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A B S T R A C T

The characterization of yearly drought events represents a key information for conducting impact assessments
and forecasting future threats, and usually relies on a single index of duration or severity. Mostly based on daily
soil or atmospheric water balances, the derivation of key drought facets is not yet standardized or embedded in a
single tool, thus limiting intercomparisons between studies. We developed DFEAT as a fully-automated tool
designed to characterize yearly drought features, based on any simulated/observed/remotely sensed soil water
content time series. We provide here an application assessment performed with the Keetch-Byram Drought Index
(KBDI) as a standard daily soil water model over a 60-year period and covering the Mediterranean aridity
gradient in Lebanon (Middle-East) experiencing humid to semi-arid climate conditions. We computed and tested
19 drought features related to duration, severity, onset, offset, drying and wetting rates, driest peak day, and
rainfall pulses across three soil water desiccation thresholds. For our study area, we revealed the uncorrelated
specificities of 6 features, allowing to regionally discriminate between mountainous Mediterranean climate
experiencing shorter drought duration (45 days), later onset (Day of the Year = 198), less rainfall pulses in-
tensities (3.35 mm), and slower drying (1.68 mm/day) and wetting (− 2.72 mm/day) rates, but similar offset date
(Day of the Year = 356) compared to the coast. DFEAT also captured regions with prolonged Multi-Year
Droughts not fully refilling field capacity under arid bioclimate reaching up to 22 years. We demonstrate here
the applicability of DFEAT across water-limited bioclimates and the non-correlation between drought features
with contrasted agro-ecological impacts.

1. Introduction

Drought, as a natural climatic phenomenon, occurs in every hydro-
climatic region. It can be defined as a climatic condition experiencing
a prolonged shortage in water supply resulting from insufficient pre-
cipitations, particularly prevalent in arid or semi-arid regions where the
rainfall pattern exhibits high variability (Glantz, 2003). Drought can
recur as a phenomenon, becoming a major concern when it reaches a
threshold that stresses a number of agricultural, ecological, hydrologi-
cal, and biophysical processes with socio-economic implications
(Wilhite and Glantz, 1985). The complexity of drought is heightened by
a sequence of processes that unfolds in a cascading manner, leading to
challenges to the scientific community in uniformly quantifying drought
across disciplines (Tramblay et al., 2020).

In order to quantify these drought phenomena, and investigate their

interannual and regional variability as well as the impacts of climate
change, a set of precipitation-based indices have been proposed for IPCC
reports (Gutiérrez et al., 2021; Han and Singh, 2023; Lee et al., 2023;
Pachauri et al., 2014) and implemented in the Rclimdex tools (Shrestha
et al., 2017; Zhang and Yang, 2004). They mostly refer to yearly infor-
mation on precipitation amounts, dry spells, and occurrences of extreme
precipitation events (Meteorological indices). In a more integrative way,
the Standardized Precipitation Index (SPI), a widely used drought index
relying solely on precipitation data, has emerged as a main tool in
operational drought monitoring. Introduced by McKee et al (1993) and
further elaborated by Edwards and McKee (1997), the SPI assesses
monthly precipitation anomalies at a specific location by comparing
observed total precipitation levels over a defined accumulation period
(e.g., 1, 3, 12, or 48 months) with the long-term historical rainfall data
for that corresponding period. More recently, Vicente-Serrano et al
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(2010) combined Potential Evapotranspiration (PET) and SPI into the
Standardized Precipitation Evapotranspiration Index (SPEI). Beside the
direct use of these indices for agro-ecological assessments (Gao et al.,
2018; Vicente-Serrano et al., 2012; Vicente-Serrano et al., 2014), recent
studies could derive additional features such as drought onset, offset,
peak drought month, and intensification rate as key drivers of agro-
ecosystems functioning (Beyene et al., 2023; Fung et al., 2020; Iglesias
et al., 2022; Mathbout et al., 2021; Rahmat et al., 2015; Wang et al.,
2021; Yoo et al., 2022). We could, however, deplore an intrinsic lack of
temporal precision on a monthly time resolution. Nevertheless, these
recent studies highlight the multifaceted nature of drought events and
their intricated implications (Beyene et al., 2023; Gao et al., 2018), so
that a single drought index appears insufficient to cover all drought
impact assessments (Zargar et al., 2011).

Daily soil water balance models, simulating a temporal information
on soil water content (mm/day), could provide a more detailed and
dynamic picture of drought compared to monthly or seasonal indices,
including rainfall pulses or deep drainage during extreme events when
rainfall inputs exceed the capacity of soil to retain this water (Deo et al.,
2017; Lu et al., 2014).

Empirical soil water budget models as, among others, the Keetch-
Byram Drought Index (Keetch and Byram, 1968), are tailored to
reflect the impact of daily meteorological anomalies on soil water loss
(further called water depletion measured in mm/day), relying on pre-
cipitation data and accounting for water that integrates soil layers (i.e.,
upper and duff soil layers). Based on this daily soil water content (or
desiccation to field capacity defining the daily drought intensity),
already standard yearly integration of drought features can be imple-
mented more precisely as severity, duration, and timing (onset and
offset), more readily usable than the raw meteorological measures used
for their calculation (Zargar et al., 2011). Drought onset can be defined
by the day when soil water content falls below a threshold, while

drought offsets is determined when a large amount of rainfall increment
to the hydrological cycle will replenish soil moisture above that
threshold, with drought duration and severity directly derived from
these timings (Liu et al., 2021; Tsakiris et al., 2007; Yoo et al., 2022;
Zargar et al., 2011).

Heretofore, a comprehensive understanding of a drought event and
its associated impacts on agriculture and ecosystems, entails multiple
facets of the soil water content dynamic across the dry period, sur-
passing the confines of a singular drought feature (Beyene et al., 2023;
Gao et al., 2018). Yet, to date, this domain is comparatively underex-
plored, presenting an ongoing frontier for exploration and there are
currently only few attempts having targeted the characterization of
yearly drought features through a daily measured or simulated water
balance (Deo et al., 2017; Hunt et al., 2009; Kim et al., 2011; Lu, 2009;
Lu et al., 2014; Ruffault et al., 2013; Zhang et al., 2022; Zribi et al.,
2016), yet no consensus on a generic tool to generate these features has
been proposed.

Accordingly, this study aims at presenting DFEAT, an automated tool
for drought features identification, designed to discern and extract a set
of yearly drought features derived from a daily soil water desiccation
time series. We have tested this tool with the Keetch-Byram drought
index over Lebanon, a Mediterranean drought-prone region covering a
climate gradient from Mediterranean sub-humid to arid and present
here its application, genericity, and sensitivity to climate uncertainty.

2. Materials and methods

2.1. Study area

Lebanon is located on the eastern coast of the Mediterranean Sea
(Fig. 1a), covering an area of 10,452 km2 between 33◦–35◦N and
35◦–37◦E (Shaban, 2020). Lebanon hosts a harsh topography providing

Fig. 1. a) Rainfall map of Lebanon (modified from Plassard, 1971), b) the major geomorphological slope units of Lebanon (Mount-Lebanon, Bekaa Valley, and
Anti-Lebanon).
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various microclimates from Mediterranean to arid, representative of the
whole Mediterranean basin. Three major geomorphological features
exist (Fig. 1b). The Anti-Lebanon mountain chain runs North/South
parallel to the Mount-Lebanon chain and the Mediterranean coast,
separated by the agricultural Bekaa Plain. The two parallel mountain
ridges of Lebanon, which overlook the Mediterranean Sea, serve as a
meteorological barrier. This barrier intercepts the cold air masses orig-
inating from the Mediterranean sea and causes them to condense into
rain and snow (Shaban et al., 2019). Accordingly, this topographic
complexity of mountainous regions across the country results in a high
spatial variability in precipitation (Jomaa et al., 2019), with high annual
rainfall amounts occurring on the high mountainous regions (>1200
mm) and predominant semi-humid to humid climate in the coastal zone
(around 800 mm) (Fig. 1a). Arid-climate is located in the Northeastern
part of Lebanon (Shaban et al., 2019) with annual rainfall amounts being
lower than 600 mm. Under a typical Mediterranean climate with four
distinct seasons, warm and dry summer and wet winter, the rainfall
pattern follows a seasonal distribution, primarily occurring between the
months of October and March (Kobrossi et al., 2021). The four consec-
utive months, June to September, constitute the warmest period of the
year and experience relatively low levels of precipitation. The average
winter temperature is 13 ◦C on the coast, decreasing with altitude. In
summer, the average temperature is 29 ◦C (Shaban, 2020).

