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A B S T R A C T   

Olives constitute a frequently grown crop in semi-arid areas. Therefore, accurate quantification of evapotrans
piration (ET) within olive groves is crucial to enhance agricultural water productivity and promote their resil
ience to water scarcity and future climate scenarios. In the present work, we assessed the accuracy of 3 versions 
of the Two-Source-Energy-Balance (TSEB) model, the first one “TSEB-SPT” using a standard Priestley-Taylor 
coefficient (αPT) to estimate the transpiration, the second one called “TSEB-CPT” constrained by a computed 
αPT using measured ET along with the equilibrium term, and the third one “TSEB-SM” where soil moisture is 
used as an additional constraint to improve the soil evaporation. The 3 models were applied over an irrigated 
olive orchard in the Tensift basin (Morocco) during two growing periods of 2003 and 2004. The comparison with 
ground-based flux measurements from Eddy-Covariance tower and sap flow data revealed that the TSEB-SPT 
model overestimates ET with an average relative error of 87% and a percentage bias of -78% during the two 
growing seasons. Conversely, TSEB-SM and TSEB-CPT improved ET estimates as compared to TSEB-SPT, with 
mean relative errors of 31% and 24% and an average percentage bias of 0.6% and -7.4%, respectively. For ET 
partitioning, TSEB-SM appears to be less effective in estimating transpiration, while the simulated transpiration 
by TSEB-CPT fits well the actual one with a root mean square error of 0.27 mm, mainly during the summer of 
2003. These results open a path for future improvements: by reviewing the calibration procedure of αPT, and 
implementing alternative formulas to compute the evaporation, the TSEB-SM could be potentially a robust tool 
for monitoring the seasonal variation of ET and its partitioning over a heterogeneous canopy cover.   

1. Introduction 

Over the last 100 years, global water consumption has risen sixfold 
and is still growing gradually at a pace of roughly 1% per year due to 
expanding populations, economic development, and evolving con
sumption patterns (WWAP, 2020). Climate change will exacerbate the 
situation in regions that already experience water stress, and will cause 
water stress in some areas where there are presently plentiful water 
resources. Agriculture is considered the primary user of water resources, 
accounting for 69% of global freshwater withdrawals (AQUASTAT, 
2014; WWAP, 2020). As a result, managing agricultural water is 

essential to adjust the supply-demand balance, regulate the demand, and 
help decision-makers to effectively allocate available water to various 
uses (Bashir et al., 2008). 

Specific concerns for agricultural water management under climate 
change are twofold. The first challenge is adjusting current production 
modes to deal with increased occurrences of water scarcity, and the 
second one is to implement climate mitigation strategies that lower 
greenhouse gas emissions and improve water availability in order to 
respond to policy initiatives to "decarbonize" agriculture (WWAP, 
2020). A variety of adaptative strategies have been supported to sustain 
current levels of agricultural production and increase the efficiency of 
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water use. Precision irrigation is widely employed and is commonly 
defined as precise water delivery to crop at the right time, at the right 
place, with the right amount and the right manner (Abioye et al., 2020; 
Fernández et al., 2018; Khriji et al., 2014). In fact, a precise estimate of 
crop water requirements, also known as crop evapotranspiration (ETc), 
can be used to quantify the appropriate amount of irrigation, thereby 
helping to better manage irrigation and increase water use efficiency 
throughout the growing season (Ait Hssaine et al., 2021; Allen et al., 
2011; Amazirh et al., 2017; Elfarkh et al., 2022 ; Er-Raki et al., 2007; 
Kharrou et al., 2013; Pereira et al., 2015; Rozenstein et al., 2023; Yimam 
et al., 2015). 

Olive trees constitute one of the Mediterranean region’s major stra
tegic crops, due to their high adaptability to dry spells and their ability 
to achieve acceptable yields under dry conditions (Ezzahar et al., 2007; 
Fernández et al., 1997; Kassout et al., 2021; Tanasijevic et al., 2014; 
Wahbi et al., 2005). They cover around 10.5 million hectares, ac
counting for 98% of the world’s olive cultivated areas (FAOSTAT,2023). 
In Morocco, olive growing dominates the arboreal sector, covering 1.1 
million hectares and producing 1.6 billion kilograms in 2021, according 
to FAOSTAT (FAOSTAT, 2023). Furthermore, it generates 5% of the 
agricultural gross domestic product and thus plays an essential role in 
supporting economy and jobs (Bouhafa, 2022). Then, climate-smart 
management is required for olive crops in order to promote their resil
ience to future climate scenarios (Aguirre-García et al., 2021). Accord
ingly, an accurate estimation of ETc of olive groves is crucial for 
optimizing water management and maximizing crop productivity. 

Over recent years, various models have been designed to simulate 
actual evapotranspiration (ET) with several levels of accuracy (Acharya 
and Sharma, 2021; Ait Hssaine et al., 2018; Amazirh et al., 2017; 
Colaizzi et al., 2014; Diarra et al., 2017; Elfarkh et al., 2022 ; Gan et al., 
2019; Kato et al., 2004; Merlin et al., 2014; Saadi et al., 2018; Toumi 
et al., 2016; Zhang et al., 2008). Surface-Energy-Balance (SEB) models 
are among the most widely used and physically-based concept for 
capturing and characterizing land surface processes. SEB models rely on 
the solving of surface energy budget and are driven by Land Surface 
Temperature (LST) as a significant constraint. According to Kalma et al. 
(2008), LST-based SEB models are categorized as: one-source models, 
which treat soil and vegetation as a unique element of the 
energy-budget, two-source models, which account for the individual 
contributions of soil and vegetation to the total heat flux, as well as 
multi-layer models, which are merely extensions of the two-source 
models (Bastiaanssen. et al., 1998; Kalma et al., 2008; Norman et al., 
1995; Su, 2002; Yang et al., 2015). 

The Two-Source-Energy-Balance (TSEB) model developed by Nor
man et al. (1995) and Kustas and Norman (1999) is one of the several 
existing dual-source ET models. Its ability to estimate latent heat flux for 
various canopy covers has been reported in numerous studies (Aguir
re-García et al., 2021; Ait Hssaine et al., 2018; Bellvert et al., 2020; 
Elfarkh et al., 2020; Gao et al., 2023; Gómez-Candón et al., 2021; Nieto 
et al., 2022). The TSEB model computes fluxes and splits available en
ergy between soil and vegetation components using two main inputs as 
critical boundary conditions, namely LST and leaf area index (LAI). The 
canopy transpiration (T) is estimated in the TSEB scheme using the 
Priestley-Taylor (PT) approach, and the Priestley-Taylor coefficient 
(αPT) is set to its 1.26 standard value and reduced iteratively to take 
water-limited conditions into account. Shortly, when negative soil 
evaporation (E) results, which is not a realistic solution during the 
daytime conditions, the αPT value is lowered and the fluxes and tem
peratures are recalculated in an iterative process until a positive soil 
latent heat flux value is reached (Anderson, 2012). Nevertheless, the 
increase in αPT under extremely advective conditions or high diurnal 
variation of vapor pressure deficit (VPD), which is a typical character
istic of arid and semi-arid climates, is not taken into consideration and 
might cause T to be underestimated (Song et al., 2016). This issue could 
be overcome if the Penman-Monteith (PM) approach is adopted instead 
of the PT formulation in the TSEB model (Colaizzi et al., 2014). 

However, the PM approach needs several input data, which are usually 
not available at large scales. Then, finding the suitable value for the αPT 
coefficient is critical to successfully implement the PT approach. Several 
studies have shown that the estimates of latent heat flux (LE) could be 
improved. First possibility consists of computing αPT on the basis of ET 
partitioning and plant physiological limitations, where the latter is 
defined as a function of readily available characteristics such as LAI and 
air temperature (Ai and Yang, 2016). Second possibility consists of using 
LE measurements and the equilibrium term (radiative term of PM for
mula), which is defined by Slatyer and McIlroy (1961) as the limit 
reached over a long fetch when unsaturated air comes into contact with 
a moist surface; thus the αPT is derived from the ratio of LE measure
ments to the equilibrium term (Wu et al., 2021). Third possibility con
sists of expressing αPT as a calibrated empirical function of VPD (Agam 
et al., 2010; Tanner and Jury, 1976). 

