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The distribution of forest and savanna biomes and the role of resources (climate and soil) and
disturbances (fire and herbivory) in determining tree-grass dynamics remains elusive and variable
across geographies. This is especially problematic in Indian savannas which have been historically
misclassified as degraded forests and are targeted for tree-planting. Here, we examine biome
distribution and determinants through the lens of tree cover across India. Our analyses reveal four
distinct zones of differing tree cover, with intermediate zones containing savanna vegetation. Rainfall
seasonality determines maximum possible tree cover non-linearly. Once rainfall seasonality is
factored out, soil sand fraction and topography partially explain residual variation of tree cover. High
domestic livestock herbivory and other anthropogenic pressures reduce tree cover. Lastly, lack of
detectable fires precludes robust conclusions about the relationship between fire and tree cover. By
considering these environmental drivers in restoration planning, we can improve upon simplistic tree
planting initiatives that may be detrimental to Indian savannas.

Tropical mesic savannas—found at intermediate rainfall levels—are pre-
dominantly characterized by a mix of continuous layers of C4 grasses and
varying densities offire-tolerant and shade-intolerant tree specieswith open
tree crowns1. Conceptually, resource-based drivers (climate and soil) and
disturbance based drivers (fire and herbivory) are known to regulate
tree–grass dynamics in savannas2–5. However, the relative influence of
resource-based anddisturbance-based drivers across the savanna biomehas
been heavily debated6,7, with limited insights from south and southeast Asia.
In India, multiple lines of recent evidence, including both paleo ecological
data and recent discoveries of endemic species suggest that many of its
regions are indeed ancient savanna ecosystems8–11. However, even while
India’s savanna biome potentially covers a vast geography8, the distribution
anddrivers of tree–grass ratioswithin thebiomeare yet tobe examined.This
information is crucial in the context of tree planting initiatives (considering
economic and restoration purposes) for climate change mitigation and
issues suchaswoody encroachment that tend tohavenegative consequences
on the savanna biome12–16.

South and southeast Asian tropical savannas have historically been
underrecognized8,17. Many regions of mesic savannas in India have phy-
siognomies that arewoody enough tobemistaken for closed canopy forests8.

Colonial practices ofmanaging land for forestry18 have resulted in a legacy of
misconception of these wooded ecosystems, such that areas with low and
medium tree cover are considered degraded forests19 (relative to high tree
cover in closed canopy forests). Consequently, many Indian savannas
(degraded forests) have become easy targets for afforestation20 to meet
India’s ambitious tree planting targets21. Hence, appropriate ecosystem
restoration planning that goes beyond tree planting requires information
about the distribution of these savannas. Furthermore, a better under-
standing of the functional ecologies of the tree and grass components in
savannas can help to tailor strategies for conservation and restoration of
this biome.

Tree cover is commonly used to differentiate between closed canopy
forests and open canopy savannas, accounting for biome-specific vegetation
composition and dynamics3,22,23. The distinct dichotomy of low tree cover in
savannas and high tree cover in forests has been found in Africa, South
America and Australia3,23–25. A similar pattern has also been confirmed in
southeast Asia, where multimodality of tree cover is scale dependent; i.e.
distinct at the landscape scale compared to the regional scale17. However,
uncertainty remains about the extent and patterns of tree cover across
forests and savanna biomes in south Asia, particularly India.
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Broadly, resource anddisturbance-based drivers regulate the outcomes
of tree–grass competition in savannas. From the macroecological and bio-
geographic perspectives, climate, specifically rainfall and its seasonal dis-
tribution, is a key determinant of tree cover3,26. Evidence from global studies
and from African savannas, suggests that climatic drivers constrain the
maximum potential tree cover by regulating tree growth and mortality27–29.
Savannas (low tree cover) tend to be found in areas with low rainfall and/or
high rainfall seasonality23,26, implying that water use-related physiological
processes control tree cover. Furthermore, soil texture, which mediates soil
moisture content30, also shapes tree- grass dynamics31. In sandy soils, water
percolates to lower depths, favouring deep- rooted trees, while clayey soils
that hold moisture below the surface, favour shallow rooted grasses32,33.
However, at the global scale, there is limited insight into the relationship
between severity of water stress and distribution of tree cover in savannas34,
with no insights from India.

