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A B S T R A C T   

Study region: Tropical Australia. 
Study focus: Streams and rivers of the Australian tropics have been the subject of substantial 
hydrological process research spanning the last 50 years. In this review, we highlight initial ef
forts to understand the hydrological response of forested ecosystems in the humid tropics, and 
how this has been more recently followed by work in savannas of the seasonal tropics. We 
describe recent findings from modelling and tracer studies and derive a framework of dominant 
hydrological processes for the region. We also detail five critical knowledge gaps that will require 
further attention with climate change and ongoing interest in development in the region. 
New hydrological insights for the region: We outline the diversity of runoff generation mechanisms 
that prevail in the region and emphasise the role of connected wetlands and floodplains in 
catchment response. We discuss the prominence of focused, episodic recharge in the replenish
ment of groundwater stores across the region. We also review how climate change and potential 
water resource development projects may alter the hydrology of northern Australian catchments. 
Future research should focus on improving our physical understanding of key hydrological pro
cesses, as well as anticipate the likely effects of development and climate change on these pro
cesses. Intensive and long-term studies of experimental observatories, which capture the diversity 
in landscapes and climates of the region, will help frame sustainable water development policies 
in northern Australia.   

1. Introduction 

Stretching from the Kimberley in Western Australia (WA) to the Cape York Peninsula in Queensland (QLD), about 25% of Aus
tralia’s land mass is characterised by a tropical climate (Fig. 1). Here we loosely define the Australian tropics as all land north of 
latitude ~21◦S, approximately corresponding to the transition between the seasonal, semi-arid tropics and more arid areas to the south 
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(Beck et al., 2018). This land, which has a strong cultural value to Indigenous Australians, is sparsely populated and has been subject to 
relatively limited water resource development to date. Less than 2% of the area is used for forestry, cropping or mining, with the 
remaining land either supporting extensive cattle grazing or reserved as conservation areas (ABARES, 2021). The relatively undis
turbed landscapes of tropical Australia generate a disproportionate amount of the continent’s surface runoff (Petheram et al., 2010), 
with many rivers in the region having retained a natural flow regime (Warfe et al., 2011). This situation contrasts with most other 
tropical regions of the world that are often affected by large-scale deforestation (Gibbs et al., 2010; Lambin et al., 2003) and river 
impoundment (Zarfl et al., 2015). The relatively intact state of northern Australia, combined with its diverse range of landscapes and 
sub-climates, and political stability relative to other tropical countries, provides unique opportunities to develop a solid knowledge 
base of natural hydrological processes in the tropics. Further, the renewed commitment from all levels of government to enable 
economic development in northern Australia (Commonwealth of Australia, 2015; Hart et al., 2020; Watson et al., 2021) is likely to 
drive an expansion of primary industries across the region, including irrigated agriculture (Ash et al., 2017), aquaculture (Cobcroft 
et al., 2020) and extractive industries (Knudsen et al., 2019). There is therefore an urgent need for research that assesses the response 
of Australian tropical catchments to projected water resource development as well as climate change. 

While the humid tropics have been the subject of important research on fine-scale hydrological process understanding since the 

Fig. 1. (a) Map of northern Australia with Köppen-Geiger climate classification corresponding to the seasonal and humid tropics. Plots show the 
long-term average monthly rainfall and number of rainy days for three locations across the seasonal tropics (Doongan, Darwin, Karumba) and two 
locations of the humid tropics (Cairns, Innisfail). (b) Elevation map of northern Australia with location of the study sites and large river systems 
presented in this review. Shaded areas depict the spatial extent of three regional aquifer systems (Canning Basin in WA, which includes the Grant 
Group and Poole Sandstone aquifers, Cambrian Limestone Aquifer in the NT, and northern part of the Great Artesian Basin in QLD). 
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1970 s and 1980 s (e.g. Bonell and Gilmour, 1978; Bonell et al., 1981; Cassells et al., 1985; Elsenbeer et al., 1995), the seasonal (or 
wet-dry) tropics have received comparatively less attention (e.g. Cook et al., 1998), even though the latter occupy a much larger area of 
the Australian tropics (Fig. 1). Despite recent efforts to collect field data from understudied areas, the research coverage has been 
spatially uneven, and observations remain limited across much of tropical Australia (Petheram et al., 2012a). The disparate nature and 
limited number of field studies has precluded development of a robust conceptual framework for understanding the key hydrological 
processes at play in the region. In this article, we first describe the diversity of landscapes and climates across the region (Section 2). We 
then provide a historical perspective of the work carried out to understand the hydrological response of forested ecosystems in the 
humid tropics (Section 3) and outline the more recent interest in hydrological process understanding across the seasonal tropics 
(Section 4). Through several recent examples, we show how the collection of isotopic, and other, data has provided new insight into the 
response of these highly dynamic systems to monsoonal rainfall pulses (Section 5). We then draw on these examples to propose a 
framework of dominant processes for the region. In Section 6, we discuss how current hydrological functions may be affected by 
climate change and potential water resource development. Lastly, we highlight some of the remaining knowledge gaps in Australia’s 
tropical hydrology in the face of future development and climate change (Section 7). 

This review synthesises the processes that control the hydrological response of catchments across the Australian tropics, and as 
such, there are topics that are outside of the scope of this paper. We do not review the numerous hydrological and hydrogeological 
assessments conducted by state agencies and research organisations since the 1950 s (e.g. water budgets of specific regions; 
groundwater recharge estimates; etc.), unless these studies have expanded our understanding of key hydrological processes. Likewise, 
we do not review studies that investigate other aspects of the critical zone, such as aquatic biogeochemistry, nutrient and sediment 
fluxes through rivers, as each of these topics could be the focus of review papers in their own right. 

2. Landscape and climate drivers of streamflow in the Australian tropics 

The Australian tropics are broadly made up of two bioclimatic zones, the humid tropics and the seasonal (or wet-dry) tropics, the 
latter covering most (>99%) of tropical Australia (Fig. 1a). The humid tropics, defined here as the area that falls under climate classes 
Af, Am and Cfa of the Köppen-Geiger classification (Beck et al., 2018), are a region of rugged rainforest terrain along the eastern flanks 
of the Great Dividing Range (Fig. 1b), with confined valleys and narrow coastal plains that support pasture and cropland. The geology 
of the humid tropics comprises of ancient (e.g. Palaeozoic) metamorphic and granitic formations partially overlain, in places, by more 
recent (e.g. Cainozoic) lava flows and ash deposits, while thick colluvial and alluvial deposits extend along the coastal plains (Jell, 
2013). 