Under water-scarce conditions, LST may not constrain E and T 
concurrently. Accordingly, the soil moisture (SM) information has been 
integrated into the TSEB model, as an additional constraint in 
conjunction with LST, in order to enhance ET estimates over semi-arid 
regions (Ait Hssaine et al., 2018; Song et al., 2016). Indeed, Ait 
Hssaine et al. (2021) demonstrated that the TSEB-SM model consider
ably enhanced ET estimates over irrigated wheat fields in a semi-arid 
region, through (1) the adjustment of the αPT coefficient to account 
for soil water content, and (2) a calibration approach to provide soil 
texture-dependent coefficients using near-surface SM to determine E. 
Also, Song et al. (2022) suggested a revised version of the TSEB by 
coupling SM with E and T algorithms to accurately estimate ET and its 
components over different land covers (grassland, shrub-forest, irrigated 
cropland and desert steppe) with various SM levels ranging from 
completely wet to extremely dry SM conditions. 

In the context of olive orchard management, the accurate quantifi
cation of ET is essential for optimizing water use and ensuring sustain
able agricultural practices. Several studies have advanced our 
understanding of ET estimation (Cammalleri et al., 2013a, 2010; Er-Raki 
et al., 2008; Fuentes-Peñailillo et al., 2018; Hoedjes et al., 2008; Orte
ga-Farías, S. and López-Olivari, 2012; Ortega-Farías et al., 2016), and 
the partitioning of ET components by coupling sap flow data to 
Eddy-Covariance (EC) measurements (Cammalleri et al., 2013b; 
López-Olivari et al., 2016), or using the FAO-56 dual crop coefficient 
model (Er-Raki et al., 2010). The energy balance models used in these 
previous studies, namely TSEB and Shuttleworth-Wallace (Shuttleworth 
and Wallace, 1985), relied on limited boundary conditions to estimate 
ET and its components over olive orchards, typically employing LST and 
LAI (or vegetation cover) or SM and Normalized Difference Vegetation 
Index (NDVI). Despite these advancements, the application of a model 
that integrates three boundary conditions (LST, LAI and SM), to simul
taneously estimate ET and its components over a flood-irrigated olive 
orchard under semi-arid conditions remains unexplored. Our work ad
dresses this gap by implementing a novel modeling approach, and ex
amines the impact of the calibration procedure of the αPT coefficient, 
along with the introduction of near-surface SM on the estimation of ET 
over arboreal systems, particularly olive orchards. 

The primary aim of this work is to assess the performance of three 
versions of TSEB model in simulating ET and estimating its components, 
which are vital for understanding tree functioning and agricultural 
productivity, especially for olive orchard. Specifically, we aim to: (1) 
Compare simulated fluxes from the original TSEB run with the standard 
value of αPT coefficient (TSEB-SPT), with a computed one (TSEB-CPT), 
and TSEB-SM (coupled to soil moisture) against flux measurements from 
the EC system; and (2) Assess the accuracy of these models in estimating 
ET components by integrating EC measurements with scaled sap flow 
data, highlighting their capability to capture transpiration dynamics, a 
key factor in regional ET that is directly related to tree functioning and 
olive production. 
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2. Materials and methods 

2.1. Study site 

The experiment was carried out within the Agdal olive orchard, 
located south-east of Marrakech city, Morocco (Fig. 1). This area is 
characterized by a semi-arid Mediterranean climate, with an average 
annual precipitation of 240 mm, and reference evapotranspiration 
(computed according to the FAO-56 procedure (Allen et al., 1998)) of 
about 1500 mm (Diarra et al., 2017; Duchemin et al., 2006; Er-Raki 
et al., 2010). 

The research field consisted of 240 year old olive trees, cultivated in 
an orchard of around 275 ha, with a planting density of 225 trees/ha 
(Williams et al., 2004). The olive trees were roughly 6 m height on 
average. Natural grass covered partially the soil surface (15–20%). This 
percentage was stated by (Er-Raki et al., 2010, 2008; Hoedjes et al., 
2007). The orchard was surface irrigated using flood irrigation for a total 
of eight times, with roughly 100 mm of water supplies per irrigation 
event (see Fig. 3) (Er-Raki et al., 2010, 2008; Williams et al., 2004). 

2.2. Description of site data 

2.2.1. Eddy-Covariance (EC) measurements and meteorological data 
We provide here an overview about the EC and meteorological data. 

Further information on the location and type of instruments used to 
collect data over the study site can be found in Er-Raki et al. (2008). 

A standard micrometeorological weather station was used to collect 
classical climatic data over olive trees (wind speed, rainfall, incoming 
solar radiation, air temperature and humidity). Soil moisture was 
measured every thirty minutes at multiple depths (5, 10, 20, 30, 40 cm) 
using Time Domain Reflectometry (TDR) probes (CS616, Campbell 
Scientific Ltd). 

A CNR1 net radiometer by Kipp & Zonen was used to measure the 
incoming and outgoing shortwave and longwave. Soil heat flux plates 

(Hukseflux) were used to measure soil heat flux (G) at 1 cm depth, and 
were placed in three locations according to the diurnal course of solar 
position: one beneath the tree (always shaded), one in the middle, and 
one between the trees. The semi-hourly average values of G, derived 
from the flux plates served as input for the three versions of TSEB model. 
It was noticed that the estimates of LE and H fluxes associated with these 
inputs resulted in substantial errors. This was expected, because G is 
often regarded as a difficult component to quantify. In fact, the plates 
must be completely covered to prevent them from being exposed to 
sunlight, as well as to precipitation events that might modify plates 
exposure, so that G measurements are not affected (Ait Hssaine et al., 
2021). Therefore, in the present study, a value of 0.5 is assigned to the 
fraction of soil net radiation (Rns) (calculated using Rn measurements) 
used to compute G. 

The H and LE heat fluxes were measured using an EC system at a 
9.2 m height with a 20 Hz sampling frequency. The EC system was made 
up of a 3D sonic anemometer (CSAT3, Campbell Scientific Ltd.) and an 
open path infrared gas analyzer (Li7500, Licor Inc.). The source area of 
the EC tower, computed using the analytical footprint model proposed 
by Horst and Weil (1994), (1992), was approximately 40 m in the 
northwestern direction (Er-Raki et al., 2008), where 90% of the flux 
typically arose from within 40 m of the EC system (Hoedjes et al., 2007). 
Therefore, the EC tower measurements are presumed to be representa
tive of the field scale. 

Data collected during the daytime hours from 09:00–17:00 were 
utilized throughout the whole growing seasons of 2003 and 2004. The 
energy balance closure was used to assess the performance of flux 
measurements. The comparison between the half-hourly available en
ergy and turbulent fluxes measured by the EC system revealed that 
turbulent fluxes were underestimated by roughly 12% in 2003 and 2% in 
2004 (data not displayed here). The energy balance closure was 
improved by using the Bowen ratio approach (Twine et al., 2000). 

Fig. 1. Overall location of Tensift basin and the study site “Agdal”, along with the location of the Eddy-Covariance (EC) tower within the study site.  
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2.2.2. Sap flow data measurements 
Sap flow was measured using Heat-Ratio-Method (HRM), which was 

developed by Burgess et al. (2001) to measure the xylem sap flow. The 
HRM method is a modification of the Heat- Pulse-Method (HPM) tech
nique, which involves the insertion of temperature probes into the active 
xylem at similar distances downstream and upstream from a heat source. 
Williams et al. (2004) provided a detailed overview of the HRM tech
nique and measurement fundamentals. 

The HRM technique outperforms the HPM in determining the tran
spiration (T) accurately at very low flow rates. In addition, its reliability 
has been demonstrated by other studies (Burgess et al., 2001; Fernaán
dez et al., 2001; Williams et al., 2004). The principal drawback of the 
sap flow approach is the scaling from the sensor to the tree and from the 
tree to the stand (Granier, 1987). Thus, combining two or more methods 
of ET measurements together is the simplest way to overcome the re
strictions of each approach when used separately. Er-Raki et al. (2009) 
demonstrated that combining sap flow and Eddy-covariance methods 
produced more reliable estimates of E and T. Moreover, Cammalleri 
et al. (2013b) undertook a comprehensive evaluation to unravel the 
contributions of actual crop transpiration and soil evaporation to the 
water dynamics of a Mediterranean olive orchard. They were able to 
accurately determine the respective contributions of these processes to 
overall evapotranspiration by leveraging the joint application of eddy 
covariance and sap flow measurements, resulting in a precise under
standing of the balance between soil moisture loss and plant water 
consumption. 

The sap flow sensors were setup on eight olive trees within the source 
area of the EC tower, including four large multi-stemmed and four 
single-stemmed trees. Sap flow measurements were carried out during 
the summer periods, from 12 June to 30 July in 2003, and from 9 May to 
28 September in 2004. 

