
Citation: Zingaro, M.; Hostache, R.;

Chini, M.; Capolongo, D.; Matgen, P.

A Localized Particle Filtering

Approach to Advance Flood

Frequency Estimation at Large Scale

Using Satellite Synthetic Aperture

Radar Image Collection and

Hydrodynamic Modelling. Remote

Sens. 2024, 16, 2179. https://doi.org/

10.3390/rs16122179

Academic Editor: Wen Liu

Received: 17 April 2024

Revised: 7 June 2024

Accepted: 13 June 2024

Published: 15 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

A Localized Particle Filtering Approach to Advance Flood
Frequency Estimation at Large Scale Using Satellite Synthetic
Aperture Radar Image Collection and Hydrodynamic Modelling
Marina Zingaro 1 , Renaud Hostache 2 , Marco Chini 3,*, Domenico Capolongo 1 and Patrick Matgen 3

1 Department of Earth and GeoEnvironmental Sciences, University of Bari, 70125 Bari, Italy;
marina.zingaro@uniba.it (M.Z.); domenico.capolongo@uniba.it (D.C.)

2 UMR Espace-Dev (IRD, University Réunion, University Guyane, University Antilles, University Nouvelle
Calédonie, University Montpellier), 34090 Montpellier, France; renaud.hostache@ird.fr

3 Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and
Technology (LIST), L-4422 Belvaux, Luxembourg; patrick.matgen@list.lu

* Correspondence: marco.chini@list.lu

Abstract: This study describes a method that combines synthetic aperture radar (SAR) data with
shallow-water modeling to estimate flood hazards at a local level. The method uses particle filtering
to integrate flood probability maps derived from SAR imagery with simulated flood maps for various
flood return periods within specific river sub-catchments. We tested this method in a section of
the Severn River basin in the UK. Our research involves 11 SAR flood observations from ENVISAT
ASAR images, an ensemble of 15 particles representing various pre-computed flood scenarios, and
4 masks of spatial units corresponding to different river segmentations. Empirical results yield
maps of maximum flood extent with associated return periods, reflecting the local characteristics
of the river. The results are validated through a quantitative comparison approach, demonstrating
that our method improves the accuracy of flood extent and scenario estimation. This provides
spatially distributed return periods in sub-catchments, making flood hazard monitoring effective at a
local scale.

Keywords: synthetic aperture radar (SAR); river sub-catchment; flood monitoring; flood hazard
assessment

1. Introduction

One way to reduce flood risk is to develop tools for flood monitoring and prediction,
as these tools help raise awareness about where and when inundation may occur and are
crucial components of early warning systems [1–3]. Satellite remote sensing in addition
to more traditional shallow-water modelling are widely used to generate flood hazard
maps (i.e., here defined as flood extent with attributed probability of occurrence). These
maps are essential for understanding potential flood risks in an area [4–9]. SAR sensors
stand out for flood monitoring because they can capture Earth’s surface images anytime,
regardless of day, night, or cloud cover. This unique ability makes them highly valuable for
observing flood extent and developing new flood monitoring methods [10–15]. The value
of SAR data in mapping flood extent is well-established, with numerous studies proposing
various approaches [16–20].

Moreover, hydrodynamic modelling is a powerful tool to simulate flood events, by
predicting how floodwaters will spread over time, providing valuable insights like flood
extent and depth across an area [21–26]. Such models also allow for the computation of
flood extent and water depth maps using synthetically generated input data for hypo-
thetical, previously unobserved flood scenarios with varying probabilities of occurrence.
In recent decades, incorporating remotely sensed flood data has significantly improved
how we assess water conditions, calibrate flood models, and assimilate data for real-time
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flood monitoring and forecasting [8,27–33]. Recent research shows a surge in new methods
for flood hazard assessment [22,34–37]. These methods combine statistical analysis with
physical modeling to address uncertainties in data from various sources. Despite their
strengths, both SAR data and shallow-water models have limitations for near-real-time
(NRT) flood hazard assessment. While SAR images provide valuable snapshots of flood
extent, they lack the ability to show how the flood is evolving or its severity in a historical
context. Shallow-water models, while powerful for simulating floods, become computa-
tionally expensive to run in NRT for large areas. Furthermore, the alluvial phenomenon in
a catchment takes on a different evolution depending on the local character of the hydro-
geomorphologic dynamics [38–42]. To accurately assess flood risks, we need to consider
how different parts of a river respond to floods. This means studying the variations in
landforms and the natural processes happening along the river [43–47]. A promising way
to circumvent model and satellite data limitations is to optimally combine them through
data assimilation [48]. When applied with localization, data assimilation allows flood
hazard maps to account for a river’s unique behavior during extreme events. Here, we
focus on the need to estimate flood hazards by integrating model and satellite data at a
local scale to account for the dynamism of flooding during extreme events.

