lar platform (e.g. airborne-airborne) or a different platform 
(e.g. airborne-spaceborne). Fusion of airborne LiDAR and 
other airborne data types was the most common type of 
fusion encountered (45.4%), followed by fusion of LiDAR 
data from airborne and spaceborne devices (29.8%). Space-
borne LiDAR fused with data collected by other spaceborne 
sensors and airborne-terrestrial fusion had the same amount 
of publications (11.3%), whereas fusion of terrestrial LiDAR 
with other data from terrestrial platforms was found to be the 
least common (2.1%) (Table 2).

In terms of geographical representation (Fig. 3), studies 
from North America (38%), Europe (31%) and Asia (21%) 
represent 90% of the publications. The remaining 5% study 
Australia, and another 5% focus on Africa and South America 
together. In particular, our literature review found very few 
LiDAR data fusion studies in the southern hemisphere. This 
pattern is consistent with a review of the geographic distri-
bution of authorship in remote sensing publications [31], 
documenting that four specific countries, the USA, Italy, 
Germany, and China, are over-represented, with almost no 
contributions from South America and Africa. Our literature 

Fig. 1  Framework of structured 
literature review and coding 
scheme

Table 1  Categories and subjects 
included in the coding scheme 
for the structured literature 
review of the 151 selected 
papers

General information Geographic Location Survey area Data characteristics Survey goals

Authors Continent Survey scale Type of LiDAR Fusion application
Year Country Forest stand Name of LiDAR sensor Fusion aim
DOI Type of fused sensor(s) Fusion technique
Title Name of fused sensor(s) Fusion gain
Keywords
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sample demonstrates that most of the fusion studies in Asia 
are taking place in China alone, while other countries such 
as Iran, India, and Malaysia are studied just one time each.

Main Motivations and Applications of LiDAR 
Data Fusion

Motivations

Three main motivations for data fusion were found: (1) fusion of 
data across platforms can enhance spatial or temporal resolution 
of the data product. (2) two different LiDAR datasets can be fused 
to improve data density and/or overcome occlusion. For example, 

terrestrial and aerial point clouds are fused to better represent 
both the top and the bottom of the canopy, and to subsequently 
extract structural parameters more accurately [32, 33]. (3) fusion 
from the same platform primarily enriches the existing dataset 
with additional information, and these studies seek to add more 
information to the LiDAR dataset. For example, spectral data can 
be fused with LiDAR data to create a better estimate of above-
ground biomass (AGB) or improve tree segmentation.

Applications

In the LiDAR data fusion literature, we find two main 
streams of applications, at the individual tree level (ITA 
- Individual Tree Approach) and at the area level (ABA 

Fig. 2  Number of publications on LiDAR data fusion and general 
publication trend in LiDAR in forestry applications over the last dec-
ade. The shaded bars refer to the various LiDAR platforms. Multi-

ple platforms indicates that LiDAR data from two (or more) different 
platforms was fused. Note 2023 only includes papers published until 
May

Table 2  Number of publications by platform, where at least one of the sensors is LiDAR

LiDAR sensors used for data fusion include: ALS airborne laser scanner, SLS spaceborne laser scanner, ULS unoccupied aerial vehicle laser 
scanner, TLS terrestrial laser scanner, MLS mobile laser scanner, HLS handheld laser scanner, BLS backpack laser scanner. Non-LiDAR sensors 
used for data fusion with LiDAR include: HS hyperspectral, MS Multispectral, RGB red, green, and blue visible bands, SAR synthetic aperture 
radar, T thermal infrared, TRGB RGB+T.
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- Area-Based Approach). Among all papers reviewed, 27% 
focus on ITA, 50% on ABA, 17% on both ITA and ABA, and 
6% are review papers. The main applications of LiDAR data 
fusion at these two levels are divided into seven categories:

1) Classification (tree species/land cover): 29.5% of the 
papers [27, 28, 34–73] encompassed land cover clas-
sification, specifically, forest type classification, classi-
fication of individual tree species or genus, and forest 
habitat mapping.

2) Growing stock volume / above-ground biomass: 17.7% of 
the papers [74–98] are studies in which data fusion was used 
to improve biomass estimates both at ABA and ITA levels.