2.2.3. Remote sensing data 
To conduct our analysis with the three versions of TSEB model, we 

used one type of remote sensing data, which corresponds to the 
Normalized Difference Vegetation Index (NDVI). NDVI was retrieved 
from Landsat 7 imagery, specifically derived from reflectances between 
Red (R) and Near Infrared (NIR) channels. 

The Landsat 7 images covering our area of interest, corresponds to 
path 202 and row 38. These images were sourced from the USGS Earth 
Explorer website (https://earthexplorer.usgs.gov/), ensuring that the 
data used for our analysis is both accurate and reliable. 

For our analysis, we used 15 satellite images acquired between 27/ 
01 and 13/12 in 2003, and 10 images between 07/02 and 20/10 in 
2004. NDVI values ranged from 0.3 to 0.66 in 2003, and from 0.39 to 
0.61 in 2004. To generate continuous NDVI time series for our study 
period, we performed a linear temporal interpolation approach, to next 
derive leaf area index (LAI) and fc throughout the growing period of 
olive crop. 

2.3. Models and adopted methodology 

2.3.1. Model description 

2.3.1.1. Two-Source-Energy-Balance (TSEB). The Two-Source Energy 
Balance (TSEB) model was first introduced by Norman et al. (1995), 
with former updates provided by Kustas and Norman (1999) and Kustas 
et al. (2004). The TSEB model generates two separate energy balance 
equations for soil and vegetation and calculates the sensible and latent 
heat fluxes by simultaneously resolving the two equations of continuity 
for turbulent fluxes and two energy balance equations (see Appendix A 
in Kustas and Norman, 1999; Norman et al., 1995): 

Rns = G + Hs + LEs (1)  

Rnc = Hc + LEc (2)  

H = Hs +Hc (3) 

Fig. 3. Seasonal variation of daily αPT coefficient at Agdal site during the growing seasons of 2003 (top) and 2004 (bottom). The amounts of precipitation and 
irrigation are also plotted as bar charts. 
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LE = LEs + LEc (4)  

where the suffixes s and c stand correspondingly for "soil" and "canopy"; 
G is soil heat flux; H refers to sensible heat flux; and LE denotes latent 
heat flux; Rn corresponds to net radiation. 

The TSEB model requires input data, such as meteorological data and 
canopy variables. Its primary inputs include two variables: Land Surface 
Temperature (LST) derived from measurements of thermal infrared 
(TIR) radiance, and vegetation fraction cover that modulates the dis
tribution of energy between soil and vegetation. Radiative soil and 
vegetation temperatures were measured using two Infra-Red Ther
mometers (IRTS-Ps, Apogee), with a 3:1 field of view, at heights of 1 and 
8.4 m respectively (Er-Raki et al., 2008; Hoedjes et al., 2007). 

Radiometric surface temperature (Trad) is usually available at a 
single-view angle and is the combination of soil and vegetation tem
peratures in proportion to the respective fractions within the radiometer 
view, as follows (Kustas and Norman, 1999; Norman et al., 1995): 

Trad =
(
fc × T4

c + (1 − fc) × T4
s
)1

4 (5)  

where Ts and Tc correspond to the soil and the canopy temperatures, 
respectively; fc is the fraction of the vegetation derived from the 
normalized difference vegetation index (NDVI) using the equation pro
posed by Gutman and Ignatov (1998). 

The TSEB employs a set of equations that are solved iteratively 
(explained below) using a procedure developed by Norman et al. (1995). 
This procedure relies on a strong assumption, i.e., that the vegetation is 
not water-stressed and transpires at a maximum rate. The first estimate 
of canopy transpiration is provided by the Priestley-Taylor (PT) 
formulation (Priestley and Taylor, 1972) as follows: 

LEc = αPT
Δ

Δ + γ
Rnc (6)  

where LEc is the canopy latent heat flux (W/m2); αPT is the Priestley- 
Taylor coefficient set to a standard value of 1.26; ϒ denotes the psy
chrometric constant and equals to 0.067 (kPa/◦C); Δ is the slope of 
saturation vapor pressure-temperature relation (kPa/◦C); Rnc refers to 
the canopy net radiation (W/m2). (Kustas and Norman, 1999; Norman 
et al., 1995) 

Hc = ρcp
Tc − Ta

rah
(7) 

where Hc refers to the sensible heat flux from the canopy; Ta and Tc 
are the air and the canopy temperatures (K), respectively; rah denotes the 
aerodynamic resistance to heat transport (s.m− 1) based on the Monin- 
Obukhov similarity theory and is estimated following (Kustas et al., 
2016); ρcp is volumetric heat capacity of air (J.m− 3.K− 1). 

After computing the initial estimate of LEc, Hc is calculated as a re
sidual term of the canopy energy-balance (Eq. (2)), Tc is obtained from 
Hc (Eq. (7)) and Ts is determined using Eq. (5). G flux is expressed as a 
constant fraction of Rns, which ranges from 0.2 to 0.5 according to 
Choudhury (1987) and Bastiaanssen et al. (1998), and LEs is deduced as 
a residual term of the soil energy balance Eq. (1). If the canopy is 
transpiring at significantly less than the potential rate. The Eq. (6) re
sults in an overestimation of LEc, leading LEs to become negative, 
indicative of condensation on the soil. This is unlikely during daytime 
conditions (unrealistic condition), and is considered as an indicator of 
system stress. Under such circumstances, the αPT coefficient is incre
mentally reduced using a sequential step-by-step method, suggesting 
that the canopy does not transpire at a maximum rate, until realistic 
daytime LEc and LEs (LEs ≥0) fluxes are computed. More information on 
the resolution procedure is available in (Anderson, 2012; Colaizzi et al., 
2014; French, 2001). 

2.3.1.2. Two-Source-Energy-Balance-Soil Moisture (TSEB-SM). In order 

to improve ET and its components, soil moisture (SM) in the 0–5 cm soil 
layer should be incorporated as an additional constraint, to improve the 
consistency between observed and simulated fluxes. Hence, a new 
model called ‘’TSEB-SM’’ has been developed by Ait Hssaine et al. 
(2018). 

TSEB-SM model calculates the turbulent fluxes by concurrently 
resolving the soil and canopy energy balance equations, similarly to the 
classic TSEB. However, by introducing data relative to 5 cm-top SM, the 
soil evaporation (E) term is better described, by adding a third resistance 
known as the soil surface resistance (rss), to the LEs calculation formula, 
in addition to the soil and aerodynamic resistances. 

Passerat de Silans (1986) proposed the following expression to 
compute the soil surface resistance to water vapor transfer: 

rss = exp
(

arss − brss
θ5cm

θsat

)

(8)  

with θ5 cm and θsat corresponding to 5 cm-top SM at actual and satura
tion levels, respectively; arss and brss are two empirical soil texture- 
dependent (dimensionless) coefficients, they were set to 8.2 and 4.3, 
respectively, in earlier studies (Sellers et al., 1992). In fact, no study has 
determined the respective values of these coefficients for each type of 
soil (Gan and Gao, 2015). 

Ait Hssaine et al. (2018) proposed a calibration procedure to retrieve 
these two parameters for a dataset corresponding to a fraction of vege
tation cover less than 0.5 (fc <=0.5), for which the soil is uncovered and 
hence ET is mostly driven by E. This condition (fc <=0.5) is not verified 
for the study site, thus arss and brss were assigned values of 5.67 and 
1.4, respectively, which correspond to those found by Ait Hssaine et al. 
(2018) for a flood-irrigated site. These values are presumed to be 
identical to those of our study site, since they were identified for a site 
belonging to the same basin, with a similar soil type, identical irrigation 
system, and exposed to similar climatic conditions. 

The TSEB-SM model calculates LEs flux as follows (Ait Hssaine et al., 
2018): 

LES =
ρcp

ϒ
(es − ea)

rah + rs + rss
(9)  

where LEs is the soil latent heat flux (W/m2); ρcp is the volumetric heat 
capacity of air (J.m− 3.K− 1); ϒ denotes the psychrometric constant and 
equals to 0.067 (kPa/◦C); es and ea stand for the saturated vapor pressure 
at the soil surface and the air vapor pressure, respectively; rah represents 
the aerodynamic resistance to heat transport (s.m− 1); rs refers to the 
resistance to heat flux in the boundary layer immediately above the soil 
surface (s.m− 1); rss is the top-5 cm soil surface resistance to water vapor 
transfer (s.m− 1). 