The seasonal tropics, defined here as the area that falls under climate classes Aw, BSh and Cwa of the Köppen-Geiger classification, 
comprise highly weathered landscapes of generally low topography (Fig. 1b) that support mixed savanna woodland/grassland. A 
diverse range of geological settings occur across the seasonal tropics, for instance, sedimentary siliciclastic rocks in much of the 
Kimberley and Top End; igneous and metamorphic rocks in the headwaters of the Flinders, Gilbert and Mitchell catchments in QLD; but 
also sedimentary carbonate rocks occurring sporadically across the Daly and Roper catchments in the Northern Territory (NT) as well 
as Gulf of Carpentaria region (Ahmad and Munson, 2013; Groves et al., 1994; Jell, 2013). In places, the surface geology overlies large 
sedimentary basins that can contain highly permeable carbonate (e.g. the Cambrian Limestone Aquifer in the NT) or siliciclastic 

Fig. 2. Spatial visualisation of long-term mean precipitation (P), evaporation (E) and evaporative ratio (E/P) for the wet (November to April; top) 
and dry (May to October; bottom) seasons. Data obtained from BoM at a 0.05 degrees grid. E is averaged between 1961 and 1990 and P is averaged 
between 1981 and 2010. Note that the colour shadings are not the same for the dry and wet seasons, except for E/P. 
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formations (e.g. Grant Group and Poole Sandstone aquifers in WA; northern parts of the Great Artesian Basin in QLD) (Fig. 1b). The 
seasonal tropic region also includes wide alluvial floodplains associated with meandering rivers and extensive wetlands that form 
during the wet season. Much of the land surface has been subjected to intense chemical weathering, leading to widespread laterite 
formation. Another feature of the seasonal tropics are the numerous low-lying islands off the Top End coast, in the Gulf of Carpentaria 
and along the Coral Sea and Timor Sea coastlines (Fig. 1). These islands are often inhabited by Indigenous Australians, hence have 
important water security considerations. 

Rainfall in both the wet and seasonal tropics is primarily driven by the southward migration of the intertropical convergence zone 
during the summer months (Davidson et al., 1984; Troup, 1961). While early wet season events (from November to December) involve 
relatively short lived, intense convective storms, the shift to equatorial westerly winds around December brings large scale monsoonal 
conditions until April (Troup, 1961; Wheeler and McBride, 2005). During this second part of the wet season, monsoonal bursts can last 
between a few days to a week or more, and are characterised by convective cells that yield lower intensity but higher magnitude 
rainfall relative to early storms (Wheeler and McBride, 2005). Tropical cyclones can also occasionally form in the vicinity of monsoonal 
depressions, bringing more intense rainfall. Rainfall regimes during the wet season are broadly similar across the humid and seasonal 
tropics, with 1000–3000 mm falling along the northern and eastern coast between November and April (Fig. 2a). A substantial rainfall 
gradient occurs from north to south in the seasonal tropics, with semi-arid tropical regions receiving lower rainfall amounts 
(<500 mm) during the wet season. 

In the drier months (May to October), the two bioclimatic zones experience distinctly different rainfall patterns (Fig. 2d). Rain in 
the seasonal tropics ceases almost completely for four to five months, making the region one of the global hotspots for extreme rainfall 
seasonality (Feng et al., 2013). In the humid tropics, however, the presence of the Great Dividing Range enables south-easterly winds to 
bring orographic rainfall to the region even during the austral winter, ensuring rainfall of between 300 and 1000 mm between May and 
October. Both regions experience high rates of evaporation year-round (‘evaporation’ here refers to the bulk flux of water, including 
transpiration, following Miralles et al., 2020), with the highest rates during the wet season when precipitation and temperature are 
highest (Fig. 2b; 2e). As a result, the ratio between evaporation and rainfall (or evaporative index) is < 1 in high rainfall areas during 
the wet season (i.e. no rainfall deficit; Fig. 2c), but > 1 during the dry season—except for the humid tropics, where rainfall occurs 
year-round, and for the semi-arid inland areas to the south, where evaporation is negligible given the lack of rainfall and low vege
tation cover (Fig. 2f). 

This diversity in landscape and climate drivers results in significant differences in the hydrological regime of streams and rivers 
across the region (Fig. 3). Rivers of the humid tropics tend to flow year-round, with rainfall during the drier months ensuring regular 

Fig. 3. Illustration of the seasonality and interannual variability in river flow. Daily discharge for the period 2010–2020 in three rivers of the 
seasonal tropics: Fitzroy River (WA gauging station 802008), Mitchell River (QLD gauging station 919009B), Daly River (NT gauging station 
G8140040) and two rivers of the humid tropics: Daintree River (QLD gauging station 108002 A) and North Johnstone River (QLD gauging station 
112004A). Colours correspond to the respective climate zones as per Fig. 1. 
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replenishment of groundwater stores and sustained discharge to rivers (e.g. Daintree and North Johnstone Rivers in Fig. 3). In contrast, 
many rivers of the seasonal tropics cease to flow during the prolonged dry season (e.g. Fitzroy River in Fig. 3), unless they are con
nected to large groundwater systems that sustain surface water flow via baseflow contributions (e.g. Daly River in Fig. 3; associated 
with the Cambrian Limestone Aquifer). Because rainfall can be particularly irregular from year to year, rivers of the seasonal tropics 
are also subject to considerable interannual variations in their flow regime (Petheram et al., 2008b). 

3. Humid tropics: a legacy of research on stormflow generation 

Hydrological research in tropical Australia began in the 1970 s in the steep forested region of northeast QLD, with the estab
lishment of a hydrological observatory in one of the most humid areas of Australia, near Babinda, south of Cairns (B in Fig. 1b), where 
annual precipitation averages 4500 mm. In what is often referred to as the “Babinda catchments”, a wide range of experimental 
approaches were applied to examine the response of streams to rainfall and the impact of logging on this response. The site comprised 
two paired sub-catchments, namely South Creek, supporting intact rainforest, and North Creek, which had been logged. From the 
1970 s to the late 1990 s, the Babinda observatory became one of the most intensely studied sites in the tropics (e.g. Bonell et al., 1998; 
Bonell and Gilmour, 1978; Bonell et al., 1981; Cassells et al., 1985; Elsenbeer et al., 1995; Elsenbeer et al., 1994). These studies 
generated significant new understandings of storm runoff generation in the humid tropics, as briefly detailed below. 

Early work in Babinda showed that tropical rainforest catchments can be highly responsive to rainfall, and capable of generating 
overland flow (Bonell and Gilmour, 1978). This finding contradicted the then prevailing view that forested catchments were domi
nated by subsurface stormflow. In both South and North Creek, highly transmissive surface soil layers were underlain by a 
low-permeability layer at 0.2 m depth, which, under high antecedent wetness and intense rainfall, could result in saturation-excess 
overland flow as a perched water table formed in the upper soil (Bonell et al., 1983, 1981; Bonell and Gilmour, 1978; Cassells 
et al., 1985). Subsurface stormflow was also observed and occurred mostly via preferential pathways along large root systems (Bonell 
and Gilmour, 1978), while stemflow contributed substantially to overland flow via branches that quickly funnelled rainfall to the 
ground (Herwitz, 1986). 