2.2. Meteorological data

We used the daily ERA5-Land dataset over the period 1960–2020.
ERA5-Land is an open-source climatic dataset with a global spatial
resolution of 9 km, simulated hourly by global high-resolution numer-
ical integrations of the ECMWF land surface model driven by the
downscaled meteorological forcing from the ERA5 climate reanalysis,
including an elevation correction for the thermodynamic near-surface
state (Muñoz-Sabater et al., 2021). ERA5-Land data, offering the finest
resolution with the open-source climate data, have been widely used in
climate impact research and have been locally acknowledged for their
good performance (Gatien et al., 2023; Gomis-Cebolla et al., 2023). For
our study, the climatic variables downloaded all over Lebanon were air
temperature (K) at 2 m and total precipitation (m) for the selected time
period. However, ERA5-Land data are unavailable for certain pixels near
the coastal zones, as ERA5-Land relies on a network of observations and
satellite data, and in some instances, these sources may not provide
adequate coverage or resolution near coastlines.

2.3. Keetch-Byram drought index (KBDI)

The Keetch-Byram drought index (KBDI, Keetch and Byram, 1968) is
an indicator of soil water deficit to field capacity (i.e., maximum amount
of water that a soil can hold after draining and measured in mm) based
on a simplified water-balance model simulating daily soil water loss per
day. The index is widely used in wildfire monitoring (Ainuddin and
Ampun, 2008; Brown et al., 2021; Liu et al., 2010; Varol and Ertuğrul,
2016) through the flammability of organic materials within the ground
(Novitasari et al., 2019), fire management (Dimitrakopoulos and Bem-
merzouk, 2003; Ganatsas et al., 2011), and fire hazard prediction
(Hamadeh et al., 2015; Nogueira et al., 2017; Zhao and Liu, 2021). In
addition, it was used in climate change (Gannon and Steinberg, 2021)
and agricultural research studies (Salehnia et al., 2018). The index
calculation requires few meteorological data: daily maximum temper-
ature (Tmax), daily precipitation (P), and the mean annual precipitation
data (Py). It is a cumulative index of the litter and duff layer desiccation,
calculated as a balance between soil water input from effective precip-
itation (Eq. (1)) and an empirical model that approximates the actual
evapotranspiration from daily soil desiccation (Eq. (2)) and
temperature-based evaporative demand (i.e., PET) (Liu et al., 2010)
(Eqs. (3), (4)). We define here soil desiccation as the soil water deficit to
field capacity and soil water depletion as the daily soil water loss based

on Zhang et al (2023). Note that in KBDI initial document (Keetch and
Byram, 1968), you will find soil depletion defined as our soil desicca-
tion, a concept that was not fully standardized at the time.

The KBDI initial version assumes that the field capacity of the upper
soil/duff layer is 8 in. (203 mm), a strong assumption as this field ca-
pacity is not always true, since it depends on soil texture and depth, but
kind of a fair value within the superficial rocky soils observed in Med-
iterranean ecosystems (Ganatsas et al., 2011; Häusler et al., 2019; Pel-
lizzaro et al., 2007; Ruffault et al., 2013; Zribi et al., 2016). In Equation
(3), soil moisture is assumed to saturate at 8 in. and the KBDI values are
then constrained to a maximum value of 800 (unit: 0.01 in.).

The corresponding formulas are:

Pnet = max(0,Pt − 0.2) (1)

Qt = (KBDIt− 1) − Pnet (2)

dQ =
10− 3(800 − Qt)(0.968e0.0486T − 8.3)dt

1 + 10.88e− 0.0441R (3)

KBDIt = Qt + dQ (4)

Where KBDIt and KBDIt− 1 are the KBDI values of the current (t) and
previous (t-1) days, respectively. dQ is the drought factor, which reflects
the daily change in dryness index, where T is the daily maximum tem-
perature (in F◦) at 2 m above the ground, P is the daily precipitation
(inches), R is the mean annual rainfall (inches), and dt is a time incre-
ment set equal to one day. On each day, a value for the soil water
depletion (Qt in 0.01 in.) is computed as the KBDI from the previous day
(KBDIt− 1) minus the net rainfall (Pnet in inches) of the current day (Eq.
(2)). In order to obtain Pnet, 0.2 in. (5 mm) has to be subtracted from any
daily rainfall amount exceeding 0.2 in. (Eq. (1)). If the daily rainfall
amount is smaller than 0.2, then net rainfall equals zero (Snyder et al.,
2006).

This initial equation was then further converted by Crane (1982), to
international units with temperature in degrees Celsius (◦C) and rainfall
in millimeters (mm). The daily change in drought factor (dQ), measured
in mm, is then expressed as shown in Eq. (5):

dQ =
10− 3(203.2 − Qt)(0.968e0.0875T+1.5552 − 8.3)dt

1 + 10.88e− 0.001736R (5)

A modified version of the index (Eq. (6)) was proposed by Ganatsas et al
(2011), by adapting the variables of Tmax and the mean annual rainfall
(Py) to adjust KBDI to Mediterranean conditions. This entails adjusting
KBDIt calculations to also account for a reduction from 5 mm to 3 mm
when computing net rainfall (Pnet).

dQ =
10− 3(200 − Qt)(1.713e0.0875T+1.5552 − 14.59) dt

1 + 10.88e− 0.001736R (6)

The KBDI index has been used in Lebanon for investigating the drought-
related seasonality of fire hazard (Hamadeh et al., 2017; Karouni et al.,
2013; Mitri et al., 2014a, 2014b). Furthermore, it has been tested in
several Mediterranean countries to assess its effectiveness in reproduc-
ing the live fuel moisture seasonal dynamics of various Mediterranean
shrubs species (Pellizzaro et al., 2007; Ruffault et al., 2018). We have
then hypothesized that such a daily drought index is enough adequate to
fairly represent daily soil Available Water Content (AWC) for testing our
drought assessment tool over the Mediterranean climates of Lebanon.
Accordingly, in our study, we have employed the Mediterranean-
adapted version of the KBDI index (Eq. (6)).