The particularity of the TSEB-SM model relies on the calibration of 
the αPT coefficient, which has been modified in response to the SM in 
the root zone during the crop growing season. Further details on the 
TSEB-SM model and calibration strategies can be found in Ait Hssaine 
et al. (2018) and Ait Hssaine et al. (2020). 

2.3.2. Methodology used 

2.3.2.1. Sap flow data processing. Sap flow measurements need to be 
scaled in order to be representative of the field of interest. For this 
purpose, the daily volumetric sap flow (L/day) was initially adjusted to 
reflect the daily tree transpiration T (mm/day). This adjustment 
involved dividing the daily flux (L/day) by the average ground coverage 
of each tree, which was determined to be 45 m2. More comprehensive 
details are provided in Er-Raki et al. (2010) and Williams et al. (2004). 
Moreover, the methodology for extrapolating sap flow measurements to 
account for the entire tree has also been employed in a similar manner 
by Cammalleri et al. (2013b) and Puig-sirera et al. (2021) over an irri
gated olive grove. Then, the tree T is extrapolated to the stand-level T, 
which is representative of the experimental field scale (Er-Raki et al., 
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2010). The T of a single tree is extrapolated to the field scale using the ET 
measurements from the EC tower. This extrapolation method was pre
viously suggested by Williams et al. (2004) when scaling stand-level T. 
To do so, we assume that during dry conditions (when E is negligible), 
the relationship between field scale ET and tree T results from the 
scaling errors in tree T. 

To identify the dry period, we track the evolution of the surface SM 
difference Δθ at 5 cm depth between two consecutive days. Once Δθ 
stabilizes and approaches zero, the corresponding SM is regarded as a 
threshold and E to be negligible when SM at 5 cm is lower than this 
threshold value. Further details concerning this approach can be found 
in Er-Raki et al. (2010). 

Following the selection of dry conditions, a linear regression be
tween the daily scaled sap flow and the total daily ET measured by the 
EC system (Fig. 2) is established. This upscaling is used to calculate the 
stand-level (field scale) T for the remaining wetting days of sap flow 
measurements (Er-Raki et al., 2010). We assume that the predominant 
wind speed and direction were identical between the dry (calibration 
period) and wet periods, so that the derived regression is applicable for 
wetting days (post-irrigation period), and the difference between total 
ET flux measured by EC system and scaled olive T reflects the contri
bution of E to total ET within the EC flux footprint (Williams et al., 
2004). Next, these scaled sap flow values are used to evaluate the per
formance of TSEB and TSEB-SM models in terms of partitioning 
evapotranspiration into T and E. 

2.3.2.2. Derivation of daily values of the αPT coefficient. The PT method 
(Priestley and Taylor, 1972) assumes that the equilibrium term, which 
corresponds to the radiative term of the Penman-Monteith (PM) equa
tion, is much greater than the aerodynamic contribution, simplifying 
thus the Penman’s expression of ET (Penman, 1948). According to this 
premise, the PT formulation for ET is expressed as: 

ET = αPT ∗ Eeq (10)  

where Eeq is the equilibrium term, defined by Slatyer and McIlroy 
(1961) as the limit reached over a long fetch when unsaturated air comes 
into contact with a moist surface; αPT denotes the Priestley–Taylor 
coefficient. 

The literature states that the αPT coefficient can vary significantly 
depending on crop type and climatic conditions. For perennial ryegrass, 
Davies and Allen (1973) obtained αPT values ranging from 1.01 to 1.34 
with a mean value of 1.27. Jury and Tanner (1975) observed that for an 
irrigated potato crop, αPT was about 1.28 for a wet year and 1.57 for a 
dry year. Kanemasu et al. (1976) proposed αPT values of 1.28 for sor
ghum and 1.45 for soybean. 

As SM declines, surface resistance to ET rises and the αPT coefficient 
drops (Flint and Childs, 1991; Raupach, 2000). Therefore, to avoid the 
use of a standard value of 1.26, which does not obviously reflect the 
local conditions of the Agdal site and does not account for advective 
conditions, we use the approach proposed by Flint and Childs (1991) for 

non-potential conditions, to deduce αPT throughout the growing periods 
of olive trees. This approach relies on actual evapotranspiration ET 
measured by the EC system and equilibrium evaporation (Eeq) that is 
independent of wind speed and based on air temperature and available 
energy (Flint and Childs, 1991). 
⎧
⎨

⎩

ET = αPT ∗ Eeq

Eeq =
Δ(Rn − G)

Δ + ϒ
(11) 

The αPT deduced from Flint and Childs (1991) stands for a bulk 
(system) coefficient, and thus reflects the contribution of E and T. Thus, 
to account for the effect of vegetation transpiration on global ET, we 
implement the approach suggested by Tanner and Jury (1976) and 
calculate the modified αPT coefficients for soil and vegetation using the 
following formula (Eq. 12): (Tanner and Jury, 1976) 
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

αs =

⎧
⎪⎨

⎪⎩

1

αPT −
(αPT − 1)(1 − τ)

(1 − τ0)

(for τ ≤ τ0)

(for τ > τ0)

αc =
(αPT − αs ∗ τ)

(1 − τ)

(12) 

The subscripts s and c stand for soil and canopy, respectively. αs and 
αc are Priestley-Taylor coefficients for soil and vegetation, respectively. 
The αPT coefficient is calculated from the Flint and Childs (1991) 
equation (Eq. 11) on a daily timescale (between 09h00 and 17h00). The 
coefficient τ refers to a canopy transmission factor, which corresponds to 
the ratio of Rns to the total Rn. The coefficient τ is calculated using LAI 
and an extinction coefficient (kapa) (Campbell and Norman, 1998; 
Kustas and Norman, 1999). The variable τ0 is a threshold value of τ 
beneath which the canopy is dense enough so that E is close to equi
librium. The precise value of τ0 is not critical, and it can range from 0.2 
to 0.5 (Agam et al., 2010; Tanner and Jury, 1976). A value of τ0= 0.3 is 
adopted for the present study, according to Agam et al. (2010). 

To maintain the same rationale for the original TSEB model when 
setting a first approximation of latent heat flux for vegetation canopy, 
the annual average value of the αc coefficient was used to run TSEB-CPT 
(computed αPT) model. We use these averaged values rather than the 
potential value of the αPT coefficient since the latter does not reflect 
semi-arid conditions of the study site. 

2.3.2.3. Assessment of model performance. Daytime measurements of ET 
(from 9:00 a.m. to 5:00 p.m.) were used to assess the performance of 
three versions of TSEB in simulating ET, namely TSEB-SPT (standard 
αPT, run with the standard coefficient of 1.26), TSEB-CPT (computed 
αPT, performed with the annual average value of the calculated αPT), 
and TSEB-SM (the αPT coefficient is calibrated on a daily basis using a 
cost function). 

Regarding ET partitioning, half-hourly sap flow data (from 9:00 a.m. 
to 5:00 p.m.) were aggregated at the daily timescale, and scaled to the 

Fig. 2. Linear regressions between daily sap flow measurements and ET measured by the Eddy-Covariance system during the summer period of 2003 (left) and 
2004 (right). 
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EC tower’s footprint, then used to evaluate the performance of the three 
models in estimating the T component. The semi-hourly values of 
simulated E by the three versions of TSEB were aggregated at the daily 
timescale and then compared against the measured ones, in order to 
assess how well the three models performed in terms of the E component 
estimation. Estimates of E are beforehand derived by subtracting the 
scaled sap flow T from the measured ET by EC system. This method was 
also applied by Rafi et al. (2019) for a drip-irrigated wheat crop, and 
Cammalleri et al. (2013b) over an irrigated olive orchard. 

The intercomparison of the effectiveness of each model is quantified 
using three statistical metrics, including: the coefficient of determina
tion (R2), the root mean square error (RMSE) and the mean bias error 
(MBE) between simulated and observed fluxes. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(yi − xi)

2

n

2

√
√
√
√
√

(13)  

MBE =

∑n

i=1
(yi − xi)

n
(14)  

R2 = 1 −

∑n

i=1
(yi − xi)

2

∑n

i=1
(xi − x̂)2

(15)  

Where yi and xi are modeled and observed values, respectively; n is the 
number of available observations; x̂ is the mean of observations. 

3. Results & Discussion 

This section includes an analysis of the temporal variability of the 
αPT coefficient at our study site during two growing periods, followed 
by a discussion of the performance of the three versions of TSEB model 

in estimating ET at various time scales (semi-hourly, daily and monthly), 
and concludes with an assessment of their ability to partition ET into T 
and E. 

