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Human land occupation regulates the
effect of the climate on the burned area of
the Brazilian Cerrado
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Human activities and climate change are transforming fire regimes globally. The interaction between
these two drivers is poorly understood, yet critical if we aim at predicting how biomes will respond to
novel fire regimes. In the Brazilian Cerrado, altered fire regimes are threatening its unique biodiversity
and ecosystem functioning. Here, using geospatial data for the period 1985-2020 and a causal
inference framework to design Bayesian statistical models, we demonstrate that a larger human
presence in the landscape (≥40% land-use area) reduces the Cerrado’s burned area and hinders its
responsiveness to climate; while climatic effects only become apparent in landscapes with little
human presence, where hotter and drier conditions increase burned area. Finally, we find spatially
heterogeneous burned area trends over time, with increases associated to climate change in
landscapes that have remained mostly intact, and decreases caused by anthropic expansion. Both
diverging trends have important implications for the conservation of the Cerrado as land-use
expansion and climate change continue to unfold.

Fire is a complex process that involves the interplay between anthropic
activities, the climate, and vegetation structure that both shape and are in
turn affected by this phenomenon1. Understanding the drivers of fire and
how they interact is essential to tackling the many challenges that fire
poses globally, from human health and the economy2,3 to its influences on
the Earth’s biogeochemical cycles1,4, and the conservation of both fire-
adapted and fire-sensitive ecosystems5. Indeed, fire is a natural dis-
turbance process playing a crucial role in shaping ecosystems6, but
human activities are altering the Earth’s fire regimes7,8. Over the last two
decades, global burned area has declined in association to agricultural
expansion and intensification, with greater declines concentrated in
savannas9. In other regions, modern human activities have escalated the
occurrence of fire10 indicating that anthropic effects vary depending on
the context9. Simultaneously, climate change is intensifying the risk of fire
weather conditions11,12 and the frequency of extreme weather events13,
exacerbating fire activity and burned area. Therefore, globally, the two
main drivers of fire, humans and the climate, could be pushing burned
area in opposite directions, but there is still considerable uncertainty in
how they interact14,15. Quantifying such interactions is fundamental to
improve our understanding of feedbacks between the climate, fires and
vegetation4,16.

Savanna ecosystems stand out as a paradigmatic case of these appar-
ently contrasting processes17. Savannas are a predominant biome covering
around 20% of the terrestrial surface with extensive presence of humans.
These ecosystems play a relevant role on the Earth’s carbon cycle con-
tributing to around 25% of the total gross primary productivity18 and have
an - often neglected - high biodiversity and ecological value19–21. Savannas
are composed of fire-adapted vegetation that depends on this natural dis-
turbance for their continuity and the preservation of their biodiversity22.
Therefore, departures from the historical fire regimes in either direction can
have important ecological consequences potentially resulting in ecosystem
shifts to other forms23,24, aswell as effects on theEarth’s carbon cycle that can
feed back to the climate4. In these regions, the observed declines in burned
area17,25 are often linked to landscape fragmentation17,26, population density,
certain agricultural practices or increasing grazing pressure that disrupt fuel
continuity impairing fire spread. Active fire suppression is also a relevant
cause of burned area reduction, known to lead to woody encroachment
causing biodiversity losses27,28 and increasing the risk ofmore severewildfire
events29. Regarding the climate, some studies forecast increases in savannas’
burned area associated with warming and the lengthening of the dry
season16. However, it has also been suggested that human controls on
savannas’ burned area may limit its responsiveness to climatic
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conditions30,31, but it is still unclear howmuch human activities regulate the
climate effects on fire.

Here, we focus on the Cerrado, a Brazilian ecoregion comprising several
savanna ecosystems and considered to be a biodiversity hotspot32. The Cer-
rado occupies over 2M km2, with around 50% of its area already converted to
anthropic land uses33, and undergoing a warming and drying process34

associated to climate change35. These savannas present spatially hetero-
geneous patterns of burned area36 in accordance with its mosaic vegetation
and widespread agricultural areas, with both increasing and decreasing
burned area trends25,26,37. Much research has been devoted to studying climate
effects on the intra-annual38–40 and inter-annual35,38 variability of burned area,
identifying increasing burned area trends in relation to climate change25,41.
Regarding anthropic area and landscape fragmentation, these seem to have a
more complex association with fire activity25,26,30, while the burned area is
concentrated in regions with larger natural remnants36,39. Disentangling the
effects of climate change and human presence is essential to devise effective
fire management policies and conservation plans that are targeted to the
characteristics of the landscape and its vegetation composition.

Using a causal inference framework and a Bayesian approach, we aim
to study whether and how the level of human presence in the landscape
regulates the effects of the climate on the burned area of theCerrado.Weuse
the percentage of anthropic area - comprising agricultural, urban and
mining land uses - as a proxy for the level of human presence in the
landscape to,first, determine its effects on burnednatural area -measured as
the percentage area of Cerrado native vegetation that burned. Then, we
quantify the interaction between the climate and human presence by
modelling the effects of the climate on burned area in landscapes with
different levels of human presence using Bayesian multilevel regression
models. Finally, we explore the spatial distribution of the temporal trends in
burned area, climate and anthropic expansion and build a model to deter-
mine the causal effects of the last two as predictors of the former.