This study aims to develop and test a new method for the NRT assessment of local
flood hazards. Our approach uses satellite data to estimate the return period of a flood
event as it occurs. This method is designed for NRT because it quickly incorporates data
from a SAR image into a set of pre-calculated flood maps. This eliminates the need for slow,
real-time simulations with shallow-water models. To evaluate our method, we applied it to
a series of images captured by the Envisat satellite. These images show floods of varying
severity (low to high magnitude) that occurred over the Severn River floodplains in the
United Kingdom. We chose this case study because ground truth data, which allow us to
verify the accuracy of our results, are available for this area. The remainder of the paper
is structured as follows: Section 2 presents the methods; Section 3 describes the study
area, available data, and experimental set up; Section 4 presents the validation approach;
Section 5 presents the results and discussion; and Section 6 is the conclusion.

2. Methods

The proposed approach uses a particle filter [49,50] in order to optimally combine
satellite and model data. It is a further development of the data assimilation algorithm first
proposed in [48] where SAR-derived flood map are probabilistic maps [51] and simulated
flood extent maps are binary maps. As explained and shown in [48,51], the SAR-derived
probabilistic maps account for the flood extent classification uncertainty, providing a
probability of flooding given the SAR backscatter value. Here, we therefore propose
to follow the method proposed in [51] for SAR image processing and adapt the data
assimilation approaches proposed in [48] to enable a particle filter localization and a local
flood return period estimation (Figure 1). In particular, each SAR-derived flood map (SAR-
derived PFM in Figure 1; see Section 2.1) is integrated into a series of simulated flood
extent maps (DFM in Figure 1; see Section 2.2) using a particle filtering approach (blue
circle in Figure 1; see Section 2.3). This process assigns a return period (estimated from the
model) to the flood extent (observed from the satellite) in each hydrographic sub catchment
(subregion map in Figure 1). The final map displays the flood extent (red box in Figure 1)
along with a range of possible return periods, reflecting the dynamic nature of the flood
event and considering the local fluvial behaviour.
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Figure 1. Workflow of the assimilation approach. PFM = probabilistic flood map; DFM = design flood
map; T = return period.

2.1. Mapping Flood Inundation Extent from SAR Images

Most SAR-based flood mapping algorithms primarily focus on detecting water in
areas with little to no vegetation or bare soil. Typically, algorithms for identifying flooding
in bare soil areas rely on a single SAR image, identifying pixels with low backscatter values
indicative of standing water. The primary factor creating a significant contrast between
flooded and non-flooded areas in the radar image is the strong specular reflection from the
water’s surface. The smooth water surface reflects the radar signal mostly in the specular di-
rection, resulting in lower backscatter values. In contrast, rough, dry landscapes scatter the
signal in multiple directions, leading to higher backscatter values. These principles frame
flood mapping as a classification problem with two categories: water and non-water [52].

SAR-based flood extent observations are prone to uncertainty that needs to be accu-
rately estimated in the framework of data assimilation. In this context, we take advantage
of a previously developed algorithm [51] that enables us to estimate, for each pixel of a
SAR image, its probability corresponding to water given its backscatter. This unsupervised
and automatic method returns probabilistic flood maps from large SAR images. For any
pixel of the SAR image, its probability of being covered by water given its backscatter is
derived using Bayes’ theorem, as follows:

(
w
∣∣∣σ0

)
=

p
(
σ0

∣∣w)
p(w)

p(σ0)
(1)

where p
(
w
∣∣σ0) is the probability of a pixel being covered by water given its backscatter

value, p
(
σ0

∣∣w)
is the probability distribution of backscatter values of open water pixels,

p
(
σ0) is the marginal probability distribution of backscatter values of a pixel, and p(w) is

the prior probability of a pixel being water. Setting the latter equal to 0.5 by default (as
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proposed in [51]), one only needs to estimate p
(
σ0

∣∣w)
and p

(
σ0) to derive the probabilistic

flood map from Equation (1). To do so, the hierarchical split based approach of [52] is
applied. First, the image is iteratively split into tiles of various dimensions to identify those
exhibiting a bimodal histogram. Next, the parameters of a bi-Gaussian mixture probability
density function are fitted to the histogram of the previously selected image sub-tiles. The
first Gaussian distribution (i.e., with the lowest backscatter values) is used to estimate
p
(
σ0

∣∣w)
and the sum of the two gaussian distributions is used to estimate p

(
σ0). The

output of this approach is therefore a probabilistic flood inundation map, called here a
probabilistic flood map (PFM), in which each pixel exhibits a probability of being water
and has a value ranging between 0 and 1.

Water is potentially not detectable by the proposed flood mapping algorithm in some
areas (i.e., in forested and urban areas); we considered these as exclusion areas [53] and we
masked out the corresponding pixels during the assimilation using freely available land
cover maps.