3.1. Analysis of the variability of daily αPT values 

Time series of the daily average values of the αPT coefficient are 
generated throughout the growing seasons of 2003 and 2004 (Fig. 3). 
The values of αPT fluctuate between 0.34 and 1.25 during the 2003 
growing season, and from 0.38 to 1.21 in 2004 with an annual average 
value reaching 0.75. It is worth reminding that the Agdal site is irrigated 
by flood irrigation, with a water supply of 100 mm for each irrigation 
event. Thus, peaks in the αPT coefficient are observed after irrigation 
events, in accordance with the redistribution of SM in the soil profile 
from the surface to the root zone. The fluctuation of αPT is significantly 
impacted by the temporal variation of SM level and VPD. Thus, the 
highest value of the αPT occurs after a wetting event (irrigation or/and 
rainfall), associated with a strong evaporative demand corresponding to 
large VPD. Conversely, the lowest value of the αPT occurs after a drop in 
SM and an increase in the evaporative demand. 

To distinguish between contributions from olive trees and from bare 
soil in the bulk αPT coefficient, we calculate the αc coefficient for olive 
trees by using Eq. (12). The average annual value of the αc coefficient is 
equal to 0.58 and 0.57, respectively for 2003 and 2004, which is close to 
the average annual value of the computed αPT coefficient of the system 
(canopy and soil). Fig. 4 illustrates the dependency of VPD and αc under 
various ranges of root zone SM throughout [15 May - 05 June] 2003 and 
[20− 29] August 2003. Actually, the root system depth of olive trees 
ranges from 60 to 80 cm (INRA Meknès Magazine, 2016). Also, ac
cording to Table 22 in FAO-56 (Allen et al., 1998), the maximum 
effective depth of root system for olive trees (40–60% ground coverage 
by canopy) is between 1.2 and 1.7 m. Thus, because SM measurements 
available at the field scale were taken at a maximum depth of 40 cm, SM 
at this corresponding depth is considered to be representative of the root 

Fig. 4. Dependency of canopy Priestly-Taylor coefficient αc to VPD under different ranges of root zone soil moisture in Agdal site 2003. We consider the case of 
available moisture (θWp ≤θ) (a) and the case of root zone moisture below the wilting point (b). 
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zone SM. We analyze the case of available SM (energy-limited condi
tions), considering for instance an average daily SM of the root zone that 
fluctuates between 21% and 18% with θfc¼32% and θWp¼ 19% ac
cording to the pedotransfer function proposed by Wösten (1997). We 
note that the αc coefficient rises as the VPD increases, and αc values 
range from 0.3 to 0.9, with a VPD varying from 1.2 to 3.7 kPa. Hence, 
high levels of VPD (>1 kPa) promote tree transpiration by inducing a 
greater moisture gradient between leaves and atmosphere. Nevertheless, 
high VPD can trigger a greater stomatal resistance to conserve water for 
SM levels θ close to or below the wilting point θWp (14 ≤ θ ≤ 17%), as 
illustrated in Fig. 4(b). Therefore, trees acclimate to moisture deficits by 
reducing T rates, resulting in a decrease in αc coefficient (Baldocchi and 
Xu, 2007). 

3.2. Model performance for ET simulations at the half-hourly timescale 

Fig. 5 displays the measured and simulated latent and sensible heat 
fluxes by the TSEB-SPT, TSEB-CPT and TSEB-SM. The performance of 
the Two-Source Energy Balance (TSEB) models was evaluated over two 
growing seasons of 2003 and 2004 at the Agdal site. The results revealed 
significant disparities in the model’s accuracy and reliability in esti
mating latent (LE) and sensible (H) heat fluxes. 

The TSEB-SPT model tends to overestimate LE fluxes, with a R2 co
efficient of 74% and 55%, and an RMSE around 159 and 187 W/m2, 
respectively, for the growing seasons of 2003 and 2004. This over
estimation subsequently lead to the underestimation of H fluxes, evi
denced by lower R2 values of 14% and 12%, and an RMSE evaluated at 
159 and 192 W/m2, respectively. The overestimation of LE is mainly 
related to the preset value of αPT coefficient (αPT=1.26), which corre
sponds to a typical evaporative demand without any particular aero
dynamic components, and that disregards the effect of water vapor 
deficit on ET. However, this value decreases when the trees are water- 
stressed. 

Enhancements were noticed with the TSEB-CPT version, which in
corporates a site-specific annual average value of the αc coefficient 
calculated for the Agdal site, during 2003 and 2004, in order to account 
for actual environmental conditions (Fig. 5). This adjustment improved 
the estimation of LE and H fluxes. Indeed, RMSE and MBE are consid
erably reduced for LE: during the 2003 and 2004 growing seasons. Thus, 
RMSE drops from 159 to 47 W/m2, and from 187 to 57 W/m2, respec
tively, while MBE declines from 144 to 22 W/m2, and from 167 to 6 W/ 
m2, for the respective years. Furthermore, estimates of H flux are dras
tically enhanced. For 2003 and 2004 growing seasons, R2 between 
simulated and observed H increases to 68% and 67%, respectively, while 
RMSE decreases from 159 to 47 W/m2, and from 192 to 57 W/m2, 
respectively. 

TSEB-CPT model tends to globally overestimate the latent heat 
fluxes, particularly for LE<300 W/m2, and the H flux values are slightly 
underestimated as a result of this overestimation. The balance between 
the simulated and observed values of LE and H fluxes results from the 
energy balance closure for the soil-vegetation system, given that Rn and 
G are set to their measured values. The discrepancies between the 
modeled and measured LE and H fluxes are primarily induced by the 
setting of the αc coefficient to a single value, whereas this coefficient 
fluctuates on a daily basis according to Fig. 3 and Fig. 4. Our findings 
underscore the importance of adjusting the αc coefficient to account for 
daily climatic variations and soil water content for improved accuracy. 

For the TSEB-SM version, which integrates SM as an additional input, 
we note that this model version outperformed the original TSEB-SPT in 
estimating both LE and H fluxes, for the two selected periods at the 
Agdal site (Fig. 5). Also, TSEB-SM produces lower MBE than TSEB-CPT 
and exhibits a slight underestimation of LE and overestimation of H 
fluxes. For 2003 and 2004, MBE is about − 5.5 and 0.3 W/m2, respec
tively, for LE values, and about 10.3 and 4.3 W/m2, respectively, for H 
estimates. Regarding RMSE, we note almost similar values for both 
models (TSEB-CPT & TSEB-SM). However, there is a significant 

dispersion in the LE flux estimates provided by the TSEB-SM model, 
particularly in 2004. Larger discrepancies within the scatterplot corre
spond to dates for which 9 m-height wind speed exceeds 3 m/s. Since 
the calculation of E in the TSEB-SM model involves aerodynamic and 
soil resistances, which are low during these corresponding dates, the 
simulated E values are larger than the actual ones, given the low SM 
levels at the top 5 cm. Consequently, the simulated contribution of E to 
total ET is large, which results in large values of simulated ET. 

3.3. Model performance for ET simulations at the daily timescale 

For a comparison purpose, Fig. 6 displays times series of LE daily 
values estimated by TSEB-SPT, TSEB-CPT and TSEB-SM, along with 
times series of LE daily values measured from the EC tower, within the 
Agdal site throughout the olive tree growing seasons of 2003 and 2004. 
We note that days with missing LE values between 9:00 and 17:00 were 
excluded from this analysis. 

Our comparison of three TSEB model versions: TSEB-SPT, TSEB-CPT, 
and TSEB-SM, against observed daily ET demonstrates that all models 
display comparable temporal patterns, adeptly reproducing daily ET 
peaks during the two consecutive growth seasons. The daily values of 
measured ET vary between 1.2 and 4.1 mm in 2003 and range from 1.1 
to 4.7 mm in 2004. In contrast, the simulated ET fluxes by TSEB-SPT, 
TSEB-CPT and TSEB-SM range from 1.8 to 5.5 mm, from 1.0 to 
3.8 mm, and from 1.4 to 4.1 mm in 2003, and range from 2.0 to 5.9 mm, 
from 1.1 to 4.1 mm, and from 0.9 to 4.5 mm in 2004, respectively. 

Overall, TSEB-SPT model frequently overestimates daily ET values 
throughout the entire two growing periods, whereas TSEB-CPT and 
TSEB-SM models were more closely aligned with the corresponding 
actual ones during certain periods of the year. Indeed, the discrepancies 
between observed and simulated fluxes of daily ET are slightly low and 
stable (1) for TSEB-CPT model in March 2003 and from March to mid- 
May 2004, (2) for TSEB-SM, from March to April 2003, and between 
April and mid-June 2004. Over 2003, ET peaks are common, with 
maximum values during the months of May, July, and August reaching 
4.1 mm on 21/05. Over 2004, ET maxima are observed in June and July, 
with a high value of 4.7 mm recorded on 26/06. 

