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Abstract

Polynesia is a hotspot for marine biodiversity in the South Pacific Ocean, yet the distribution
of many invertebrate taxa in this region is still often poorly assessed. Information on the diver-
sity and phylogeography of sponges in particular remains limited in spite of their importance
for coral reef ecosystems. Recent expeditions to the island group of Wallis and Futuna enabled
the first larger-scale assessment of the Wallis Island sponge fauna, resulting in the molecular
identification of 82 unique Molecular Operational Taxonomic Units (MOTUs) from 339
sponge samples based on 28S C-region rDNA and CO1 mtDNA data. Faunal comparisons
with both adjacent archipelagos and more distant Indo-Pacific regions were predominantly
based on the MOTUs obtained from Wallis Island ecoregions, and suggest high levels of
endemism of sponges in Wallis and Futuna, corroborating previous data on the biodiversity
of sponges and other marine phyla in the South Pacific. The results of this molecular taxo-
nomic survey of the Wallis and Futuna sponge fauna aim to lay solid foundations for a sus-
tainable ‘Blue Economy’ in Wallis and Futuna for the conservation of their local coral reefs.

Introduction

The French overseas territory of Wallis and Futuna is a volcanic island group located in the
South Pacific between Fiji, Samoa and Tokelau, comprising the Wallis Islands and
the Hoorn Islands (Futuna and Alofi) 260 km further southwest (Chase, 1971) (Figure 1).
The wide lagoons around the main island of Wallis (Uvea) and its 22 smaller surrounding
islets are confined by a large barrier reef and smaller fringing reefs (see e.g., Stearns, 1945).
Their coral reef structure differs from Futuna and Alofi, where the absence of such protective
offshore barriers causes lower coral coverage and reef health due to their higher exposure to
both human and natural stress factors compared to Wallis (Chancerelle, 2008).

The tropical South Pacific is divided into two large biogeographic marine realms, the
Central Indo-Pacific realm and the Eastern Indo-Pacific realm, which are further subdivided
into marine provinces and marine ecoregions (sensu Spalding et al., 2007). The islands of
Wallis and Futuna are located in the Eastern Indo-Pacific realm (Central Polynesia marine
province, Samoa Islands marine ecoregion) in close proximity to the border of the Central
Indo-Pacific realm. This geographical location makes them pivotal for understanding the
biogeographic connectivity of both realms and their role as a ‘melting pot’ for marine bio-
diversity, influenced by the faunal influx of multiple ecoregions (Galitz et al., 2023). With
the rapid loss of species and ecological resources in the ongoing biodiversity crisis of both
terrestrial and marine biota, it is urgent to comprehensively assess the state of current reef
biodiversity and monitor changes, in order to identify key species for the ‘Blue Economy’
(i.e., economic growth based on sustainable use of oceanic resources) and at the same
time apply appropriate conservation measures for the most endangered ones (Singh,
2002; Elahi et al., 2015). Compared to the neighbouring regions in the Central
Indo-Pacific and adjacent marine provinces, knowledge on the reef biodiversity of Wallis
and Futuna is limited to only a few taxonomic groups, like macrophytes (Payri et al,
2002), corals (Cairns, 1999; Payri et al., 2002), fishes (Wantiez and Chauvet, 2003;
Williams et al., 2006), crustaceans (Buckeridge, 1994), brachiopods (Bitner, 2008), and a
small range of other invertebrates (Bouchet et al., 2008).
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Figure 1. Location of Wallis and Futuna in proximity to the border of the Eastern Indo-Pacific (green highlight) and Central Indo-Pacific (yellow highlight) realms.
Marine realms separated by solid lines, provinces by dashed lines, ecoregions by dotted lines (simplified, sensu Spalding et al., 2007). Marine province names in
boxes; abbreviated ecoregion names in circles: GP, Gulf of Papua; NGB, Torres Strait Northern Great Barrier Reef; SGB, Central and Southern Great Barrier Reef;
SNG, Southeast Papua New Guinea; SS, Solomon Sea; SA, Solomon Archipelago; CS, Coral Sea; NC, New Caledonia; VN, Vanuatu; Fl, Fiji Islands; TI, Tonga Islands;
GEl, Gilbert/Ellis Islands; SI, Samoa Islands; PTI, Phoenix/Tokelau/Northern Cook Islands; Inset scale bars equal 10 km. Wallis and Futuna inset location maps by

Eric Gaba for Wikimedia Commons.