Results
Limited burned natural area in human-dominated landscapes
First, we modelled the causal effect of anthropic area percentage on the
burned natural area percentage of the Cerrado.With this aim, we combined
annual land use and burned area data on a 0.2° grid over the Cerrado for the
period 1985 to 2020 (see Methods). As we were interested in studying the
causal effect of the predictor - anthropic area -, we used a structural causal
modelling framework42 which, based on assumptions and a priori knowl-
edge about our study system, provides a set of rules - known as the backdoor
criterion42,43 - to design models with the sufficient statistical adjustments to
limit bias and confounding, thus enabling causal inference.

Therefore, we first designed a Directed Acyclic Graph (DAG), DAG1
(Supplementary Fig. 1), a form of heuristic causal model used to visually
represent the causal relations between the different variables of our system
and inform covariate selection (seeMethods and SupplementaryMethods).
This DAGwas designed based on author’s expert knowledge about savanna
fire and its drivers, the literature and exploratory data analysis, and reflects
our assumptions about how the different variables affect each other (see
Methods and Supplementary Methods). Hence, based on DAG1, we built
modelM1 (Equation (3)). Thismodel included anthropic area percentage as
the explanatory variable of interest for which we wanted to determine its
total causal effects on burned natural area, along with protected area and
latitude as control variables. These last two covariates were needed
according to the backdoor criterion to enable the causal interpretation of
anthropic area effects, but it is important to stress that their own modelled
effects cannot be interpreted causally (see Methods).

With model M1, we found that the higher the presence of humans in
the landscape in terms of area occupied, the smaller the fraction of burned
natural area (Supplementary Fig. 2, slope coefficient: −0.130, [−0.135,
−0.126], 95% Highest Posterior Density Interval, HPDI, % burned natural
area % anthropic area−1), implying that human dominance of a landscape
acts to limit the fraction of burned area in Cerrado’s vegetation as
hypothesised.

Finally, we calculated the R-squared coefficient adjusted for Bayesian
inference44 of model M1 (0.544 [0.542, 0.547] 95% confidence interval,
Supplementary Table 1). However, it is important to bear in mind that the
aim of this study was to determine total causal effects, not to maximise
model predictability. Therefore, in this and subsequent models, the
R-squared coefficient was calculated just as an indication of the proportion
of variance explained by the model, but it should not be interpreted as a
measure of the causal relation between the predictors and the response
variable.

Climate effects on burned natural areas are conditional on
human landscape dominance
Then, we assessed the causal effects of climatic controls on the burned
natural area of the Cerrado, and the extent to which these controls depend
on anthropic factors such as anthropic area. Thus, we quantified the causal
effects of temperature, vapour pressure deficit (VPD), same and previous
year total precipitation and dry season precipitation (Supplementary Fig. 3)
on the observed percentage of burned natural area (Supplementary Fig. 4)
using climate data from different sources (see Methods).

Using the same DAG1 as before, we built two Bayesian multilevel
models (M2 and M3, Eqs. (4) and (5), see “Methods” section) where we
allowed the climate effect coefficients to vary by decile of anthropic area
percentage (Supplementary Fig. 5) to determine the interaction of the cli-
mate covariates with the level of human occupation (Fig. 1, see R2 coeffi-
cients in SupplementaryTable 2).Using the backdoor criterion,we included
latitude as a control variable to avoid confounding in model M2 for tem-
perature andVPD(see “Methods” section), while no covariateswereneeded
in model M3 for the different precipitation variables.

We found that the slope coefficients for all climate predictors showed a
non-linear change in behaviour with the level of human presence in the
landscape (Fig. 1). In cells with a large area of natural vegetation – around
40% or less of anthropic area –, we observed the expected effect of the
climate on burned natural area: increases in temperature and VPD cause
increases in burned natural area; the lower the dry season precipitation, the
larger the burned area; andhigher precipitation in the previous year brought
about larger burned area in the following year. We found no strong causal
effect of same-year total precipitation (Supplementary Fig. 6a). In contrast,
where anthropic land uses dominate the landscape – ~40% or more of the
cell’s area –, we observed no effect of these climatic variables on the per-
centage of burned natural area, suggesting strong controls of land use
activities.

Those observations in the [90–100]% decile of anthropic area showed
no effect of any climatic variables on burned natural area (Fig. 1). We used
these results as a reference to test the presence of thresholds fromwhich the
effect of the climate in following deciles was different compared to this
extreme case. With this aim, for each climate covariate, we generated
pairwise contrasts by subtracting the posterior distribution of the slope
coefficient obtained for the [90, 100] % decile from the corresponding
posterior of every other decile (Supplementary Fig. 7).We considered that if
the 90% HPDI of the pairwise contrast (the difference between the pos-
teriors) did not encompass 0, then there was an effect of the climate on the
burned natural area in that decile compared to the no-effect [90, 100] %
reference. Indeed, we found that below some anthropic area percentage,
temperature (50% anthropic area), VPD (40%), previous year precipitation
(40%) and dry season precipitation (20%) had an effect on burned natural
area. Hence, for each climatic variable there was a certain threshold value of
anthropic area percentage at which burned natural area transitioned from
being not responsive to becoming increasingly affected by climate. This
transition was sudden, that is, non-linear.