The dynamics of daily ET measured by the EC tower are well tracked 
by the three TSEB versions, with daily ET dynamics, influenced by 
changes in Rn, VPD and SM levels at 5 cm and 40 cm depths. Never
theless, both versions (TSEB-CPT & TSEB-SM) frequently underestimate 
ET fluxes, particularly during periods following wetting events (mainly 
irrigation or substantial rainfall). As stated previously, the study site is 
flood-irrigated with a water supply of 100 mm per irrigation event. With 
this irrigation method, SM rapidly increases and can potentially exceed 
SM at field capacity. Under such saturated soil conditions, the differ
ences between simulated and actual ET fluxes are significant for both 
models, particularly for TSEB-SM. 

3.4. Model performance for ET simulations at the monthly timescale 

Fig. 7 displays the performance of TSEB-SPT, TSEB-CPT and TSEB- 
SM at the monthly timescale, on the basis of a Taylor diagram that 
provides a concise overview of the correspondence degree between 
measurements and simulations (Taylor, 2001). For LE and H fluxes, the 
correlation coefficient (r), the centered root mean square difference 
(RMS) and the ratio of standard deviations are indicated by single-points 
on the two-dimensional (2-D) graph. By combining these statistical 
metrics, one may easily assess the degree of pattern correspondence and 
determine how well a given model simulates measurements. Further 
details on the diagram and its interpretation are provided in Taylor 
(2001). Metrics related to TSEB-SPT, TSEB-CPT, and TSEB-SM are 
indicated using triangles, circles, and rectangles, respectively. Reference 
measurements are indicated using green rectangles. The distinct colors 
denote the growing period of olive trees between March and November. 
The radial distances are proportional to the model standard deviations, 
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Fig. 5. Scatterplot of simulated versus measured latent (LE) and sensible (H) heat fluxes at the half-hourly timescale, for the Agdal site, using the TSEB-SPT (left), 
TSEB-CPT (center) and TSEB-SM (right) models during the 2003 and 2004 growing seasons. 
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and the green dashed semi-circles indicate the RMS error. The correla
tion coefficients between simulations and measurements are indicated 
by the azimuthal positions. 

Taylor diagram reveals that the correlation coefficients (r) fluctuate 
between 0.6 and 0.9, indicating a moderate to high level of agreement 
between the measured and simulated LE values across all models during 
the two seasons 2003 and 2004. 

In 2003, TSEB-SPT consistently overestimates LE measurements all 
months. This overestimation is indicated by a standard deviation 
reaching 110 W/m2 and RMS fluctuating between 50 and 70 W/m2. 
Conversely, TSEB-CPT and TSEB-SM models exhibit lower standard 
deviation values varying between 35 and 71 W/m2, while RMS ranges 
from 28 to 42 W/m2, and from 42 to 56 W/m2, respectively. Further
more, both models slightly overestimate LE fluxes, with best 

performance achieved in March, April, October, and November (RMS is 
around 28 W/m2 for TSEB-CPT and 42 W/m2 for TSEB-SM). 

In 2004, TSEB-SPT shows standard deviations from 110 to 150 W/ 
m2, and RMS from 88 to 110 W/m2 when simulating LE fluxes. Besides, 
TSEB-CPT and TSEB-SM perform similarly, with slightly lower RMS for 
TSEB-CPT (between 34 and 50 W/m2) as compared to TSEB-SM (from 
34 to 66 W/m2). Good estimates of both models are noticed in April and 
May. Overall, our results suggest that the TSEB-CPT model reproduces 
better the total evapotranspiration at the monthly timescale. 

The olive tree’s annual growth cycle runs from March to November, 
during which it goes through several phenological phases from inflo
rescence development to fruit ripening and harvest (Sanz-Cortés et al., 
2002). The most intense period of the annual cycle is from March to 
June. During this phase, the olive tree’s water requirement is at its 

Fig. 6. Daily values of ET simulated by TSEB-SPT, TSEB-CPT and TSEB-SM models compared to daily measured ET by the EC system at Agdal orchard during 2003 
(top) and 2004 (bottom). 
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highest (Carr, 2013; Sanz-Cortés et al., 2002; INRA Meknès Magazine, 
2016). This is corroborated by our LE measurements and their corre
sponding simulated values by the three versions of TSEB during this 
period for 2003 and 2004 growing seasons. For instance, in 2003, the 
average monthly ET measured from March to June (from 9:00 a.m. to 
5:00 p.m.) was 75 mm, compared to 66 mm from July to November. The 
corresponding average ET simulated by TSEB-SPT/ TSEB-CPT/ 
TSEB-SM models for the former period reached 133/84/76 mm, and for 
the latter 110/72/61 mm, respectively. 

In semi-arid regions similar to our study area, the amount of 
contribution of each vegetation species to soil-surface interactions varies 
throughout the year according to their differing phenological stages 
(Luo et al., 2018). For heterogeneous vegetation cover layers, trees and 
the underneath soil, as well as the understory layer (weeds or natural 
grass), interact throughout the growing period and all contribute to 
turbulent and radiative exchanges (Baldocchi et al., 2004). Few studies 
have assessed the performance of the TSEB model on perennial crops 
and natural permanent vegetation (Andreu et al., 2018; Cammalleri 
et al., 2010; Guzinski et al., 2013). Our findings are consistent with 
earlier studies regarding the estimation of LE, and the magnitudes of 

errors associated with TSEB-CPT and TSEB-SM simulations are compa
rable to the error boundaries established in other energy balance model 
studies. For instance, Boulet et al. (2015) investigated various 
dual-source model schemes, and reported that the RMSD for LE in irri
gated and rain-fed wheat fields ranged from 53 to 73 W/m2. Likewise, 
Timmermans et al. (2007) contrasted the performance of TSEB model 
against the SEBAL (Surface Energy Balance Algorithm for Land) model 
on a sparsely vegetated grassland and pasture area, and obtained RMSD 
values for LE of 62 and 70 W/m2, respectively for both sites. Addition
ally, Burchard-Levine et al. (2020) proposed TSEB-2S (two season) to 
account for two key phenological periods in a semi-arid tree-grass 
ecosystem, depending on when the grass layer is active (grass-soil sys
tem) and when it becomes senescent (tree-soil system), without intro
ducing additional variables or altering the model’s fundamental 
structure. They revealed that the TSEB-2S model improved LE estimates 
compared to the default configuration of TSEB, with RMSD values 
ranging from 57 to 63 W/m2. Similarly, Andreu et al. (2018) assessed 
the effectiveness of TSEB for simulating surface energy fluxes over 
savanna landscape, which exhibits numerous similarities with other 
wooded Mediterranean coverages, including olive groves and vineyards. 

Fig. 7. Taylor Diagram for sensible (H) and latent (LE) heat fluxes simulated by TSEB-SPT, TSEB-CPT and TSEB-SM models at a monthly timescale in 2003 and 2004.  
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They carried out several wind profiles and different roughness patterns 
in the TSEB model and reported errors for simulated LE varying from 44 
and 60 W/m2. 

On the other hand, the sensible heat flux H is largely undervalued by 
the TSEB-SPT model owing to the overestimation of LE during the whole 
growing season, with RMSD values for H spanning between 65 and 
91 W/m2 for 2003 & 2004 simulation periods. The TSEB-CPT version 
improved the simulation of H fluxes, but they remain slightly under
estimated with RMSD values fluctuating between 25 and 50 W/m2, and 
the most accurate simulations were reported in March and April. Unlike 
TSEB-SPT and TSEB-CPT versions, estimates of the sensible heat flux H 
were improved by TSEB-SM model throughout 2003 and 2004 growing 
seasons, this is likely due to the robustness of the iterative procedure 
proposed by Ait Hssaine et al. (2018) for estimating soil and vegetation 
temperatures, which is based on the minimization of the cost function of 
soil and vegetation energy balance equations. However, H estimates 
were overall slightly overestimated, and RMSD values ranged from 38 to 
78 W/m2, with the most precise estimates of H occurring in March and 
April of 2003 and in April and May of 2004. Feng et al. (2023), indicated 
also a modest overestimation of H flux by the TSEB model over a 
semi-arid orchard by altering soil resistance coefficients and incorpo
rating the heat transfer resistance (kB− 1) parameterization scheme into 
the original model, in an attempt to optimize the latter’s performance in 
estimating turbulent fluxes. 