Data on the biodiversity of marine sponges (Phylum Porifera)
of Wallis and Futuna are particularly scarce, with only a handful
of taxa reported from natural product studies for the region
(Demospongiae) (Bohm et al., 2003; Miguel-Gordo et al., 2019,
2020, 2022), as well as several taxonomic reports on deep sea
sponges (Hexactinellida) (Tabachnick and Reiswig, 2000;
Tabachnick et al., 2011). This scarcity of regional taxonomic
knowledge on sponges stands in contrast with their importance
in the marine ecosystem in terms of nutrient circulation, reef con-
solidation, and provision of micro- and macro habitats (see e.g.,
Bell, 2008; Rix et al., 2018; Pawlik and McMurray, 2020).
Sponges are also considered to be key organisms for the discovery
of novel marine bioactive compounds for pharmaceutical devel-
opment and application, with increasing reports from Wallis
and Futuna (Miguel-Gordo et al, 2019, 2020, 2022).
Unravelling sponge taxonomic diversity has also repeatedly
shown to further assessments of their biochemical potential (see
Galitz et al., 2021).

In this study we assess the biodiversity of the yet undescribed
Wallisian sponge fauna by conducting a molecular taxonomic
survey on a collection of sponges acquired during an IRD
(Institut de Recherche pour le Développement) expedition in
2018 that aimed to fill knowledge gaps on sponge bio- (and
chemo)diversity in this area. We then also compare the sponge
fauna of Wallis Island to neighbouring Futuna and further adja-
cent marine regions, to gain a better understanding of their eco-
logical similarities and differences.

Material and methods
Sample collection

339 Sponge samples (70% EtOH fixation) from Wallis Island in
the marine province of Central Polynesia were collected during
the WALLIS 2018 expedition (Petek et al., 2018a, 2018b) with
the aim to investigate the chemo- and biodiversity of this island
and its surrounding reefs and lagoons (see Figure 2 for sampling
sites). Sections of the specimens were used for morphological
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identifications (see Supplementary Methods S1), with subsamples
for molecular analyses. Specimens were collected by SCUBA in
depths from zero to 51 metres. For specimen details see
Table S1 in supplementary material.

Application of molecular methods for species identification
and biodiversity assessment

After an initial morphological classification (See Supplementary
Methods S1), molecular taxonomic methods were employed for
identification, as molecular genetic approaches have been shown
to facilitate rapid and less ambiguous biodiversity estimation
(see Galitz et al., 2021). We have sequenced the standard barcod-
ing fragment of the mitochondrial cytochrome oxidase subunit 1
gene (‘COI’) (for Demospongiae and Homoscleromorpha), in
combination with the C-region of the nuclear ribosomal long sub-
unit (28S’) (for all sponge classes) as successfully applied in other
sponge biodiversity studies of the Indo-Pacific (e.g., Erpenbeck
et al., 2016, 2020). Based on these markers the specimen set
was divided into molecular operational taxonomic units (abbre-
viated ‘MOTU’ in the following) as units for faunal comparison.

DNA extraction, amplification, and sequencing

DNA of the sponge material was extracted using the CTAB
(Cetyltrimethylammonium bromide) extraction method (Porebski
et al., 1997), except the phenol-octanol and RNase steps were
skipped. Each PCR reaction (12.5 ul) comprised of 2.5 ul 5x green
GoTaq ® PCR Buffer (Promega Corp, Madison, WI), 1.5pul 25
mM MgCl, (Promega Corp, Madison, WI), 0.5pul 10 mM dNTPs,
0.5 ul of the respective primer (5uM) (Table 1), 1.15ul BSA (100
pg/ml), 4.75ul water, 0.1ul GoTaq® DNA polymerase (5u/pl,
Promega Corp, Madison, WI), and 1 ul DNA template.

DNA amplification of the respective fragments was conducted
according to defined temperature profiles: Initial denaturation for
3 min at 95°C, 35 cycles of denaturation at 95°C for 30 s, anneal-
ing at 51°C (28S) or 40°C (CO1) for 30 s and extension at 72°C for
1 min, with a final extension step at 72°C for 5min. The
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successful amplification of PCR products was verified on 1% TAE
agarose gels with added peqGREEN (peglab) fluorescent dye,
with apparent multi-bands and primer-dimers being purified
with a modified Freeze-Squeeze Gel extraction protocol by
Tautz and Renz (1983). Sanger sequencing was performed with
a BigDye® terminator v3.1 (Applied Biosystems®) at the
Sequencing Service of the Department Biology, LMU -
Genomics Service Unit (Martinsried, Munich) on an ABI 3730
capillary sequencing machine. Initial sequence processing (base-
calling and trimming) was conducted in CodonCode Aligner
v9.0.1 (www.codoncode.com), with assembly, further processing,

