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Review 

No sexual pheromones in Anopheles mosquitoes? 
Kelsey Adams1,2 and Olivier Roux3   

Swarming behavior is the cornerstone of the anopheline mating 
system. At dusk, males congregate in monospecific swarms in 
which females come to find a mate once in their lives. Although 
many Anopheles species coexist in sympatry, hybrids are 
infrequent, suggesting the existence of strong premating 
reproductive barriers. Chemical cues, particularly pheromones, 
often play a crucial role in bringing sexes together in a species- 
specific manner among insects. While the existence of sexual 
pheromones in Anopheles species has been postulated, only a 
few studies developed experimental designs to investigate their 
presence. Here, we discuss the contrasting and debatable 
findings regarding both long-range and contact sex pheromones 
in the context of swarm ecology in Anopheles species. 
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Introduction 
In Anopheles species, the existence of sexual pheromones 
has often been postulated or debated but rarely in-
vestigated [1–6]. Sex pheromones are important both 
from an evolutionary point of view and in terms of vector 
control. Indeed, the evolutionary landscape of Anopheles 
mosquitoes is notably intricate, with sympatric species 
still undergoing speciation processes, where mating be-
havior likely plays a pivotal role [7]. Moreover, the re-
productive barrier between certain species is permeable, 
allowing for the occasional formation of hybrids that, 

although rare, contribute to gene introgressions between 
closely related species [8,9]. From a vector control per-
spective, the discovery of sex pheromones could pave 
the way for numerous advancements in existing tech-
niques or the development of novel ones, like strategies 
employed against crop pests [10,11]. Unfortunately, re-
search into anopheline mating behavior has been lim-
ited, mainly focusing on the Anopheles gambiae complex. 

Briefly, we know that mating takes place mainly out-
doors at sunset and to a lesser extent at sunrise [12], 
mainly in monospecific swarms containing a few to 
thousands of males wherein virgin conspecific females 
seek out a mate [12–18]. While numerous Anopheles 
species coexist in sympatry, they generally exhibit as-
sortative mating, except for the closely related species 
Anopheles gambiae and Anopheles coluzzii, which can pro-
duce hybrids at variable frequencies across time and 
space. Some of these hybrids can be viable but generally 
suffer a reduction in fitness [19]. This suggests that, in 
Anopheles species, reproductive isolation primarily occurs 
through robust premating reproductive barriers [7,20,21]. 
In addition, as males seem to swiftly grab females en-
tering swarms, and because females only mate once in 
their lives [22], entering a nonspecific swarm should be 
costly and fall under negative selection. Therefore, one 
would expect the existence of specific cues guiding fe-
males to conspecific male swarms or facilitating the 
discrimination between conspecifics and related species 
within swarms. 

Acoustic, visual, and chemical cues have been explored 
as potential mating signals. While acoustic signals are 
involved in interactions between sexes in the swarm  
[23], their use at long range by females has recently been 
ruled out, as male swarms can only be heard when fe-
males come into contact with the swarm [24]. Further-
more, although flight tones exhibit variations among 
Anopheles species [25], these differences alone fail to 
explain the mating barrier between some important 
sympatric species even at close range [3,23]. Visual cues 
such as swarm markers, which are contrasted landscape 
features, play a crucial role for both males and females in 
locating and stabilizing swarms. These cues contribute 
to spatial segregation among certain sympatric species  
[12,17,26]. However, in regions characterized by high 
hybridization rates, this segregation may be incomplete, 
and although some species use visual markers inter-
changeably, no mixed swarms have been detected to 
date [27]. Furthermore, it remains unclear whether 
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mosquitoes possess the ability to differentiate and select 
among different types of markers to identify species- 
specific locations or the distance at which these markers 
can be detected or identified. In this context, semi-
ochemicals appear to be promising candidates, with 
long-range sex pheromones potentially facilitating the 
attraction of both sexes while maintaining precopulatory 
reproductive isolation among sympatric species ex-
hibiting similar swarming behaviors. Additionally, con-
tact pheromones may contribute to upholding 
reproductive barriers within swarms. 