2.2. Generating an Archive of Design Flood Inundation Maps

We define design flood inundation maps as flood extent maps simulated by a shallow
water model—namely Lisflood-FP [54,55]—using as boundary conditions design stream-
flow hydrographs. These correspond to synthetic hydrographs representing flood events
of different return periods derived from observed streamflow time series. To do so, we
first estimate the return period of each annual largest flood from the available discharge
time series. This process involves deriving the annual maximum streamflow values from
this time-series. Subsequently, these annual maximum streamflow values (xmax) are ar-
ranged in ascending order, and a generalized extreme value (GEV) distribution with three
parameters—namely the location µ, scale σ, and shape κ [56]—is fitted to the estimated
annual maxima using the maximum likelihood estimation (MLE) method:

F(xmax; µ, σ, k) =

exp
{
−
[
1 + k

(
xmax−µ

σ

)]−1/k
}

i f k ̸= 0

exp
{
−exp

[
− xmax−µ

σ

]}
i f k = 0

(2)

where F is the GEV cumulative distribution function of xmax, the maximum annual stream-
flow at the considered gauging station. The GEV distribution includes Gumbel (k = 0),
Frechet (k > 0), and Weibull (k < 0) families. According to the extreme value theory [57],
this allows for the estimation of streamflow values associated with non-exceedance proba-
bilities of flood events. The fitted GEV cumulative distribution function (CDF) provides
estimates of the streamflow value Q associated to any non-exceedance probability P and,
consequently, a return period T:

T =
1

1 − P
where P =F(Q, µ, σ, k) (3)

For 15 preselected flood return periods (1, 2, 5, 10, 20, 30, 50, 75, 100, 200, 300, 400,
500, 750, 1000 years), design hydrographs are drawn using the corresponding design
peak streamflow and a synthetic hydrograph shape. The decision to consider 15 flood
scenarios is made to achieve a meaningful and representative set of designed flood extents,
considering as many flood extents as possible and including very extreme events. Here,
we propose to draw the synthetic hydrographs using the shape of an observed flood
event. Based on this shape, design hydrographs are computed by rescaling the synthetic
hydrograph so that its peak equals the design peak streamflow whereas its minimum
remains unchanged (Figure 2).
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required for setting up and running the model. Water depth and water surface elevation 

Figure 2. The methodology applied for generating design hydrographs at Evesham gauge station
(see paragraph 3.1). (a) Time series of streamflow values. (b) Fitting of generalized extreme value
cumulative distribution function. (c) Flood scenarios associated with return periods. (d) Design
hydrograph shaped on flood events occurring in the week 19 July 2007–26 July 2007 (peak on 21
July 2007.

To simulate the design flood inundation maps, we use the Lisflood-FP hydrodynamic
model, a raster-based two-dimensional flood inundation model [48]. Topographic informa-
tion and channel geometry, boundary conditions, and friction parameters are required for
setting up and running the model. Water depth and water surface elevation are the main
outputs of the model. The model is first used to simulate each design flood event utilizing
the previously drawn design hydrographs as boundary conditions, assuming all river
inflows experience the same flood return period at the same time. From each simulation, a



Remote Sens. 2024, 16, 2179 6 of 21

maximum depth map is generated. It is subsequently converted into a maximum flood
extent map assuming a grid cell to be flooded if the water depth is larger than 10 cm
and dry otherwise. Finally, the generated maximum flood extent maps are recorded as
the design flood inundation maps for the considered return periods. This enables us to
create an archive of design flood inundation maps (DFMs) associated to the preselected
return periods.

2.3. Assessing Flood Return Period Using a Localized Particle Filter

The particle filtering approach adopted to optimally combine the satellite PFM and
the archive of DFMs aims to estimate the return period of the imaged event. The PF
approach used here is based on that of [48]. The two main differences here are (1) PF is
exploited to estimate a flood return period rather than to update a flood forecasting system
and (2) PF is here localized to enable the estimation of flood return periods locally. Our
implementation of PF is first presented on a general basis with localization carried out
over subareas. Next, we propose various localization strategies based on hydrological
decompositions of the model domain (sub-catchments). The latter represents the main
contribution of the proposed approach, which enables the assimilation of flood observations
in each hydrographic catchment and provides a range of return periods for a flood event.

Particle filters represent prior (before the assimilation) and posterior (after the assimi-
lation) properties via a set of particles. They enable us to estimate the posterior probability
of each model based on Bayes theorem:

p(x|y) = p(y|x )p(x)
p(y)

≈ ∑N
i=1 Wiδ(x − xi) (4)

where p(x|y) is the probability of the model knowing the observation (i.e., the posterior),
p(y|x) is the probability of the observation knowing the model realization (i.e., the likeli-
hood), p(x) is the probability of the model realization (i.e., the prior) and p(y) becomes a
scaling factor so that the integral of the posterior is equal to 1, Wi is the weight of the i-th
particle, and xi is the i-th particle value. Further information and details on the theoretical
basis of particle filters can be found in [29,37].