Among these climatic variables, VPD and temperature seemed to have
a more marked effect on burned area than dry season and previous year
precipitation (Fig. 1), suggesting the former two may emerge as stronger
climatic controls of burned natural area. We explored this further by
comparing the predicted effect on burned natural area of each climate
variable at their average value to their predicted effect at their average value
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plus (minus in the case of dry season precipitation) 2 standard deviations in
each anthropic area decile (Supplementary Fig. 8). We observed that, in the
less anthropic landscapes (particularly the [0, 10)% decile, see Supple-
mentary Fig. 9), when increasing (decreasing) each climatic variable’s value
by 2 standard deviations, VPD was the variable with the largest increase in
burned natural area, followed by temperature; while the change in effect of
dry season and previous year precipitation was more limited.

Trends in burned natural area, climate change and anthropic
expansion
We explored the spatial distribution of the temporal trends in burned
natural area, the climate and anthropic area (Fig. 2) using a Bayesian linear
regression model with year as the independent variable (model M4, Equa-
tion (6)). We observed a heterogeneous spatial structure of increases and
decreases in burned natural area percentage over the period 1985-2020
(Fig. 2a). We also detected a widespread expansion of human land uses
(Fig. 2b) particularly acute in some regions that were mostly natural at the
beginning of the study period (Supplementary Fig. 5a). Regarding the cli-
mate, there was a generalised increase in temperature in the Cerrado

(Fig. 2c), but we found no evidence of clear trends in precipitation, in
agreement with previous studies34.

Then, we studied whether these trends in temperature (tT) and in
anthropic area (tA) had a causal effect on the temporal changes in burned
natural area (tBA), and whether these variables mediated each other’s
effects. With this aim, we built a second DAG (DAG2, Supplementary
Fig. 10) representing the relations between these different trends in time.
Since the extent of anthropic area expansion was contingent on the level
of human occupation at the beginning of the study period, we grouped
the cells in five intervals of 20% anthropic area in 1985. Hence, we
modelled the causal effects of tT and tA allowing the slope coefficients to
vary by interval using a Bayesian multilevel model (model M5, Eq. (7))
based on DAG2. In addition, we included an interaction term between tT
and tA to allow the effect of climate change severity to depend on the
level of change in anthropic area. Finally, we explored the implications of
model M5 looking at the implied posterior predictions of tT and tA on
tBA in the study period (Fig. 3 and Supplementary Figs. 11 and 12). That
is, we explored the values of tBA predicted by model M5 for different
combinations of tA and tT.

Fig. 2 | Spatial distribution of the trends in time (slope coefficients) obtained
frommodel M4 for each cell in a 0.2° grid over the Cerrado using the year as the
predictor over the period 1985–2020. Trends for a burned natural area percentage,

b anthropic area percentage, and c temperature. Grey indicates cells with no evi-
dence of clear trends - the 95% HPDI encompasses 0.
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Fig. 1 | Posterior distributions of the covariate slopes frommultilevel regression
models M2 and M3. These models use a focal climatic variable of interest as pre-
dictor to explain percentage of burned natural area, while allowing the climate effect
(x-axis) to vary by decile of anthropic area percentage (y-axis). Predictor variables:
a temperature, b vapour pressure deficit (VPD), c same-year dry season

precipitation, and d previous-year total precipitation. As calculated, natural area
percentage and anthropic area percentage add to 100%. Green shaded areas indicate
the regions of the posterior distributions falling outside the 90%HPDI, which we use
as credibility interval. Red dashed lines are drawn as a reference to indicate whether 0
(i.e. no clear effect) is a likely outcome of the posterior distributions.
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We found that, indeed, the effects on tBA exerted by tT and tA varied
depending on the pre-existing levels of anthropic area in 1985 (Supple-
mentary Figs. 11 and 12, see R2 coefficients in Supplementary Table 3). For
those cells that were mostly anthropic in 1985 (>40% of anthropic area), we
found that both predictors had limited to no effects on tBA. However, for
those cells that were mostly natural at the beginning of the period (<40% of
anthropic area), model M5 predicted a different effect for each predictor.
These differing effects were even more evident in cells with <20% of
anthropic area in 1985 (Fig. 3).

In these cells, the effects of the rate of temperature increase seemed to
be mediated by the extent of anthropic expansion (Fig. 3a). Where human
presence in the formof land usesmarkedly expanded (tA value of 1.36%per
year, or 48.96% in the period, red line in Fig. 3a), burned natural area
decreased over time (negative tBA) regardless of tT. In contrast, where
anthropic area remained low and roughly at the same level (tA of 0%, blue
line in Fig. 3a), we found that warming caused increases in burned natural
area over time (positive tBA), and the more acute the temperature increase,
the greater the increase in burned natural area over time.