3) Forest structure: 15.5% of the papers [11, 13, 32, 33, 
99–115] include different datasets fused to improve 
the extraction of horizontal as well as vertical struc-
ture parameters beyond canopy height. This category 
includes individual tree biometric parameters such as 
crown diameter, crown length or base height. On an 
area-based level, the information derived includes mean 
crown length, number of vertical layers, gaps, crown 
coverage, stem density, basal area, DBH distribution etc. 
This category also includes assessment of post-fire forest 
structure and regeneration.

4) Tree height: 12.7% of the papers [116–133] include 
canopy height represented by different parameters such 
as mean height, quantiles, deviations etc. Data fusion 
was applied to generate better estimates of tree height 
at a single tree level or a stand level, mainly by fusing 
aerial LiDAR data with other LiDAR platforms.

5) Segmentation: 9.2 % of the papers [134–147] delineate 
individual tree crowns and identify locations of individ-
ual trees. In ABA, the segmentation includes delineation 
of homogeneous forest patches as well as forest stands.

6) Other: 9.1% of the papers [148–160] include a variety of 
applications, such as mapping the pigment distribution 
and quantifying taxonomic, functional, and phylogenetic 
diversity, tree age estimation etc.

7) Fuel load: 6.3% of the papers [161–169] include applica-
tions that deal with fuel load and forest fire modeling.

Methods for LiDAR Data Fusion

The methods used for LiDAR data fusion can generally be 
divided into two main categories. Data-level fusion studies 
typically merge datasets from different sensors during the 
pre-processing stage and before any formal classification or 
feature extraction occur, whereas feature-level fusion stud-
ies merge post-classification outputs and extracted features 
from disparate datasets to generate a new dataset. A third 
level, namely decision-level fusion, exists in the literature, 
but none of the papers in our literature sample fell into this 
category [170, 171].

Data‑level Fusion

Among all papers we reviewed, 22% performed data-level 
fusion. Point cloud-to-cloud fusion can be achieved by com-
bining, for example, airborne and terrestrial LiDAR datasets 
using the reference points acquired in both surveys [19]. 
TLS typically acquires detailed measurements at a plot-
scale, while ULS can obtain measurements across a larger 
spatial extent at a landscape-scale [26]. The raw datasets can 
be fused using ground control points (GCPs) or by identify-
ing similar features in the datasets [74, 100] using the same 
coordinate system acquired through GNSS or total stations. 
Other studies [26, 112, 162] used manual co-registration 

Fig. 3  Geographic distribution of study locations in the 142 case studies included in our literature sample



286 Current Forestry Reports (2024) 10:281–297

by identifying similar features such as the tallest tree, trees 
with large crowns, or tree locations. These features were 
used to guide the manual shifting process and to correctly 
co-register the two datasets. Defining appropriate key points 
for co-registration is challenging, especially in forest point 
clouds with few distinct objects, and can become even more 
complicated in plantation forests where trees share similar 
characteristics [32]. Some authors suggest using software 
tools to co-register point clouds based on key points [33] or 
the Iterative Closest Point (ICP) algorithm [140, 155, 172] 
in CloudCompare. The quality of the fused data depends on 
the forest conditions and the data characteristics, namely 
the number of terrestrial scans and distance of the scanners 
from the target [115, 173]. Another type of data-level fusion 
included LiDAR data fusion with spectral bands and indi-
ces, where spectral information was projected onto the point 
cloud [74, 113, 153] using, for example, CloudCompare [74] 
and FUSION software [113]. Reflective targets help the co-
registration of terrestrial images and point clouds, enabling 
the merging of RGB pixel colors to point locations through 
co-registration [153].