In a first step, as our observation is a probability to be water knowing the SAR
backscatter, a pixel-based DFM likelihood wi

k is first assigned to each individual k-th pixel
of the i-th DFM using the following formula (see [48] for further details):

wi
k = pi

k

(
w
∣∣∣σ0

)
× θi

k +
(

1 − pi
k

(
w
∣∣∣σ0

))
×

(
1 − θi

k

)
(5)

where pi
k
(
w
∣∣σ0) is the probability of the k-th pixel being water in the observation; θi

k is
the value of the k-th pixel in the i-th DFM being flooded θi

k = 1 or not flooded θi
k = 0.

This likelihood represents the local probability of the observation given the considered
simulated DFM.

In a second step, assuming that there is no spatial correlation in observational errors,
the weights are multiplied within each predefined subarea, enabling us to estimate the
likelihood ωi

j over the j-th subarea:

ωi
j = ∏

Nj
k=1 wi

k (6)

where Nj indicates the number of pixels within the j-th subarea. Finally, the likelihoods are
normalized in each subarea so that they sum up to 1, thus providing for each j-th subarea
the weight Wi

j of each i-th DFM, as follows:

Wi
j =

ωi
j

∑
Np
i=1 ωi

j

(7)
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The set of the weights Wi
j evaluates the posterior probability of the DFMs given the

observation. The estimated return period T̂j of the observed flood event in each subarea is
finally computed as the expectation (weighted mean) over the j-th subarea:

T̂j = ∑Np
j=1 Wi

j × Ti (8)

where Np is the number of DFM in the ensemble, and Ti is the return period associated
with the i-th DFM. An estimated flood inundation map is also derived from the assimilation
of the satellite observation into the ensemble of simulated DFMs. To do so, the expectation
of the simulated water depth map is first computed as the weighted mean (using Wi

j ) of the
ensemble of maximum water depth maps generated in Section 2.2. Next, it is converted into
an estimated flood inundation map assuming a grid cell to be flooded if the water depth is
larger than 10 cm and dry otherwise. As a consequence, the output of the whole procedure
for any satellite observation is an estimated local return period T̂j and the associated
estimated flood inundation map.

We define subareas as sub-catchments (i.e., drainage areas) as these enable us to
distinguish various fluvial segments potentially affected by floods of various return periods
within the catchment (Figure 3).
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Figure 3. Method for subdividing the area and localizing the filter. (a) Input of the procedure: hydro-
graphic network from flow accumulation map. (b) Hydrographic network segmented into sections
through stream link tool. (c) Sub-catchments of river network defined through watershed tool. Note:
different colors indicate various river network segments and their corresponding sub-catchments.

Topographic and morphological characteristics determine the limits of a catchment
relative to a location along a river channel [58,59]. Here, the sub-catchment drainage
areas are mapped through a standard hydrological analysis via a GIS platform [60–62].
Initially, a flow accumulation raster is generated from a digital elevation model [63,64]
using the conventional method (including sink filling, flow direction, and accumulation
map computation).

Subsequently, the hydrographic network is delineated by applying a threshold to the
flow accumulation map, whereby drains and river channels are identified as commencing
when a sufficiently extensive area is drained (Figure 3a). Following this, the channels are
automatically segmented into sections through a river segmentation process that depends
on detecting intersections of streams (Figure 3b). Lastly, the upstream regions that con-
tribute flow to the sections determine the sub-catchments (Figure 3c). Depending on the
threshold set on the flow accumulation map, the resulting sub-catchments vary in size,
thereby altering the number of spatial subdivisions within the catchment.
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3. Study Area and Experimental Set-Up
3.1. Study Area

The proposed methodology is applied to a downstream part of the River Severn
basin around the city of Tewkesbury (UK). The River Severn has its source on the Welsh
northeastern mountains and flows southeastward to the Vale of Gloucester and the Bristol
Channel. Figure 4a shows the Severn catchment and river network, and Figure 4b shows
the study area (hydraulic model domain) and the hydrometric gauging stations used as
upstream boundary conditions of the shallow water model (black squares). The domain
area is 30.5 km by 52.4 km and is located on the lower Severn. The River Teme and River
Avon are tributaries of the River Severn within the model domain. The study area was
rather frequently inundated over the past decades [32].
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3.2. SAR Data Set and Processing