In the 1980 s, research in the Babinda catchments contributed significantly to the emerging debate over the contributions of ‘old’ 
(or pre-event) and ‘new’ (or event) water sources to the storm hydrograph. Under wet antecedent conditions and monsoon-type 
rainfall, event water dominated the runoff response (Elsenbeer et al., 1995), yet under lower-intensity rainfall less favourable to 
the generation of saturation-excess overland flow, large contributions from pre-event water were observed both in South Creek 
(Elsenbeer et al., 1995) and North Creek (Barnes and Bonell, 1996). It was also established that as the region transitioned to the drier 
season, streamflow became dominated by older groundwater sources (Bonell et al., 1998, 1983, 1981). Recognising the necessary 
distinction between celerities (pressure wave) and velocities (mass movement) to characterise catchment response, Barnes and Bonell 
(1996) were the first to incorporate isotopic tracers into a hydrological model—a study that paved the way for a better integration of 
water transit times in catchment studies and for a widespread use of tracer time-series in hydrology (Hrachowitz et al., 2016; 
McDonnell and Beven, 2014; McGuire and McDonnell, 2006; Sprenger et al., 2019). Overall, the breadth of research conducted in the 
humid tropics of Australia during that period inspired hydrological research in other tropical regions of the world (e.g. Elsenbeer and 
Lack, 1996; Muñoz-Villers and McDonnell, 2012; Noguchi et al., 1997; Schellekens et al., 2004), at a time when hydrological process 
understanding was predominantly focused on temperate regions. 

4. Seasonal tropics: recent scrutiny with the push to “develop the North” 

While hydrological monitoring and assessments in the seasonal tropics of Australia have been conducted by state agencies since the 
1960 s, interest in small-scale hydrological process understanding was relatively limited until the 2000 s. Among the few research 
studies undertaken in the 1970 s and 1980 s, Bonell and Williams (1986) examined runoff patterns in an undisturbed savanna hillslope 
near Torrens Creek (central north QLD; TCk in Fig. 1b). They found that infiltration-excess overland flow developed during high 
intensity rainfall events on bare soil surfaces. However, over 95% of this runoff was redistributed and subsequently infiltrated a short 
distance downslope as a result of high soil hydraulic conductivity (Bonell and Williams, 1986). In another study in the Burdekin River 
catchment (BR in Fig. 1b), Holt et al. (1996) partly attributed the higher infiltration rates they observed in a lightly grazed savanna 
(relative to an overgrazed site) to higher termite activity within the topsoil. These early findings suggest that both the extent of savanna 
vegetation cover and soil properties, including soil fauna, may be important determinants of runoff generation processes in the 
Australian seasonal tropics. 

With severe droughts impacting southern Australian catchments, northern catchments have been scrutinised since the mid-2000 s 
for potential development of primary industries (Commonwealth of Australia, 2015). Several programs were launched that gave 
impetus to new research on the rivers of the region. These programs (e.g. Tropical Rivers and Coastal Knowledge, established in 2007; 
Northern Australia Sustainable Yields Project, launched in 2008; Northern Australia Environmental Resources Hub, established in 
2012; Northern Australia Water Resource Assessment, launched in 2015) fostered transdisciplinary research that delivered critical 
information on the extreme variability of flow regimes (Petheram et al., 2008b, 2012a) and the effect of flow seasonality on riverine 
ecosystems (e.g. Douglas et al., 2005; Jardine et al., 2015; Leigh and Sheldon, 2008; Warfe et al., 2011). Because groundwater 
development would potentially impact the continuity of dry-season surface flow, the role of intermediate- to regional-scale ground
water systems in maintaining baseflow to rivers was also investigated in detail across the region (Cook et al., 2003, 1998; Gardner 
et al., 2011; Jolly et al., 2013; Leblanc et al., 2015; Smerdon et al., 2012). Return flow from bank storage was identified as an important 
process that can contribute significant proportions of baseflow to large rivers (Batlle-Aguilar et al., 2014; Doble et al., 2012). Another 
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focus of these programs was to examine ecohydrological processes during the dry season, with several studies demonstrating the 
reliance of riparian trees on groundwater (Cook and O’Grady, 2006; Lamontagne et al., 2005; O’Grady et al., 2006). 

Overall, we now have access to much-needed baseline information on the biophysical environment of the seasonal tropics. Detailed 
investigations of hydrological processes specific to the region, however, have been limited until recently. Catchment functioning is 
likely to be fundamentally different in the tropics compared to temperate regions (Wohl et al., 2012; Wright et al., 2018), yet our 
understanding of processes such as runoff generation, sources and pathways of stormflow, and groundwater contributions to surface 
flow remains fragmented for the seasonal tropics of Australia. Recent efforts, including modelling and observations based on envi
ronmental tracers (e.g. water stable isotopes, radioisotopes), have helped clarify some of these processes, as outlined in Section 5. 

5. New insights from isotopic studies: towards a baseline hydrological framework 

The use of environmental tracers has underlain key advances in the conceptual understanding of catchment processes (Kendall and 
McDonnell, 1998). In Australia, Bonell and colleagues were pivotal in the development of tracer techniques as tools to unravel runoff 
generation processes (e.g. Barnes and Bonell, 1996; Bonell et al., 1998; Bonell et al., 1983; Elsenbeer et al., 1995; Hensel and Elsenbeer, 
1997). While these early investigations relied on a low number of measurements, the advent of infrared isotope spectroscopy is now 
enabling high resolution observations at time scales that match those of fundamental hydrological drivers (Birkel et al., 2012; von 
Freyberg et al., 2017). The ability to acquire high resolution isotopic data (both oxygen, 18O/16O or δ18O and hydrogen, 2H/1H or δD) is 
particularly important in tropical regions, where stormflow events can be intense and short lived, and where the isotopic composition 
of rainfall can be highly variable at sub-hourly time scales (Munksgaard et al., 2012, 2020). 

Over the last decade or so, isotopic studies focussed on streams and rivers in tropical Australia have advanced our understanding of 
the hydrological response of these systems to hydroclimatic drivers (e.g. Birkel et al., 2020; Lamontagne et al., 2021; Smerdon et al., 
2012; Tweed et al., 2016). Here we summarise the main findings from these and other studies and propose a broad framework of 
hydrological functioning for the region. 

5.1. Hydrological responses to monsoonal rain 

Recent research has shown that wet season rainfall can have distinct isotopic compositions over the course of the season, largely 
dependent on cloud generation dynamics and their transport trajectories (Zwart et al., 2016, 2018). The large-scale monsoonal 
convective systems that occur at the peak of the wet season are characterised by highly depleted δD and δ18O compared to earlier 
storms and to storms that occur between monsoonal bursts (Munksgaard et al., 2020; Zwart et al., 2016, 2018). Furthermore, tropical 
cyclones can bring rainfall with even more negative δD and δ18O values (Munksgaard et al., 2015). Such temporal variations in the 
isotopic composition of rainfall offer the opportunity to assess the response of Australian tropical streams and rivers to different 
hydroclimatic drivers and their associated spatial and temporal patterns. 