Feature‑level Fusion

A total of 78% of the papers performed feature-level fusion 
by merging post-classification outputs, rasterized LiDAR-
derived products, extracted features, and spectral bands and 
indices to derive a final output. Feature-level fusion in this 
context can be broadly categorized into pixel-based fusion 
and object-based fusion [174]. Pixel-based fusion primarily 
occurs among airborne platforms and between airborne and 
satellite platforms, mostly combining LiDAR and spectral 
data. Many of these studies rasterized the LiDAR data to 
generate canopy height models (CHM) and digital terrain 
models (DTM) and layer-stacked these outputs with MS 
and HS bands as inputs for subsequent classification algo-
rithms [28, 38, 54, 61, 149]. In most of these pixel-based 
fusion cases, the pre-processing takes place separately, after 
which they are combined. For example, hyperspectral data 
is processed in ENVI, while LiDAR data products are cre-
ated separately. The combined data stack is then used for 
classifications often using machine learning methods [28]. 
Object-based fusion involves direct segmentation at both the 
individual tree scale and plot scale, followed by fusion based 
on various extracted features for the objects. For example, 
LiDAR data can be used to segment individual tree canopies, 
often using inverse watershed algorithms, and then features 
extracted from spectral data are added to those segments 
essentially creating a new vector-format data. The resulting 
spatial or vector format outputs were then used, for exam-
ple, to classify tree species with machine learning methods 
[47, 66, 75, 102]. Most commonly, feature-level data fusion 
takes place in a coding environment, such as R packages to 

segment trees, or python for post-processing the datasets 
with machine learning algorithms. Readily available soft-
ware solutions to process different types of data and combine 
the resulting features seem to be lagging behind.

Gains of LiDAR Data Fusion

To examine the gains that LiDAR data fusion brings for each 
of the application categories outlined above, we examined 
the studies that directly compared the performance of their 
methods with and without fusion.

Classification (Tree Species/Land Cover)

Species classification based exclusively on LiDAR data 
has proven effective in particular circumstances including 
when the set of species to be discriminated have contrast-
ing silhouette or stature [45, 59] or when the segmentation 
addresses broad class separation between evergreen and 
deciduous species [34]. In our review, when a LiDAR data-
set was compared to LiDAR fused with spectral informa-
tion, overall classification accuracy increased by 41%, on 
average. Conversely, when they used fused datasets instead 
of spectral information alone, overall accuracy increased by 
a mere 10-14%. A few studies reported a beneficial effect 
of the combined use of LiDAR and spectral information 
by examining the importance of the various predictors in a 
Random Forest classification model [63]. Finally, in some 
cases, LiDAR only was used at the segmentation step to 
delineate tree crowns or stands [35, 66]. Vegetation height 
estimated from LiDAR data fused with MS and HS data 
enhances the overall accuracy of species classification [28]. 
However, this generally benefited object-level classification 
more than pixel-level classifications.

Growing Stock Volume and Biomass

Volume and/or AGB assessment requires structural and spe-
cies information. While LiDAR data provide information 
about structure, fusion with optical data is often sought for 
species-specific estimates. Among the papers in this sec-
tion, data fusion was performed mainly at the ITA (45%) 
and ABA (50%) levels, and much less at the landscape level 
(5%). Data fusion at tree-level mostly uses fusion of ground-
based and airborne point clouds [77], addressing occlusion 
issues and enabling extraction of tree attributes such as DBH 
and total height with greater accuracy. For larger acquisi-
tions in complex terrain, fusion of ULS, photogrammetric 
point clouds and MS images shows significant improvement 
in explained variance and error. For example, [75] fused 
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ULS and HS data at the individual tree level, increasing the 
 R2 from 0.75 to 0.89. In [81] (ABA), by fusing ALS and MS 
data, the authors reduced RMSE from 18.4% (LiDAR alone) 
and 19% (MS alone) to 16.8%. In [89] (ITA), by fusing RGB 
and MS data, the authors increased their  R2 from 0.77 to 
0.81. Plot-level data fusion involved predominantly airborne 
or spaceborne data, which allowed larger scale assessment. 
While fusion with ALS mostly consists of combining con-
tinuous data over the area of interest [75, 88, 94, 95], appli-
cations with spaceborne data mostly consist of upscaling 
approaches [76, 81–83, 87]. In another study [94], fusing 
ALS and HS data increased  R2 from 0.81 to 0.87 for ITA 
and 0.65 to 0.84 for ABA. In [77] (ITA), the utilization of 
both TLS-based DBH and ULS-based tree height resulted in 
a reduced RMSE ranging from 8.6% to 12.7%. These RMSE 
values compare favorably to the RMSE values of 10.1% to 
20.4% when exclusively using TLS and 30.3% to 76.9% 
when relying solely on ULS.