Long-range sex pheromones in Anopheles sp. 
Historically, only a limited number of studies have been 
published on experiments aimed at demonstrating the 
presence of sex pheromones in Anopheles species. The 
first known attempts involved testing female choice 
using a Y-shaped olfactometer with odors from dead 
males [28] or introducing either a cage of females or a 
paper on which 50 females had been crushed into a 
swarm and observing male behavioral responses [12]. In 
neither case was behavioral evidence of male or female 
interest in these stimuli reported. Recently, two studies 
combining behavioral, electrophysiological, and che-
mical analysis methods were conducted. However, these 
studies produced conflicting results. In the first one, 
Mozūraitis et al. [29] identified five compounds (acetoin, 
sulcatone, octanal, nonanal, and decanal) emitted in 
larger quantities by males of laboratory strains of Ano-
pheles arabiensis (Dongola and KGB) and An. gambiae 
(Keele) while swarming in a 1-l bottle. They also iden-
tified incorporation of stable-isotope-labeled glucose in 
each of these compounds, suggesting that males syn-
thesize them. A synthetic blend of these five com-
pounds, released in proportions reflective of the 
quantities emitted by 150 An. arabiensis males (1, 4, 13, 
50, and 400 μg.ml−1, respectively), triggered an upwind 
flight of both males and females of An. arabiensis and An. 
gambiae in very similar proportions in a Y-olfactometer. 
This ‘An. arabiensis-like’ synthetic blend also induced 
increased flight activity in An. gambiae males during the 
swarming period. Finally, it induced a higher proportion 
of female insemination in five laboratory species, in-
cluding four belonging to the An. gambiae complex (An. 
gambiae s.s. [G3], An. coluzzii [COGS], An. arabiensis 
[KGB], and Anopheles merus [MAFUS]) and additionally 
in Anopheles funestus (FANG) during semifield experi-
ments. 

The second study, by Poda et al. [30], focused on re-
cently colonized An. coluzzii and An. gambiae. They used 
large plexiglass boxes of 432 l in which males could 
swarm freely at dusk and assessed the behavioral activity 
of their headspace on females through dual-port olfact-
ometer assays. However, females exhibited no dis-
cernible interest in the airflow emanating from the 

swarms. They also collected swarm headspace in a 125 l 
plexiglass box with various methods and adsorbents, 
placed odor traps (Twister) directly within a natural 
swarm, and made solvent extracts of swarming males. 
However, none of these extracts revealed a single com-
pound specifically emitted by males during swarming. 
They also replicate the extraction method used by Mo-
zūraitis et al. [29] with solid-phase microextraction in a 1- 
l bottle but with different controls, yet none of the five 
compounds could be specifically attributed to male odor 
or to the swarming period. Electroantennographic ex-
periments were also conducted, testing swarm head-
space on females’ antennae, but once again, no notable 
physiological response was recorded. They concluded 
that while absence of evidence is not evidence of ab-
sence, their findings support the absence of long-range 
sex pheromones emitted by male swarms. These results 
are in stark contrast with the conclusions of Mozūraitis 
et al. [29], which were that acetoin, sulcatone, octanal, 
nonanal, and decanal were aggregation pheromones 
emitted by males during swarming, which not only at-
tract both males and females but also increase the in-
semination rate of females, which actually would make 
them aggregation-sex pheromones [31]. 