Fire and herbivory are also key regulators of tree cover, and maintain
savannas by preventing complete canopy closure35,36. Typically, fires are
extensive in the tropical savanna biome due to the seasonal environment
and abundance of highly flammable C4 grasses

1. Fire, when frequent, can
regulate tree cover by preventing tree saplings from escaping the ‘fire trap’37.
Conversely, fire suppression has the potential to release seedlings from this
trap and increase tree cover. Herbivory can also be an influential factor: wild
grazing can increase tree cover by suppressing grasses, potentially leading to
closed canopy forests. Conversely, wild browsing and mixed feeding may
suppress tree sapling growth, thereby limiting tree recruitment and resulting
in relatively open savannas38–40. This is also likely the case with domestic
livestock, the dominant herbivores in most tropical open ecosystems
comprising savannas, grasslands and woodlands41. For example, experi-
mental evidence fromAfrican savannas in Kenya show thatmoderate cattle
grazing does not have any effect on tree sapling recruitment, but intense
levels of grazing increased tree sapling growth42,43. Woody biomass density
declined under sustained goat browsing evidenced in multiple experiments
in southernAfrica44,45. However, despite its long history offire suppression46

and high densities of domestic livestock, there have been few investigations
on the role of fire and domestic livestock herbivory in driving tree cover in
Indian savannas.

In this study, we examine the drivers of and distribution of savannas
and forests across India, using the metric of tree cover. To the best of our
knowledge, the role of these drivers indetermining thedistributionof forests
and savannas across India is not established. This information is crucial,
given the interesting historical and contemporary context of fire
suppression46 and ongoing pressures of tree planting in non-forest biomes
for climate changemitigation19. Furthermore, we advance previous analyses

globally and in other regions by incorporating the role of herbivory, spe-
cifically domestic livestock, which traditionally has not been included in
remote sensing-based analyses of tree cover due to lack of data3,17,23.

First, we plotted remotely sensed current tree cover and site data of
Indian savanna vegetation against maximum climate water deficit
(MCWD), ameasure of severity of water stress.We hypothesized that there
will bemultimodality of tree cover across the water stress gradient as shown
globally3,23. Second, we tested the hypothesis that MCWD regulates tree
cover such that tree cover increases as MCWD decreases, using a quantile-
based generalized additive model. Then, we quantified the shortfall of the
current tree cover from the climatic maximum potential. Third, using
generalized additive models, we assessed the relationship between this
shortfall in tree cover and remotely sensed information about resource and
disturbance-based drivers discussed above and drivers of topography and
anthropogenicpressure. Broadly,wehypothesized that shortfall decreases in
sandy soils and with grazing herbivory, while it increases with frequent and
intense fires. Finally, we explored the relationship between shortfall and
topography and anthropogenic pressure because both these factors are
known to locally influence tree cover.

Results
Distribution of current tree cover against MCWD
We estimated the current tree cover as the mean annual tree cover
(2000–2020) across the study area (Fig. S1) using the MOD44B VCF pro-
duct at 250m spatial resolution47. We calculated climatic information
including MCWD using the TerraClimate monthly climate and climatic
water balance product48 (see Supplementary Methods and Table S3 for
details). For a stratified sample of points, percent tree cover across a gradient
of MCWD showed an upper limit that increased with decreasing MCWD,
with sites at any givenMCWD showing the entire range of tree cover below
this upper limit (Fig. 1). Contrary to patterns reported from other tropical
regions3,23, tree cover in regions with intermediate rainfall did not have two
distinct peaks of high tree cover with low tree cover between the two peaks
(Figs. 1, S2 and S4 (percent tree cover–mean annual precipitation (MAP)
plot)). Using a non-hierarchical clustering analysis and in combinationwith
the percent tree cover at the locations where we know savanna vegetation
occurs9, we delineated four zones of tree cover: (1) a low tree cover zone
(MCWD< 1209mm) in which median percent tree cover is ~0.7%
(uncoloured); (2) a medium tree cover zone (MCWD 845–1209mm) with
medianpercent tree cover up to~9.4%(lightmustard) (3) amixed tree cover
zone (MCWD 486–845mm) with a wide range of percent tree cover
~0–78% (median percent tree cover ~40%) (lavender); (4) a predominant
high tree cover zone (MCWD> 486mm)withmaximumpercent tree cover