Research has shown that runoff generation mechanisms in tropical Australian catchments vary over the course of the wet season, as 
a result of rainfall intensity and changing antecedent wetness conditions (e.g. soil moisture and groundwater states). Analysing the 
hydrological response of Seventeen Mile Creek (SM in Fig. 1b), a river north of Katherine (seasonal tropics), Montanari et al. (2006) 
found that saturation-excess overland flow occurred during the wettest months and after sustained monsoonal events. This was despite 
high storage capacity within the catchment and a predominance of subsurface inflows during storms. Saturation-excess can be 
attributed to the subdued topography and high soil permeability that may together induce optimal infiltration and ponding via a rise of 
the water table above the ground surface. In the Upper Burdekin catchment (BR in Fig. 1b), Jarihani et al. (2017) also attributed 
wet-season overland flow to the filling and spilling of shallow soil storage. These authors showed that infiltration-excess was more 
likely to occur in the drier months, due to high rainfall intensities and lower water tables. To assess the relative proportions of different 
water sources to high flow events, Duvert et al. (2020) developed mixing models adjusted to δ18O, electrical conductivity and tritium 
measurements in the Howard River, a monsoon-driven lowland system near Darwin (HR in Fig. 1b). Under high flow conditions, most 
streamflow originated from the slow drainage of wetland and floodplain stores, as well as from shallow groundwater discharge. Birkel 
et al. (2020) used a semi-distributed model based on δD and δ18O time-series to simulate both water and solute movement in the same 
river system. These authors confirmed the role of seasonal wetlands as receivers and temporary stores of shallow subsurface contri
butions during the wet season. 

Steeper catchments of the humid tropics are characterised by a wide range of hydrological responses, although subsurface 
stormflow seems to be the prevailing mechanism in these systems. Bass et al. (2014) measured the isotopic ratio of dissolved inorganic 
carbon (13C/12C, δ13C) in combination with δ18O and δD at a high-resolution during a stormflow event in Atika Creek, a pristine 
forested stream (ACk in Fig. 1b). Isotopic values showed an initial period of significant overland flow contribution, but as streamflow 
peaked and receded, the system rapidly switched to an almost entirely subsurface contribution. Subsurface stormflow has also been 
observed in cleared areas of the humid tropics. Tweed et al. (2016) reported significant changes in δ18O and δD at peak flow in Scheu 
Creek, an agricultural catchment south of Cairns (SCk in Fig. 1b), which they interpreted as enhanced discharge of shallow ground
water from saturated areas along the stream via translatory flow of pre-event water. Under particularly high antecedent wetness 
conditions and intense rainfall, however, overland flow was found to dominate the response in forested catchments, likely a result of 
the generally low permeability of the subsoil in certain areas (Bonell and Gilmour, 1978; Elsenbeer et al., 1995; Herwitz, 1986). 

While surface and shallow subsurface water sources tend to prevail during stormflow events, deeper groundwater inflows can also 
play a key role in the hydrological response of Australian tropical catchments. Despite the rapid flow response and the dominance of 
shallow sources in the Howard River, Birkel et al. (2020) found that deep groundwater upwelling led to overall relatively old (>1 year) 
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streamflow even during monsoonal bursts. Similarly, large contributions from ‘old’ groundwater to peak flow were detected in early 
work by Barnes and Bonell (1996) during low-intensity rainfall events. Groundwater discharging from fractured rock aquifers in 
upland areas of the humid tropics was also found to contribute the bulk of streamflow, even under high-flow conditions (Cook et al., 
2001). 

5.2. Recharge pathways 

Evidence shows the importance of riverbanks and alluvial deposits in storing monsoonal rainfall. This process is particularly 
important in large, low-gradient rivers of the seasonal tropics and typically occurs through overbank flooding (Doble et al., 2012; Jolly 
et al., 2013; Taylor et al., 2018a). The increase in river stage at the peak of the wet season can be very substantial, with the width of 
inundation potentially exceeding 30 km in the lower Fitzroy River (Karim et al., 2018). Groundwater recharge from overbank flooding 
occurs across much of the seasonal tropics, and is likely to be the dominant recharge mechanism to alluvial aquifers in the more arid 
inland areas (e.g. the BSh climate zone). 

Other localised recharge mechanisms are likely to occur across the region, in part because of intense chemical weathering of the 
land surface, which has resulted in large heterogeneities in the hydraulic conductivity of near surface materials. For instance, shallow 
lateritic horizons can contain solution cavities and macropores (Cook et al., 1998; Doyle, 2001; Hutley et al., 2000), while in areas 
underlain by carbonate rocks, karstification has created complex networks of sinkholes, conduits and caves (Karp, 2008; Tickell, 
2011). Such heterogeneous structures in the subsurface are likely to lead to preferential flow and recharge pathways, which can 
represent a disproportionate contribution to aquifer recharge. Turnadge et al. (2018) showed that recharged waters to a dolostone 
aquifer of the NT were not subject to evaporative fractionation. This was inferred to be due to the bulk of recharge occurring via 
relatively fast, localised pathways such as buried sinkholes. This work was followed up by Enemark et al. (2020) who confirmed via 
model testing that depressions in the landscape likely act as conduits for preferential recharge. But these mechanisms are not limited to 
carbonate systems. For instance, sandy paleochannels in upland outcrop areas of the Mitchell catchment (QLD) have also been 
identified as key recharge zones (Taylor et al., 2018b). 

Inter-aquifer flow can also be an important recharge process for lowland aquifer systems receiving limited diffuse recharge. The 
fractured rock aquifers in upland areas of the Great Dividing Range contribute to recharging alluvial and other sedimentary formations 
in the drier areas to the west, such as the Flinders and Gilbert catchments (Jolly et al., 2013). Further work is needed to better quantify 
mountain front recharge and inter-aquifer linkages across such areas. Overall, the role of landscape and geological heterogeneities in 
controlling groundwater recharge and the contribution of preferential recharge and overbank flood recharge relative to diffuse 
recharge remain largely unknown across much of tropical Australia. 

5.3. Dry season water sources 

Differences in the amplitude of rainfall seasonality strongly modulate the flow regimes of streams and rivers across the Australian 
tropics (Petheram et al., 2008b) (Fig. 3). After rainfall has largely ceased in the seasonal tropics, the magnitude and duration of flow 
recession is a function of the storage capacity of adjacent temporary stores (wetlands, floodplains, alluvial deposits, riverbanks) and of 
their state of connection with the channel (Fig. 3). Duvert et al. (2020) and Birkel et al. (2020) showed that the slow drainage of waters 
previously stored in connected floodplains maintains surface flows in the Howard River several months after the last rains. In larger 
rivers, return flow from bank and alluvial storage can be a major contributor to flow recession and, potentially, to dry season baseflow 
(e.g. Batlle-Aguilar et al., 2014; Jolly et al., 2013). Using simple numerical simulations based on cross sections of the Fitzroy River in 
the Kimberley (FR in Fig. 1b), Doble et al. (2012) demonstrated that after a major high flow event, several years may be required for all 
water stored in riverbanks to return to the river. 