This behaviour became even clearer when we fixed tT at a large
(0.039 °C year−1, or 1.40 °C in 36 years, red line in Fig. 3b) and small
(0.027 °C year−1, or 0.97 °C in 36 years, blue line in Fig. 3b) value and looked
at the effect on tBA of varying tA (Fig. 3b). In both cases, when tA is small
(limited anthropic expansion), burned natural area increases over time
(positive tBA), and the larger the increase in temperature (tT), the larger the
tBA (larger tBA value in the red line than in the blue line in Fig. 3b).
However, when tA is large (large anthropic expansion) tBA becomes
negative (burned area decreases over time) independently of tT value
(similar tBA values in the red and blue predicted values).

Discussion
This study demonstrates that anthropic land use activities limit the
responsiveness of burned natural area to climatic conditions in areas of the
Brazilian savannas where humans have a substantial presence (Fig. 1).
Moreover, we find that the interaction between these two drivers is non-
linear: humans completely limit burnednatural area responses to climate up

to a certain level of anthropic area percentage beneath which the expected
relation between the climate and burned natural area is recovered. These
mitigating effects extend to areas where anthropic land uses are not the
major land cover (up to 30–40% of the area, Supplementary Fig. 7), indi-
cating that human controls on fire stretch to landscapes where considerable
natural vegetation remains. In addition, we find that a larger anthropic area
is associated with an overall reduced percentage of burned area in natural
land cover areas (Supplementary Fig. 2).

We use anthropic area percentage as an indicator of the presence of
human activities and their influence in the landscape, as it encompasses a
series of direct anthropic effects onburnednatural area.Most anthropic area
in the Cerrado consists of agricultural land33 conforming fragmented
landscapes26, which limitsfire spread through fuel discontinuities14. Another
cause of burned area limitation is activefire suppression, a commonpractice
in the Cerrado enforced by policies45, although there have been substantial
efforts to change these approaches45–47. Among other consequences, this
reduction in burned natural area contributes towoody encroachment27,28, in
turn leading to the loss of biodiversity48 and potential ecosystem shifts24.

On the other hand, where anthropic area is much smaller, landscape
fragmentation is reduced and, consequently, fuel bed continuity may no
longer be a limiting factor to fire spread14. Furthermore, access to these areas
may be more challenging, reducing fire suppression opportunities.
Accordingly, in mostly natural land cover areas fuel load and its flamm-
ability may become more relevant determinants of burned area49, both of
which are influenced by climate. Indeed, our results demonstrate that in
these landscapes climate is a driver of burned natural area (Fig. 1). We find
that a higher temperature and VPD causes an increase in burned natural
area, as expected, since temperature increases themoisture holding capacity
of the air, drying the fuel and making it more flammable50. In agreement
with earlier studies, we observe that lower precipitation in the dry season
contributes to larger burned areas as it also influences fuel flammability30,51,
while higher precipitation in the previous year causes larger burned areas as
it affects vegetation productivity and, hence, fuel load52. However, although
these fires are occurring in mostly non-anthropic land cover areas, they are
not necessarily naturally ignited (e.g. by lightning), as humans are still the
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main ignition source5. This fact does not conflict with the low presence of
humans in these landscapes because most burned area is produced by few
very large fires53, so a small number of ignitions can result in large burned
areas14, especially under hot and dry conditions.

Regarding the trends in time, we find a heterogeneous pattern of
increases and decreases in burned area (Fig. 2), in line with previous
studies25,36,37.When exploring the relation between trends in burned natural
area, anthropic expansion and climate change, model predictions reinforce
our results presented above. First, changes in burned natural area over time
are conditional on the extent of anthropic area at the beginning of the
period. Landscapes that were mostly anthropic in 1985 do not present
strong trends because burned natural area was already limited and not
responsive to climate (Supplementary Figs. 11 and 12). As such, significant
trends in burned natural area are concentrated in cells that were mostly
natural in 1985. We find that, in these areas, trends are firstly subject to the
extent of anthropic area increases (Fig. 3), which brings about a reduction in
burned natural area - adding to 31.1% of the cells -, probably in relation to
increasing fragmentationandhumancontrols onfire. In contrast, those cells
that have remained more intact are the ones where burned natural area
increased over time, totalling 9.7% of the cells. Our model indicates that
these increases are associated to thewarming and drying of the Cerrado due
to climate change.

Indeed, bothVPD and temperature, which we identify as the strongest
climatic drivers of burned natural area change out of those considered
(Supplementary Figs. 8 and 9), have increased over the Cerrado in the past
few decades and are expected to continue rising34. Such increases have been
particularly acute towards the end of the dry season34 when climatic con-
ditions are most favourable for fire spread and when most human-started
fires occur36. Our findings indicate that as the warming and drying condi-
tions continue lengthening and exacerbating under climate change, we can
expect these increasing trends in the burned areas of themore intact regions
of the Cerrado to continue. Therefore, we identify those areas with larger
natural vegetation remnants as being more vulnerable to climate change.
Among these, the region of the Parque Estadual do Araguaia in the centre-
west of theCerrado standsout for its considerable increase inburnednatural
area over the period. This area is formed by seasonally flooded savannas
particularly vulnerable to droughts54, suggesting that the type of vegetation
may be important in the evolution of fire activity. Although savannas are
fire-adapted ecosystems, changes in fire regimes towards larger, more fre-
quent, and intense events under climate change may have degradation
effects on these ecosystems, which could hamper their recovery following
disturbances in the future55. In this sense, practices such as integrated fire
management areproving tobe effective strategies toprevent large and severe
fires while contributing to preserve the Cerrado’s vegetation mosaic29,56,57.