2.4. Characterization of annual drought features from daily KBDI time
series

2.4.1. Fine fitting of wetting and drying curves
We aim here at characterizing each hydrological year into key
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features based on the daily KBDI. Most studies have utilized a standard
12-month calendar year (365 days), overlooking that drought may
extend beyond December 31st. In Lebanon, hydrological years do not
strictly adhere to the conventional calendar days (i.e., DOY); instead, we
defined the hydrological year as the period starting on the 1st January,
and finishes on the day when the soil is replenished to its field capacity
of 203 mm (KBDI=0) after a seasonal drought. Between these starting
and ending points representing the hydrological year, we fitted a
smoothed time course of daily KBDI based on ‘Phenofit’ (Kong et al.,
2022), a statistical framework previously developed for characterizing
plant phenological phases based on the remotely sensed time series of
leaf area. The rationale for utilizing this framework hinges on its in-
clusion of various curve-fitting methods, with an increasing phase and a
decreasing phase representative of the soil desiccation curve observed
under Mediterranean climate conditions. Currently, five fine curve
fitting methods are provided in ‘Phenofit’ to reconstruct daily time se-
ries, namely ‘Elmore’ (Elmore et al., 2012), ‘Zang’ (Zhang et al., 2003),
‘Gu’ (Gu et al., 2009), ‘Beck’ (Beck et al., 2006), and ‘AG’ (Jönsson and
Eklundh, 2004). Their equations differ in the number of parameters,
thereby varying their levels of flexibility. Kong et al (2020) assessed
their performance and suggested that the logistic nature of the Elmore
and Beck equations outperforms the other equations, significantly
influencing the accuracy of metrics extracted from the reconstructed
time series. We have compared both methods and found that, in general,
they yield similar results in the measured R-squared (goodness of fit).
However, in some cases of abrupt changes in the KBDI time series, the
Elmore-fitted curve tends to exhibit greater flexibility. Accordingly, we
have retained the Elmore dual logistic Fine Curve Fitting equation
(Elmore et al., 2012) (Fig. 2a). This dual logistic formula contains a
positive, increasing curve (drying curve), which will represent drought
onset and intensification rates (onset and development stages) until
reaching a maximum value (persistence/peak KBDI stages), and includes
a non-flat “greendown” maximum plateau (Fig. 2b), allowing for more
flexibility than the Beck equation. On the other hand, the negative
decreasing curve (wetting curve), represents the soil moisture replen-
ishment (recovery and offset stages) after rainfall pulses events, pre-
sented as short-term increase in soil moisture content due to episodic
rains (Bonsal et al., 2011; Brown et al., 2022; Collins et al., 2014), and
dynamics precipitation increments of the early rainy season (Ferijal
et al., 2022). Using these fitted curves enables the determination of a
singular value for drought onset and offset day of the year, thus avoiding
potential rainfall pulses impacts generating multiple crossings of the
KBDI curve with the soil desiccation thresholds. It also allows for an
objective calculation of drying and wetting rates smoothed over the time

series with potential rainfall pulses during the drying or wetting phases.

2.4.2. Drought features characterization
We decided to set three KBDI thresholds: low (KBDI-50), moderate

(KBDI-100), and extreme (KBDI-150), corresponding respectively to soil
desiccation reaching 25 %, 50 %, and 75 % of AWC, following thresholds
of Andrade and Bugalho (2023). We defined drought onsets for each
KBDI threshold as the unique Day-Of-the-Year (DOY) when these
thresholds are met in the drying curve and we defined offsets as the
unique DOY when the thresholds are met in the wetting curve. We’ll
note here that onset DOY is always above 1, assuming that drought starts
after January 1st as defined in our hydrological year, but see section
2.4.3 for Multi-Year Droughts characterization. Offset DOY can reach
values above 366 when drought is prolonged after December 31st of the
current year.

Once we have defined the three-drought onset and offset DOY, the
duration and severity of each event could be derived. Drought duration
was calculated as the number of consecutive days between the offset and
onset DOY. Drought Intensity (DI), Severity (DS), or Magnitude (DM) are
three terms that could potentially hold similar definitions but may vary
in the existing literature on drought (Espinosa et al., 2019; Mathbout
et al., 2021; Oukaddour et al., 2024; Zargar et al., 2011). Here we define
the term drought severity (DS) as the sum of KBDI values between the
onset and offset DOY of each soil desiccation level. This approach is
consistent with previous drought severity estimates following a
threshold level method (Deo et al., 2017; Kim et al., 2011; Mathbout
et al., 2021; Ruffault et al., 2013; Yevjevich, 1967). When KBDI doesn’t
reach a KBDI threshold, onset and offset are set to ‘NA’ and DD and DS
are set to 0.

We then defined the peak KBDI (Peak.KBDI) of the hydrological year
corresponding to the maximum KBDI values, and its timing (Peak.KBDI.
DOY) when this peak is reached (Deo et al., 2017). After pinpointing
Peak.KBDI.DOY, we calculated the total count (RP.Num) of episodic
rainfall pulses between this Peak.KBDI.DOY and the day of extreme
drought offset (Extreme.D.Offset). These pulses are defined as a narrow
window of low water inputs, following an extended period of water
stress (López-Ballesteros et al., 2016). Rainfall pulses (RP) are auto-
matically identified when the actual KBDI value on the following day is
lower (wetter) than the current day (Rainfall pulse start RPS). The end of
a rainfall pulse (RPE) is marked when two consecutive days have similar
index values or when the KBDI value on the next day exceeds that of the
previous day. Subsequently, we calculated each rainfall pulse intensity
as the sum of the daily KBDI decrease starting from RPS+1 to RPE, and
we finally calculated their mean (RP.I.mean) and standard deviation

Fig. 2. a) Beck (dark olive green, 6-parameter equation) and Elmore (light olive green, 7-parameter equation) fine fitting curves and corresponding goodness of fit
(R-squared) b) Elmore dual logistic curves, with the drying curve (red) represents soil moisture depletion, while the wetting curve (blue) signifies soil moisture
replenishment. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(RP.SD) (in mm).
In addition to all of these features, and while the topic of “Flash

Drought” is rapidly gaining attention within the research community on
drought impact assessment (Otkin et al., 2018), we identified a drought
feature representing the intensification rate between the lowest and
highest (i.e., extreme) onset level (Iglesias et al., 2022). However, we do
not attempt to propose a definition of ‘Flash Drought” nor assess its
behavior within the ongoing discourse about its various definitions,
whether it is perceived as a rapid-onset of drought or as a short-term, yet
severe drought event (Lisonbee et al., 2022). At present, there is no
standard definition or formula to calculate drought intensification rates,
but it is usually defined as the measurement of increases in drought
intensity over a specified time period (Liu et al., 2020). We calculated a
drought intensification rate, hereafter called “Drying Rate”, as the slope
of the tangent to the drying curve at its inflexion point. In a similar
manner, we calculated the “Wetting Rate” over the wetting curve, a
numerical rating on the rate of soil moisture replenishment after
reaching the driest days.

We ended up with 19 features (Table 1) characterizing the daily
reconstructed KBDI time series over each hydrological year, so that each
year can be considered as an individual, characterized and described by
its own drought features (Fig. 3). In addition, the 19 extracted drought
features encompass the multi-stage drought concept, recently proposed
by Bonsal et al (2011), who have split the development and recovery
drought stages into six different periods, namely “onset”, “growth”,
“persistence”, “peak”, “retreat”, and “termination”.

2.4.3. Drought characterization under semi-arid and arid conditions
We constructed 19 drought features on the premise that, under

humid and sub-humid climates with a yearly rainfall amount ranging
between 800 and 1400 mm (i.e., coastal zones and western mountainous
ranges in Fig. 1a), the soil will be replenished and saturated to its field
capacity at the end of the dry season. In such instances, we can identify
two specific points within the time series, from initial deviance to the
return to field capacity, further used to extract the previously mentioned
drought features within the hydrological year (Fig. 4). However, under
semi-arid and arid conditions characterized by a rainfall pattern ranging
between 200 and 600 mm (e.g., Baalbek-Hermel and Bekaa Governor-
ates in Fig. 1a), it is not always the case that the soil moisture reaches
field capacity at the end of each hydrological year, or even reaches our
lowest drought threshold of KBDI-50 or the moderate threshold of KBDI-
100 (Fig. 5). In these regions, we may observe prolonged drought events
for each threshold level that can last over many years to decades called
hereafter “Multi-Year Droughts”, continuing until reaching the next soil
saturation threshold level (Tsakiris et al., 2010; Xu et al., 2021).

In such cases, we then had to consider consecutive hydrological years
until reaching our predefined thresholds and extract drought features
when they were missing in a single hydrological year. First, we identi-
fied how many years the KBDI-50, KBDI-100, and KBDI-150 thresholds
have not been reached. Within this Multi-Year Drought period (MYD),
we determined the hydrological years as delimited by the minimum
KBDI value and its corresponding day since beginning (i.e., DOY since
1960, 1st January) between two successive years driest peaks (Peak.
KBDI.DOY). This minimum value signifies insufficient precipitation to
restore soil moisture to its field capacity for the corresponding hydro-
logical year, and at the same time it marks the end of the current hy-
drological year with re-increasing of KBDI following first dry spells, even
when not having fully replenished the soil to field capacity. We then
characterized the missing features of these years included within pro-
longed drought spells.