After shallow water sources have been depleted, the connection with larger, deeper groundwater stores becomes an important 
determinant of the dry season flow regime in the seasonal tropics. Where and when surface systems are not connected to regional 
groundwater, channels tend to break up into a series of discrete pools (Fig. 3). Using long-term hydrological records and modelling, 
Cresswell et al. (2009) suggested that intermittent streams and rivers are far more common than perennial systems across tropical 
Australia. This is often also the case in low-lying islands, where groundwater storage potential is very limited (but see Banks et al., 
2021). After surface flow has ceased, subsurface flow often persists in the sandy deposits that underlie channels (Shanafield et al., 
2021). Alternatively, perennial surface flow occurs in areas where regional aquifer systems discharge into surface water systems 
(Fig. 3), such as in the Cambrian Limestone Aquifer (e.g. Cook et al., 2003; Lamontagne et al., 2021; Smerdon et al., 2012), the Grant 
Group and Poole Sandstone aquifers (e.g. Gardner et al., 2011; Harrington et al., 2011; Taylor et al., 2018c) or other sedimentary or 
fractured rock aquifers (e.g. Jolly et al., 2013; Leblanc et al., 2015). Where surface flow is perennial, geological faults often provide 
preferential pathways for groundwater discharge (Harrington et al., 2011). Based on terrigenous helium-4 analyses, Gardner et al. 
(2011) and Smerdon et al. (2012) estimated that the baseflow of the Fitzroy and Daly Rivers (Fig. 1b; 3) had residence times of up to 
1000 and 10,000 years, respectively. A major spring complex that feeds the Roper River (RR in Fig. 1b) also had long residence times 
associated with the Cambrian Limestone Aquifer, with possibly even older contributions from formations underlying the Cambrian 
Limestone Aquifer (Lamontagne et al., 2021). Late dry season streamflow in the Howard River, which is connected to a less extensive 
carbonate aquifer, was > 100 years old (Duvert et al., 2020). 

In more humid regions, shallow groundwater stores are likely to be replenished even during the drier months as a result of dry 
season storms, providing abundant baseflow to rivers all year round (Fig. 3). Cook et al. (2001) showed that groundwater inflows made 
up the main source of streamflow in areas of the Atherton Tableland (QLD; AT in Fig. 1b) underlain by fractured basalt lava flows, with 
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isotopic evidence that young (<30 years) groundwater contained in the basalt discharged to streams throughout the year. In upland 
areas where forest cover has remained intact, McJannet et al. (2007) demonstrated the role of cloud interception as an important 
source of baseflow for streams during the drier months. 

5.4. Uptake by vegetation 

Due to the seasonal cycle in rainfall, most vegetation communities across tropical Australia are water-limited during the dry season, 
with evaporation rates as high as or higher than rainfall rates (E/P ≥ 1; Fig. 2). An exception to this situation is for the rainforests of the 
humid tropics, where E/P < 1 even during the drier months (McJannet et al., 2007). Yet, despite the near absence of dry-season rain in 
the seasonal tropics, not all ecosystems of the region are limited by water availability. This is because water can occur in underground 
stores (e.g. deep soil horizons or capillary fringe of the water table) which support steady rates of overstorey evaporation through the 
dry season. Examples of this are the coastal savannas of the Top End in the NT (Hutley et al., 2000, 2001; Whitley et al., 2011), but also 
riparian corridors and other groundwater-dependent ecosystems scattered throughout the region (e.g. Canham et al., 2021; Drake and 
Franks, 2003; Duvert et al., 2022; Lamontagne et al., 2005). Several studies have examined the extent to which riparian trees may be 
reliant on groundwater. By comparing the isotopic composition (both δ18O and δD) of potential tree water sources (soil water at 
different depths, groundwater) to that of xylem water, studies have shown that riparian trees tend to use shallow groundwater stores at 
the end of the dry season (Canham et al., 2021; Cook and O’Grady, 2006; Duvert et al., 2022; Lamontagne et al., 2005; O’Grady et al., 
2006). Although few species used groundwater exclusively, these findings highlight the importance of alluvial and bank storage 
replenishment during the wet season. In contrast, savanna trees extract soil water from deep soil horizons, suggesting little to no 
groundwater dependence (Hutley et al., 2000; Kelley et al., 2007). However, the studies by Hutley et al. (2001) and Kelley et al. (2007) 
were conducted in high rainfall coastal savannas and little is known about the patterns of tree water uptake in lower rainfall inland 
areas, where savanna vegetation may be more vulnerable to changes in rainfall (Fig. 2). 

As a complement to isotopic approaches, remote sensing techniques can offer opportunities to assess evaporation fluxes at broader, 
but also coarser, scales. Using MODIS products at a 250-m resolution, Crosbie and Rachakonda (2021) identified one area in the Roper 
River catchment (near Mataranka, NT; RR in Fig. 1b) where evaporation largely exceeds rainfall (E/P > >1)—a likely indication of 
groundwater dependence. Despite the challenge of modelling savanna evaporation due to the different water use patterns of trees and 
grasses, recent modelling efforts have enabled improved estimates of the seasonal variations in the evaporation flux across the seasonal 
tropics (Zhuang et al., 2020). More field observations are now needed to advance our understanding of the sources and temporal 
dynamics of root water uptake at both local and larger scales, and how this uptake may affect other components of the water cycle such 
as recharge and runoff. Remotely-sensed evaporation data have potential to improve streamflow modelling (Herman et al., 2018; Rajib 
et al., 2018), and we believe that finer estimates of evaporation fluxes will also improve hydrological understanding and modelling at 
small catchment scales. 

6. Anticipating hydrological responses to climate change and future development 

6.1. Interannual flow variability and unknown effects of climate change 

Interannual variability in rainfall is ~40% higher in tropical Australia compared to other tropical regions of the world with similar 
mean annual rainfall (Petheram et al., 2008b). This variability can be explained by the influence of large-scale atmospheric patterns 
such as the El Niño Southern Oscillation (ENSO; Nicholls et al., 1997), Interdecadal Pacific Oscillation (Power et al., 1999), and by the 
episodic impact of cyclones across northern Australia. The effect of ENSO on rainfall can in turn drive significant interannual changes 
in river flow (Chiew and McMahon, 2002), as exemplified with the Mitchell River (Fig. 3). This interannual variability is particularly 
extreme in more arid, inland areas of the Australian tropics (Petheram et al., 2008b), where it is the rarer, larger rainfall events that 
tend to generate aquifer recharge. Recent isotopic investigations suggest that the passage of tropical cyclones is key to replenishing 
groundwater stores in lower rainfall areas of the region (Meredith et al., 2018; Skrzypek et al., 2019). 