Fig. 1 | Percent tree cover across a gradient of
maximum climate water deficit (MCWD) (black
dots, n= 8554/9600, i.e 89.1% of total
sampled data). Percent tree cover at locations of
savanna vegetation9 are shown as bright orange
diamonds. There are four tree cover zones—a low
tree cover zone beyond 1209 mm deficit (unco-
loured), a medium tree cover zone 845–1209 mm
deficit (light mustard), a mixed tree cover zone
486–845 mmdeficit (lavender) and a high tree cover
zone 0–486 mm deficit (light green). Inset images,
clockwise starting top left are examples of the
landscape at a sampled point in the medium and
mixed tree cover zones- MCWD 912 mm and one
observed fire, MCWD 680mm and no fire, MCWD
887mm and no fire and MCWD 1059 mm and 7
observed fires. See Fig. S5 for geography of the
coloured zones and Fig. S7 for information about the
distribution of all drivers across the points in the
coloured zones. All inset images are courtesy of
Google Earth Image © 2021 Airbus.
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~82% (median percent tree cover ~57%) (light green). The locations of the
savanna vegetation weremainly in themedium andmixed tree cover zones
(Fig. 1).According to theKöppenclassification49, the lowandhigh tree cover
zones fall into the dry arid desert and tropical monsoon climate zones,
respectively. The two zones of medium and mixed tree cover are found in
the dry winter tropical savanna and dry semi-arid or steppe climate zones,
respectively. The use of the site location of savanna vegetation helped us
overcome the challenge of uncertainty of the MOD44B VCF product in
delineating forests and savannas50,51.

We usedGoogle imagery to better understand the reasons for the wide
range of tree cover in themixed tree cover zone, which contains evidence of
savannaherbaceous vegetation.We founddistinct vegetationpatterns along
topographical features of ridges and valleys. Also, the presence of paths
through the vegetation implies anthropogenic disturbances (Fig. 1). Hence,
we included topographical indices of Heat Load Index (HLI) and Topo-
graphic Position Index (TPI) and human population density as additional
drivers of tree cover. HLI and TPI characterize the land surface in terms of
the steepness of slope of the surface. HLI has a range of 0 to 1, where values
close to 0 indicate north-easterly cool regions and values close to 1 indicate
south-westerly warm regions. TPI has a range of−1 to 1, where low values
represent sheltered parts and high values indicate exposed areas of the
landscape. Hence, both indices are indicative of direction of incident solar
radiation and land drainage52. We used human population density as a
proxy for anthropogenic pressures.

In termsof geography, the low tree cover zone stretchedacross north-
western India, including the desert areas of the states of Rajasthan and
Gujarat in western India (MAP range: 112.8–1095mm). The high tree
cover zone occurred in the north-eastern region of India and theMalabar
coast in the south-western states of Karnataka and Kerala (Fig. S5c; MAP
range: 1100–4893mm). The medium tree cover zone with savanna
understorey vegetation stretched across the Deccan plateau, the Central

Highlands and the western semi-arid regions of Gujarat, Rajasthan and
north-western Madhya Pradesh (Fig. S5a; MAP range: 152.6–3008mm).
The mixed tree cover zone with savanna understorey vegetation
mainly separated into two regions: inland from the east coast (northern
Coromandel coast) in the states of Odisha, Jharkhand and Chhattisgarh
and along the western coast, parallel to the central Western Ghats
(Fig. S5b; MAP range: 566–3771 mm).

Estimation of climatic maximum potential tree cover and poten-
tial tree cover shortfall
We hypothesized a clear ceiling for the maximum percent tree cover
across the four zones of tree cover, implying the influence of MCWD on
the maximum current tree cover possible (Fig. 1). We tested this
hypothesis by estimating the climaticmaximumpotential tree cover as the
95th percentile of the predicted current tree cover using the 95th per-
centile smooth additive quantile regression model between percent tree
cover and MCWD using the stratified sample points (n = 8554 show as
black points in Fig. 1) (deviance explained = 90.8%; Fig. S6). We then
predicted the climatic maximum potential tree cover to the study area.
Climatic maximum potential tree cover was the highest in the north-
eastern regions (~70–82%), the central and southern sections of the
WesternGhats (~72–79%), and along the foothills of theHimalayas in the
north (~60–80%). It was the least in the desert and semi-arid zones of
western India (~1–10%) and increased in the Central Indian Highlands
region (~35–50%) (Fig. 2a).

We calculated the divergence of current tree cover from themaximum
possible tree cover, hereafter referred to as ‘shortfall’, as the difference
between 1 and the ratio of current tree cover and climatic maximum
potential tree cover. Shortfall values close to 1 indicatemaximumdivergence
of current tree cover from the climatic maximum potential tree cover and
shortfall values close to 0 mean convergence of current tree cover with the