In conclusion, climate change and human land use activities in the
Cerrado are altering the fire regimes of the region, both with important
ecological consequences. Importantly, we show that human controls over
the Cerrado’s fire dynamics are substantial and act to limit burned area and
to regulate the effect of climate and climate change, contributing to the
growing recognition of the role of humans on shaping fire patterns9,14,30,58

and emphasising the need to improve their representation in projections of
fire activity and in climate-vegetation models4,16. We find that the greatest
changes in burned natural areas over time occurred in themost intact areas,
which experienced increases in burned area due to climate change, and in
areas with more severe agricultural expansion, which brought about
decreases in the proportion of burned natural area. Both directions of
burned area change can have important deleterious effects on Cerrado
vegetation. Future research could build upon these results by exploring
whether these responses to human activities and the climate differ between
vegetation formations or land use type -mainly croplands or pastures26. The
widespread changes of fire activity in either direction, in combination with
other consequences of large-scale agricultural expansion and climate
change, highlight the multiple pressures the Brazilian savannas are subject
to. Considering the importance of the Cerrado in providing local liveli-
hoods, its major role in providing and distributing regional water

resources59, and its rich biodiversity and high levels of endemism32, our
findings stress the urgent need to extend conservation practices beyond
protected areas and to deploy appropriate fire management policies45,46.

Methods
Study area
In this study, we focus on the Cerrado, a region of over 2M km2 comprising
the Brazilian savannas. These savannas are very biodiverse32 and spatially
heterogeneous, with vegetation ranging from grasslands to tracts of gallery
forests and otherwoody forms60. The climate of theCerrado is characterised
by a strong seasonality, with awet and a dry season, whenmost burned area
occurs36. The average temperatures rangebetween18°Cand28°C increasing
about a latitudinal gradient towards the Equator (Supplementary Fig. 3a).
Precipitation varies from about 800 mm to 2000 mm of total annual pre-
cipitation, roughly increasing from East to West towards the Amazon
(Supplementary Fig. 3b).

Over the last four decades, the Cerrado has experienced a rapid agri-
cultural expansion affecting around 45%of its area61. In this study, we focus
on the 36-year period from1985 to 2020. It is important to note that already
in 1985 large areas in the south of the Cerrado had been converted to
pastures and croplands (Supplementary Fig. 5a).

As we use data from different sources with various spatial resolutions,
we divide the Cerrado into a 0.2° grid (~22.2 km2) and summarise the
different variables at the cell level (see details below). In the analysis, we only
include cells with more than 90% of their area within the Cerrado.

Land use data
We use annual maps of land use and land cover from MapBiomas (Col-
lection 6.0,33) for the period 1985 to 2020. This open data and open source
project used a random forest algorithm to classify pixels from annual
mosaics of Landsat images at 30m spatial resolution into several categories.
This dataset was developed using Google Earth Engine and is available
through the MapBiomas toolkit on the same platform.

In this study, we first simplify the MapBiomas categorisation to either
natural land cover pixels (herein natural pixels), anthropic land use pixels
(anthropic pixels), or other pixels based on the legend codes of Collection
6.033. Under natural land cover, we group all subcategories under ”Forest”,
those of ”Non Forest Natural Formation”, and ”Beach, Dune and Sand
Spot”. As anthropic land uses, we group all subcategories under ”Farming”,
along with ”Urban Area” and ”Mining”. The remaining categories - ”Other
non Vegetated Area”, ”Water” and ”Non Observed” - are grouped
as ”other”.

For each cell and year, we calculate the percentage of anthropic area as

% anthropic area ¼ 100 � N anthropic pixels
N anthropic pixelsþ N natural pixels

; ð1Þ

where N stands for number. Therefore, %anthropic area = 100−%natural
area, as we are leaving out of the calculation the ”other” categories because
they are not susceptible to burning.

Burned area data
We obtain the burned area data from MapBiomas Fogo (Collection 1.0,
ref. 62) for the study period, 1985-2020. This dataset consists ofmapswhere
pixels are identified as either burnedor not burned, alongwith themonth in
which the pixelwasmapped as such. Thesemapswere created frommosaics
of Landsat images at 30 m spatial resolution with a 16-day interval.

For each cell and year, we use the number of natural pixels classified as
burned to calculate our main variable of interest, the percentage of natural
area that burned (herein burned natural area),

% burned natural area ¼ 100 �N burned natural pixels
N natural pixels

: ð2Þ
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Climate reanalysis data
We use various climatic variables from different data products because of
their relation to burned area. We use the 2 metre temperature parameter
from ERA5-LandMonthly Averaged climate reanalysis data at 9 km spatial
resolution63. We use this variable along with the 2 metre dewpoint tem-
perature from the same dataset to calculate vapour pressure deficit (VPD), a
direct measure of the atmospheric demand for water. We calculate VPD as
the difference between saturation pressure (es) and actual vapour pressure
(ea) following the procedure detailed in64. Finally, we calculate the annual
average temperature and VPD for each cell and year.