Climate models project an increase in the frequency and intensity of extreme rainfall in tropical Australia (Alexander and Arblaster, 
2017; Jourdain et al., 2013), although large uncertainties remain (Dey et al., 2019). The effect of these expected changes on hydro
logical regimes are also uncertain, with projections ranging from decreases (by up to 26%) to increases (by up to 29%) in mean annual 
runoff across the Australian tropics (Petheram et al., 2012b). Because runoff generation and flow duration are highly dependent on the 
timing and intensity of rainfall, changes in rainfall may exacerbate river flow variability. Modelling by Karim et al. (2016) indicates 
that the connectivity between wetlands and rivers could last up to 20% less in a drier climate than under the current climate, while the 
connectivity could be 5% longer under a wetter climate. An increase in potential evaporation rates can also be expected in tropical 
Australia (Pan et al., 2015), likely driven by changes in rainfall, temperature and increased atmospheric CO2—noting there remains 
uncertainty around other key variables such as wind speed. While we lack data to constrain the uncertainties in these processes, it is 
possible that altered potential evaporation rates during key hydrological periods may alter the response of catchments, particularly 
during “shoulder” seasons (e.g. delayed wetting-up or early drying-out), and potentially contribute to increased flow intermittency. In 
addition, the expected increase in cyclone intensity (Knutson et al., 2015) might induce increased runoff and recharge in drier areas of 
the region. Obviously, the above statements are speculative given the current lack of knowledge, and further research investigating the 
effects of changing rainfall and evaporation patterns on the hydrological response of Australian tropical streams and rivers is needed. 
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6.2. Development will alter hydrological partitioning and flow regimes 

Agricultural development in the humid tropics of Australia has occurred since the middle of the 19th century, with land cleared for 
sugarcane production and pasture development for dairy and beef cattle (Harding, 1972; Kemp et al., 2007). Large-scale deforestation, 
particularly on the coastal plains, has likely led to important changes in the hydrological response of catchments of the region, some of 
which have been investigated in detail (see Section 3). In contrast, the seasonal tropics have been historically less affected by land 
disturbance, with much of the land used for extensive cattle grazing on improved and native savanna vegetation (ABARES, 2021). 
However, since the 2000 s the Federal, state and local governments have focused on opportunities presented by the vast area and 
abundant water resources of the seasonal tropics (see Section 4). In recent years there has been a renewed push for development of 
primary industries in the seasonal tropics. Some of the policy initiatives responding to this push are the White Paper on Developing 
Northern Australia (Commonwealth of Australia, 2015) and the establishment of a $1B National Water Infrastructure Development 
fund in 2018, with $200 M committed to northern Australia (Hart et al., 2020; Watson et al., 2021). The current desire to expand 
irrigated agriculture in the region is accompanied by an interest to develop shale gas extraction in several sedimentary basins including 
the Beetaloo Sub-basin (Knudsen et al., 2019), which underlies parts of the Cambrian Limestone Aquifer (Fig. 1). While these potential 
developments are likely to affect streamflow and groundwater dynamics, considerable uncertainty remains as to how surface and 
groundwater systems will respond to these changes across the region. 

Some of the expected impacts are directly associated with land disturbance. For instance, in the few places where dryland cropping 
is viable and where savanna woodland will be replaced by cropland, increases in storm runoff and decreases in infiltration can be 
anticipated. An early study by Ive et al. (1976) near Katherine in the NT (K in Fig. 1b) found that almost 40% of rainfall occurring on 
grassland was translated downslope as infiltration-excess overland stormflow. At a research farm in the Daly River area, Dilshad and 
Peel (1994) showed that tillage and low vegetation cover resulted in nearly twice as much overland flow relative to cropping soil under 
zero till. Conversely, Bartley et al. (2014) found that increased ground cover in the semi-arid tropics of the Upper Burdekin catchment 
resulted in lower hillslope runoff coefficients during early wet season events. However, the expected decreases in infiltration rates 
following soil disturbance may be counterbalanced by a decrease in evaporation resulting from the replacement of native vegetation by 
shallow-rooted pasture or cropland. Groundwater level rise and waterlogging following land clearing has been a common observation 
in the southern parts of the country (e.g. Allison et al., 1990; Sharma et al., 1987), and could eventuate in areas of the tropics where the 
water table is already shallow. Despite lacking detailed investigations, these early results suggest that local modifications to the land 
cover and soil structure of tropical savannas may have considerable impacts on the partitioning between runoff and recharge in those 
areas. 

Aside from the direct effects of land use change, which will likely be restricted to a small proportion of the landscape, important 
questions arise from the potential impacts of water resource development projects. First and foremost, groundwater abstraction for 
irrigation and the mining industry may have important effects on flow regimes and groundwater-dependent ecosystems. Modelling 
results reported by Chan et al. (2012) suggest that groundwater development may significantly alter the natural flow regime of the 
Daly River (NT) in the dry season by increasing flow intermittency and reducing lateral (river–floodplain) and longitudinal 
(upstream–downstream) connectivity. Because the regional groundwater that discharges into rivers can be very old (see Section 5.3), 
the effects of groundwater abstraction on river baseflow may occur long after development started, as was modelled for the Roper 
River in the NT (Bruwer and Tickell, 2015). Furthermore, there is broad consensus from isotopic studies that riparian trees in the 
seasonal tropics tend to use shallow groundwater stores at the end of the dry season (Canham et al., 2021; Cook and O’Grady, 2006; 
Duvert et al., 2022; Lamontagne et al., 2005; O’Grady et al., 2006), indicating that a lowering of the water table due to groundwater 
development may alter the composition and abundance of some riparian ecosystems. 

Apart from impacts linked to groundwater abstraction, unconventional gas mining operations may further alter natural ground
water flow processes. Hydraulic fracturing for shale gas extraction has the potential to increase the connectivity between exploited 
aquifers and deeper formations via preferential flow through faults or fractures (Myers, 2012). Of interest in the northern Australian 
context are the possible vertical connections between the Cambrian Limestone Aquifer and underlying formations containing high 
salinity water (Frery et al., 2022; Lamontagne et al., 2021). 

The construction of dams for irrigation is also likely to affect the hydrological functioning of streams and rivers in northern 
Australia. Dam release during the dry season means that some intermittent streams can become permanent (e.g. Bunn et al., 2006), 
with potentially important ecological consequences (Close et al., 2012; Rolls and Bond, 2017). Another dam-related impact is the 
possible reduction of downstream flooding due to the storage and capture of flood waters during the wet season. Karim et al. (2015) 
estimated that the construction of large dams in the Flinders and Gilbert catchments would have a relatively small impact on riv
er–floodplain connectivity, but Nielsen et al. (2020) found that the inundated area of floodplains in the lower reaches of the Mitchell 
River could potentially be reduced by > 50% following dam construction. While this has not been examined in detail, the decrease in 
flooding extent and duration may also result in decreasing rates of overbank flood recharge, a key recharge process in much of the 
region. Another effect of dams and irrigation could be the rising of water tables and increasing salinity in shallow aquifers, as was 
observed in the lower Burdekin catchment in QLD (Petheram et al., 2008a). While small-scale water harvesting is the more likely type 
of development in northern Australia, it is necessary to anticipate the hydrological impacts of the few large dams that might be built 
across the region (Petheram et al., 2018). 

Overall, there remains important unknowns surrounding how future land use change and water resource development will impact 
the hydrology of northern Australian streams, rivers and aquifers, as well as their associated ecosystems. While basic hydrological 
assessments and modelling are certainly needed to address these unknowns and anticipate future change, there is an equally important 
need for research programs that generate new data, examine hydrological processes at different scales and the way these respond to 
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different forcing, and advance our conceptual understanding of catchment functioning in tropical Australia. We believe this should be 
achieved through intensive and long-term studies of experimental catchment observatories that capture the diversity in landscapes and 
climates of the region, as detailed in Section 7. 