For a given year n not reaching one of the KBDI threshold at the end
of the hydrological year, we assigned the end of the dry season D.offset
at this KBDI threshold as the number of days since January 1st of this
year n when the KBDI threshold is finally reached, would that be at year
n+ 1 or later. This value is then higher than 366 and can reach very high
values. Let’s note also that, for example a 4-year prolonged drought

covering years n, n+ 1, n+ 2, n+ 3 (Fig. 5), the drought offset (D.offset)
of year n + 1 would be the number of days spanning between January
1st of this year (n + 1) and when the KBDI threshold is reached, and D.
offset of year n + 2 would be the number of days spanning between
January 1st of the year n + 2 and when the KBDI threshold is reached.
For this similar 4-year drought, drought onset date (D.onset) of year n
would be calculated as a normal year, while D.onset of year n+ 1would
be a negative value, counting the number of days before January 1st of
the n+ 1when the drought started during year n. D.onset of the year n+
2 would be also a negative value, counting the number of days before
January 1st of the n + 2 when the drought started during year n, thus
being D.onset n + 1 – 365. We then derived drought duration DD and
drought severity DS, not based on D.onset and D.offset as previously
performed for sub-humid conditions, as we aim at quantifying drought
features describing soil desiccation affecting agro-ecosystem functioning
of the current year n, thus omitting whatever happens after this

Table 1
Drought features abbreviations, units, and corresponding descriptions.

Drought
Features

Abbreviations Units Description

Low Drought
Onset

Low.D.Onset DOY Soil moisture reaching 75 % of
its AWC

Moderate
Drought
Onset

Moderate.D.
Onset

DOY Soil moisture reaching 50 % of
its AWC

Extreme
Drought
Onset

Extreme.D.
Onset

DOY Soil moisture reaching 25 % of
its AWC

Low Drought
Offset

Low.D.Offset DOY Soil moisture recovered to 75 %
of its AWC

Moderate
Drought
Offset

Moderate.D.
Offset

DOY Soil moisture recovered to 50 %
of its AWC

Extreme
Drought
Offset

Extreme.D.
Offset

DOY Soil moisture recovered to 25 %
of its AWC

Low Drought
Duration

Low.D.
Duration

Days Period spanning between Low
Drought Onset & Offset

Moderate
Drought
Duration

Moderate.D.
Duration

Days Period spanning between
Moderate Drought Onset &
Offset

Extreme
Drought
Duration

Extreme.D.
Duration

Days Period spanning between
Extreme Drought Onset &
Offset

Low Drought
Severity

Low.D.S mm/
day/year

KBDI sum between Low
Drought Onset & Offset

Moderate
Drought
Severity

Moderate.D.S mm/
day/year

KBDI sum between Moderate
Drought Onset & Offset

Extreme
Drought
Severity

Extreme.D.S mm/
day/year

KBDI sum between Extreme
Drought Onset & Offset

Peak KBDI Peak.KBDI mm Maximum KBDI value observed
over the hydrological year

Peak KBDI Day
Of the Year

Peak.KBDI.
DOY

DOY Day of the year when KBDI
reaches its peak value

Drying Rate Drying.rate mm/day Maximum daily soil water loss
derived as the slope of the
tangent to the drying curve at
the inflection point

Wetting Rate Wetting.rate mm/day Maximum daily soil water
recovery derived as the slope of
the tangent to the wetting curve
at the inflection point

Rainfall Pulses
numbers

RP.num Number Rainfall Pulses numbers
between Peak.KBDI.DOY and
Extreme.D.Offset

Rainfall Pulses
mean
Intensity

RP.I.mean mm Mean Intensity of Rainfall
Pulses

Rainfall Pulses
Standard
Deviation

RP.SD mm Rainfall Pulses Standard
Deviation
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hydrological year. DD (and DS) of year n were then calculated as the
number of days (sum of KDBI) between D.onset of year n and DOY of the
minimum KBDI value between the year n and n + 1. This way, within a
4-year prolonged drought event, all the years will have the same dif-
ference between D.onset and D.offset, but only the last year (year n + 3)
will truly experience this prolonged drought regarding its functioning.

As a result of this conceptualization, we could characterize three
typical Mediterranean drought dynamics (drought-types) covering the
climatic gradient of Lebanon, namely, MED, HMED, and DRY-MED
(Fig. 6). MED represents a typical Mediterranean soil moisture dy-
namic surpassing (and recovering) the three defined soil desiccation
thresholds KBDI-50 (low), KBDI-100 (moderate), and KBDI-150
(extreme) during the dry season. HMED represents a Mediterranean
humid dynamic not reaching low, moderate, or extreme soil desiccation

thresholds at its driest day, while DRY-MED represent an arid dynamic
with a Multi-Year Drought (MYD) pattern when the wet season KBDI
values remain over the low, moderate, or extreme KBDI thresholds.

2.4.4. Multivariate drought features analysis
We reached 19 drought features over hydrological years, based on

critical soil desiccation levels targeted to significantly affect agro-
ecosystem functioning. A Principal Component Analysis (PCA) was
performed using the ‘FactoMineR’ and ‘factoextra’ R-cran packages to
reduce the dimensionality of the data into a smaller set of uncorrelated
variables that capture the directions and informative aspects of
maximum variance in the original data (Kassambara, 2016; Lê et al.,
2008). Accordingly, the original intercorrelated drought features will be
reduced to new linearly uncorrelated ones, to distill the essential

Fig. 3. Drought features derived from KBDI daily values of a hydrological year (from Day of the Year 1 to 420). Low.D.Duration: Low Drought Duration; Moderate.D.
Duration: Moderate Drought Duration; Extreme.D.Duration: Extreme Drought Duration; Peak.KBDI.DOY: Day of the year featuring the highest KBDI value; Peak.
KBDI: Peak KBDI Value; Extreme.D.Offset: Extreme Drought Offset; Low.D.Offset: Low Drought Offset; Moderate.D.Offset: Moderate Drought Offset; RP.I.mean: mean
intensity of Rainfall Pulses; RP.num: Rainfall Pulses number; RP.SD: Rainfall Pulses Standard Deviation; Low.D.Onset: Low Drought Onset; Moderate.D.Onset:
Moderate Drought Onset; Extreme.D.Onset: Extreme Drought Onset.

Fig. 4. KBDI time series over 3 hydrological years starting January 1st 1960. End of hydrological years (blue circles), year boundaries (vertical gray lines) and day of
the year (DOY) when reaching KBDI thresholds (KBDI-50 yellow dots, KBDI-100 orange dots, and KBDI-150 red dots) are represented. Hydrological years span
between January 1st (gray vertical lines) and the first day when soil is replenished to its field capacity (blue circles) after the seasonal drought. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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information from them. At the same time, and in order to understand the
intricate relationships between drought features, correlation matrices
following a hierarchical clustering were generated offering an oppor-
tunity for a quantitative comparison of associations between pairs of the
extracted drought features. For the PCA, the variables were standard-
ized, thus experiencing a standard deviation of one and a mean of zero,
to account for differences in measurement scales, rendering the vari-
ables comparable. Accordingly, the Principal Components (PCs) are
computed in a decreasing order of importance. Based on the eigen-
values, which quantify the amount of variation preserved by each
component, we have identified the number of PCs to be considered
(Santos et al., 2010; Sharma, 1995). The entire methodological devel-
opment for the automated model development, including subsequent
analyses, was carried out using R (v4.2.2) (Core Team, 2021).