A satellite dataset composed of eleven SAR observations is available from ENVISAT
ASAR imagery acquired in wide swath mode (WSM; 75 m pixel spacing). To obtain the σ0,
the SAR images were preprocessed applying the following steps: thermal noise removal,
radiometric calibration, and terrain correction. The images were acquired during flood
events that occurred in March and July 2007, January 2008, and January 2010. The dates
and times of the satellite acquisitions are reported in Table 1. A PFM was derived from
each SAR image using the method described in Section 2.1. The resulting 11 probabilistic
inundation maps (Figure 5) exhibit flood extents of markedly variable magnitude, con-
sequently corresponding to distinct flood scenarios, making these PFMs well-suited for
testing the proposed methodology. In this study, we derived the forest and urban areas
from the Corine Land Cover CLC 2018, with 100 m resolution for the exclusion layer; the
corresponding pixels are masked out during the assimilation. The urban and forest classes
are masked out as the flood mapping algorithm used here is not able to detect water in
these two landcover classes. Moreover, since the dates of acquisition of the SAR images
and the dates of generation of CLC are not very close in time, we verified that land cover in
these areas remained unchanged during the time interval between the year the CLC dataset
was compiled (2018) and the year of the previous CLC version (2012). As a consequence,
using either CLC 2012 or 2018 would not substantially change our results.
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Table 1. Satellite data acquisition date and time and relative ID. All SAR images are from the Envisat
mission, acquired in wide swath mode (400 km swath width) with an incidence angle ranging from
17◦ to 43◦.

SAR Acquisition Date Time SAR ID

March 2007 5 March 10:27 1
March 2007 5 March 21:53 2
March 2007 8 March 10:34 3
March 2007 8 March 21:58 4
July 2007 23 July 10:27 5
July 2007 23 July 21:53 6
January 2008 17 January 21:55 7
January 2008 24 January 10:12 8
January 2008 24 January 21:38 9
January 2010 18 January 10:30 10
January 2010 18 January 21:53 11Remote Sens. 2024, 16, x FOR PEER REVIEW 10 of 23 
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Figure 5. Probabilistic flood maps (PFMs) derived from Envisat images (11 observations).

In addition to the satellite imagery, aerial photography was used to derive a ground
truth flood extent map of the event that occurred on 24 July 2007 via photo-interpretation [51].
This aerial photograph campaign was organized for the day following two satellite acquisi-
tions (SAR ID 5 and 6). This flood map was used to evaluate the flood extent (see Section 4)
obtained from the assimilation procedure.
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3.3. Generating an Archive of Design Flood Extent Maps Using a Shallow Water Model

Daily flow time series observed at hydrometric gauging stations were used to draw
design flow hydrographs following the approach proposed in Section 2.2. Long streamflow
time series, spanning more than 50 to 60 years on average, at Bewdley (River Severn),
Knighsford Bridge (River Teme), Evesham (River Avon), Besford Bridge (Brook Bow), Kid-
derminster (River Stour), Harford Hill (River Salwarpe), and Hinton (River Isbourne) were
considered. In this study, 15 scenarios were defined (see Section 2.2) to draw a meaningful
number of scenarios and generate a representative ensemble of design flood extents.

The derived design hydrographs were used as input inflow for all contributing rivers
(Severn, Avon, and Teme) and tributaries (Brook Bow, River Stour, River Salwarpe, and
River Isbourne) of the hydraulic model at daily time steps. Here, the setup of Lisflood-
FP is identical to the one of [32,48]. The model grid cell size is 75 × 75 m and the river
channel is represented via the model sub-grid approach [55]. Surveyed cross-sections of
the main rivers were used to define channel width and depth and the Manning’s roughness
parameter was fixed to 0.0426 in the channel and to 0.06 in the floodplain for the entire
domain. A “free” downstream boundary condition to fix the slope of the main channel was
set to 0.00007, determined as the overall valley slope.

As proposed in Section 2.3, we derived maximum flood extent binary maps for every
scenario from simulated water depth maps (Figure 6). These binary maps comprise the
ensemble of design flood extent binary maps that are used as particles in the assimila-
tion procedure.
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3.4. Subcatchments as Subareas in the Data Assimilation

As introduced in Section 2.3, various subdivisions of the model domain are derived
through hydrological analysis, which is applied in GIS by processing Shuttle Radar Topog-
raphy Mission 1 DEM (SRTM1) data with a spatial resolution of 30 m and a height accuracy
exceeding 9 m. The model domain was tested and evaluated (Figure 7): (a) no subdivision,
(b) 3 subareas drawn from a thresholding of the flow accumulation at 2 × 105 draining
pixels, (c) 9 subareas drawn from a thresholding of the flow accumulation at 5 × 104

draining pixels, and (d) 26 subareas drawn from a thresholding of the flow accumulation
at 1 × 104 draining pixels. The definition of these model domains is associated with the
necessity of differentiating the various contributing areas of the respective river channels to
take into account the dynamism of hydrological and geomorphological processes. Here, (a)
considers the entire test area as part of a single basin (Severn catchment), (b) separates the
Severn and Avon River catchments, (c) also separates the River Teme catchment, and (d)
distinguishes other sub-catchments along minor segments of the three main rivers. Figure 7
shows the generated subarea maps with 1 spatial unit, 3 spatial units, 9 spatial units, and
26 spatial units.
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4. Validation Approach

Based on the available data over the study area, the proposed data assimilation
method is evaluated both in terms of the estimated flood inundation map and in terms of
the estimated flood return period.