We use precipitation data from the Climate Hazards Group InfraRed
Precipitationwith Stationdata (CHIRPS, version 2.0), a quasi-global rainfall
datasetwith 0.05° spatial resolution coveringmore than 35 years65. This data
was acquired in the Pentad version (5-day precipitation accumulation in
mm). To obtain the total precipitationper year and cell, wefirst calculate the
monthly total precipitation per pixel, then we calculate the monthly pre-
cipitation per cell taking the spatial average, finally adding up the monthly
averages to the annual precipitation.

For each calendar year,we calculate the total dry seasonprecipitationas
the sum of the monthly precipitation of the dry season months (usually
aroundMay to September).We identify thedry seasonmonths for eachyear
as those in which precipitation is smaller than the potential evapo-
transpiration (PET). We obtain the PET from TerraClimate66, a dataset of
monthly climate data at the global scale and0.5° resolution, and calculate the
cell’s spatial average PET.

All climate data from the different products were downloaded through
Google Earth Engine67.

Protected area data
In the first model, we include the percentage of protected area in a cell and
year as covariate. We obtained the data on the conservation units and
indigenous lands of Brazil from theMinistério deMeio Ambiente do Brasil
(MMA)68. We calculated the percentage area of each cell and year occupied
by those protected areas established on or before the year.

Data analysis
To tackle the different research questions, we use various Bayesian linear
regression models and Bayesian multilevel models (M1 through to M5),
whose structure and variable inclusions were guided to allow causal infer-
ence. With this aim, we first draw two Directed Acyclic Graphs (DAGs)
describing our system (DAG1 and DAG2, Supplementary Figs. 1 and 10).
Based on these DAGs, and depending on the causal effects of interest, we
applied the backdoor criterion - a test that allows to determine whether and
how we can compute a causal effect - to inform our modelling strategy and
the selection of covariates to explore causal implications42,43,69–71.

Creation of a causal inference framework. Directed Acyclic Graphs
(DAGs) are graphical representations of the causal relations between the
different variables of interest, along with other variables that may bias or
alter the causal association between a given explanatory variable of
interest and the response variables42,43. We build DAG1 (Supplementary
Fig. 1) to represent the relations between the variables that may affect the
percentage of burned natural area, andDAG2 (Supplementary Fig. 10) to
depict the relations between the different variables that may affect trends
in burnednatural areawith time. The design of bothDAGs is based on the
authors’ expertise, on supporting literature, and exploratory data analysis
of the variables that may play a role in the system and their relations.

Fire, and burned area in specific, is a complex phenomenon that
involves many different drivers and actors interacting in an intricate
manner, and while fully describing complex multifactorial systems such as
the one studied here can be challenging, we explicitly acknowledged and
accounted for what we consider to be all the major nodes and causal links
relevant to the questions of the present work (details in Supplementary
Methods). These DAGs therefore provided a rational basis upon which we
conditioned causal inference using statistical models, while making the

ecological assumptions underlying our models and causal inferences
transparent. DAGs entail testable implications of relations between vari-
ables, like conditional independencies69,70, thatwehave checkedbasedon the
associations and conditional associations in the data to validate the DAG
structure, wherever possible. See Supplementary Methods for an in-depth
explanation of the DAGs designed.

The main interest of this study is to explore causal effects of different
explanatory variables of interest to help understand the specific mechanisms
by which human land occupation and the climate affect burned area, and
how they interact. Thus, each model we build (see following sections) is
aimed at quantifying the total causal effects of a variable of interest, not-
withstanding the predictive power of the model. For each explanatory
variable of interest (anthropic area percentage, climatic variables, or trends in
these variables), the corresponding DAG shows the direct and indirect
causal paths between this causal variable and the response variable (burned
natural area percentage, or its trends), and helps identify the covariates that
we need to control for to avoid confounding: that is, those variables that are
necessary to close the non-causal paths between the explanatory and
response variables that could introduce bias. These control variables (pro-
tected area and latitude in model M1, and latitude in model M2, see fol-
lowing sections) are identified using the backdoor criterion. Furthermore,
this criterion also indicates those variables thatmust not be included to avoid
opening non-causal paths. As the non-causal paths may be different for each
variable of interest, the backdoor criterion may indicate different choices of
covariates for each causal question and, thus, imply building different
models. It is important to emphasise that, as a consequence of building our
models in this manner, only the effects of the variables of interest can be
interpreted causally, while the model outcomes for the control covariates
have no causal interpretation as they could be confounded - and thus their
specific quantification is not relevant to our research questions.

Finally, wewould like to remark that, as a consequence of the explained
above, our models include only those variables needed to address our
research questions about causal relations. Therefore, there may be of course
other variables that also affect burned area causally, or that are good pre-
dictors of this quantity, but thatwe have not included in ourmodels because
theyare neither the variables of interest to the researchquestions norneeded
for control. In addition, because the models are not designed to maximise
their predictability, their overall explanatory powermay be limited. Instead,
the results fromthiswork shouldbe assessed in the light of theuncertaintyof
the model parameters, which, as we are using a Bayesian approach, stems
from the posterior probability densities - which we summarise using the
High Posterior Density Interval, the shortest interval in a posterior prob-
ability representing a certain confidence interval.