7. A research agenda for hydrological science in tropical Australia 

Despite improved understanding over recent decades, our knowledge of key hydrological processes in the Australian tropics re
mains incomplete. Limited observations across this vast and diverse tropical region prevent a more detailed description of the role of 
heterogeneities in both landscape and meteorological factors in modulating hydrological responses. In addition to new observations, 
we also need new cross-disciplinary initiatives centred on the understanding of the critical zone (i.e. the near-surface environment 
from treetops to the water table) as an integrated system made of interacting components and processes. Improved coordination among 
hydrological subdisciplines and with other disciplines can facilitate the development of hydrological theory and prediction of hy
drological functioning across time and space (Brooks et al., 2015). Through the utilisation of multiple disciplines, we can develop a 
baseline understanding of how tropical streams and rivers function at present, against which to assess the effects of future development 
and climate change (Wright et al., 2018). In the following, we propose five broad research areas that we believe should be priorities for 
future hydrological research in northern Australia. These areas relate to (1) stormflow response, (2) groundwater recharge, (3) in
teractions with vegetation, (4) groundwater discharge, and (5) hydrological (dis)connectivity. For each research area we outline the 
need for improved mechanistic understanding as well as implications in the context of future development and climate change. We 
conclude by discussing the needs to build a network of experimental observatories across the tropics and to better integrate Indigenous 
perspectives into hydrological science and management. 

7.1. Stormflow response 

Can we improve our conceptual understanding of the dominant runoff processes across the region, and develop spatialised es
timates of the partitioning between runoff and infiltration? In lowland areas of the Australian tropics, saturation-excess overland flow 
may be the dominant runoff mechanism. But more observations are needed to evaluate the exact role of saturated areas along streams 
and rivers in generating runoff during the wetter months. Only by understanding how streamflow is generated across the landscape can 
we then predict the likely impacts of development on these processes. Additionally, the potential occurrence of preferential flow 
pathways through macropores in shallow lateritic horizons, as observed in other settings (Cuthbert and Tindimugaya, 2010; Ruprecht 
and Schofield, 1993), needs further examination in the northern Australian context, particularly in relation to how macropores 
contribute to the hydrological response of catchments under monsoonal conditions. One other key question is related to the way land 
disturbance (whether it is clearing for agriculture, change in fire management regimes or weed infestation) may impact the parti
tioning between runoff and infiltration. For example, an important component of land use in the seasonal tropics is extensive livestock 
grazing (ABARES, 2021). Grazing can significantly reduce infiltration rates due to soil compaction and erosion (Gifford and Hawkins, 
1978; Greenwood and McKenzie, 2001) and decreased termite activity (Holt et al., 1996). Likewise, post-logging changes in soil 
properties and vegetation cover have led to decreased infiltration and increased overland flow during stormflow events in both the 
humid (Bonell, 1993; Cassells et al., 1985) and seasonal tropics (Ive et al., 1976). We need new field studies that assess the effect of 
both land clearing and changed grazing intensity on infiltration and recharge rates for contrasting areas of the Australian tropics. 
Importantly, changes in rainfall patterns due to climate change will be superimposed over any impacts from land use change. Studies 
that combine both these driving factors will provide key information to resource managers and decision makers. 

7.2. Recharge 

What are the relative contributions of overbank flood recharge and other preferential recharge pathways across the Australian 
tropics? Overbank flooding likely plays a major role in recharging the alluvial and underlying aquifers of large, low-gradient rivers 
(Doble et al., 2012; Jolly et al., 2013; Taylor et al., 2018a). However, there has been little effort to accurately quantify this recharge 
pathway and to highlight its importance in replenishing groundwater systems of the seasonal tropics relative to diffuse recharge. This 
is much needed information, especially if we are to predict the effect of dam construction and/or groundwater abstraction on the loss of 
downstream river–floodplain connectivity and, in turn, on recharge rates. Other recharge pathways also need more research. The 
typically heterogeneous subsurface in tropical Australia, resulting from intense weathering and tectonic deformation, indicates that 
much of the unsaturated and saturated flow may occur via preferential pathways (e.g. Enemark et al., 2020; Jolly et al., 2013; Taylor 
et al., 2018b). Despite its importance, the role of structural heterogeneities in controlling groundwater recharge as well as vertical 
connectivity remains unclear in the region. New studies should focus on assessing the contribution of preferential flow as a recharge 
pathway to underlying aquifers relative to diffuse recharge and overbank flood recharge. Imaging the structures of the subsurface via 
geophysical measurements is a promising avenue for the delineation of preferential pathways. For instance, airborne electromagnetic 
surveys have been successfully used to map geomorphologic features relevant to hydrological processes (Christensen et al., 2017; Jiang 
et al., 2019; Parsekian et al., 2015). Ultimately, these data will enable better management and protection of the areas identified as key 
recharge zones and ensure long-term, more sustainable use of groundwater resources. 
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7.3. Plant water uptake 

What is the role of vegetation in partitioning water fluxes, and can we predict the vulnerability of different vegetation com
munities to change? Water uptake by vegetation plays a central role in the hydrological cycle, as it partitions rainfall into evaporation 
and recharge. From a hydrological point of view, accurate understanding of the mechanisms and patterns of plant water uptake is vital 
to successfully simulate catchment flow processes (Knighton et al., 2020; Kuppel et al., 2020; Sprenger et al., 2019; Yang et al., 2016). 
In tropical Australia, most studies have focused on identifying groundwater use by riparian trees in the dry season (e.g. Canham et al., 
2021; Lamontagne et al., 2005; O’Grady et al., 2006), but many questions remain regarding both temporal and cross-ecosystem 
variations in plant water use. For instance, little is known about the sources and patterns of water uptake for different vegetation 
types (savanna, rainforest, riparian corridors), and how these vary under different wetness conditions. In-situ isotope measurements, 
although still in their infancy, can be particularly useful to fingerprint the sources of water extracted by vegetation and changes over 
time (Kühnhammer et al., 2022; Seeger and Weiler, 2021). Spot measurements of stable isotopes can also add important information, 
although questions currently arising around the potential biases associated with water extraction techniques should not be ignored 
(Allen and Kirchner, 2022; Barbeta et al., 2022; Chen et al., 2020). Because plant water uptake and productivity are also controlled by 
the structure of the subsurface, particularly in water-limited environments, geophysical methods can provide additional insights into 
where plants obtain water (Brooks et al., 2015; Parsekian et al., 2015). A solid understanding of plant water uptake at local and 
regional scales is a critical step towards addressing the potential impacts of water resource development on vegetation communities. 
Key questions remain on the condition and abundance of groundwater-dependent ecosystems, how these may change under different 
types of development, and whether species can adapt in response to changes in water table depth, particularly in the dry season. While 
clear advances have been made to predict the ecological responses of riverine ecosystems to changes in surface water flow (e.g. Pettit 
et al., 2017; Warfe et al., 2011), much more needs to be done to understand how groundwater-dependent vegetation may respond to 
human-induced and climate change impacts. 