For flood extent evaluation, the estimated flood inundation map (one for each lo-
calization scenario) and flood inundation map from the SAR image (binary map from
PFM; see Section 3.2) corresponding to the fifth SAR acquisition on 23 July 2007 (ID 5,
see Table 1) are compared with the inundation map derived from the aerial photographs
acquired on 24 July 2007 (see Section 3.2). This comparison is carried out through a visual
interpretation and the computation of performance metrics, namely the critical success
(CSI), the Cohen’s kappa [65], and the overall accuracy indexes. These are all based on the
confusion matrix that is composed by the number of correctly estimated pixels (flooded/not
flooded) and the number of incorrectly estimated pixels (associated with overestimation
and underestimation). This comparative approach helps to evaluate the accuracy of an
estimated flood extent map with respect to an assumed ground truth (here the flood map
from aerial photographs).

For the return period evaluation, two comparisons are carried out. First, we compare
the ranges of estimated return period (T̂) and the ranges of observed return period (Tg).
Daily streamflow long-term time series (about 90–70 years, from 1920/40 to 2012) at the
gauging stations of Bewdley (River Severn) and Evesham (River Avon) are considered for
the estimation of observed return periods. Gauged discharge on satellite acquisition day
and gauged discharge on peak day of flood event were used to extract the P probability
from the GEV CDF curve (see Section 2.2) and determine the range of observed Tg at the
gauging station (i.e., Tg in acquisition day—maximum past Tg during the event). This
approach is based on the assumption that estimated T̂ relates to the flood extent observed
by the satellite that does not necessarily correspond to synchronously gauged Tg at the
upstream boundary condition [37]. Therefore, the range of observed Tg is compared to the
range of estimated T̂ at the river scale (i.e., a single value of T̂ if the river is included in a
unique sub-catchment or a range of T̂ if the river is running over several sub-catchments
depending on the segmentation used). Second, we compare the ranges of estimated T̂
and the ranges of predicted return period (Tm) derived from a long-term simulation of
the Lisflood-FP model (about 40 years) used to predict the water volume time series in
sub-catchments. This simulation uses gauged daily streamflow time series as boundary
conditions and provides a 40-year daily time series of water depth maps. These maps were
next converted into the volume of water at the river scale. Based on this volume time series,
GEV distributions were fitted (see Section 2.2) and return periods of this volume Tm were
estimated for each SAR image acquisition time. Then, a comparison at river scale in the
Severn and Avon Rivers was applied between predicted Tm and estimated T̂ (a single value
of T̂/Tm if the river is included in a unique sub-catchment or a range of T̂/Tm if the river is
running over several sub-catchments, depending on the segmentation used). The Severn
and Avon Rivers are selected because their floodplains are large enough to enable water
detection on SAR images like ENVISAT, while other rivers with very small floodplains
are not.

5. Results and Discussion
5.1. Localization

The test case over image ID 5 acquired on 23 July 2007 was first selected to analyze the
results of the proposed data assimilation method using various localization sub-catchments
(Figure 8), as this image exhibits the largest observed flood inundation extent.
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Figure 8. Estimated flood inundation maps with associated return period. (a) No filter localization.
(b) Localization over 3 sub-catchments. (c) Localization over 9 sub-catchments. (d) Localization
over 26 sub-catchments. Note: different colors indicate different return periods in the various
sub-catchments.

As shown in Figure 8a, the estimated return period is 5 years all over the domain when
no localization is carried out. Using a localization based on three sub-catchments enables
us to distinguish the Severn and Avon Rivers and to estimate different return periods for
these two rivers, namely 5 years for the Severn and 20 years for the Avon (Figure 8b).
Going further in the subdivision of study area (i.e., 9 and 26 sub-catchments) enables us to
estimate the return period at a smaller scale. Figure 8c and d show a continuous decrease
of the estimated return period along the River Severn. This is consistent with the fact
that the image was acquired after the flood peak, when the flow recession was starting.
However, in Figure 8d, the estimated return periods over the River Avon are decreasing
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toward the downstream. This variation in the estimated return periods demonstrates
the relative sensitivity of the proposed method to the domain segmentation: fairly small
reaches considered along the River Avon and fairly narrow river valley in corresponding
sub-catchments make these areas more challenging for the method as the sensitivity of the
flood extent to the return period is limited.