3. Results

3.1. Biogeography of drought types along the aridity gradient in Lebanon

As a first step, we aimed at using DFEAT to characterize the bioge-
ography of drought types across the study region based on how KDBI
could reach the soil desiccation thresholds and be refilled to a KBDI of
zero (soil water content at field capacity) during the winter period. Fig. 7
then represents the fraction, for each 9x9 km ERA5-L pixel, of hydro-
logical years experiencing either i) a typical Mediterranean (MED) soil
moisture dynamic (Fig. 7a-c), ii) a Mediterranean humid (HMED) dy-
namic (Fig. 7d-f), or iii) an arid dynamic (DRY-MED) with a Multi-Year
Drought (MYD) pattern (Fig. 7g-i).

We first observe that, over the Lebanese aridity gradient, 55.64 %,
71.77 %, and 75 % of the territory experience more than 95 % of years
with of MED-type soil moisture dynamic reaching during the winter
period respectively the low, moderate, and extreme severity drought
thresholds, mostly located on the coastal zone. This regional pattern
follows the precipitation and temperature gradients of the region
(Fig. 1a), suggesting a reliable representation of drought from our
indices.

When looking at the regions where non-MED drought types signifi-
cantly occur, we observe that the Northeastern region near the Syrian

border where low annual precipitations occur, experiences DRY-MED
drought-type. Numerous MYD events get more frequent from the
Beqaa Valley to the Syrian border and reach 90 % of the years experi-
encing MYD, at the low and moderate thresholds (Fig. 7g, h). No such
DRY-MED-type events were observed at the extreme threshold any-
where over the Lebanese territory (Fig. 7i), meaning that all regions in
Lebanon get enough winter rainfall to refill 25 % of the 203 mm field
capacity. Finally, when looking at the HMED drought type years (not
reaching a sufficient soil desiccation threshold during summer), we
observe that they only occur for the extreme threshold and represent
100 % of the non-MED-drought-type years over Mount-Lebanon and
Anti-Lebanon for this threshold (Fig. 7f). By covering the Lebanese
aridity gradient representative of the Mediterranean basin, we show
here that our method is able to capture the regional distribution of
various drought-types, and could cover 100 % of cases during the
1960–2020 period.

3.2. DFEAT drought features variations in Mediterranean and humid
conditions

Based on the biogeographical distribution of drought types, we then
explored separately the drought features generated across the 26 pixels
along the coastal line (MED-type droughts) and across the 16 pixels
located in the more humid mountainous region of Mount-Lebanon
(HMED-type droughts) over the period 1960–2020 (Table 2). In these
regions, DFEAT could estimate that drought onsets (Low.D.onset) varied
between DOY 135 ± 14.17 (May 15th) in the coastal area and 168 ±

16.44 (June 16th) in the mountainous areas for a KBDI threshold of 50.
We observed on average a 30-day delay in the Mountains for KBDI-50
and KBDI-100, while reaching a 45-day delay for the KBDI-150
extreme threshold, thus starting on day 237 (August 25th). During this
drought onset period, the drying rate (Drying.rate) was faster on the
coast at 2.04 mm/day, while it reached only 1.68 mm/day in the
mountains illustrating the slower soil desiccation rate under lower
temperatures at high altitudes.

Drought offset dates of year n’s varied between 373 ± 24.63
(January 8th of the year n + 1) in the coastal area and 378 ± 27.06
(January 13th of the year n + 1) in the mountainous areas for a KBDI

Fig. 5. KBDI variations within a Multi-Year Drought event under semi-arid and arid conditions. A prolonged Multi-Year Drought of low severity (yellow dots) is
depicted over four consecutive hydrological years. Each encompassed year within the prolonged event is distinguished by its unique drought features. Red negative
numbers denote the delayed onset of the current year’s drought, based on the conditions of the previous year. Drought severity and duration are cumulatively
calculated over subsequent hydrological years. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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threshold of 50, illustrating the end of the dry season of year n to happen
late in the winter season in January of year n + 1. We observe a very
small difference in drought offset DOY (for both the low and moderate
drought levels), between the coastal area and the wettest mountainous
area, a major difference compared to the regional pattern of drought
onset DOY, mostly due to large scale rainfall events in winter refilling
the soils. However, the offset of the extreme drought level KBDI-150 is

earlier by 11 days in the mountainous area (November 20th) compared
to the coast (December 1st) where winter rainfalls may happen later or
soil water content was more fully desiccated under higher temperatures.
Drought offset dates also experience a higher interannual variation with
SD varying between 17 days and 27 days according to the KBDI
threshold, compared to 13–21 days observed for the drought onset.
During that drought offset period, the wetting rate was faster on the

Fig. 6. Flowchart of the successive steps implemented in DFEAT in order to extract yearly drought features from daily calculated KBDI time series. The blue
rectangles symbolize both the model input and output. The orange rounded rectangles depict the process involved in climatic data processing and KBDI calculation.
The green elements represent the fitting process. Meanwhile, the gray rounded rectangles illustrate the procedures for extracting drought features along the climatic
gradient of Lebanon. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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coast at – 4.21 mm/day compared to − 2.72 mm/day in the mountains,
as a consequence of more numerous rainfall pulses on the coast (4.65 ±

2.29 events) compared to the mountains (1.58 ± 2.39 events) with much
more intense events, 17.86 (±15.18) mm compared to 3.35 (±5.43)
mm.

In turn, drought duration varied between 142 (±23.7) days for
extreme KBDI-150 drought level to 237 (±29.70) days for the low KBDI-
50 drought level in the coastal area, and was respectively reduced by 99
days and 28 days in the mountains. Similarly, drought severity varied
between 24.7 103 mm to 33.7 103 mm and was reduced to 7.009 103 mm
and 24.6 103 mm in the mountainous area.

Within this drought duration period, the peak drought date was very
similar between the two zones, with DOY=293 (±15.44) (October 20th)
in the coastal area and DOY = 294 (±16.11) (October 21th) in the
mountains. The peak KBDI value was however higher in the coastal zone
reaching 190 (±4.45) mm of soil desiccation compared to 158 (±12.60)
mm in the mountainous region, thus potentially hardly reaching the 150
mm threshold as observed in Fig. 7f.

3.3. DFEAT assessment over Multi-Year-Droughts under arid conditions

We analyze here the ability of DFEAT to capture and describe the
particular case of Multi-Year Droughts observed under DRY-MED-

Fig. 7. Fractions of hydrological years over the 1960–2020 period characterized by different soil moisture dynamics representative of typical Mediterranean
conditions. These dynamics include a typical Mediterranean soil moisture dynamic (MED) drought-type (a–c), a Mediterranean humid (HMED) drought-type (d–f),
and a Multi-Year Drought pattern (DRY-MED drought-type) (g–i) across varying levels of low, moderate, and extreme soil desiccation thresholds.

Table 2
The mean and standard deviation (SD) of the extracted drought features in two
distinct climatic zones: the coastal zone and the humid western mountainous
zone of Lebanon.

Drought Features Mean (1) SD (1) Mean (2) SD (2)

Low Drought Onset 135.80 14.17 167.79 16.44
Moderate Drought Onset 163.37 13.59 198.60 15.99
Extreme Drought Onset 192.50 14.03 237.31 20.59
Low Drought Offset 373.90 24.63 378.99 27.06
Moderate Drought Offset 356.51 21.02 355.78 25.70
Extreme Drought Offset 335.33 17.02 324.47 22.93
Low Drought Duration 237.58 29.70 209.98 35.47
Moderate Drought Duration 193.92 26.27 157.02 34.60
Extreme Drought Duration 142.83 23.71 43.39 50.47
Low Drought Severity 33662.64 4483.63 24650.16 5215.6
Moderate Drought Severity 30648.96 4567.25 21222.67 5856.31
Extreme Drought Severity 24704.79 4500.66 7009.17 8250.51
Rainfall Pulses number 4.65 2.29 1.58 2.39
Rainfall Pulses mean Intensity 17.86 15.18 3.35 5.43
Peak KBDI 190.05 4.45 158.36 12.60
Peak KBDI DOY 293.64 15.44 294.45 16.11
Drying Rate 2.041 0.212 1.68 0.15
Wetting Rate − 4.21 3.38 − 2.72 2.19

SD = Standard Deviation, (1): Coastal Zones, (2): Higher Western Mountains.
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drought types located on 42 pixels of the Northeastern part of Lebanon
(Fig. 7g and h) in the governorates of Baalbek-Hermel and Bekaa with an
annual precipitation less than 600 mm.