Table 1. List of primers used in this study

Name Nucleotide sequence Marker Reference
dglLCO1490 5 GGT CAA CAA ATC ATA co1 Meyer and
(fwd) AAG AYA TYG G 3/ Paulay (2005)
dgHC02198 5 TAA ACT TCA GGG TGA co1 Meyer and
(rev) CCA AAR AAY CA 3 Paulay (2005)
28S-C2-fwd 5" GAA AAG AAC TTT GRA 28S Chombard
RAG AGA GT 3/ et al. (1998)
28S-D2-rev 5 TCC GTG TTT CAA GAC 28S Chombard
GGG 3 et al. (1998)
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Figure 2. Sampling sites (WLF##) of the WALLIS 2018
expedition, in SCUBA-accessible depth ranges to up to
5 km 51m. Reef locations are shaded in darker blue. ©
T OpenStreetMap contributors.

and analysis tasks carried out in Geneious Prime 2019
(v2019.2.5). Every assembly has been manually inspected for
intragenomic polymorphisms (IGPs) and suspected positions
(double peaks) corrected with the respective TUPAC code.
GenBank BLAST (Altschul et al., 1990) was used to check for pos-
sible contaminations and verify sponge sequences. Finalized
sequences have been deposited in the European Nucleotide
Archive (ENA) database under the accession number ranges
0X421511 - OX421811 and OX422227 - OX422451 and in the
Sponge  Barcoding  Database = (www.spongebarcoding.org,
Worheide and Erpenbeck, 2007) under accession numbers SBD #
2566 — 2878. See Supplementary Table S1 for all details.

OTU detection and statistical biodiversity analyses

For the faunal comparison 28S sequences longer than 350 bp and
CO1l sequences longer than 500 bp were aligned with ClustalW
(Thompson et al., 1994) incorporated in the msa package for R
v.4.1.1 (Bodenhofer et al., 2015; R Core Team, 2023) with subse-
quent MOTYU clustering using the UPGMA algorithm (Kreft and
Jetz, 2010; following Cowman et al., 2017) of DECIPHER 2.0
(Wright, 2016). Further biodiversity analyses were performed in
R using the packages VEGAN (v4.2.4) and picante (v1.8.2)
(Dixon, 2003; Kembel et al., 2010).
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We applied a MOTU delineation for Demospongiae that has
successfully been applied in earlier molecular biodiversity assess-
ments on demosponges in the Indo-Pacific (Erpenbeck et al,
2016, 2020; Galitz et al., 2023) as following: For 28S, a MOTU
delineating threshold of 0.3% has been set for every sequence of
a minimal sequence length of 350bp following Galitz et al.
(2023), which was found to consider the genetic differences
detected in several case studies between selected sympatric shal-
low water demosponge species (e.g., Erpenbeck et al., 2017). For
COl, no base pair differences over a sequence length of 500 bp
were allowed within a MOTU (following the approach in
Erpenbeck et al., 2016, 2020), due to the slow evolutionary rates
of mitochondrial genes in sponges and the resulting conservative
nature of the CO1 fragment (Shearer et al., 2002). With no estab-
lished delineation strategies for Calcarea and Homoscleromorpha
MOTUs to date, sequences of these classes were excluded from
the statistical computations. Their MOTUs were assigned based
on the resulting phylogenetic trees (Supplementary Figures S2
to S12).

For the assessment and extrapolation of species diversity and
sampling coverage of the Wallis Island sponge fauna rarefaction
curves were computed and visualized using the iNEXT online
tool (Chao et al, 2016). The Wallis data was complemented
with a total of 52 28S and 16 CO1 (Total unique sequences: 53)
demosponge sequences generated by one of the authors (MMR)
from specimens collected around Futuna Islands during the
2016 Tara Pacific expedition (Planes et al., 2019). The full details
on the sponge chemo- and biodiversity of Futuna Islands will be
published at a later stage.

Likewise, sequences of other, adjacent Pacific regions pub-
lished on NCBI Genbank, have been used for comparative
molecular taxonomic analyses. For these, sequence alignments
were conducted with the MAFFT v7.450 (Katoh and Standley,
2013) plugin for Geneious Prime® (v2019.2.5). Maximum-
likelihood reconstructions for each fragment were conducted in
RAXML v8.2.11 (Stamatakis, 2014) under the model best suited
for the data as suggested by ModelTest-NG v0.1.7 (Darriba
et al, 2020) (GTRGAMMAI model, 100 rapid bootstraps) for
Maximum Likelihood analysis. For further validation of the
MOTU classifications, additional available sequences of type
material (28S and/or CO1), representing a majority of the sponge
orders present in this study, were also included (Figure 3;
Supplementary Figures S2 to S12).

Results
Sequence yield and taxonomy

We obtained sequences (CO1, or 28S, or both) from a total of 339
Wallis Island sponge specimens. The high quality yield from the
entire collection comprised 322 28S sequences (i.e., from 95% of
the specimens) and 236 CO1 sequences (i.e., from 69.6% of the
specimens). We managed to obtain both markers from 227 speci-
mens (66.7%).