Fig. 2 | Climatic maximum potential tree cover (%) and Potential tree cover
shortfall. The climatic maximum potential tree cover is the maximum tree cover
based on the maximum climate water deficit (MCWD), fitted with 95th percentile
smooth additive quantile regression model. It is the highest in north-eastern India
and the stretch of theWestern Ghats along the western coast of peninsular India (a).
Potential tree cover shortfall is a measure of the convergence/ divergence of the
current tree cover with the climatic maximum potential tree cover. It has a range of
0–1, where values close to 1 indicate divergence of current tree cover from the
climatic maximum potential tree cover (or there is 0% current tree cover) (shades of

red), and values close to 0 indicate convergence (shades of blue). Note that all areas
less than 1209 mm MCWD have been excluded in (b), predominantly in north-
western India, as these areas have zero tree cover and are areas of caution for tree-
planting activities. The above analyses were completed at 250 m spatial resolution.
Note that potential tree cover shortfall has been aggregated by factor = 2 for display
purposes (b). Study area (coloured in both maps) was delineated by excluding built-
up land, water bodies, aquaculture, salt pans, mangroves, permanent wetlands, snow
and ice and all forms of agriculture and by excluding all land area with elevation
greater than 1200 mm (see Fig. S1).
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climaticmaximumpotential tree cover. Shortfall was high in central regions
including the Deccan plateau (~0.3–0.6), Central Highlands (~0.2–0.7) and
northern section of the Western Ghat (~0.2–0.6). It was low in the north-
eastern regions (~0.1–0.3) and southern and central sections (~0.05–0.2) of
theWesternGhats. The shortfallwas thehighest in thedesert areas of north-
western India due to zero or negligible current tree cover relative to the small
climatic maximum potential tree cover. Hence, we excluded these areas
when mapping shortfall to avoid confusion about the possibility to restore
tree cover in these desert areas (Fig. 2b).

Evaluation of drivers of potential tree cover shortfall
Considering the sampled points in themedium andmixed tree cover zones,
we analysed how much of the shortfall can be explained by environmental
drivers in these two zones that contain savanna vegetation.Wemodelled the
relationship between shortfall and sand fraction, burn frequency and fire
intensity and herbivory pressure of buffalo, sheep and goat, HLI, TPI and
human population density (deviance explained = 50.4%; Table S1). The
explanatory powers of themodel using training and testing data were 45.4%
and 45.1%, respectively, while the root mean square errors of the model
using training and testing data were 39.6% and 39.2%, respectively.

We analysed the partial effects of the drivers on shortfall using a
generalized additive model. Shortfall decreased linearly with increase in
sand fraction. However, we cautiously interpret this result considering the
uncertainty of the effect (Fig. 3c). Shortfall increased significantly up to
HLI = 0.87, beyond which it decreased, i.e. shortfall was least in cool north-
easterly facing regions (HLI ~ 0), increased linearlywith increase in incident
solar radiation and decreased beyond a threshold towards warm south-
westerly facing regions (HLI ~ 1) (Fig. 3f). There was a similar threshold-
based relationship between shortfall and TPI: shortfall was the least in the
bottom of valleys but increased in lower slopes and flat areas (up to TPI = 0)
and then decreased in middle slopes, upper slopes, and ridges (Fig. 3g).
Shortfall increased linearly with increasing human population density
(Fig. 3e). Interestingly, there was a threshold- based relationship between
herbivory pressure of sheep and shortfall. For low levels of sheep herbivory
pressure, shortfall decreased with increasing herbivory. However, beyond 1
tonnes km−2 year−1, the shortfall significantly increased (Fig. 3d). Lastly,
there was a significant relationship between shortfall and burn frequency
and fire intensity. However, considering the highly skewed information of
burn frequency (0–13 fires in 2000–2020) and fire intensity (0–54.5MWof
all fires in 2012–2020), we concluded the trends to be unreliable (Fig. 3a, b).

Discussion
To the best of our knowledge, this is the first India wide study examining the
distributionanddrivers of savanna and forest biomesusing a remotely sensed
tree cover metric. First, we demonstrate that there are four distinct zones of
tree cover—a low, high and medium tree cover zones where MCWD, a
measure of severity of water stress regulates tree cover and amixed tree cover
zone whereMCWDdoes not have any influence on tree cover. Themedium
and mixed tree cover zones have savanna vegetation (Fig. 1). Second, using
the tested relationship between tree cover and MCWD, we predicted the
climaticmaximumpotential tree cover (Fig. 2a).Consequently,wequantified
the shortfall of current tree cover from the climaticmaximumpotential. This
shortfall is high in the central regions of the Deccan Plateau and is low in
north-east India and specific sectionsof theWesternGhats (Fig. 2b).Third, in
themediumandmixed tree cover zones,we showthat shortfall decreaseswith
increase in soil sand fraction (Fig. 3c). High levels of grazing and anthro-
pogenic pressures increase the shortfall (Fig. 3d, e). At the coarse scale of our
analyses, we demonstrate the distinct role of topography in regulating
shortfall (Fig. 3f, g). Furthermore, we could not ascertain a relationship
between fire and shortfall due to limited data on fires (Fig. 3a, b).