Forest Structure

The primary objective in fusing ground-based LiDAR with 
ULS and ALS data is to capitalize on the advantages of the 
ground-based LiDAR, which effectively capture the lower 
part of the trees, in combination with the strengths of air-
borne LiDAR, which accurately represent the crowns. In 
[26], fused TLS and ULS were used to measure tree height, 
crown projection area (CPA) and crown volume (CV). In 
estimating height, the RMSE with TLS and ULS alone was 
0.30 m and 0.11 m, respectively, while the fused dataset 
RMSE was 0.05 m. In estimating CPA, the RMSE with TLS 
and ULS alone was 3.06  m2 and 4.61  m2, respectively, while 
the fused dataset RMSE was 0.46  m2. Finally, for CV, the 
RMSE with TLS and ULS alone was 29.63  m3 and 30.23 
 m3, respectively, while the fused dataset RMSE was 8.30  m3. 
Another study [32] that fused ground-based LiDAR and ULS 
observed significant  R2 improvements in tree height (9%), 
stem volume (5%), and crown volume estimates (18%). In 
[26, 33, 112, 115], there is a strong focus on co-registration 
issues before individual tree parameters were extracted. Fur-
thermore, [33] achieved enhanced accuracy for DBH meas-
urements through TLS and ULS data fusion: 2.1% compared 
to TLS alone and 20.7% compared to ULS alone for DBH. 
[113] fused ALS and MS data and reported improved  R2 
when compared with ALS alone: quadratic mean diameter 
(from 0.5 to 0.64), basal area (from 0.53 to 0.73), tree height 
(from 0.92 to 0.94), stem density (from 0.29 to 0.30) and 
stand density index (from 0.72 to 0.82). Among the papers 
that use ALS and satellite data, [108] derive total volume 
and basal area by fusing LiDAR and topographic informa-
tion (TI). Using LiDAR alone the  R2 is 0.67 for volume and 
0.61 for basal area, while fusion with TI increased the  R2 to 

0.74 and 0.69, respectively. MS-ALS-TI fusion increased the 
 R2 further to 0.85 and 0.84, respectively.

Tree Height

For tree height estimates, 50% of the papers focus on ITA, and 
50% on ABA. For example, [126] spatial resolution of tree top 
height estimates was improved by fusing low-density ALS data 
with high resolution optical images by applying k-NN tech-
nique, which allowed tree height estimates for crowns that are 
not represented in the LiDAR data. In this paper, it is evident 
that a greater number of LiDAR points associated with tree 
crowns enhances the accuracy of tree top height estimation. 
With the fusion, they detected 97% of the total trees with an 
estimated tree-top mean absolute error of 2.45 m (measured 
error with LiDAR data alone was 3.70 m). In [122], the benefit 
of including LiDAR-derived topographic data for estimation of 
canopy heights from Tandem-X InSAR data is demonstrated. 
Furthermore, the use of the full-resolution DTM from Land, 
Vegetation, and Ice Sensor (LVIS) instead of the simulated 
GEDI DTM significantly decreased the RMSE from 4.6 m to 
3.5 m, and the bias from 1.8 m to 1.3 m.

Segmentation

In a majority of the literature reviewed, data fusion was 
mainly used for single tree segmentation, using airborne 
data [135, 138, 143]. Segmentation challenges, especially 
for tree-level data, include georeferencing the data products 
and balancing data with different spatial resolution [138]. 
At the single-crown level, raw point clouds or point cloud-
based metrics are easier to fuse than pixel-based informa-
tion [139]. The results presented by [135] show a significant 
difference between fused data versus ALS alone: for low-
density forests, the ITA method based on ALS alone cor-
rectly detects only 63% of trees, compared to 92% when fus-
ing data from ALS and HS. For high-density forest, fusion 
detects 70% of the trees compared to 62% with ALS alone. 
In [137, 143], the authors fused ALS and MS data increas-
ing their segmentation by 2-4% compared to ALS alone. In 
[138], fusion of ALS and HS increased their segmentation 
by 5% compared to single sensor accuracy.