After initial size filtration we retained 302 samples from Wallis
Islands (89.1% of the initial specimens), which shared 51 MOTUs
with at least one other specimen (16.9% of the size-filtered sam-
ples, 49 in 28S and CO1, 12 only in 28S, 2 only in CO1), while 34
specimens were singleton MOTUs (10.6%, 8 in 28S and CO1, 21
only in 28S, 5 only in CO1) (See Supplementary Tables S1 and
S3).

The available Futuna data comprised 52 28S sequences and 16
CO1 sequences, pooled into 41 MOTUs, of which 7 (17.1%) were
shared and 34 (82.9%) were singleton MOTUs. After additional
quality control of both Wallis and Futuna data, and the removal
of incorrect molecular data and sequences with insufficient length
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or quality, the final datasets for Wallis and Futuna consisted of
302 sequences and 475 molecular characters (ie., bases and
gaps) in 28S (Wallis only: 250 sequences and 459 characters),
and 243 sequences and 694 characters in CO1 (Wallis only: 227
sequences and 683 characters). The identified MOTUs corres-
pond to 74 morphologically identified species (see
Supplementary Table 1). Additionally included type material
sequences, where available, provided reference points for the clas-
sification (Supplementary Figures S2 to S12).

Demospongiae from the order Dictyoceratida made up the lar-
gest proportion of the Wallisian specimens and MOTUs (22
MOTUs/26.8%), followed by Haplosclerida by a considerable
margin (11/13.4%) and Verongiida (10/12.2%). Poecilosclerida
and Bubarida made up less than 10% each, while tetracinellid,
dendroceratid, suberitid, axinellid, agelasid, scopalinid, and
tethyid sponges are represented with fewer than 5% of MOTUs
from each of these demosponge orders (Figure 4). For several spe-
cies the presence in Wallis and Futuna constitutes a range exten-
sion and fills gaps in their distribution between the Central and
Eastern Indo-Pacific marine realms (e.g., Echinodictyum asperum
Ridley and Dendy, 1886, and Dactylospongia metachromia de
Laubenfels, 1954; for a comprehensive list of documented distri-
butions see Supplementary Table S1).

Sponges from Class Calcarea comprise 9 MOTUs (11%), with
eight in Subclass Calcinea and one in Subclass Calcaronea.
Morphologically, some of the MOTUs could be identified as
Leucetta chagosensis Dendy, 1913 (285 MOTU #375),
Pericharax orientalis Van Soest and De Voogd, (2015) (28S
MOTU #377), Leucetta aff. microraphis Haeckel, 1872 (28S
MOTU #376), all quite conspicuous species. Additionally, others
were identified belonging to the genera Ascandra Haeckel, 1872
and Neoernsta Deshmukh, 2023, while their species identity
remained uncertain. In these cases, BLAST confirmed that the
closest hits in GenBank belong to these morphologically recog-
nized taxa. In the case of one unidentified calcinean (28S
MOTU #371) and one calcaronean specimen, the genus identity
remains uncertain, although for the calcaronean sponge, a close
relationship to a sequence of the polyphyletic genus Grantessa
Lendenfeld, 1885 is apparent from its DNA sequence (see
Supplementary Table S2).

Among the 111 MOTUs (28S: 110, CO1: 64) spanning both
Wallis as well as Futuna, only 8 MOTUs (7.6%) are shared
between the two islands, comprising 4 MOTUs of Dictyoceratida
and 2 MOTUs each of Verongiida and Agelasida.

Statistical biodiversity estimation of the collected Wallis
demosponge specimens indicates that sampling under the applied
strategy is yet incomplete, however with the species-individual
curve (Figure 5A) beginning to approach a stationary phase, fur-
ther emphasized by the estimated sampling coverage also being
close to 90% (Figure 5B).

Discussion
Sampling strategy and effort

Prior to this study the sponge fauna of Wallis and Futuna was
largely undescribed, except for two littoral (Vaceletia sp.,
Narrabeena nigra Kim and Sim, 2010) and three deep sea species
(Euryplegma auriculare, Aspidoscopulia bisymmetrica Tabachnick,
Menshenina, Pisera and Ehrlich, 2011, A. ftetrasymmetrica
Tabachnick, Menshenina, Pisera and Ehrlich, 2011) reports
(Tabachnick and Reiswig, 2000; Bohm et al., 2003; Tabachnick
et al, 2011; Miguel-Gordo et al., 2019, 2020, 2022). The recent
expeditions to Wallis (and Futuna) have, as the rarefaction ana-
lyses suggest, substantially aided in filling knowledge gaps on
sponge biodiversity in the region (see e.g., Van Soest et al.,
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Astrosclera sp. GW33494
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Lissodendoryx sp. (QM1281) GW33531
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Rhaphoxya sp. (QM2752) GW33519
Cinachyrella sp. (QM4680) GW33289
Ciocalypta sp. (QM6005) GW33532
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r— Myrmekioderma sp. (QM4897) GW33347
Myrmekioderma granulatum GW33428
Echinodictyum asperum GW33285
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Dactylospongia metachromia GW33504
Dactylospongia sp. (QM6019) GW33390
Dactylospongia sp. (QAME036) GW33453
Psammocinia sp. (QAM8095) GW33525
Spongia sp. (QM4256) GW33471