The results of the comparison of the estimated flood maps and SAR flood map corre-
sponding to the fifth SAR acquisition on 23 July 2007, along with the observed flood map
(derived from aerial photography), are shown in Figure 9 and Table 2. In Figure 9, correctly
estimated flood/not flood pixels are shown in dark and light blue, while overestimation
and underestimation are respectively represented in orange and yellow. Table 2 reports the
metrics derived from this comparison for all types of experiment, i.e., the confusion matrix
and the accuracy, CSI, and kappa indices.
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Figure 9. Evaluation of the estimated flood inundation extent for the fifth SAR image (23 July 2007)
using the flood extent derived from the aerial photography (24 July 2007). The detail maps correspond
to the River Avon (green box) and urban area (red box). (a) No filter localization. (b) Localization over
3 sub-catchments. (c) Localization over 9 sub-catchments. (d) Localization over 26 sub-catchments.
(e) Flood map from SAR image.

Figure 9 shows that flood maps derived from the proposed data assimilation method
are generally in good agreement with the ground truth flood extent. Moreover, the flood
extent is better estimated as a result of the data assimilation compared to the one derived
from the SAR image. Green and red boxes in Figure 9e highlight underestimation in
the SAR-derived flood map along the River Avon and in the urban area, respectively.
Furthermore, the estimated flood extent obtained using localization is more accurate than
that obtained without localization (Figure 9a–d). The quantitative analysis confirms this
evaluation as all metrics are higher with localization.
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Table 2. Confusion matrix and performance coefficients for flood extent validation. OF = observed
flood; ON = observed not flooded; AF = assimilated flood; AN = assimilated not flood; SOF = SAR
observed flood; SON = SAR observed not flood; CSI = critical success index.

Confusion Matrix Indices

Experiment OF ON Accuracy CSI Kappa
Assimilation 1 spatial unit AF 7153 1796 0.912 0.681 0.752

AN 1562 27,402
Assimilation 3 spatial units AF 7572 1863 0.921 0.716 0.782

AN 1143 27,335
Assimilation 9 spatial units AF 7408 1373 0.929 0.734 0.801

AN 1307 27,825
Assimilation 26 spatial units AF 6983 1416 0.917 0.689 0.763

AN 1732 27,782
SAR image SOF 5845 804 0.903 0.614 0.702

SON 2870 28,394

The indices in Table 2 indicate that the best results in the comparison between esti-
mated flood maps and validation flood maps belong to the experiments with a domain
segmentation of three and nine spatial units. Considerations from this evaluation approach
are (1) the proposed approach enables a better estimation of the flood extent, with an
improved accuracy compared to the flood maps derived from the SAR image; (2) in the
extreme event analysis and in the estimation of inundation scenario, flood phenomena
should be observed distinctly on the River Severn, River Avon, and the River Teme. The
segmentation should thus separate the three corresponding sub-catchments, without the
need for further splitting the three main channels.

5.2. Assessment of Estimated Return Periods

The estimated flood return periods were assessed by applying a comparative approach
at river scale. The ranges of T̂ were compared to Tg and Tm (see Section 4) for six SAR
acquisitions (ID 1, 3, 5, 7, 8, 10; see Table 1) by selecting only one of those images acquired
the same day. The results are shown in Table 3 and Figure 10.

Table 3. Ranges of observed return period and ranges of estimated return period along the Rivers
Avon (grey cell) and Severn (green cell). Tg = return period derived from long observation time
series at Evesham and Bewdley gauge stations; T̂ = estimated return period using the proposed data
assimilation method.

SAR ID SAR Observation
(Date, Time) Tg

^
T

No Loc Loc on 3 Loc on 9 Loc on 26
1 5 March 2007 10:27 6.35 1.01 2.00 2.00 1.01–20.00
3 8 March 2007 10:34 1.00–4.35 1.01 2.00 2.00 1.01–10.00
5 23 March 2007 10:27 4.02–308.55 5.00 20.00 20.00 1.01–500.00
7 17 January 2008 21:58 2.54–5.10 1.01 2.00 2.00 1.01–5.00
8 24 January 2008 10:12 1.00–1.13 1.01 1.01 1.01 1.01–2.00

10 18 January 2010 10:10 1.10–3.19 1.01 2.00 2.00 1.01–30.00
1 5 March 2007 10:27 1.00–1.02 1.01 1.01 1.01 1.01
3 8 March 2007 10:34 1.01–1.02 1.01 1.01–5.00 1.01–5.00 1.01–5.00
5 23 July 2007 10:27 1.52 5.00 5.00 1.01–10.00 1.01–10.00
7 17 January 2008 21:58 1.10 1.01 1.01–2.00 1.01–2.00 1.01–2.00
8 24 January 2008 10:12 1.14–2.42 1.01 1.01 1.01 1.01

10 18 January 2010 10:10 1.06 1.01 1.01 1.01 1.01–5.00
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Figure 10. Comparison graphs between ranges of estimated return period (T̂) and predicted return
period (Tm) along Rivers Avon (a) and Severn (b). Values of T̂/Tm are expressed on logarithmic
axes with error bars corresponding to ranges. Different colors indicate different subdivisions of the
model domain.