Why long-range pheromones may not exist in 
Anopheles sp.? 
These conflicting findings are puzzling and warrant 
careful consideration. First, the actual function of the 
five compounds identified in Mozūraitis et al. [29] de-
serves examination. Their biological activity is particu-
larly interesting, especially given their apparent 
effectiveness across multiple Anopheles species, sug-
gesting the potential for developing a broadly effective 
tool for vector control. At the same time, the broad ac-
tivity of these compounds raises doubts regarding their 
classification as pheromones in closely related and 
sympatric species. The strict definition of a pheromone 
stipulates that it is emitted by one organism and triggers 
a behavioral or physiological response in another in-
dividual of the same species [32,33]. Moreover, sex 
pheromones are expected to facilitate the location, 
identification, contact, and mating of the two sexes in a 
species-specific manner, thereby preventing hybrid for-
mation and ensuring reproductive isolation among clo-
sely related species [34,35]. While closely related species 
may often share similar compounds, their relative pro-
portions typically display high species specificity [35,36]. 
Of course, some species may exploit the chemical signals 
of others for fitness benefits (e.g. predation, parasitism, 
or aggregation to enhance survival) [35], but what would 
be the benefit for sympatric Anopheles species when the 
result of heterospecific gathering in swarms could result 
in the formation of hybrids suffering fitness dis-
advantages? The absence of divergence in compound 
composition could be conceivable only if cross-attraction 
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is not costly, or if alternative mechanisms exist to ensure 
reproductive isolation [35]. 

Second, we might ask whether long-range sex pher-
omones are useful in the anopheline reproductive 
system and why they may not have been selected during 
the evolution of Anopheles species. If they exist, long- 
range sexual pheromones could attract more females 
from a greater distance and indicate the identity of the 
swarming males. This is common in substrate-lekking 
insects such as tephritid fruit flies in which males are 
gathered on leaves and females can easily identify the 
emitting male [37,38]. However, in aerial lekking spe-
cies, that is, swarming species, the role of emitted che-
micals remains poorly understood and generally emitting 
individuals have a stationary flight during swarming  
[4,37]. This is a major difference compared with ano-
pheline swarms in which a large number of males fly 
quickly in a limited airspace, making it challenging for 
females to track a pheromonal plume to its male [39]. 
Thus, long-range sexual pheromones in Anopheles mos-
quitoes would be of collective interest but would be 
costly at an individual level, as pheromone production 
might impose a considerable energy burden for a hy-
pothetical benefit. Under certain circumstances, such a 
system could also favor the emergence of ‘cheaters’ that 
produce little or no pheromones, thereby exploiting the 
signal of other males [39]. Furthermore, because the 
odor plume of males flying downwind and away from 
swarms would be easier to track, females could be more 
likely attracted to those males before they enter swarms. 
Taken to their extreme, these possibilities could cause 
evolutionary instability of long-range sex pheromones 
(or even swarming behaviors altogether) due to selection 
for such males, further shedding doubt on a dominant 
role for such pheromones. 

What about contact sex pheromones? 
Given the insufficient evidence for long-range pher-
omones, let us consider whether close-range chemical 
cues could instead regulate reproductive barriers. 
Contact sex pheromones, such as cuticular hydrocarbons 
(CHCs), waxy molecules deposited on the surface of the 
insect cuticle, are known for their role in mate identifi-
cation in some insects [40,41]. Profiling CHCs within the 
An. gambiae complex showed differences in relative 
abundance between species but has not shown any to be 
species specific [42,43]. Furthermore, CHCs showed 
greater variation depending on geographic origin rather 
than species identity [43]. Unfortunately, the available 
techniques for demonstrating causal roles of CHCs in 
behavior are rather crude and involve ‘painting’ insects 
with either CHCs extracted from other insects using 
organic solvents or, when available, commercially syn-
thesized compounds dissolved in hexane. To date, no 
investigations have extracted CHCs from individuals of 

different Anopheles species and applied them to others to 
test whether this changes their mating success with 
conspecifics. It is consequently not understood whether 
CHCs contribute to species recognition in mating. In-
stead, some efforts focused on whether mating itself 
alters CHC profiles. Polerstock et al. [44] observed that 
mated An. gambiae females showed differences in their 
CHC profiles compared with unmated females (while 
males had no differences after mating). They in-
vestigated whether insemination rates of unmated fe-
males painted with CHC extracts from mated females 
were reduced. However, these experiments were in-
conclusive because extracts from mated females de-
creased insemination rates, but so did extracts from 
males or unmated females. Perhaps a cue for receptivity 
to mating is not useful in anophelines since females are 
unlikely to appear in mating swarms unless seeking 
a mate. 