= Fasciospongia sp. (QM6004) GW33434
Psammocinia sp. (QM4999) GW33524
Fasciospongia sp. (QM4703) GW33486
Thorectidae indet. GW33496
Hyrtios erectus GW33375
Fascaplysinopsis sp. GW33279
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“Scopalinida 2”
Agelasida

Poecilosclerida

Tetractinellida

Axinellida
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Haplosclerida

Scopalinida 1

Verongiida

Dictyoceratida 2
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Dictyoceratida 1

Calcarea

Homoscleromorpha

Figure 3. Simplified cladogram of the 28S Maximum Likelihood phylogenetic tree (Supplementary Figure S2) with representative taxa. Taxon names include ref-

erence to SNSB-BSPG collection numbers (GWxxxxx). Branch lengths not representative.

2012) (Figure 3). Sampling with SCUBA covered a wide variety of
Wallis reef areas (Figure 2) and (SCUBA-accessible-) depth ranges
(see Supplementary Table S1). For Futuna the samples were
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collected by SCUBA close to the shore at a maximum depth of
20 m. Naturally, the depth constraint of this sampling strategy
restricted collection effort to shallow-water sampling sites.
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Figure 4. Relative taxonomic distribution (approximated) of combined 28S and CO1 MOTUs per Demospongiae order or other sponge class (denoted with an aster-
isk). For absolute numbers per marker and detailed relative distributions see Supplementary Table S2.

Additionally, the focus on macroscopic, epibenthic sponges
ignored the biodiversity hidden within the reef matrix, ie., the
endobenthos. This cryptic sponge biodiversity remains widely
unexplored here as in almost all reef systems around the world
(Richter et al., 2001; Vicente et al., 2022; Timmers et al., 2022).
In this respect, sampling still was not statistically random, and
remaining differences in the habitat types may influence the
results. The restriction on pure absence / presence data, however,
aims to minimize the collection bias. Nonetheless, the sampling
carried out in the course of this expedition allows for a first
large-scale assessment of the Wallis sponge fauna, while add-
itional studies and collection campaigns will be needed to com-
prehend the complete sponge biodiversity of this locality.

Composition of the Wallis sponge fauna

Our current analysis increased the number of sponge MOTUs
reported from Wallis by 82, as none of the previously reported
species were detected in this study (see previous paragraph).
Our finding of Dictyoceratida (25 MOTUs) and Haplosclerida
(12 MOTUs) as demosponge orders of highest taxonomic

>
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MOTU diversity

0 200 400 600
Number of individuals

= interpolated == extrapolated

w
o
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diversity under the current sampling scheme parallels findings
from similar (sub)tropical coral reef biodiversity monitorings
such as the Red Sea or the Gulf of Oman (Erpenbeck et al.,
2016, 2020), and suggests that this may be a common pattern
in the Indo-Pacific (see e.g., Wilkinson, 1988; Duckworth et al.,
2008; Wulff, 2012). Likewise, Nuilez Pons et al. (2017) reported
Haplosclerida as the most common order in their barcoding
study of Hawaiian sponges, although followed by Poecilosclerida.

Presence of widespread Indo-Pacific demosponge species in
Wallis and Futuna

Molecular tools have repeatedly revised many assumed cosmopol-
itan sponge taxa as endemic (Worheide et al., 2008; Poppe et al.,
2010; Xavier et al., 2010; Reveillaud et al., 2011; Setiawan et al.,
2016; Erpenbeck et al., 2017). This is consistent with the hypoth-
esis of high levels of endemism in some marine invertebrates
(Palumbi et al., 1997; Klautau et al, 1999; Solé-Cava and
Boury-Esnault, 1999; Bierne et al, 2003; Plotkin and
Boury-Esnault, 2004), for sponges this is most likely due to the
short lifespan of their larvae, limiting their theoretical dispersal
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Figure 5. (A) Sampling size-based biodiversity estimation and extrapolation based on 28S data of Demospongiae; (B) Curve of estimated sampling completeness

(sample coverage).
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potential (Maldonado, 2006; but see also Carballo et al., 2013;
Turner, 2020 for widespread sponge species).