Effect of anthropic area on burned natural area. Model M1 is a
Bayesian linear regression model with anthropic area percentage as the
predictive variable of interest and the percentage of burned natural area
as the response variable. We run this model for all data points, consisting
of each grid cell per year. We construct the model based on DAG1
(Supplementary Fig. 1). In our system, the causal effect of anthropic area
percentage on natural area burned may be confounded by the extent of
protected area and by the latitude (see Supplementary Methods for fur-
ther explanation), since both are common causes of the explanatory and
the outcome variables (backdoor paths). Therefore, we include these two
variables as controls to block the non-causal paths, so that the slope
coefficient of the anthropic area covariate will be the total causal effect of
this variable on burned natural area (conditional on our DAG)69,71. We
therefore model burned natural area as:

BAi ∼N μi; σ
� �

μi ¼ αþ βAi þ ηLi þ ψPAi þ γcell þ θt;
ð3Þ

where BA represents percentage of burned natural area, α is the expected
average BAwhen all covariates are zero (intercept), β, η, andψ represent the
burned natural area response to anthropic area percentage (A), latitude (L)
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and percentage of protected area (PA). It is worth stressing here that in this
model only β is to be interpreted causally, while η, and ψ are only there to
blocknon-causal paths (see above).Weuseparameters γcell andθt as varying
intercepts to capture the residual variation in expected burned natural area
among grid cells and years respectively. Full model specification is
in Supplementary Methods.

Climate effects on burned natural area and mediation by anthropic
area percentage. In models M2 and M3, we use data for each cell and
year observations to test the effect of the climate on the percentage of
burned natural area for different levels of anthropic area percentage.
However, burned area is a stochastic process that usually follows a dis-
tribution within the family of power-law distributions53: small burned areas
are considerably more frequent than extreme events (larger burned areas),
which occur only rarely. In our data, we observe this structure for each
interval of each climatic variable (Supplementary Fig. 13). We notice that it
is the likelihood of the larger burned areas - the tail of the power law - that
changes with the climate (Supplementary Fig. 13). Therefore, we build
these two models using a subset of the data comprising the larger events
per climatic interval. That is, we divide the values of a certain climatic
variable into regular intervals, and for each one we subset those data points
corresponding to the upper 95th percentile of burned natural area.

Additionally, we observe that the cell-year observations experiencing
the highest temperatures in the study period (1985-2020) do not follow the
same behaviour than the rest of the data points (Supplementary Fig. 14a): all
the burned natural area events for these temperatures are far smaller than
the events with temperature immediately lower. When mapping the
number of years each cell has experienced an average temperature equal or
larger than 28.5 °C, we find that these events occurred in a small number of
cells, which are clustered together and located at the border with the Caa-
tinga biome (Supplementary Fig. 14b). This difference in behaviour could
hence be related to this area’s vegetation being more similar to that of the
Caatinga (xeric shrubland and thorn forest), with distinct fuel types and
loads.We briefly explored the climate of these cells and found that they also
present some of the more extreme maximum climatological water deficit
(MCWD) values in the Cerrado (Supplementary Fig. 14c), but we do not
investigate this matter further as it is beyond the scope of the study. Since
these cells are clustered together and jointly present a markedly different
behaviour, we excluded them from this part of the analysis.

BasedonDAG1(Supplementary Fig. 1),weuse twodifferentmodels to
quantify the causal relationsof the climate on theburnednatural area.When
studying the effect of temperature and VPD, our model must include lati-
tude as a predictor (model M2). This is because latitude is a common cause
of temperature (and therefore VPD) and burned natural area, hence
expected to confound the causal effect of temperature on burned natural
area if not controlled for. To explore the causal effects of the different
precipitation-related variables (same-year total precipitation, same-year
dry-season precipitation, and previous-year total precipitation), there is no
need to control for anyother variable (modelM3), as there are no alternative
paths going through a common cause between the predictor and the
response variable (Supplementary Fig. 1).

Models M2 and M3 have a two-level hierarchical structure where we
use a linear regression to predict percentage of the burnednatural area (BA)
as a function of a climatic variable (C) while allowing both the slope and
intercept coefficients to vary by decile of the anthropic area percentage
factor, with 10 levels. That is,

BAi ∼N μi; σ
� �

μi ¼ α½A� þ β½A�Ci þ γcell þ θt þ ηLi;
ð4Þ

and

BAi ∼N μi; σ
� �

μi ¼ α½A� þ β½A�Ci þ γcell þ θt :
ð5Þ

In the models, [A] indicates that the corresponding coefficient is allowed to
varybydecile of anthropic area,α[A] are the expected average burnednatural
area for each decile (intercepts), and β[A] corresponds to the response of
burned natural area to the each climatic variable in each decile. Parameters
γcell and θt are varying intercepts used to capture the residual variation in
expected burned natural area among cells and years respectively. Lastly, η
represents the relation between burned natural area and latitude (L). Again,
only the β[A] coefficients are to be interpreted causally. The full model
specifications including group-level covariance matrices, prior and
hyperprior specifications can be found in the Supplementary Methods.
Model M2 was run separately for T and VPD, and model M3 was run
separately for same-year total precipitation, same year dry season
precipitation, and previous year total precipitation.