The underestimation of H is systematic in the original TSEB model 
and has been reported in several studies (Andreu et al., 2018; 
Burchard-Levine et al., 2020; Cammalleri et al., 2010; Chirouze et al., 
2014; Li et al., 2019; Morillas et al., 2013). This underestimation of H 
may be attributed to several factors, including the overestimation of LE 
fluxes, and the use of standard parameters in the formulation of the soil 
aerodynamic resistance in the original TSEB model as demonstrated by 
Li et al. (2019). Indeed, according to Morillas et al. (2013), TSEB 
underestimated H for high measured H rates over a semi-arid Mediter
ranean tussock grassland, with RMSD values of 64 and 84 W/m2 using 
parallel and series resistance approaches, respectively. Furthermore, 
Kustas et al. (2016) conducted a subsequent analysis over the same 
semiarid grassland area and indicated that the significant bias in H es
timates are caused by key vegetation inputs and semi-empirical co
efficients of the soil resistance formulation used to estimate HS flux. 
Through the adjustment of the soil resistance coefficients based on soil 
roughness measurements and vegetation features, Kustas et al. (2016) 
achieved precise results for this site. Similarly, Burchard-Levine et al. 
(2020), reported that a large underestimation of H flux were observed 
during the dry summer period (RMSD of 82 W/m2) over a tree-grass 
semi-arid area, and attributed this to the vegetation layer parametriza
tion within the TSEB model, which was not able to account for the 
significant phenological changes occurring in the vegetation layer dur
ing the summer. It is worth mentioning that H flux estimates may be 
improved by implementing alternative models of in-canopy wind pro
file, such as the Massman (1987) model within TSEB-SPT and TSEB-CPT 
versions. In fact, Cammalleri et al. (2010) reported that the Massman 
model yielded slightly better performance for an olive orchard. 

3.5. Model performance for ET partitioning into T and E components 

Tree transpiration (T) constitutes the most significant component of 
ET in irrigated olive orchards under semi-arid conditions (Zuñiga et al., 
2014). As a result, determining T is a critical issue in order to apply 
proper irrigation scheduling. Fig. 8 depicts the daytime variation of 
actual T with those simulated by the three versions: TSEB-SPT, 
TSEB-CPT, and TSEB-SM. Overall, the simulated T by the three ver
sions has the same temporal pattern than the measured T over the 32 and 
102 days corresponding to the experimental periods of 2003 and 2004. 

The daily measured T is evaluated at 62/128 mm, compared to 64/ 
188 mm, 138/405 mm, and 17/114 mm estimated by TSEB-CPT, TSEB- 
SPT and TSEB-SM models, for the two respective years. Notably, the 

TSEB-SPT model largely overestimates the daytime T, with an RMSE of 
2.41 mm in 2003 and 2.79 mm in 2004. This overestimation is mainly 
attributed to the use of a single αPT coefficient value of 1.26, which is 
incompatible with our experimental condition (see Section 3.1). Besides, 
the said model does not include a specific calibration of the αPT coef
ficient in response to stress conditions, underlying therefore the need for 
adjustment of this parameter. 

Conversely, the T component is well reproduced by TSEB-CPT model 
in 2003, with an RMSE of 0.27 mm between simulations and observa
tions. However, the discrepancy between simulated and measured T in 
2004 is considered to be slightly significant, with an RMSE of 0.67 mm. 
Exceptions were noted during specific intervals, such as [13/07–20/07] 
or [26/08–09/09], where the model’s simulations closely match the 
measurements. Regarding the TSEB-SM model, our results reveal a 
constant underestimation of simulated T during the whole summer 
period of 2003, with an RMSE of 1.41 mm. In 2004, the agreement 
between measured and modelled T is satisfactory between DOY 130 
(09/05) and DOY 160 (08/06). Beyond this period, the gap between 
simulations and measurements increases resulting in an RMSE of 
0.45 mm. 

Our analysis emphasizes the importance of the αPT coefficient in 
estimating the T component. As previously mentioned, TSEB-CPT cal
culates the T component by using an averaged value of the αPT coeffi
cient, which is equal to 0.58 in 2003 and 0.57 in 2004, whereas this 
coefficient is very sensitive to the variation of root zone SM, as well as 
the changes in VPD. In contrast, TSEB-SM adopts a dynamic approach to 
compute T by calibrating the αPT coefficient on a daily basis. This 
approach is based on a cost function designed to minimize the discrep
ancy between the simulated and measured surface temperature. 

The gap between measurements and TSEB-CPT simulations of the T 
component is partially ascribed to the value of the αPT coefficient. 
Indeed, we compare the averaged αPT value used to run the TSEB-CPT 
model with that derived on a daily basis by inverting Eq. (6) that links 
the measured T (by sap flow sensors) to trees net radiation Rnc, and that 
we call hereafter “αPTsapflow’’. We find that the αPTsapflow values range 
from 0.51 to 0.98 in the summer of 2003, and are between 0.2 and 0.7 in 
2004. As a result, the simulated T by TSEB-CPT is often larger than the 
measured one, particularly during the summer of 2004 (Fig. 8 & Fig. 9). 

The calibration of the αPT in TSEB-SM model yields low values, less 
than 0.26 during summer period of 2003, and between 0.18 and 0.45 in 
2004. This explains the low simulated T values by TSEB-SM, except for 
the time period from DOY 130 to DOY 160 in 2004, where T is accu
rately simulated, since the calibrated values of αPT coefficient are close 
to the measured ones (Fig. 9). 

The disparity between T measurements and simulations can be also 
related to the fact that G flux is calculated as a fraction of Rns, whereas 
the conditions that drive the interaction between these two components 
is likely to change over the study period (Aguirre-García et al., 2021; 
Colaizzi et al., 2016; Santanello and Friedl, 2003). Furthermore, this 
fraction may vary according to both weather conditions and soil type, 
suggesting that the 0.5 chosen value may not be appropriate for the 
study site (Choudhury, 1987). This probably impacts the estimation of 
available energy for the canopy-soil system to some extent, resulting in 
an under- or over-estimation of LE flux. Besides, the three TSEB versions 
simulate both olive trees and understory vegetation T simultaneously, 
without distinguishing between the two components, while the mea
surements account for olive transpiration only. In addition, we note that 
the scaling approach is not flawless, which may contribute to the dif
ference between simulated and measured T (Er-Raki et al., 2010; Fer
naández et al., 2001; Williams et al., 2004). 

Fig. 10 shows that the simulated E by TSEB-SPT is underestimated for 
the whole summer period, with an RMSE of 0.29 and 1 mm for 2003 and 
2004, respectively. Also, TSEB-SPT and TSEB-CPT simulations of E show 
an inverse temporal trend with T. TSEB-CPT tends to overestimate E 
during the 2003 summer, with an RMSE of about 0.56 mm and an MBE 
of 0.50 mm, while it underestimates E in 2004, with an estimated RMSE 
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Fig. 8. plot of measured T by sap flow sensors and simulated ones by TSEB-CPT, TSEB-SPT and TSEB-SM, at daily timescale, during the summer period of 2003 (left) 
and 2004 (right). 
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of 0.85 mm and a negative MBE of − 0.55 mm. 
Overall, the TSEB-SM simulations of E exhibit the same temporal 

variations as measured E, with delayed peaks and drops. TSEB-SM 
overestimates E, with RMSE and MBE values of 1.29 and 1.22 mm, 
respectively, in 2003. Conversely, it simulates well E between DOY 130 
to DOY 160 in 2004, and slightly overestimates E with an MBE of 
0.24 mm for the remaining period. TSEB-SM produces higher values of E 
than TSEB-SPT during the two summer periods, which increase the daily 
ET contribution from soil surface. Besides, the E estimates are large for 
some dates, although the corresponding SM levels at 5 cm depth are 
lower than the wilting point. This may be explained by the values of 
resistance terms included in the formulation of E, particularly the soil 
surface resistance rss. In fact, the empirical coefficients arss and brss used 
to calculate this term are not locally calibrated, since we assume that 
they are similar to those found by Ait Hssaine et al. (2018) for a 
flood-irrigated site, cultivated with wheat in the Tensift basin. 