Other

The ‘other’ applications included LiDAR data fusion studies 
focused on wetland/marsh areas, boreal forests and a natural 
disaster impact assessment [155, 156, 158]. For example, 
[158] fused airborne LiDAR with MS imagery to assess forest 
loss in a wetland zone. They document that forest/non-forest 
classification accuracy improved from 86-87% to 91-93% 
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demonstrating a small ~5% increase in accuracy due to the 
inclusion of LiDAR metrics. [155] demonstrated that their 
automatic ALS and TLS point cloud co-registration resulted 
in a denser point cloud, in which the stems and canopy of 
individual trees were better represented than in the single 
LiDAR datasets, but provided no quantitative improvement 
on retrieval of canopy/forest/tree information in a boreal forest. 
[156] developed a method to assess wind damage by fusing 
ALS and MS imagery. They conclude that adding the struc-
tural metrics from ALS to the spectral information provides 
estimates of structural damages that cannot be retrieved with 
spectral data alone.

Fuel Load

At a landscape-scale, multiple studies have documented that 
fusing ALS data with Landsat and Sentinel-2 satellite images 
improve total fuel estimates [168]. Specifically, [161] dem-
onstrated that 24-32% of the remaining variability in surface 
fuels, uncharacterized by ALS data, can be explained by Land-
sat NDVI time-series. Furthermore, ALS data combined with 
Landsat time-series achieve both higher classification accuracy 
and lower prediction errors in post-fire snag classes, and shrub 
cover estimates [165]. Similarly, airborne MS image-derived 
NDVI metrics, when fused with ALS, further improved clas-
sification overall accuracy of the post-fire regeneration types at 
stand-scale by 10-50% [163]. Similar data fusion studies also 
predicted canopy fuel variables, such as canopy fuel load (kg/
m2), and surface fuel layers (including coarse woody debris 
biomass) with adjusted  R2 ranging between 0.55-0.94 [166]. 
At the ITA scale, post-fire changes in DBH and biomass can 
be estimated by fusing MLS data with ULS/ALS, where the 
below-canopy measurements are enabled by the MLS data 
[162]. However, a fusion of ALS and TLS data for ITA met-
rics was recently documented to offer no particular advantage 
over either sensor used alone [169].

Discussion

The information from the structured literature review was dis-
cussed by an international panel of experts in Leiden, the Neth-
erlands, May 11-12, 2023. The panel consisted of 11 scientists 
with expertise across all LiDAR platforms and their fusion with 
other datasets across the full range of forestry applications.

What is ‘Data Fusion’ and How Should This Term Be 
Used?

Through the literature search, it became apparent that there was 
confusion regarding what should be considered data fusion. 

Specifically, we found that the terms ‘data fusion’, ‘data com-
bination’ and ‘data integration’ are used in a confusing manner. 
For example, we recognize that there are studies that perform 
data-level or feature-level fusion without calling it as such, but 
instead commonly referring to it as data combination [175, 
176], data registration [173] or data integration [177, 178]. 
However, we found that those terms are also commonly used 
for instances where data fusion as defined here is not actually 
appropriate. These include, for example, instances where one 
dataset is used to train a model that makes predictions based on 
another dataset, which would be considered calibration/valida-
tion studies [179–181]. We do find a few instances of those 
[118, 132] in our data-level and feature-level fusion examples, 
although there are very few of these cases.

Based on our literature review of papers that considered 
(multi-sensor) ‘LiDAR data fusion’, we define data- and 
feature-level data fusion as: the merging of data or derived 
features from different sources, (instruments/devices) of 
which at least one is LiDAR, to improve the characteris-
tics of the LiDAR dataset and/or enable enhanced forest 
observations. The term ‘data integration’ can be reserved 
for decision-level data fusion, where datasets are only com-
bined to come to a conclusion (decision), but they are not 
used to generate a new dataset or data product as inputs for 
classification etc [24, 182]. The term ‘data combination’ 
can be used to indicate the entire process that includes both 
data fusion starting at the pre-processing step through data 
integration at the decision-making step (Fig. 4).