Distribution of tree cover driven by severity of water
stress (MCWD)
The low and high tree cover zones clearly delineate the desert and tropical
forest biomes respectively53, while the biomes in the zones characterized by

medium and mixed tree cover are less clear. The unclear biome status in
these two zones is supportedby the lackof bimodality in treecover, typical of
co-existing forest and savanna biomes54. However, as shown in this study,
these zones contain evidence of herbaceous life forms of graminoids and
forbs that are characteristic of savannas9, indicating the co-existence of both
savannas and forests in these zones. South Asian savannas include dipter-
ocarp savannas, mixed savannas, fine leaved and spiny savannas and pine
savannaswith dominant tree clades spanning the entire rangeof tree canopy
cover and physiognomies similar to forest trees8. Similarly, different forest
types, especially that of secondary regrowth due to intensive and extensive
land use and land cover changes, have a wide range of tree canopy cover.
This wide range of tree cover across the variety of forest and savanna
formations is difficult to assess using coarse scale remote sensed products
contributing to the lack of bimodality and clear biome delineation. Fur-
thermore, it is difficult to interpret the bistability of forest and savanna states
in the medium and mixed tree cover zones, due to the uncertainties of the
MOD44B VCF product used to estimate percent tree cover50,51. We suggest
the use of independent tree cover estimates with additional information
about the tree species as validation of the co-existence of savannas and
forests. Nonetheless, we suspect that forest and savannas coexist in the
mediumandmixed tree cover zones atfine spatial scales, i.e. at the landscape
scale, such as in southeast Asia17 and the forest–grasslandmosaics in north-
eastern India55.

Overall, the sigmoidal response of current tree cover to MCWD con-
firms that severity of water stress is an important driver of savanna biome
distribution. This is evident by the clear delineation of the desert and forest
biomes at high and low water stress, respectively, and in the remaining two
zones containing savanna herbaceous vegetation. The medium tree cover
zone (~40% tree cover) is in relatively drought prone areas and the mixed
tree cover zone (~0–80% tree cover) in relatively less drought prone areas,
akin to findings globally about the distribution of the savanna biome and
possibility of alternative biome stateswith forests36,56,57. This is becausewater
stress drives differences in survival and growth rates of forest and savanna
trees and the savanna herbaceous layer2. Mechanistically, trees and grasses
coexist in savannas by partitioning limited resources such as water, i.e. there
is hydrologically driven resource competition2. Additionally, climate
variability and climate driven disturbances (including water resource
availability) cause demographic bottlenecks at various life stages of trees,
thereby maintaining tree–grass coexistence2. Hence, predicted changes in
water stress due to climate change58 are likely to drive future changes in the
distributions of savanna and forest in south Asia59.

Topography and anthropogenic pressures drive tree cover
shortfall
Topography regulates tree–grass dynamics in the medium and mixed tree
cover zones containing savanna vegetation. In areas with water availability,
forest trees persist irrespective of terrain, i.e. tree cover converges with its
climatic maximum in hilly terrain (including upper slopes and ridges) and
valleys as shown. Indeed, our findings here agree with those of similar
studies across tropical South America, which show that areas with high
rainfall have more forests than savannas irrespective of the depth of the
water table60. Low hill slopesmight have alternating periods of waterlogging
and drought stress amplified by rainfall seasonality; however, savannas can
withstand these stresses as shown in tropical South America56, corrobor-
ating the increasing trend in shortfall in low slopes and flat areas shown in
this study. Furthermore, temperature gradients and the resulting hetero-
geneity in energy distribution created by topography explains the pattern of
shortfall61, with shortfall being less in north-easterly and south-westerly
facing areas. We posit the interactive effects of seasonality and aspect will
explain the threshold response of tree cover shortfall and HLI, with
increased seasonality limiting tree cover in a wide range of terrain aspects.
Clearly, interactive effects of topography and rainfall seasonality regulate
tree and grass co-existence60,62,63. These effects can be further explored by
assessing tree–grass dynamics across topographic and elevational
gradients62, in turn accounting for water depth60.
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Anthropogenic pressures such as small-scale clearing and fuel wood
collection limit tree cover64 explaining the linear increase in shortfall from
the climatic maximum potential shown. Hence, in areas where forest and
savanna biomes coexist in India, anthropogenic pressure is a regulator of
tree cover, like regional evidence from Africa24 and South America65.