Nevertheless, several species still display a wide distribution
across the Indo-Pacific as evident by shared 28S MOTUs detected
over large spatial distances, including several realms. Among those
species is S. carteri, as reported from the Western Indian Ocean
to Melanesia (de Voogd et al, 2023). Its populations share the
same 28S genotype (and mitochondrial intergenic hairpin regions)
distinct from its sympatric sister species Stylissa massa Carter,
1887 across the entire range from the Red Sea to Fiji (Erpenbeck
et al., 2017). Our data add further confirmation of the presence of
S. carteri in Polynesia, solidifying its known distribution in the
Eastern Indo-Pacific realm (Miguel-Gordo et al, 2020). However,
recent biodiversity campaigns did not report on the presence of
this species in French Polynesia (see Hall et al,, 2013; Petek et al,
2017), suggesting that a biogeographic separation exists between dif-
ferent marine provinces within the Eastern Indo-Pacific realm.

In contrast, several other taxa identified from Wallis Island
(Samoa Islands ecoregion) are also present in the French Polynesian
ecoregions, as reported from Petek et al. (2017) and Galitz et al.
(2023). These common taxa comprise a Suberea sp. (morphotype
QM2121 in Hall et al., 2013), an Aplysilla sp. (QM2034), a
Cinachyrella sp. (QM4680), and a Haliclona sp. (QM2555),
and likewise Craniella abracadabra de Laubenfels, 1954 and
Chelonaplysilla delicata Pulitzer-Finali and Pronzato, 1999 as
species determined to species level.

Furthermore, Echinodictyum asperum was described from the
Society Islands (Ridley and Dendy, 1887) and reported from
Tuamotu and Gambier (ecoregion Tuamotus) (Petek et al,
2017). Its Wallis MOTU is shared with specimens of the
Hawaiian (> 4000 km distance) cryptofauna (Hawaii ecoregion;
Genbank MW016122, Vicente et al., 2022) as well. Further exten-
sion of this species to the Eastern Indian Ocean including the
Andaman Islands (Andaman and Nicobar Islands ecoregion,
Andaman province) as reported by Burton and Rao (1932), is
yet not supported by molecular data.

We can report on a further widespread distribution of (cf.)
Callyspongia sp. (QM4998), which differs from specimens col-
lected in the Persian (Arabian) Gulf (>15,000 km) only by one
transversion (e.g., Genbank LR596455, Erpenbeck et al., 2020),
and likewise from a Callyspongia sp. collected from the
Hawaiian cryptofauna (e.g, Genbank MWO016058, Vicente
et al., 2022), consequently spreading over the entire Indo-Pacific
and making it one of the most widely dispersed sponge species
according to molecular data. Similarly, wide distributions are
reported for Neopetrosia chaliniformis Thiele, 1899 (East
African Coral Coast ecoregion, Western Indo-Pacific realm to
Samoa Islands ecoregion, Eastern Indo-Pacific realm) and a yet
not further named Hyrtios cf. erectus, a cryptic sister to Hyrtios
erectus Keller, 1889 (Northern and Central Red Sea and
Southern Red Sea ecoregions, Western Indo-Pacific realm sensu
Erpenbeck et al., 2017 to Samoa Islands and Marshall Islands
ecoregions, Eastern Indo-Pacific realm), which now also is
reported from Wallis (de Voogd et al., 2023). While cosmopolitan
distribution has been rejected for many sponge species (see earlier
section), endemism should not be viewed as the general rule of
thumb for all sponges (e.g., Carballo et al., 2013; Turner, 2020).

Dactylospongia metachromia has been reported from the
Solomon to Society Islands (de Voogd et al., 2023). Specimens
of Tuamotu (Tuamotus ecoregion, French Polynesia) have been
subject to bioactive compound studies, as their quinone sesquiter-
penes display a large array of biological properties (e.g., Bonneau
et al., 2017; Boufridi et al., 2017). Further investigation of our dis-
covered Wallis sponge populations, ca. 3000 km to the west of
Tuamotu, will help to assess patterns of spatial variability in
metabolite composition in sponges.
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Wallis sponge fauna in comparison to adjacent islands