In Table 3, the first columns contain the SAR image ID and the satellite image acquisi-
tion date. The following columns contain ranges of gauged return periods and estimated
return periods. The Tg are relative to intervals of return periods observed at Evesham and
Bewdley gauging stations (grey and green cells respectively); T̂ are relative to intervals of
return periods estimated for the Rivers Avon and Severn. Then, a single value of Tg means
that the observed return period at the time of SAR acquisition is equal to maximum return
period during the flood event and a single value of T̂ means that the river is included in a
single area or that estimated return periods are equal in the different sub-catchments of
the river. Sub-columns in T̂ distinguish values of estimated return periods for different
localizations of the assimilation filter.

Figure 10 graphically shows the comparison between ranges of estimated return
period and ranges of predicted return period (described by error bars) for each subdivision
of the model domain (different color in the figure) along the Rivers Avon and Severn
(Figure 10a and b respectively). The results show that the estimated return periods Tm/T̂
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vary depending on the analysis area. In some cases, the return period is specific to a single
sub-catchment (like the Avon River in “loc 3” and “loc 9” of Figure 10a).

The results confirm two key points. First, there is a good agreement between the
estimated flood scenarios, the observed floods, and the predicted floods. This demonstrates
the effectiveness of the data assimilation method for assessing flood frequency. Second,
segmenting the river by location (see “loc 3” and “loc 9” in Table 3 and Figure 10) improves
the estimation of flood scenarios. This highlights the importance of considering the river
scale as a spatial unit in flood hazard assessment. A key advantage of our method is that it
can provide average or distributed return periods within sub-catchments, accounting for
the variations in river and floodplain processes across the area. However, the results also
indicate a limitation (see the range of values for “loc 26” in Table 3 and Figure 10). While
location-based filtering is beneficial, it is important to maintain a distinction between the
main river courses and avoid excessive segmentation within a sub-catchment, as this can
reduce the method’s effectiveness.

When evaluating the method’s ability to estimate flood scenarios, it is important to
consider how return periods are typically determined. Traditionally, return period refers
to the peak flood discharge measured at a specific gauging station. However, our method
estimates the return period based on the flood extent captured in a SAR image, which
covers a larger area and reflects upstream conditions that may differ from those at the
gauging station. This approach provides a range of possible return periods instead of a
single value, leading to a more realistic but less precise hazard assessment.

In simpler terms, while NRT data assimilation from SAR images allows us to esti-
mate return periods at the river scale, these estimates are expressed as ranges because
flooding is dynamic. A single SAR image cannot capture the peak flood extent across the
entire area of interest at a specific moment. Additionally, by the time floodwaters reach
the floodplain, the upstream flow might already be receding. This is why our validation
process compares the estimated return periods to two benchmarks: the observed range
of return periods at gauging stations and the return periods predicted through long-term
simulations (explained in Section 4). The positive outcomes of this comparison demon-
strate the method’s effectiveness in integrating data from both SAR and models, while
also considering variations in river hydrology and floodplain characteristics throughout
the catchment.

Our study demonstrates the value of our NRT flood frequency assessment for monitor-
ing flood events. Indeed, the enhanced accuracy in the estimation of flood extent and flood
scenarios and the availability of a spatially distributed return period represent the main
advantages of our data assimilation method. The estimated flood maps help visualize how
floodwaters behave in different parts of the river, highlighting areas potentially affected
by the flood’s impact. In the perspective of flood monitoring, a map of the return period
ranges for different sub-catchments directly addresses the needs of flood management
across various zones within the river catchment.

Our method does have some limitations to consider. First, it relies on the spatial and
temporal resolution of satellite data. The flood event needs to be visible in SAR images for
the data assimilation process to work effectively. Ideally, the method would be applied
to a large collection of SAR observations to capture the full extent of potential floods in
the study area. Additionally, the accuracy of flood probability predictions is limited by
the number of DFMs used. A larger archive of simulated scenarios would increase the
likelihood of matching the observed flood extent to the most accurate DFM.

These limitations can potentially be addressed in future advancements. As the avail-
ability of satellite data and faster hydrodynamic modelling techniques continues to improve,
the method’s effectiveness should increase. Furthermore, applying the method with global
models could enable large-scale flood analysis around the world, overcoming restrictions
related to data and tool availability
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6. Conclusions

This study introduces a novel method for near real-time assessment of a flood event’s
return period. The method integrates flood extent maps derived from SAR data with
pre-computed flood maps using a localized particle filter. We evaluated the approach in
the Severn River basin and found that it achieves the following:

• Confirms the significant value of SAR data for flood monitoring.
• Improves the accuracy of flood extent maps and enables real-time return period estimation.
• Provides spatially distributed return periods, accounting for the variations in flood

processes along the river.

This method has the potential to be a valuable tool for flood monitoring, especially
considering the growing need from the insurance industry to estimate flood severity
based on spatially distributed return periods. For example, this information is crucial
for improving the sector’s parametric insurance models, which rely on objective data to
determine payouts.

7. Patents
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