Table 3 presents the drought features generated by DFEAT over the
pixels with more than one MYD event (Akkar and Baalbeck-Hermel
governorates). For this particular case of MYD, DFEAT generates a
mean DOY of low drought onset of − 388.18 with a high standard de-
viation of 926.03 days, illustrating that, for a given year n starting on
January 1st, KBDI values below the KBDI-50 threshold started during
the early days of year n-1. This can vary between 2.5 years (926 days)
and can even reach for the driest area 23 years (Fig. 8) out of our 60-year
period (1960–2020). The mean values of DOY drought onset for KBDI-
100 and KBDI-150 are positive values reaching respectively DOY = 93
and DOY = 202, but with a standard deviation SD = 252.67 higher than
the mean for KBDI-150, showing that drought onset can reach negative
values for the moderate KBDI threshold with MYD drought events. For
the KBDI-150 threshold, SD = 26.60, a low value suggesting that no
MYD events are observed at this threshold and that soil water content is
partially refilled every year.

During that drought onset period, the drying rate was 1.44 ± 0.35
mm/day, slightly less than the drying rate observed in coastal zones
dominated by MED drought types as a consequence of partial soil drying
so that desiccation dynamic is mostly controlled during stomatal closure
included in KBDI calculations. Drought offset DOY for the lower KBDI-
50 and moderate KBDI-100 thresholds reaches much higher values
than under MED or HMED conditions, respectively DOY = 1087.23 and
DOY = 482.63, with similarly high SD of 1113.92 days and 272.69 days.
This indicates that MYD events in this region end up on average 3 years
after their onset, but can reach more than 6 years for the KBDI-50
threshold, while end up on average 1.5 years after onset and vary up
to 2.5 years for the KBDI-100 threshold. This leads to an extended
drought duration in regions where MYD are observed, reaching up to
8300 days (23 years) for KBDI-50 at the driest site, 2835 days for KBDI-
100, and less than 365 days for the extreme KBDI-150 threshold, so that
no MYD are observed for this threshold (Fig. 8). During that drought
offset period, the wetting rate was − 1.92 mm/day, twice less than the
value observed over the coastal zone as a consequence of less intense
storms. The Peak KBDI value is 178.23 (±14.20) mm, falling between
the Peak KBDI values of the coastal and mountainous zones and is
reached at DOY = 298 (±18.81) (October 25th).

3.4. Sensitivity of drought features to temperature

While illustrating that DFEAT was able to produce drought features
for all drought-type years across the climatic gradient in the region, we

tested the sensitivity of drought features when varying the daily
maximum temperature (Fig. 9), representing the potential variation of
temperature within the 9 km pixel due to elevation considering a generic
lapse rate of − 0.66 ◦C for a 100 m increase in altitude. A decrease of two
degrees in the daily maximum temperature resulted in a delayed onset of
7.3 %, 6.4 %, and 8.8 %, and an earlier offset of − 1.6 %, − 1.8 %, and
− 2.2 % for the low, moderate, and extreme drought levels, respectively.
Conversely, a two-degree rise in daily maximum temperature resulted in
an earlier onset of − 6.2 %, − 7.2 %, and − 6.7 %, and a delayed offset of
1.2 %, 1.10 %, and 1.16 % for the low, moderate, and extreme drought
levels, respectively. This in turn, would result in a more severe and
prolonged drought period than usual, with an increase of 5.6 %, 8 %, and
13 % for the low, moderate, and extreme drought levels, respectively.
Additionally, it is characterized by a substantial increase in drying rate
(i.e., the propagation from low to extreme drought severity) and an
earlier peak of KBDI values in the season as a consequence of increase
evapotranspiration in KBDI calculations. These results highlight the
sensitivity of DFEAT to temperature uncertainties or potential impact of
climate change.

3.5. Interdependencies and dimensionality reduction of drought features

Finally, we tested whether our 19 drought features are indepen-
dently meaningful, or highly correlated, so that they could be reduced to
few keystone ones. We performed two PCA analysis for the whole
country and for the MED/HMED region, to retain the first six compo-
nents which explain 90 % of the original data (Fig. 10a and b). We
observed that moderate drought duration/severity and drying rate were
the primary features driving PC1 (52 % of the variance) and PC2 (21 %)
respectively. PC3 (7.5 %) and PC4 (5.3 %) are represented by peak
drought day and rainfall pulses mean intensity, respectively, while PC5
(4.4 %) and PC6 (3.1 %) are represented by extreme drought onset and
wetting rate, respectively. However, in regions with a typical MED and
HMED drought dynamic (Fig. 10b), the order of representation of
drought features across the six dimensions differs, with only the first
dimension PC1 consistently represented by moderate drought duration
and severity (40 % of variance explained). Drought Onset (Low and
Moderate) are captured in PC2 (21.6 % of the variance). PC3 (9.6 %) and
PC4 (7.4 %) are represented by Wetting Rate and Rainfall pulses num-
ber, respectively. PC5 (5.5 %) and PC6 (4.5 %) dimensions are mainly
represented by Drying Rate and Rainfall pulses mean intensity,
respectively.

We conclude here that, based on a daily water balance model, at least
6 independent features can characterize a drought event, much higher
than the usually assessed drought severity/duration and thus offering a
new multifaceted characterization to explain agro-environmental issues.

4. Discussion

4.1. DFEAT operationality assessment

While the severity and duration of drought have garnered the utmost
attention among all drought dimensions in regional- to global-scale
drought studies (Gao et al., 2018), our drought feature assessment tool
DFEAT aims at providing a generic processing chain to capture keystone
additional information from a daily time series of soil desiccation (tested
here with the widely used KBDI drought index). Based on user needs for
characterizing daily soil desiccation into synthesized yearly agro-
meteorological indices (onset, development/drying, persistence, peak
and recovery/rewetting, and offset) for different levels of KBDI thresh-
olds within a dry spell (Bonsal et al., 2011; Oukaddour et al., 2024), we
ended up with 19 drought features, including three soil desiccation
thresholds. Large scale validation of DFEAT indices would not be
possible as assuming a constant soil field capacity, and coarse resolution
climate inputs. We synthesized however drought characteristics previ-
ously stated for the region and compared to our estimates.

Table 3
Mean and Standard Deviation of the extracted Drought features for Multi-Year
Drought events.