Resource and disturbance factors regulate tree cover shortfall
Within themediumandmixed tree cover zones, sandy soils allow tree cover
to reach the climaticmaximumpotential, i.e. decrease in shortfall, similar to
findings in Africa27,31,66 and southeast Asia17. By increasing drainage, high
sand content can drain moisture in shallow soil layers but can lead to an

accumulation of water in deeper layers accessed by deep-rooted forest
trees2,33,67. However, the interactive effects of soil moisture and rainfall
seasonality canhavevarying effects on treecoveracross forests and savannas
when considering rainfall intensity31. Lastly, a better understanding of the
functional rooting characteristics of all life forms of forests and savannas can
yield interesting insights about the factors responsible for the distribution of
forests and savannas. Root traits such as rooting depth of forest and savanna
trees and savanna grasses can explain the extent to which varying water
depths are being tapped across different soil types and rainfall regimes.

Herbivory directly affects tree cover shortfall andhence regulates forest
and savanna biome distribution in themedium andmixed tree cover zones.

Fig. 3 | Partial effect plots of only significant drivers of tree cover shortfall at the
sampled points in the medium and mixed tree cover zones (n= 2977). Each plot
shows the additive contribution of the respective driver on the linear component of
tree cover shortfall with the shaded area indicating 95% confidence intervals.
Within each plot, the density plot (grey) shows the distribution of the respective
driver. Note that the data used in the model and the density plot for fire intensity,
fire frequency, sheep dry matter intake and population density is log transformed

(see SupplementaryMethods for details). Due to the skewed data offire intensity and
fire frequency, even though significant, these trends are unreliable (a, b). There was a
decreasing trend in shortfall with increase in sand fraction (c). For high sheep
pressure, the shortfall increased steeply (d). There was a linear increase in shortfall
with anthropogenic pressures (e). Lastly, a threshold response of shortfall was
observed with topographic variables Heat Load Index and Topographic Position
Index (f, g).
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Generally, at moderate densities, grazers such as sheep, can increase tree
growth rates by consuming grasses1,4,28,40, explaining the initial decreasing
trend in shortfall. However, at intense levels of grazing, high densities of
sheep limit tree recruitment into adult tree size classes thereby promoting
savanna grasses39,40. Complimentary to livestock, it would be valuable to
understand the impacts of wild herbivores on biome distribution, con-
sidering the relatively distinct and last remnant populations of wild herbi-
vores in south and southeast Asia68. This is crucial because functional
changes in herbivore communities i.e. wild native herbivores to domestic
livestock can have differential impacts on distribution of forests and
savannas69 and in turn on ecosystem functions such as accumulation of
soil carbon70.

Although there is a significant and decreasing trend in tree cover
shortfall with increasing fire frequency in themedium andmixed tree cover
zones, these results are difficult to interpret formultiple reasons. For one, the
information about fire in the medium and mixed tree cover zones is highly
skewed. The fire return interval in southAsia is significantly shorter and the
fires are of smaller spatial extent and of reduced intensity, compared to
vegetation fires in Africa and possibly South America71,72. For example, in
2001–2017, 16% of the African savanna area burned as opposed to 1.6% in
south and southeast Asia73. Additionally, small fires accounted for ~90% of
the burned area in south and southeast Asia versus 30% in Africa74. Hence,
small and less intense firesmight continue tomaintain or even increase tree
cover. Second, even though we have used complementary satellite derived
information aboutfire intensity and frequency, the small extent and reduced
intensity of fires in India might be difficult to detect accurately in remote
sensed products75–77. Third, reduced fire activity has been reported in
savannas and grasslands,mainly because of fire suppression associated with
agricultural expansion and intensification globally78 and in savannas of
South America79. India’s extensive and intensive historic and current con-
version of land especially for agriculture80,81 might have altered fire regimes
contributing to uncertainty in detection and the consequent impacts
on vegetation.

India’s complex historic and contemporary practices of land man-
agement for forests, fire suppression and ongoing anthropogenic pres-
sures including high densities of domestic livestock and ambitious tree-
planting initiatives are important factors to consider for appropriate
conservation and restoration of its savannas. Here, considering these
factors we show that there are intermediate zones of tree cover with
savanna vegetation, indicating possible co-existence of forests and
savannas. Furthermore, once climatic drivers of tree cover are accounted
for, topography, soil texture (sandy soils), anthropogenic pressures and
sheep domestic livestock herbivory regulate tree cover in the intermediate
tree cover zones. This information can help us to go beyond the ‘forest
centric’ approaches to ecosystem restoration13,82. For example, our results
of delineation of intermediate zones of tree cover containing savanna
vegetation and the low tree cover zone can inform the design of ‘no-go’
areas for tree planting schemes.When considering woody encroachment,
insights from our study in India about the role of intense sheep herbivory
in reducing tree cover provides useful evidence for the design of
appropriate livestock grazing management regimes to control the bio-
mass of palatable dominant trees, thereby maintaining healthy tree–grass
dynamics and the persistence of the savanna biome. Hence, by under-
standing the distribution of the savanna biome and the drivers of its life
forms (tree and grass component), we can design nuanced ecosystem
restoration strategies that go beyond simplistic tree-planting initiatives in
the UN Decade on Ecosystem Restoration.