It is important to note that we only focused on multi-
source data fusion, while other instances of data fusion 
are ignored: multi-temporal data fusion (datasets repeat-
edly collected at different times with the same sensor), 
MS-LiDAR (MS data and LiDAR collected at the same 
time by the same instrument), and co-registration of data 
from the same instrument (e.g. strip adjustment of ALS 
data collection and co-registration of TLS point clouds 
acquired from various points of view to create a forest 
scene). These types of fusion, though beyond the scope 
of this review, can still be relevant for monitoring forest 
growth, species categorization, identifying tree locations 
and could be considered by practitioners.

What are the Most Important Lessons Learned 
About Data Fusion in Forest Observations?

Our review indicates that all common applications are 
improved using data fusion. Single tree segmentation can be 
improved by fusing spectral or 2.5D structural information 
from LiDAR data, especially in low-density forests. Results 
obtained with canopy height model for ITA were slightly 
improved when LiDAR data is fused with MS images. This 
application is likely to be more relevant at a local scale, where 
detailed information about individual trees is required. In 
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growing stock volume or above-ground biomass assessments, 
data fusion can improve model performance by improving tree 
species classification. These applications can be relevant at 
local to regional scales. The use of airborne and spaceborne 
data fusion expands the study areas to larger extents. Tree 
height or canopy height are correctly detected by LiDAR data 
alone, and there is no real need for LiDAR data fusion for 
further improvements, but data fusion can extend the spatial 
and temporal resolution of derived data products. LiDAR 
data fusion with spectral information, such as MS or HS data, 
improves tree species classification accuracy compared to 
using LiDAR data alone. While LiDAR alone can be effec-
tive in certain circumstances, combining LiDAR with spectral 
information enhances the accuracy of species classification 
models significantly. Fusion of ground-based LiDAR data 
with airborne LiDAR data improves the assessment of forest 
structure parameters, including tree density, crown diameter, 
stem density and stand volume. Fusion of ground-based and 
airborne LiDAR data allows the combination of strengths 
from both sources, capturing information above and below 
the canopy layer. LiDAR data fusion for fuel load estimation 
has been used for characterizing canopy and surface fuels. At a 
landscape scale, fusing LiDAR data with MS images enhances 
the total fuel estimates, classification accuracy of post-fire snag 
classes and prediction of canopy fuel variables. In summary, 
data fusion can further improve the accuracy of a resulting data 
product or application, and it can improve the spatial and/or 
temporal resolution of such data products, providing valuable 
information for practitioners. We note, though, that a lot of 
these gains are marginal. Therefore, it is important to further 
discuss the operationalization of these methods.

What are the Main Challenges in Data Fusion 
for Operational Applications?

We identified several challenges with operationalizing data 
fusion approaches. One fundamental challenge arises from 
the utilization of two distinct RS datasets to develop a par-
ticular solution. This necessitates acquiring multiple datasets, 
thereby increasing the overall cost, especially when combining 
data from independent acquisition platforms, such as ALS and 
HS data, or when dealing with large spatial extents. Although 

there are airborne systems available that allow simultaneous 
data collection from multiple sensors (e.g. LiDAR and MS 
image), data providers must subsequently process the acquired 
data, leading to additional costs. Data fusion is also a major 
challenge for the data user, as the effort required to process 
two or more RS datasets increases significantly. Consequently, 
separate processing steps must be developed for each data-
set, increasing the overall processing time. Additionally, each 
step must be individually evaluated and quality-checked. To 
expedite processing, greater computing power becomes essen-
tial, which may be difficult to achieve, especially in practical 
applications. Moreover, the data processing demands specific 
expertise to ensure methodological correctness. Analysts may 
need to possess additional skills or collaborate with domain 
specialists to execute the analysis accurately. Both the process-
ing time and the additional equipment and expertise required 
increase the cost of the analyses and can be a barrier. Another 
big challenge in data fusion is related to the data itself. Differ-
ent data sources may have differences in resolution, accuracy, 
spatial or temporal coverage, which can affect the effectiveness 
of fusion techniques. If the quality of the data is low or the 
fusion process is not optimized, it might not add substantial 
benefits or may introduce additional uncertainties. A preva-
lent challenge in RS applications is the significant time lag 
between data collection (e.g., aerial flights) and the delivery 
of processed results to end users. The larger the surveyed area 
and the number of datasets fused, the longer it takes. IT also 
requires more validation and more rigorous accuracy assess-
ment, which often reveals further deficiencies and errors that 
need to be addressed. This delay in information provision may 
render the data obsolete or limit its effectiveness in addressing 
situations with rapidly changing events, such as insect out-
breaks or areas impacted by severe wind/fire damage.