Drought Features Mean Standard Deviation

Low Drought Onset − 388.18 926.03
Moderate Drought Onset 93.18 252.67
Extreme Drought Onset 202.94 26.60
Low Drought Offset 1087.23 1113.92
Moderate Drought Offset 482.63 272.69
Extreme Drought Offset 357.28 31.66
Low Drought Duration 859.28 994.72
Moderate Drought Duration 316.36 276.60
Extreme Drought Duration 140.43 63.42
Low Drought Severity 117,166.7 140,739.5
Moderate Drought Severity 47,621.28 43,084.73
Extreme Drought Severity 23,827.33 11,261.2
Rainfall Pulses number 5.98 3.66
Rainfall Pulses mean Intensity 6.90 5.87
Peak KBDI 178.23 14.20
Peak KBDI DOY 298.05 18.81
Drying Rate 1.44 0.35
Wetting Rate − 1.92 1.38
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Among these features, we have identified the first day that reaches
the driest value (i.e., highest KBDI values, Peak.KBDI) as the peak
drought day (Peak.KBDI.DOY). DFEAT yielded an average peak drought
day value of 293 ± 15.44 DOY (October 20th) on coastal zones and 298
± 18.81 (October 25th) on semi-arid and arid zones. These results are
consistent with Mediterranean conditions, where the driest day over the
year typically occurs in late summer and early fall (Vogel et al., 2021). In
Lebanon, the summer season is warm and dry, spanning from June to
October, and characterized by scarce and almost no precipitation, with
September being the less watered of the year (Kobrossi et al., 2021).
From a climate-alone perspective, this day may coincide with the end of
a period holding the lowest accumulated precipitation and when PET is
highest (Ferijal et al., 2022). Our average driest peak DOY values also
align with the highest PET observed during the prolonged dry spell in
Lebanon (Allam et al., 2021). This driest peak DOY may persist up to the
mid-fall season, until November 3rd (coast) and November 12th (semi-
arid/arid zones), in line with previous studies conducted in the region.
Majdalani et al (2022) identified, on average, maximum soil drought
conditions during the month of October, reaching November for some
extreme years by using the Fire Weather Index (FWI) drought Code (DC),
while Salloum and Mitri (2014), mentioned a peak of the dry (fire)
season around November 12th. DFEAT then provided consistent values
of Peak drought DOY for the region. The driest day of the year is close to
the drought offset under Mediterranean climate where drought offset is
usually associated with heavy storms filling up the soil to field capacity
in one single event when soil is the driest (Singh et al., 2021).

The number of rainfall pulses (Rp.num) during the stability (persis-
tence) phase (between peak KBDI DOY and extreme drought offset) was
also calculated, along with its magnitude (RP.I.mean) in mm and stan-
dard deviation (RP.SD) for each hydrological year. DFEAT estimated an
average number of rainfall pulses of 4.65 ± 2.29 events over coastline
zones and 1.58 ± 2.39 over the higher western mountains, with in-
tensities of 17.86 ± 15.18 mm and 3.35 ± 5.43 mm, respectively. This
feature is actually hardly quantified and assessed in hydrological
studies, although soil moisture increment pulses (Collins et al., 2014;
Manzoni et al., 2020) have been defined and their intensity and fre-
quency identified as keystone features related to hydrological and

ecological processes (Loik et al., 2004). Our estimates of 17.86 mm for
pulse intensities in the coastal zone of Lebanon is in accordance with the
25 mm rainfall pulse experimentally simulated by Barnard et al (2015),
20 mm as reported by Vargas et al (2012), and 15 mm according to
Pockman and Small (2010). We’ll note that this feature is actually
closely related to the ‘green down’ parameter of the Elmore curve, that
we chose to replace by this more hydrologically meaningful information
and prevent redundancy.

The rate of soil desiccation (i.e., Drying.rate) and soil moisture re-
covery after seasonal drought (i.e., Wetting.rate) have been also calcu-
lated for each hydrological year (Fig. 3). Both features represent novel
characteristics in the field of drought monitoring that have recently
emerged (Otkin et al., 2018), with only few attempts using precipita-
tion/evapotranspiration indices such as SPEI calculated on one-month
window (Iglesias et al., 2022; Lisonbee et al., 2022), and soil moisture
indices (Han et al., 2023; Liu et al., 2020; Qing et al., 2023). Rainfall
pulses are integrated in this wetting rate, smoothed over the wetting
curve, a rarely assessed drought feature in hydrological studies, yet
potentially significant for agro-ecological functioning (Collins et al.,
2014; Dodd et al., 2015; Manzoni et al., 2020).

DFEAT could retrieve the timing of drought occurrence (onset and
offset), duration, and severity. For the low drought level; an onset DOY
in mid-spring (May 15th) and early summer season (June 16th) over
coastal zones and higher wettest mountains, respectively. A moderate
and extreme drought onset has also been determined for the coastal
zones (June 12th, July 11th) delayed by roughly one month in mountain
zones (July 17th, August 25th). These estimations align with prior
research conducted in the Mediterranean basin (Barbeta and Peñuelas,
2016; González-Hidalgo et al., 2018; Lempereur et al., 2017, 2015;
Majdalani et al., 2022; Ruffault et al., 2013; Zribi et al., 2016), with
drought onsets occurring between (DOY = 145) May 25th and (DOY =

239) August 28th, with delays over the wettest mountainous areas, with
an average value of 210 DOY (July 29th). DFEAT retrieves approxi-
mately the same average drought offset for the low (January 8th,
January 13th of the year n + 1) and moderate (December 22th,
December 21th) drought levels in the coastal zones and wettest moun-
tains, respectively. This offset is earlier by 11 days in the wettest

Fig. 8. Maps of maximum duration (in days) of MYD events for the low and moderate KBDI thresholds along the climatic gradient in Lebanon.
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mountains (November 20th) compared to coastal zones (December 1st)
for the extreme drought level. Our observations are slightly higher than
those observed by Ruffault et al (2013) in southern France, who found
drought offsets varying between August 19th and November 7th and
Zribi et al (2016) who found an average drought offset around mid-
December (varying between DOY 320 and 370) in Tunisia. The
observed difference in our drought offset can be primarily attributed to
the particular precipitation regime in eastern regions of the Mediterra-
nean basin leading to extended drought periods (Majdalani et al., 2022).

Finally, drought durations (in days) for the low (237, 209), moderate
(193, 157), and extreme (142, 43) soil desiccation thresholds were
retrieved for the coastal and wettest mountainous zones, respectively.
These estimates broadly align with the drought duration obtained in
prior research, with a duration of 169 days as reported by Ruffault et al
(2013), 155 days as reported by Lempereur et al (2015) in Mediterra-
nean France, and 165 days according to Zribi et al (2016) in Tunisia.

Based on this assessment of drought features captured by DFEAT
over Lebanon, when compared to previous studies, we aim at demon-
strating the efficiency of our approach. Differences between studies can
be attributed to the fixed thresholds above/below which soil moisture is
considered sufficient to determine the end of the dry season and dura-
tion, a major weakness in current drought feature characterization
lacking of standard protocols, and that DFEAT aims at fulfilling.

4.2. DFEAT response to the aridity gradient

We could demonstrate in this assessment exercise that DFEAT can be
successfully applied under three different contrasted soil moisture dy-
namics, namely MED, HMED, and DRY-MED, reflecting typical soil
desiccation along the Mediterranean aridity gradient in Lebanon, but
also representative of Mediterranean climate extremes. MYD events
have been increasingly studied due to their distinct characteristics and
enduring impacts (Parry et al., 2012; Tsakiris et al., 2010; Van Der Wiel
et al., 2023; Xu et al., 2021).

We could illustrate with DFEAT that MED drought-type for the low
and moderate level predominates across all the Lebanese territory (90 %
of the hydrological years), except the two less-watered governorates of
Baalbeck-Hermel and Akkar, which are dominated but DRY-MED
drought-type with MYD events, offering a biogeographical representa-
tion of drought in the country. No HMED drought-type is observed for
the low and moderate drought level, indicating that under seasonal
drought, soil lost at least 50 % of its AWC all over the country. This holds
true under Mediterranean conditions (wet winter and dry summers), and
is well documented across the basin (Lempereur et al., 2015; Zribi et al.,
2016). We could find HMED drought-types for the extreme drought level
(KBDI-150) covering exclusively two mountainous regions Mount-
Lebanon and Anti-Lebanon with annual rainfall amounts exceeding
1200 mm/year and between 600 and 800 mm/year (Shaban, 2020). The
precipitation patterns (climatic factor) and elevation (affecting tem-
peratures and decreasing PET) (topographic/orographic factors) over

Fig. 9. Drought Features sensitivity to various scenarios of daily maximum temperature changes. The value of “0” indicates no changes, while “− 2” and “+2”
represent a decrease and an increase of two degrees Celsius in daily maximum temperature, respectively.