Methods
Study area delineation and point sampling strategy
We considered the entire terrestrial area of India, from which we excluded
land uses and covers of built-up area, croplands (including abandoned and
current jhum—a shifting agriculture practise in India—and irrigated
croplands), aquaculture, mangroves, salt pans, permanent wetlands and
snow and ice at the native resolutions of 60 and 100m83,84, which we then

resampled to 250m (see Supplementary Methods). Additionally, we
excluded all areas with elevation greater than 1200m where low tempera-
tures might limit tree growth85, which is beyond the scope of this study
(Fig. S1). We stratified the study area into 150mm bins of mean annual
precipitation (MAP) (n = 31) to account for the wide range of MAP across
the study area (0–>4000mm; Fig. S2a). We sampled 300 random points in
each bin (total n = 9600), for an unbiased representation of tree cover across
the precipitation gradient (Fig. S1). We excluded 10.8% of the sampled
points due to lack of comprehensive information of resource and dis-
turbance drivers considered (n = 8554).

Processing of tree cover, resource and disturbance-based
drivers
We used the Mod44BB.006 MODIS Terra Vegetation Continuous
Fields product to extract percent tree cover. This tree cover product is
advantageous due information available over a long time period (2000
onwards) and because the spatial resolution appropriately discriminates
regional patterns of land uses and covers86, as opposed to tree cover
available only at certain time snapshots and atfiner spatial resolution. This
product has also been used in studies about forest and savanna biome
distribution at the global3,23,29 and regional scales17,24,55. Current tree cover
was calculated as the mean of the annual percent tree cover (2000–2020)
across the study area.

For resource based drivers of climate, we first processed information
about vapour pressure deficit, MAP, dry season length, mean annual
aridity and MCWD from Terraclimate48. After accounting for correlated
variables, we retainedMAP andMCWD for further analyses. MCWD is a
measure of absolute seasonality87 providing a nuanced metric of dry
season severity and resulting water stress88 and reliably predicting
forest–climate thresholds89. MCWD is calculated as the most negative
value of the cumulative difference between precipitation and potential
evapotranspiration88,90. We used SoilGrids250m v2.091 estimates of sand
fraction at 0–30 cm soil depth.

We calculated fire and herbivory pressure as the disturbance drivers.
For fire we calculated metrics of fire intensity and frequency because of
evidence of effects of bothfire parameters onopen tree canopy structure that
is characteristic of savanna trees25,92. Fire frequency was calculated as the
number of times a pixel in the study area burned (2000–2021) using the
MCD64A1.006 MODIS burned area monthly global product. We used fire
radiative power (megawatts (MW)) derived from VIIRS 375m active fire
products93 as a proxy for fire intensity. We followed a two-step process to
estimate herbivory pressure across the study area. First, herbivory pressure
was calculated as the dry matter intake of buffalo, goat, sheep, cattle and
horses integrating livestock census94 and the metabolic demand of each
herbivore type as per animal biomass allometric relationships95. Second, to
reduce the dimensionality of the 5 different types of herbivory pressure at
each sampled point and to account for the effect traits of the functional
groups of browsers, grazers and mixed feeders, we conducted a principle
component analysis on the herbivory pressure data. Based on the loadings
on the two axes, we retained herbivory pressure of buffalo, sheep and goats
for further analyses (Fig. S8 and Table S2).

Distribution of tree cover, use of savanna herbaceous vegetation
information, delineation of zones of tree cover and visual
inspection of sampled points to include additional drivers of
tree cover
We evaluated the distribution of percent tree cover against MCWD (Fig. 1)
and MAP (Figs S2 and S4) of the final sample points as typically done in
studies about forest and savanna biome distribution3,17,23,60. Relative to
percent tree cover–MAP (Figs. S2 and S4), there was a clearer pattern of
distribution of percent tree cover againstMCWD,whichweused for further
visualization and interpretation. We used non-hierarchical clustering ana-
lyses, specifically the partitioning around medoids technique to delineate
any zonesof tree coverdue to its robustness to outliers96.Wedetermined the
presence of four clusters as the total within sum of squares error was the
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lowest with four clusters and because there was negligible drop in total
within sum of squares errors subsequently (Fig. S3). We then extracted the
minimumandmaximumvalues ofMCWDof each of the four clusters to be
the thresholds of the zones.