7.4. Groundwater discharge 

How old and vulnerable are groundwater and spring systems across the Australian tropics? Compared to the detailed in
vestigations of springs in the arid zone of Australia (e.g. Flook et al., 2020; Keppel et al., 2012; Love et al., 2013), there is limited 
information on flow pathways and water ages of spring systems in the tropics. Groundwater contained in the large sedimentary basins 
of northern Australia can be extremely old (e.g. Harrington et al., 2011 reported groundwater from the Grant Group and Pool 
Sandstone aquifers over 30,000 years old), and it has been shown that several spring-fed rivers of the region are sustained by deep, old 
groundwater sources (Gardner et al., 2011; Lamontagne et al., 2021; Smerdon et al., 2012). However, an inventory and assessment of 
the origins of spring water, their age and yield for northern Australia is currently lacking. This information is key to understanding the 
vulnerability of tropical springs to future development—for instance, the effect of groundwater abstraction on river baseflow and/or 
spring yields may not be experienced for several decades or centuries because of the lags inherent to old, regional groundwater 
systems. All three major aquifer systems (Fig. 1b) have extensive unconventional gas reserves, and the availability of water for hy
draulic fracturing is a contentious issue for local communities. Given the cultural and environmental significance of springs in northern 
Australia, it is essential that the best available science is used to assess vulnerability prior to project approvals where spring flow may 
be affected. The approval of the Carmichael Coal Mine in QLD is a high profile example where this was not the case (Currell et al., 
2020). Furthermore, there is limited data on the importance of groundwater discharge into other aquifers (i.e. inter-aquifer flow), 
although this may be an important pathway in areas located downgradient of upland fractured rock aquifers (Jolly et al., 2013). As 
water allocation policy in Australia seeks to avoid double allocation, future research should aim to quantify these inter-aquifer 
linkages. 

7.5. Flow intermittency 

Can we anticipate how flow regimes and hydrological connectivity will be affected by climate change and development? There is 
a clear need to assess the security of water supply in the Australian tropics under future climate and development scenarios. While 
climate models generally project an increase in the intensity (and possibly frequency) of extreme rainfall events in tropical Australia, 
the effect of these changes on hydrological regimes have been rarely considered. The impact of potential changes to rainfall patterns 
requires further investigation, but uncertainties in climate model predictions present challenges. For example, simulations across 
northern Australia under a 1 ◦C warming scenario resulted in an increase in runoff for half the global climate models tested and in a 
decrease for the other half (Petheram et al., 2012b). One possible scenario is that shifts in flow regimes due to changes in rainfall and 
evapotranspiration will exacerbate the duration and frequency of dry phases (Döll and Schmied, 2012). A recent study suggests that 
flow intermittency has increased in Australia in the past few decades (Sauquet et al., 2021), although there was no clear trend for 
tropical rivers. Because increased intermittency would have large implications for riverine ecosystem health (Datry et al., 2016; Rolls 
and Bond, 2017), the mechanisms by which climate change may exacerbate or reduce flow intermittency require further examination. 
Non-perennial river systems are governed by distinctive and complex hydrological processes that have not yet been fully described 
(Shanafield et al., 2021). Better understanding these processes in the northern Australian context is imperative for anticipating the 
potential consequences of altered flow regimes across the region. Also important is the potential effect of water resource development 
(dam construction and/or groundwater abstraction), with dam construction likely to suppress flow intermittency (Bunn et al., 2006) 
and groundwater abstraction likely to increase flow intermittency and reduce connectivity (Chan et al., 2012; King et al., 2015; 
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McCallum et al., 2013). The few studies that have modelled the impacts of development scenarios in northern Australia suggest that 
reductions in flow connectivity may occur (e.g. Nielsen et al., 2020). We now need further research that underpins an ability to predict 
the responses of tropical streams and rivers to future climate and development scenarios. 

7.6. Towards a network of observatories 

As illustrated by the pioneering work carried out in the Babinda catchments, long-term and intensive monitoring of experimental 
sites is essential to advance our understanding of the hydrological cycle. Burt and McDonnell (2015) highlight that the hydrological 
community needs long-term experimental catchments in the tropics, where observations remain scarce and process understanding is 
lacking. In the seasonal tropics in particular, the lack of high-resolution and long-term hydrological data continues to limit our hy
drological understanding as well as the robustness of water resource assessments and thereby water allocation policy (Petheram et al., 
2012a). Observations are required not only to unravel the processes of streamflow generation, recharge pathways and ecohydrological 
interactions, but also to develop and test predictive models, and ultimately to provide an evidence base for informed decision making 
(Tetzlaff et al., 2017). There are established networks of experimental catchments in North America (e.g. White et al., 2015) and in 
Europe (e.g. Bogena et al., 2016; Gaillardet et al., 2018), and the emerging Australian Critical Zone Observatory Network (OZCZO; 
funded through the Australian Research Council) represents a step forward in integrating below- and above-ground environmental 
processes, but at this stage focuses mostly on the soil and groundwater compartments of the critical zone. Similarly, the newly 
established, $15 million long-term groundwater monitoring network (Groundwater Super Science; funded through the National 
Collaborative Research Infrastructure Strategy) does not include any sites in the tropics. Working towards the establishment of a 
network of research observatories across tropical Australia should be a priority, and to this end, the Daintree Rainforest Observatory 
(DRO) in the humid tropics (Bass et al., 2011; DRO in Fig. 1b) could be paired with representative catchments of the seasonal tropics 
such as the Weany Creek long-term monitoring site (Bartley et al., 2006, 2014; Koci et al., 2020; WCk in Fig. 1b). In addition to the 
acquisition of high-resolution data, a key focus of these observatories should be the extrapolation and upscaling from small experi
mental catchments to larger, regional river and groundwater systems. Cross-site comparisons can help with identifying mechanisms 
that are generalisable across space and time (Brooks et al., 2015). Experimental sites will contribute to accurate and long-term 
quantification of water and energy fluxes at the regional scale, which will in turn assist management and policy decisions. Such ev
idence base is particularly needed in the northern Australian context, with the predicted effects of climate change and the ongoing push 
by the Federal and state governments for the development of primary and mining industries. 

7.7. Integrating Indigenous perspectives 

Indigenous people make up a large proportion of the population in northern Australia, and almost two thirds of remote Indigenous 
communities rely primarily on groundwater for their main source of drinking water (Australian Bureau of Statistics, 2006). Many of 
these communities are facing increasingly pressing issues that undermine their water security, including groundwater depletion and 
heavy metal contamination (Howey and Grealy, 2021). To address these water security issues, both local and regional scale assess
ments of surface and groundwater systems are urgently needed across remote areas of northern Australia. More generally, water 
governance in Australia has largely overlooked the interests and perspectives of Indigenous Australians until recently (Jackson et al., 
2015; O’Donnell et al., 2022). Greater involvement of Indigenous organisations will be key to the success of future water resource 
development projects across the north. Research aimed at integrating and translating Indigenous knowledge of hydrological systems 
into Western science is necessary to not only improve understanding of Indigenous water resource use, but also to inform water 
management activities (Robinson et al., 2016; Woodward et al., 2012). 
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