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A B S T R A C T   

Study region: 30 catchments in Morocco. 
Study focus: We assessed the KGE performance of eight monthly lumped hydrological models 
forced by ground-based rainfall observations. We then examined how the performance relates to 
model complexity and structure, applied exploratory correlation analysis to identify the catch
ment features (over 200 features were considered) most significantly related to model perfor
mance, and investigated how these models respond to three rainfall forcings (ERA5, CHIRPS, and 
PERSIANN-CDR). 
New hydrological insights for the region: The findings indicate that no hydrological model out
performed (or underperformed) consistently across all the catchments and that model perfor
mance depends more on model structure and hydro-climatic characteristics, particularly those 
related to calibration and calibration-validation data difference, than on model complexity and 
non-hydro-climatic features. The linearity between rainfall and runoff was the primary feature 
influencing model performance. Additionally, besides the expected improvement of model per
formance when forced with richer rainfall and runoff calibration data in terms of wet and dry 
years, our results show that this holds true even if the calibration data is only relatively richer 
than the validation data and that dry periods are more beneficial to model performance than wet 
periods. Lastly, all the models responded similarly to the different rainfall inputs; each model 
performed better when using ERA5 than when using CHIRPS and underperformed when using 
PERSIANN-CDR. The metric that best explained this similarity was the Pearson correlation co
efficient between the precipitation products and observed runoff.   

1. Introduction 

There is a growing interest in conducting large-sample hydrology studies (A Lane et al., 2019) – hydrological modeling studies 
involving a large sample of catchments. (Gupta et al., 2014) illustrated this tendency by providing a list of hydrological modeling 
studies that used 30 or more catchments. In recent years, several studies of this nature have been conducted in different parts of the 
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world, for example: (Kouakou et al., 2023) in Africa, (Z. Xu et al., 2022) in Asia, (Hapuarachchi et al., 2022) in Australia, (Pelletier and 
Andréassian, 2022) in Europe, (Fathi et al., 2023) in North America, and (Muñoz-Castro et al., 2023) in South America. This increase in 
popularity of large-sample modeling studies is unsurprising due to their usefulness in (i) detecting patterns about variables affecting 
model performance that could not have been possible to identify through studies based on a limited number of catchments (Gupta 
et al., 2014), (ii) deriving robust insights on hydrological processes (Addor et al., 2019), (iii) providing a valuable ground for models 
assessment and refining our understanding of models’ functioning, strengths, and weaknesses (Knoben et al., 2020). (Andréassian 
et al., 2006) went so far as to state that this approach is a necessary condition to ensure progress in hydrology. 

Models’ assessment and model intercomparison studies across a large sample size of catchments can be tackled from different 
angles. This task can be undertaken, for example, by exploring the model performance dependency on model complexity and structure. 
(Mathevet et al., 2020) reported that the results of previous studies indicate that hydrological models can often yield comparable 
performances on a broad range of catchments, despite the differences in their structures and degrees of complexity. The finding 
concerning the model performance’s lack of significant dependency regarding its complexity has been corroborated by many studies 
(Van Esse et al., 2013; Gan et al., 1997; Knoben et al., 2020; Perrin et al., 2001). In contrast, the model structure has been often 
reported to be a crucial element that explains model performance (Van Esse et al., 2013; Gan et al., 1997; Knoben et al., 2020; Perrin 
et al., 2001). From another models assessment angle, (A Lane et al., 2019; Massmann, 2020; McMillan et al., 2016; Pham et al., 2021; 
Poncelet et al., 2017; K. Zhang et al., 2023) examined the model performance relationship to catchment characteristics, and certain 
features emerged, frequently more than others, as being associated with model performance, such as: aridity index, baseflow index, 
and catchment area (Bai et al., 2015; Knoben et al., 2020; Massmann, 2020; Tramblay et al., 2023). Another common way of assessing 
hydrological models is by studying their responses when forced by different products of the model’s inputs, for instance: (Bouizrou 
et al., 2023; Darbandsari and Coulibaly, 2020; Jayathilake and Smith, 2021; Oudin et al., 2005; J. Wang et al., 2023) employed 
different rainfall-runoff models forced using numerous precipitation and evapotranspiration inputs. The importance of this hydro
logical assessment has been recognized for quite some time as highlighted by (Stephens et al., 2022), particularly in areas with limited 
weather station density (S. Camici et al., 2018; Essou et al., 2016), since it is the practical approach to verify their adequacy for driving 
hydrological models. 

In recent decades, a multitude of rainfall-runoff models have been developed, spanning from conceptual lumped models to 
physical-based distributed ones (Wan et al., 2021), and are used for a variety of purposes such as hydrological research (Jaiswal et al., 
2020), water resources management (Dutta and Sarma, 2021), drought assessment (Mouelhi et al., 2006), and the assessment of 
impacts from climate change and anthropogenic activities (Bai et al., 2015), etc. However, (Andréassian et al., 2006) highlighted the 
impracticability of using physically-based models in model intercomparison studies, given that these studies require employing an 
automated process for dealing with the large number of catchments; a task that is relatively difficult to implement when using this type 
of models. Conversely, lumped models, monthly ones in particular, have landed themselves in the field of operational and comparative 
hydrology as a valuable tool for runoff prediction, especially in developing countries, such as Morocco, given their data-scarcity and 
data-sparsity situation (Adla et al., 2019; Bouizrou et al., 2023; Tramblay et al., 2016; Zamoum and Souag-Gamane, 2019). Addi
tionally, given the drought period Morocco is currently immersed in along with being particularly exposed to the risks of climate 
change (Hadri et al., 2021), it is of great importance to assess various rainfall-runoff models across numerous Moroccan catchments. 