However, remote sensed tree cover products including that used in
this study, do not provide information about savanna understorey vege-
tation in the zones. And since Indian savanna trees have physiognomies
very similar to closed canopy forests8, we included information of the
savanna herbaceous vegetation to better delineate the forest and savanna
biomes. We used the locations of graminoids (species n = 5 annuals
and n = 8 perennials), forbs (species n = 8 annuals and n = 55 perennials)
and woody species (n = 22) from Nerlekar et al.9 present within the
study area (47.5% of complete data published in Nerlekar et al.9). Addi-
tional information about the locations of Indian savanna woody
and grassy species is a limitation we acknowledge as this data9 is not
exhaustive. At the locations of the savanna vegetation, we extracted the
percent tree cover and included it in the percent tree cover- MCWD
distribution plot (Fig. 1).

We qualitatively assessed the tree cover of 160 random sampled
points across the tree cover zones, using Google Earth imagery. We saw
clear evidence of anthropogenic activities such as paths and abandoned
agriculture. Also we noted topographical relief features such as ridges and
valleys with varying vegetation. Hence, we decided to include
anthropogenic pressure and topography as additional drivers of savanna
and forest biome distribution in India. We extracted human population
density for 202097 as a proxy of anthropogenic pressure.We characterized
topography using the HLI and the TPI. Both indices characterize the
land surface in terms of the steepness of slope of the surface. HLI
was calculated as per McCune et al.52 while TPI was calculated as per
De Reu et al.98.

Estimation of climatic maximum potential tree cover and poten-
tial tree cover shortfall
We tested the relationship and estimated the climatic maximum potential
tree cover by using the 95th percentile smooth additive quantile regression
model betweenpercent tree cover andMCWD, as implemented in theqgam
R package99 (deviance explained = 90.8%; Fig. S6a). We mapped the model
predictions to the study area as the climatic maximum potential tree cover
(Fig. 2a). Diagnostic plots were used to assess that 5% of the sampled points
fall below the fitted quantile (Fig. S6b).

We calculated potential tree cover shortfall as the difference between
1 and the ratio of current tree cover and the climatic maximum potential
tree cover across the study area. Values close to 1 indicate divergence
of current tree cover from the climatic maximum potential tree cover (i.e.
tree cover is well below the potential) and values close to 0 indicate con-
vergence of current tree cover with the climatic maximum potential tree
cover (Fig. 2b).

Evaluation of drivers of potential tree cover shortfall
Using the sampled points in themediumandmixed tree cover zones (final
size n = 2977), we used generalized additive models (GAMs) to determine
the relationship between potential tree cover shortfall and sandy fraction,
all disturbance based drivers, topographical drivers and anthropogenic
pressure (Eq. 1).We usedGAMs because of its flexibility to accommodate
non-linear relationships and non-Gaussian data, and to account for the
spatial autocorrelation structure in the sampled points100. We reduced
overfitting of the models in three ways by (1) penalizing the cubic
regression smoothing function for each driver (2) using a double penalty
approach implemented using the select() parameter in the mgcv R
package101 and (3) using the RestrictedMaximumLikelihood criterion for
convergence102.Wepartitioned the data into 80% training and 20% testing
portions. We used the beta family distribution with a logit link in the
analyses and specified an approximation of 5 or fewer knots in the basis
function for each driver. Diagnostic plots of residuals were assessed, and
themodelwas validated against the testing data by comparing estimates of

root mean square error and explanatory power.

log
PTCS

1� PTCS
¼ αþ s1 fire radiative power

� �þ s2 fire frequency
� �

þ s3 fire radiative power
� �

fire frequency
� �

s4 sand fractionð Þ
þ þs5 buffalo dry matter intake

� �þ s6 goat dry matter intake
� �

þ s7 sheep dry matter intake
� �þ s8 human population density

� �

þ s9 HLIð Þ þ s10 TPIð Þ þ s11 xð Þ y
� �

ð1Þ

where PTCS stands for potential tree cover shortfall, α is the intercept and
si(driveri) denotes the smooth non-parametric functions.

Please refer to the Supplementary Information for additional details
about the resource, disturbance, topographical and anthropogenic pressures
processed (Table S3) and about the methods, figures and tables. All figures
and maps were created using ggplot103 and tmap104 R packages. All analyses
were completed in R statistical software105 unless specified otherwise.

Data availability
All remote sensed data used in this study are freely available and have been
listedwithappropriate references inTable S3.Checklist of endemicplants in
peninsular Indian savannas fromNerlekar et al.9 used in this study has been
published as SupplementaryDataset 1of the respectivemanuscript.Data for
all figures in the main text have been deposited to Zenodo (https://doi.org/
10.5281/zenodo.11548611).
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