On the other hand, there is some evidence that cuticular 
cues convey signals to females about male fitness. 
Although females are thought to mate rapidly upon entry 
into a swarm, Anopheles females can exhibit rejection 
behavior [45,46], suggesting that they can discriminate 
among males. This was supported by a recent study by 
Wang et al. [47]. First, they showed that silencing a gene 
(desat1) involved in CHC biosynthesis resulted in the 
reduction of the CHC heptacosane in Anopheles stephensi 
males. Second, females caged with those males had re-
duced insemination rates. Silencing this gene also de-
creased flight activity, so the decrease in insemination 
rates here may be in part due to reduced swarming be-
havior, but they ultimately showed that ‘painting’ males 
with heptacosane alone also increased insemination rates 
in females, lending more credence to its role in mating. 
In another study by Adams et al. [48], An. coluzzii males 
found in copula with females in natural mating swarms 
had a higher abundance of 13 CHCs compared with 
other swarming males. Interestingly, heptacosane, 
though identified in the study, was not among the more 
abundant CHCs, perhaps due to species differences 
between An. coluzzii and An. stephensi. Nevertheless, 
these results suggest that CHCs may have a role to play 
in anopheline mating behavior. 

Like the production of volatiles, contact pheromone 
production is likely to be energetically costly but may 
benefit the individual in two distinct ways. First, they 
are more likely to yield direct rewards to the individual 
insect in terms of securing a mate; and second, CHCs 
may directly convey fitness benefits, as these molecules 
also seal the cuticle against water loss [49,50], and slow 
the penetration of insecticides across the cuticle [51,52]. 
In the An. gambiae complex, higher total CHC content 
has been correlated with dry season conditions, in-
creased insecticide resistance, and increased mating 
success [48,51,53–55]. It is thus interesting to consider 
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which traits evolved first; has selection for CHCs in 
mating increased cuticular insecticide resistance as a by- 
product? Or, in environments where insecticide pressure 
leads to increased CHC abundance, do males that have 
evolved these traits mate with increased frequency? 
Perhaps, it is also only under certain environmental 
conditions, such as arid environments with insecticide 
pressure, that the costs of producing more CHCs are 
outweighed by the combined adaptive benefits in 
mating, desiccation tolerance, and insecticide resistance. 
It will be interesting for future explorations to untangle 
the relationships between mate selection and environ-
mental pressures like insecticides and aridity on CHC 
composition and abundance, as well as fitness costs and 
benefits associated with these traits. 

Conclusions 
The validation of long-range sex pheromones would 
present promising opportunities for vector control. 
However, unequivocally proving their existence seems 
to be challenging. Alternative mechanisms for long- 
range attraction to swarming spots may exist. While au-
ditory cues from swarms have been ruled out [24], swarm 
visual features such as wing interference patterns [56,57] 
could be considered. Additionally, environmental cues, 
such as swarm markers used by both sexes [12,26], 
would be more straightforward [6], yet their specificity 
and range of attraction remain unknown, necessitating 
further investigation. 

Contact pheromones could instead provide some signal 
of specificity contributing to a reproductive barrier, while 
at the same time playing a putative role in mate choice 
among conspecifics, although there is not yet sufficient 
evidence for this. Unfortunately, close-range cues are 
not strong vector control targets, as they would not at-
tract mosquitoes at a distance. However, the roles of 
contact pheromones in mating still bear importance for 
control strategies that would depend upon the ability of 
sterilized and/or transgenic laboratory-derived males to 
mate competitively in wild swarms. 
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