Finally, we compare the effects of the different climatic variables to
explore whether any of them may have a stronger effect on burned natural
area than the others.With this aim,we explore the change in burned natural
areawhen increasing (decreasing in the case of dry season precipitation) the
value of each climatic variable by 2 standard deviations from their average
observed value for each decile of anthropic area. That is, we use the joint
posterior of the fitted models to generate burned natural area distributions
under a ”mean value” and under a ”mean value + (or -) 2 standard
deviations” of the climatic variables. This results in two predictive posteriors
for each anthropic area decile group.We then calculate the ”contrasts”, that
is, we subtract the two group-level posteriors for each variable and decile. In
this manner, we can compare the change in burned natural area when
varying all climatic variables by the same amount (within each variable’s
distribution).

Trends in burned natural area, climate change and anthropic
expansion. For each cell in the 0.2° grid over the Cerrado, we estimated
the annual rate of change (temporal trends) over the period 1985–2020 of
burned natural area percentage, anthropic area percentage and various
climatic variables. We calculated the trends using Bayesian linear
regression,

Vi ∼N μi; σ
� �

μi ¼ αþ β t ;
ð6Þ

whereVgenerically represents the response variables of interest for a cell i in
a certain year, t represents time measured in years, α characterises the
average valueV of a cell in 1985, and β is the annual rate of change ofV - the
parameter of interest.We ran thismodel separately for burned natural area,
anthropic area, temperature, VPD, and precipitation using uninformative
priors (Supplementary Methods). We consider that a certain cell does not
show clear trends in time if its β 95%HPDI encompasses 0. Finally, wemap
the temporal trends obtained for each variable (Fig. 2) over the Cerrado.

We then proceed with a model (M5) aiming to test whether and how
the temporal trends in anthropic area (tA) expansion and in temperature
(tT) are responsible for the spatial variation in the temporal change in
burned natural area (tBA). These temporal trends are the β parameters
obtained in model M4. In this case, we only use those cells that show clear
trends in slopes for tA, tT and tBA (95%HPDI).We built model M5 based
on DAG2 (Supplementary Fig. 10), which we designed using existing
knowledge of similar systems and testing the associations and conditional
associations implied by the DAG among the variables to validate its sta-
tistical plausibility. In the model, we include a linear interaction term
between tT and tA to allow each predictor to regulate the effect of the other.
However, the extent of anthropic expansion in the study period is con-
tingent on the percentage of anthropic area in each cell in the year 1985: cells
that were mostly intact at the beginning of the period could experience any
degree of expansion in anthropic area, great or small, and they consequently
show a wide range of tA values. By contrast, cells that were already largely
converted in 1985 could only experience small tA values. Hence, we can
expectdifferent effects of thepredictor variables dependingon the anthropic
area extent of the cells at the start of the period. Therefore, we classify cells in
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five intervals of 20% of anthropic area percentage in 1985, and allow the
intercept and slope coefficients of tT and tA to vary by groupbybuildingM5
as a Bayesian multilevel model,

tBAi ∼N μi; σ
� �

μi ¼ α½A85 � þ β1;½A85 �tAi þ β2;½A85 �tTi þ β3;½A85 �tAitTi;
ð7Þ

where α½A85 � characterises the average tBA of cells with a certain level of
anthropic area in 1985 [A85], and β1;½A85�, β2;½A85�, and β3;½A85 � characterise the
response of tBA to tA, tT and their interaction, respectively, for each [A85]
group. The full model specification is in the Supplementary Methods.

Finally, we explore the implications ofmodelM5 generating predictive
posterior draws for eachA85 group by fixing one of the predictors at its 90th
and 10th percentile for eachA85 group, and exploring the effects of the other
predictor on tBA throughout its observed value range (Fig. 3 and Supple-
mentary Figs. 11 and 12).

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The climate data used in this study are publicly available from ERA5-Land
Monthly Averaged at https://www.ecmwf.int/en/forecasts/dataset/ecmwf-
reanalysis-v5-land, Climate Hazards Group InfraRed Precipitation with
Stationdata version 2.0 at https://data.chc.ucsb.edu/products/CHIRPS-2.0/,
and TerraClimate at https://www.climatologylab.org/terraclimate.html.
The land use data are publicly available from MapBiomas collection 6.0 at
https://brasil.mapbiomas.org/en/colecoes-mapbiomas/. The burned area
data are publicly available fromMapBiomas Fogo Collection 1.0 at https://
brasil.mapbiomas.org/en/colecoes-mapbiomas/. Finally, the shapefiles used
for protected area data (conservation units and indigenous lands) are
publicly available from the Ministério de Meio Ambiente do Brasil http://
www.mma.gov.br/areas-protegidas/cadastro-nacional-de-ucs.

Code availability
All code used in the study for data processing, analysis and modelling is
publicly available at: https://doi.org/10.5281/zenodo.10908497.
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