What are the Priorities in Moving Data Fusion 
Forward?

We find that the RS community can further advance LiDAR data 
fusion enabling a wider range of applications from environmen-
tal monitoring and resource management to disaster responses. 
Several key areas should be a priority in propelling the applica-
tions and methodologies of LiDAR data fusion forward. First, 

Fig. 4  Proposed conceptual 
framework defining data fusion, 
data integration, and data 
combination, which are ambigu-
ously used in the literature
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our structured review shows that more studies on LiDAR data 
fusion are needed in the southern hemisphere to better understand 
the limitations and advantages of such applications in the exten-
sive rainforests in the global south, which have been relatively 
underexplored compared to the northern hemisphere. The under-
representation from the global south has important implications 
because these regions include a large majority of the tropical 
forests, where LiDAR fusion may have many benefits. For exam-
ple, tropical forests typically include tall trees with several middle 
and understory layers of dense canopies, where TLS data fused 
with ALS data could fully characterize the forest structure. Sec-
ondly, even though improvements using data fusion for a variety 
of applications have been reported, compared to using LiDAR 
data alone, it is yet unclear to what extent these could be opera-
tionalized in a forestry setting. More information is required to 
properly balance the costs of additional data collection and pro-
cessing, and the required expertise versus the benefits in accuracy 
or spatial and temporal resolution. Common data formats with 
metadata standards need to be established to develop interoper-
able algorithms among researchers to facilitate collaborations. 
As an example, variables that can be extracted from ALS point 
clouds are infinite and standardizing these variables is always a 
challenge. In [183], the authors suggested a list of 10 standard 
variables within 3 main classes (height, vertical variability, and 
cover) as a starting point to characterize the vegetation structure. 
Moreover, in [184], the authors recommend metrics such as the 
skewness or kurtosis or the coefficient of variation of vegetation 
height to describe vegetation structures. Both papers proposed 
that the data be made available in raster format to standardize 
subsequent studies or operations. Addressing sensor-specific 
biases, radiometric differences, and geometric distortions across 
different data sources is essential to harmonize fused datasets 
effectively. Moreover, it is necessary to develop robust methods 
to quantify and address uncertainties in data fusion processes, 
which will boost confidence in the final products. A rigorous 
validation and benchmarking of data fusion approaches with 
ground-based accuracy assessment and independent datasets 
are crucial. Finally, LiDAR data fusion studies should promote 
open data initiatives and foster collaboration among researchers, 
institutions, and data providers. This would facilitate access to 
diverse datasets and accelerate data fusion research, which will 
further enable data fusion methods and solutions that can oper-
ate in real-time especially for applications requiring quick and 
up-to-date information.

Conclusion

This paper presents a comprehensive review of LiDAR data 
fusion research for forest observations over the last decade. Our 
structured review indicates that there has been a slight upward 
trend in the number of publications on LiDAR data fusion for 

forestry observations and aerial platforms (both UAVs and air-
borne platforms) continue to be the most widely used option. We 
conclude that multi-sensor LiDAR data fusion has the potential 
to improve forest observations in a great variety of applications. 
Our team suggests a clear definition of the term “data fusion” to 
avoid confusion among the commonly used terms ‘data fusion’, 
‘data combination’, and ‘data integration’. The review further 
highlights that data fusion poses several challenges, including 
costs, computational effort, and processing times, variability in 
data quality, spatial resolution, and a need for specialized exper-
tise. Therefore, practitioners must carefully weigh the potential 
benefits of LiDAR data fusion in relation to the actual need for 
such benefits and the accompanying cost.
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