Most island systems in the Central and Eastern Indo-Pacific
realms display both high biodiversity and high rates of endemism
among sponge species, with comparatively few taxa being shared
within and between ecoregions (Lévi, 1998; Hooper et al., 2002;
Feussner et al., 2012; Van Soest et al., 2012; Hall et al., 2013).
This also applies to the islands of Wallis and Futuna (Samoa
Islands ecoregion) which, despite their comparatively short dis-
tance (260 km), display a distinct sponge fauna, with less than
8% of MOTUs being shared among the reefs of these two islands.
The faunal differences observed may be accountable to a number
of reasons: (a) there is large dissimilarity in reef structure and
exposition between both islands, with a prominent barrier reef
and small islets in the lagoon around Wallis acting as a natural
protection for the lagoon, while the sole reef around Futuna
lacks such a barrier and appears to be more prone to potential
anthropogenic activities (e.g., agriculture, marine traffic) and
elemental impacts (e.g., storms and other natural phenomena)
(Chancerelle, 2008), (b) likewise the complex and fluctuating
ocean surface currents may affect species dispersal between
Wallis, Futuna, and the adjacent islands, as large scale marine cur-
rent systems like the Western Pacific Warm Pool, the South Pacific
Convergence Zone, and the South Pacific Gyre have a large influ-
ence on the islands in the Central Polynesia province, as do sea-
sonal and climatic variations due to the El Nifo-Southern
Oscillation (ENSO) (Alory and Delcroix, 1999; Worheide et al.,
2008; Bell et al., 2017).

We compared the Wallis and Futuna sponge fauna with taxo-
nomic reports and (NCBI Genbank-) published molecular data
from the adjoining island groups of Samoa (400 km distance to
Wallis) and Tuvalu (730 km) both within the same marine prov-
ince (‘Central Polynesia’ in the Eastern Indo-Pacific realm), and
furthermore Fiji (550 km) and Tonga (400 km) in the adjacent
marine province ‘Tropical Southwest Pacific’ of the Central
Indo-Pacific realm (Figure 1).

Samoa shares the same marine ecoregion ‘Samoa Islands’
(sensu Spalding et al, 2007) with Wallis and Futuna. Shared
MOTUs are Neofibularia hartmani Hooper and Lévi, 1993
(Thacker et al., 2013) and Hyrtios cf. erectus (but see Erpenbeck
et al, 2017 regarding the species complex in the Pacific).
Furthermore, S. carteri (Rohde et al., 2012) and Leucetta chago-
sensis (Worheide et al., 2008) have been reported from both
regions. However, reports on sponges from Samoa are compara-
tively scarce making further comparisons (e.g., sponge order fre-
quency) impossible.

Tuvalu, despite being one of the closest island groups to Wallis
and Futuna, does not share the same marine province ‘Central
Polynesia’ with Wallis (and Futuna) and Samoa, but is located
in the ‘Marshall, Gilbert, and Ellis Islands’ marine province
(Gilbert/Ellis Island ecoregion). In comparison to Samoa, infor-
mation on the sponge fauna from the literature is comprehensive,
but dating back to the 19th century (Whitelegge, 1897;
Kirkpatrick, 1900), their corroboration to extant coral reefs
remains to be assessed. From these publications we identify
Astrosclera willeyana Lister, 1900 (see Kirkpatrick, 1900) and E.
asperum (see Whitelegge, 1897) as shared with Wallis and
Futuna. Based on the available publications, Dictyoceratida con-
stitutes the dominant sponge order in Tuvalu, followed by the
Orders Axinellida and Clionaida. The abundance of
Haplosclerida is low in comparison to other faunas, while
Verongiida is yet unreported (Whitelegge, 1897; Kirkpatrick,
1900).

Fiji (Fiji Islands ecoregion) is approximately as distant to
Wallis and Futuna as Samoa, but is, like Tonga (see below), clas-
sified into a different biogeographic realm (Central Indo-Pacific
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realm). We find three shared molecular MOTUs from Fiji com-
prising the biemnid sponge Neofibularia hartmani, the haplo-
sclerid Neopetrosia chaliniformis and an Agelas species, which is
also the only Fijian species shared with both, Wallis and Futuna
in our data. The N. chaliniformis MOTU is, however, not exclu-
sive to Fiji and has also been reported from Vanuatu (Vanuatu
ecoregion). Furthermore, S. carteri (as Stylotella aurantium)
and a Hyrtios cf. erectus are reported (Feussner et al., 2012; but
see Erpenbeck et al, 2017 for a discussion on the species
complexes of both), as well as the calcareous sponge Leucetta cha-
gosensis (Worheide et al., 2002). Consolidated reports from the lit-
erature suggest that Dictyoceratida, Haplosclerida, and Verongiida
are among the most frequently encountered orders in the Fijian
archipelago (Bowerbank, 1874; Tendal, 1969; Feussner et al., 2012).

For Tonga (Tonga Islands ecoregion) we found the Wallis and
Futuna Astrosclera willeyana MOTU shared with records from
Thacker et al. (2013) and Jiang et al. (2021), likewise MOTUs
of H. erectus as identified in the course of natural product studies
(Crews et al., 1985; Crews and Bescansa, 1986). Compared to
other island groups investigated in this study, the numerous bio-
chemical publications on Tongan sponge secondary metabolites
also allow for a better estimation of order frequency, with
Dictyoceratida comprising the most common sponge order, fol-
lowed by Poecilosclerida and Verongiida, as well as
Haplosclerida and Homoscleromorpha (see review of Taufa
et al.,, 2021) although a bias towards particularly bioactive taxa
can be expected.