For the original TSEB, the underestimation of E can be assigned to 
the fact that this component is computed as a residual term and thus, 
affected by the overestimation of simulated LEc flux. In addition, the 
standard formulation of aerodynamic resistance used in TSEB may not 
be appropriate for olive tree orchards. The large values of simulated soil 
temperature could also justify the underestimation of E component. In 
addition, the disparities between simulated and observed E fluxes can be 
partly related to errors in the scaling approach of sap flow measure
ments, which results in an under(over)-estimation of the measured E at 
the study site. 

Several studies have demonstrated that TSEB model performs poorly 
in LE partitioning (Burchard-Levine et al., 2020; Kustas et al., 2019; 
Song et al., 2022). As demonstrated in Burchard-Levine et al. (2020), LE 
fluxes were well simulated by TSEB-2S (two season) over a tree-grass 
ecosystem for different years and sites. Nevertheless, when comparing 
simulated E to lysimetric measurements, biases were identified, indi
cating that the partition of LE was imprecise (Burchard-Levine et al., 
2020). Song et al. (2022) found that TSEB model produced a higher 
T/ET ratio than the water use efficiency (WUE) approach (Zhou et al., 
2016), particularly during crop senescence. 

This could be related to the fact that the soil and vegetation flux 
partitioning in the TSEB model is heavily dependent on the fraction of 
green vegetation (fg), as well as LAI values (Kustas et al., 2019). 
Moreover, Häusler et al. (2018) evaluated the TSEB’s performance in 
terms of ET partitioning over an intensive olive orchard, using 
medium-resolution satellite imagery, and the findings showed that the 
daily values of T and E were under- and over-estimated, respectively. As 
pointed out by Kustas et al. (2019), further investigations need to be 
undertaken to assess whether the poor partitioning of TSEB is related to 
uncertainties in the input values or to biases resulting from the modeling 
structure. In contrast to our findings, Song et al. (2022) demonstrated 
the effectiveness of TSEB-SM regarding ET partitioning over different 

land covers, and stated that the highest discrepancy of T/ET estimated 
from the TSEB-SM model occurred during the period of decline in plant 
cover, particularly at the end of the growing season. Nevertheless, the 
T/ET divergence remains lower when compared to the original TSEB, 
since the T algorithm was not affected by the value of the fraction of fg 
(Song et al., 2022). On the other hand, E demonstrated a temporal 
tendency opposite to T, as E would display large variation at the 
beginning of the growing season owing to wetting and drying cycles 
produced by water supply (irrigation/rain). However, E would pro
gressively decrease as leaf area arose. Song et al. (2022) discovered that 
the TSEB and TSEB-SM models produced similar E values for irrigated 
cropland, whereas for desert steppes and shrub forests, the TSEB-SM 
model yielded higher E values. 

4. Conclusion 

As part of the current work, we assessed the performance of three 
versions of TSEB model in simulating ET and estimating its components 
(soil evaporation E and plant transpiration T) over a semi-arid olive 
orchard, at various timescales. These models include: (i) the original 
TSEB with a standard αPT coefficient (TSEB-SPT), (ii) with a computed 
one (TSEB-CPT), and (iii) the TSEB-SM that requires SM data to further 
constrain soil evaporation. According to our findings, the TSEB-SPT 
model is likely to produce larger errors at semi-hourly scale in predict
ing ET flux and its components T and E. These errors could be amplified 
under strongly advective conditions. The TSEB-CPT and TSEB-SM 
models enhance ET estimates and yield better agreements with refer
ence measurements, including lower errors (with an average relative 
value of 24%) and better correlation between simulated and observed 
ET for TSEB-CPT model. Additionally, both modeled and observed 
values of daily ET exhibit comparable temporal patterns, and the peaks 
of daily ET are well captured by the three TSEB versions. Nevertheless, 
TSEB-CPT and TSEB-SM versions frequently underestimate ET fluxes 
during periods following wetting events. As for monthly timescale, the 
TSEB-CPT model reproduces better the total ET. 

Regarding the partitioning of ET into T and E, the simulated T values 
by TSEB-SPT showed discrepancies from sap flow measurements, 
highlighting the necessity for precise canopy αPT coefficient inputs 
derived from EC measurements to improve accuracy. 

While TSEB-SM provides lower values of T component due to lower 
values of canopy αPT coefficient, revisiting the calibration function of 
this coefficient within the context of arboriculture (woody species) is 
recommended. Future studies should focus on determining αPT coeffi
cient for perennial woody crops, and examine its variability on daily and 
shorter time spans, as well as link its fluctuations to variations in VPD 
and soil water availability, with the purpose of enhancing estimates of T 
component. 

Furthermore, TSEB-SM generates higher E values, although for some 

Fig. 9. plot of measured and simulated αPT coefficient, at daily timescale, during the 2004 summer period.  
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Fig. 10. plot of estimated and simulated evaporation by TSEB-CPT, TSEB-SPT and TSEB-SM, at daily timescale, during the summer period of 2003 (left) and 
2004 (right). 
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dates the corresponding SM levels were low, which increases the ET 
contribution from the soil surface. Therefore, the formula used to 
compute E should be revisited. This is particularly relevant when the 
canopy fraction is greater than 0.5, making it impossible to calibrate arss 
and brss coefficients for soil surface resistance calculations. The 
formulation suggested by Song et al. (2016) or the one proposed by 
Merlin et al. (2016) can be used for E component calculation. Alterna
tively, the implementation of the soil module improved by Amazirh 
et al. (2021) into TSEB-SM model provide promising avenues for these 
revisions. 

Future work may focus on incorporating the stomatal conductance 
into the TSEB model, and assessing its performance over arboricultural 
crops under various soil moisture regimes. In fact, Gan and Gao (2015) 
introduced this approach through the replacement of the 
Priestley-Taylor assumption with a biophysical canopy conductance 
model in the TSEB model, and adjustment of the under-canopy re
sistance’s formulation. The findings are encouraging, demonstrating 
that the stomatal conductance may serve as a crucial indicator for 
monitoring crop water status. 
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Appendix A 

For an analysis purpose, Fig. 11 also displays the time series of daily VPD and of normalized SM at 5 cm and 40 cm depth, throughout the same 
period. For visualization purpose, soil moisture at field capacity and at wilting point, as well as soil moisture measured at 5 cm depth (top) and 40 cm 
depth (root zone), are normalized by saturation (θsat) and residual (θr) soil moistures, where the latter are estimated using empirical equations that 
account for soil texture. To normalize the soil moisture at a given depth, for instance the root zone SM (θ40 cm), the latter is subtracted from the residual 
moisture value and the result is divided by the difference between the saturation and the residual moisture values ((θ40 cm- θr) / (θsat- θr)).

Fig. 11. Daily variation of VPD and normalized soil moisture at top-5 cm and 40 cm (root zone) in Agdal orchard during 2003 (a) and 2004 (b).  
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Appendix B. The following table outlines all the annotations and abbreviations utilized in the present manuscript  

Index of Notations and Abbreviations 

E Evaporation 
EC Eddy-Covariance 
Eeq Equilibrium evaporation 
ET Actual evapotranspiration 
ETc Crop evapotranspiration 
fc Vegetation fraction cover 
G Soil heat flux 
H Sensible heat flux 
HPM Heat- Pulse-Method 
HRM Heat-Ratio-Method 
LAI Leaf Area Index 
LE Latent heat flux 
LST Land Surface Temperature 
NDVI Normalized Difference Vegetation Index 
NIR Near Infrared channel 
PM Penman-Monteith 
αPT Priestley-Taylor coefficient 
R Red channel 
rah Aerodynamic resistance to heat transport 
Rn Net radiation 
Rnc Canopy net radiation 
Rns Soil net radiation 
rs Resistance to heat flux in the boundary layer immediately above the soil surface 
rss Soil surface resistance 
SEB Surface-Energy-Balance 
SM Soil moisture 
T Transpiration 
Tc Canopy temperature 
TDR Time Domain Reflectometry 
TIR Thermal Infrared Radiance 
Trad Radiometric surface temperature 
Ts Soil temperature 
TSEB Two-Source-Energy-Balance 
TSEB-CPT Two-Source-Energy-Balance-Computed-Priestley-Taylor 
TSEB-SM Two-Source-Energy-Balance-Soil-Moisture 
TSEB-SPT Two-Source-Energy-Balance-Standard-Priestley-Taylor 
VPD Vapor Pressure Deficit  
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Li, M., Zhou, J., Peng, Z., Liu, S., Göttsche, F., 2019. Agricultural and Forest Meteorology 
Component radiative temperatures over sparsely vegetated surfaces and their 
potential for upscaling land surface temperature. Agric. . Meteorol. 276–277, 
107600 https://doi.org/10.1016/j.agrformet.2019.05.031. 
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