G. Elias et al.



Journal of Hydrology 640 (2024) 131700

13

both regions, could reasonably explain why extreme soil desiccation is
not reached by the index.

We noted the absence of MYD for the extreme drought level all over
the Lebanese territory (Fig. 7i), which suggests that there is always, at
the very least, some seasonal precipitation (>50 mm/year), even in the
most arid zones of Lebanon, capable of replenishing this depleted frac-
tion from the soil. On the contrary, we detected MYD events when soils
were not replenished (KBDI above the threshold 50 and 100) over
subsequent hydrological years. In the two governorates of Akkar and
Baalbeck-hermel, the duration of MYD events for the low (moderate)
drought level could reach 23 (8) consecutive years without a full or
nearly return to the soil field capacity (Fig. 8). Prolonged events of this
nature have been observed in the region, with durations ranging be-
tween 3 years (Mathbout et al., 2021; Parry et al., 2012; Van Der Wiel
et al., 2023) and 20 years (Wu et al., 2022a). However, the number of
MYD events in Lebanon varies by microclimatic zones, getting less
frequent over coastal, Southern, and wettest western mountainous
zones. Yet, 1 to 2 MYD events could be captured by DFEAT in these
regions (Fig. 7g-h), as in 1998–1999 and 2013–2014. These years were
actually classified as the driest hydro-meteorological in the recent his-
tory of the country. As of 1999 and 2014, Lebanon was facing a summer
drought after a record drought in 1998 and 2013 winters (Ghaleb et al.,
2015; Kobrossi et al., 2021; Verner et al., 2018).

4.3. DFEAT applicability to other soil water balance models

In this first development and application of DFEAT, we assessed the

characteristics of drought features over Lebanon, using the empirical
daily soil water balance derived from KBDI. This index underwent
testing in forestry and fire risk assessment (fire potential) at the global
scale (Gannon and Steinberg, 2021; Liu et al., 2010; Snyder et al., 2006),
and was tested under Mediterranean conditions in fire weather assess-
ment studies conducted under Mediterranean conditions (Elhag and
Boteva, 2021; Hamadeh et al., 2017). We acknowledge here that KBDI
was also revisited for Mediterranean climate (Ganatsas et al., 2011), and
that numerous other soil water balance models have been developed,
from empirical equations (Andrade and Bugalho, 2023; Barbero et al.,
2019; Nogueira et al., 2017) to more process-based models (Granier
et al., 1999; Mouillot et al., 2001… among others), including pre-
processed soil storage dataset as GLDAS (Li et al., 2019).

The Keetch-Byram Drought index assumes an arbitrary soil depth
and a type of soil, with a water holding capacity of 203 mm (or 8 in.).
However, the generalization is contingent on soil texture and depth,
factors that can be discerned using available soil databases and maps
(Ganatsas et al., 2011).

DFEAT framework could be applied to any other soil water balance
model, whose impact on drought features should be further tested. We
initiated a sensitivity analysis on temperatures locally varying in
Mountainous areas leading to uncertainties of 2 to 22 % in most features,
but additional sensitivity analysis related to PET equations (Berg and
Sheffield, 2018; Ogunrinde et al., 2020; Tomas-Burguera et al., 2020),
climate inputs (Hoffmann et al., 2020), or standardization method
(Laimighofer and Laaha, 2022), and soil water balance models them-
selves should also be assessed.

Fig. 10. a) Heat map illustrating the coefficient of squared correlation (cos2; square cosine, squared coordinates) of drought features on all dimensions (PCs)
covering the entire country and b) for region experiencing only the MED and HMED drought-type. They represent the quality of representation for variables on a
factor map. High cos2 values (Dark red and Marron squares) indicate a good representation of the drought features on the principal component (Dim.1, Dim.2, Dim.3,
Dim.4, Dim.5, Dim.6). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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4.4. Applications and limitations

While our study has successfully generated key drought features over
hydrological years, it is important to acknowledge certain limitations
that may impact the interpretation and generalization of the results
when applied in agro-ecological studies (Espinosa et al., 2019; Gao et al.,
2018). We have identified high correlations among most of the extracted
drought features, including duration, severity, offset, and peak KBDI day
of the year, a well-established phenomenon in drought feature assess-
ments (McKee et al., 1993; Ruffault et al., 2013; Vicente-Serrano et al.,
2010). Also, drought duration and severity can be regarded as the pri-
mary drought characteristics directly dependent on the onset and offset
DOY determination (Deo et al., 2017). However, drought onset and
offset are not exclusively correlated with each other, and appear to
function somewhat independently.

This demonstrates that most of our drought features are not inde-
pendent, but instead, are interconnected and may influence each other,
which poses a challenge for interpreting their impacts (i.e., individual
contribution of each feature) and explaining agro-environmental infor-
mation (i.e., crop yields, tree radial growth, burned areas, tree mortality,
plant phenology) when used together in statistical models (e.g.,
regression models). Accordingly, we suggest to process a multivariate
analysis for the 19 drought features as an essential step for a more
synthetic representation of drought in a given region, a common strat-
egy used in community ecology where species are described by their
interrelated traits and optimized reduced dimensionality has been pro-
posed (Laughlin, 2014; Mouillot et al., 2021). This will lead to retain
only the most representative and uncorrelated dimensions of drought,
which will be more practically useful in agro-ecological applications
(Espinosa et al., 2019; Huang et al., 2022; Santos et al., 2010; Vicente-
Serrano et al., 2012).

As a first assessment, we could provide a reliable representation of
drought features under contrasted soil drought dynamics (MED, HMED,
DRY-MED drought-type) across the Mediterranean-type Lebanese
aridity gradient, with one wet and one dry season per hydrological year.
Further assessments should be launched to test for its applicability in
diverse climatic zones, including regions with temperate climate, or
those with a different seasonal distribution of annual rainfall, such as
tropical region or those exhibiting a monsoon regime with two annual
drought periods (Ferijal et al., 2021; Notaro et al., 2010). Also, drought
impacts on agro- ecosystems have been shown to be enhanced when
combined to thermal anomalies. Fire occurrence, for example, is con-
strained both by soil desiccation and heatwaves (Ruffault et al., 2020)
likely to happen more frequently and concomitantly in a near future in
Europe (Suarez-Gutierrez et al., 2023). As well, combined drought and
heat during growing seasons might severely affect crop production (Guo
et al., 2023). In turn, recent developments in hydrothermal indices
combining drought and temperature anomalies have been developed (Li
et al., 2021; Shan et al., 2023; Wu et al., 2022b). DFEAT V1.0 focuses in
its initial development on soil water budget and will be tested across
extended climate conditions and soil water models. Further hydrother-
mal indices will be proposed, as the mean or maximum temperatures
reached between the drought onset and offset, peak KBDI DOY, or other
critical periods based on end-users’ requirements and feedbacks.

5. Conclusion

By leveraging water balance models and time series analytics, our
proposed drought features assessment tool (DFEAT) fills the gap be-
tween daily soil water budgets models and annually-integrated drought
indices as SPEI widely used for drought impact assessments. Based on a
series of metrics that have been carefully selected following their po-
tential impacts on agro-ecosystems, DFEAT has been able to extract a
comprehensive set of features covering the entire drought development
stages (onset, development/drying, persistence, peak, recovery/re-
wetting, and offset), through its application to an empirical daily

simulated water balance (Mediterranean-calibrated version of KBDI).
We could characterize contrasted regional drought pattern over the
study area, with drought duration varying from 45 days in the Moun-
tainous areas up to 23 years in the most arid zone and we could reduce
drought characterization to 6 major features of duration/severity, onset
timing, wetting rate, peak drought day, drying rate and rain pulse in-
tensity as key components of drought. We could demonstrate its wide
range of applicability for water-limited agro-ecosystems with a single
dry period. We recommend the use of a standard protocol such as DFEAT
to extract drought features from whatever daily soil water balance data,
thus strengthening further synthesis and comparisons across indepen-
dent studies.
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