The compiled information from both molecular data and lit-
erature sources coincides well with prior assessments of highly
specialized and endemic sponge faunas of the Central and
Eastern Indo-Pacific realms (e.g., Hooper et al., 2002; Van Soest
et al., 2012). However, the faunal connectivity between Wallis
and Futuna and their surrounding islands does not perfectly
match the biogeographic delineation of Spalding et al. (2007), at
least on a small scale. The current data showed no sharp faunal
differentiation between Fiji and Tonga of the Tropical
Southwestern Pacific marine province (Central Indo-Pacific
realm), Wallis and Futuna, and Samoa in the Central Polynesia
marine province (Eastern Indo-Pacific realm), and Tuvalu in
the Marshall, Gilbert, and Ellis Islands marine province
(Eastern Indo-Pacific realm). On the contrary, there is more evi-
dence of sponge species shared between Wallis and Futuna and
Fiji (cross-realm) than to the adjacent islands within their own
marine province Central Polynesia. As such, the ecoregion classi-
fication by Spalding et al. (2007) appears suitable for most marine
animal taxa, and especially on higher levels (provinces, realms),
but has to be viewed more critically and on a case-by-case basis
on smaller scales and in specific organismal groups like sponges
and based on the currently available data. However, since a sig-
nificant proportion of the available information on sponges in
the Central and Eastern Indo-Pacific originates from biochemical
publications, a data bias towards bioactive taxa seems likely.

Calcareous sponges of Wallis and Futuna

Although Calcarea have been studied in the Central and Eastern
Indo-Pacific realms (e.g, Worheide and Hooper, 1999;
Borojevic and Klautau, 2000), their biodiversity is probably still
vastly underestimated in many regions, especially in the French
Polynesian archipelagos as described by Klautau et al. (2020).
According to our MOTU definition, none of the nine new
sequence types of calcareous sponges from Wallis matched previ-
ously published calcareous sponge sequences from French
Polynesia (see Supplementary Table S1).

However, morphologically some specimens were identified as
the wide-spread species Pericharax orientalis and Leucetta
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chagosensis, and sponges similar to Leucetta microraphis
(Leucetta aff. microraphis) with a documented wide distribution
in the Indo-Pacific. In Pericharax orientalis, the observed differ-
ences of up to 3 bp rather represent local intraspecific variation
occurring over large distances between the population of Wallis
and distant regions. Leucetta chagosensis (Worheide et al., 2002,
2008; Pasnin et al., 2020) and Leucetta aff. microraphis (Van
Soest and De Voogd, 2018; Klautau et al., 2020) are believed to
represent a complex of closely related species with considerable
genetic variation, but species boundaries are not yet defined.

The remaining specimens of the subclass Calcinea could not
be morphologically identified to species level (Ascandra,
Neoernsta, Clathrina) and the distribution range of most of the
known species in these genera is not very well known. At least
some of these may represent species new to science, but further
morphological observations will be required to evaluate their spe-
cies identity.

In Calcaronea, revision of the taxonomy is required, and even
many genera appear not to be monophyletic (Voigt et al., 2012;
Alvizu et al., 2018). 285 MOTU #378 showing the closest molecu-
lar genetic similarity to Grantessa sp. (Family Heteropiidae) is
morphologically supported by its visual appearance and the pres-
ence of pseudosagittal triradiates and oxea tufts (Borojevic et al.,
2002). However, both genus and family are considered to be poly-
phyletic, and the respective branch in the maximum-likelihood
trees lacks sufficient bootstrap support (see Supplementary
Figures S2 and S9). A more detailed morphological analysis
would be required to evaluate the species identity of this MOTU.

Conclusion

The results of this study represent a first larger-scale assessment of
the Wallis sponge fauna, constituting an important step in advan-
cing the sponge biodiversity research of the Indo-Pacific Ocean.
Despite high levels of endemism between the two islands and
the surrounding archipelagos, and the implication of limited dis-
persal and colonization due to long distances and complex ocean
current systems, Wallis and Futuna are still an important junction
of faunal exchange in the region. While the number of shared
MOTUs per region is limited, many sponge taxa from all over
the Indo-Pacific are present in Wallis and Futuna, making it a
‘melting pot’ of sponge biodiversity. Ultimately, our data contrib-
ute to a molecular taxonomic and biochemical inventory of the
Wallis Island sponge fauna, providing a basis for a sustainable
local ‘Blue Economy’ (Ebarvia, 2016; Smith-Godfrey, 2016; van
de Water et al, 2021).

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0025315424000432
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