In consideration of the foregoing, the primary objective of this article is to conduct a multi-faceted assessment of eight monthly 
lumped hydrological models on a set of 30 catchments in Morocco. To the best of our knowledge, the sample size of these catchments is 
the largest ever studied in Moroccan hydrological research using a similar number of hydrological models, and no research work has 
undertaken simultaneously both of the following tasks tackled in this study: (i) investigating a comparatively large set of features (over 
200 features were investigated), and (ii) explicitly examining model performance’s relation to both calibration data and the 
calibration-validation data difference. Regarding the specific research questions, they are detailed as follows: (i) Is there a best (or 
worst) performing model in all catchments? (ii) Is there a relationship between model performance and model complexity and 
structure? (iii) Which catchment features have the strongest influence on model performance? (iv) How does each model react to 
different rainfall products, and is there any metric that provides insight into which rainfall product will give better (or worse) hy
drological model performance than the others? 

To achieve the study’s objectives, a model intercomparison is first carried out between eight conceptually diverse models with a 
varying number of free parameters ranging from 2 to 5 but with a similar spatial structure and number and timescale of inputs. The 
model conceptual structure as well as its complexity are then checked if they can explain the model performance differences – if such 
differences exist. Subsequently, a large set of catchment characteristics, including features that are calibration-period-related and 
calibration/validation-periods-related, is proposed to identify primary predictors of model performance. Finally, three rainfall 
products were used to force the hydrological models to examine how they respond to different precipitation inputs. Potential 
evapotranspiration input – the remaining necessary input required in most monthly lumped models (C. Y. Xu and Singh, 1998) – is not 
studied because previous studies (Jayathilake and Smith, 2021; Oudin et al., 2005) found that the lumped models they used displayed 
limited sensitivity to evapotranspiration forcing data, especially in water-limited catchments. 

The paper is organized as follows: Section 2 describes the study area and data, Section 3 explains the methods, Section 4 presents 
and discusses the results, and Section 5 summarizes the findings and provides some practical implications. 
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2. Study area and data 

2.1. Study area 

This study was carried out in 30 catchments in Morocco (Fig. 1). The selected catchments were the result of the selection procedure 
of the analysis period (09/1983–08/2019) that was chosen to have the largest number of catchments not influenced by dams and with 
available rainfall and runoff data with, respectively, less than 20 % and 15 % as percentages of missing values. 

The selected catchments and rain gauges resulted in a spatial configuration where the average area covered by each rain gauge 
station is about 680 Km2 (with a maximum coverage of 2535 Km2) and the average distance between each catchment centroid and its 
nearest rain gauge is 16 Km (with a maximum distance of 30 Km). This sample of catchments represents a varied range of physio
graphic and hydro-climatic characteristics as shown in Table 1: 

The studied catchments have areas ranging from around 100 Km2 to approximately 15000 Km2. These catchments are all water- 
limited according to Budyko theory (P/PET < 1) (Budyko, 1958) and are dispersed in three climatic zones of the Köppen-Geiger 
classification system (Beck et al., 2018): Arid (class B), Temperate (class C), and Cold (class D), and three main land cover types 
according to Moderate Resolution Imaging Spectroradiometer (MODIS) Land Cover Type (MCD12Q1) (Sulla-Menashe and Friedl, 
2022): Shrub, Grass, and Barren. It should be noted that the land cover class “Permanent Snow and Ice” is nonexistent in the study area, 
thus likely relatively limiting the snow’s influence on catchment hydrology when compared to catchments with this cover class. 

2.2. Rainfall data 

2.2.1. Ground observations 
A total of 34 rainfall stations (Fig. 1), were used to provide the monthly rainfall input for the hydrological models. A month was 

considered missing even with one missing daily value. Nonetheless, this resulted in data with limited missing values (the average 
missing months of all the stations is 5 %), and since all the investigated models necessitate complete data without any missing values, 
each gap in the monthly precipitation data was filled using simple linear regression with the station having the highest Pearson 
correlation coefficient (0.6 was the lower allowed threshold), which is a technique that belongs to the family of regression method 
commonly employed in the estimation of missing rainfall records (Teegavarapu et al., 2018; Teegavarapu and Chandramouli, 2005). 
The filled data were then used to calculate the weighted average rainfall records over the catchments by applying the Thiessen polygon 
method to the 34 rain gauge stations. 

Fig. 1. Location of the 30 studied catchments and 34 rain gauge stations.  
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2.2.2. Other rainfall products 
Three other precipitation products were used as forcing data for the hydrological models only to examine the models’ responses to 

diverse rainfall input data, and were not used in any other analysis. These products belong to three datasets denoted here as ERA5, 
CHIRPS, and PERSIANN-CDR, and are briefly described in Table 2. The selection of these products was based mainly on their temporal 
coverage since they cover the period of analysis (09/1983–08/2019), and also because they were previously evaluated in Morocco (e. 
g., (Ait Dhmane et al., 2023; El Khalki et al., 2023; Najmi et al., 2023; Ouatiki et al., 2023; Rachdane et al., 2022; Salih et al., 2022)). 
The records of these products were converted into monthly time-steps and the data pixels within each catchment were averaged to 
derive the mean areal rainfall input for the hydrological models. 

2.3. Potential evapotranspiration data 

Monthly potential evapotranspiration data is the second and last required input for the studied hydrological models. This input was 
computed with the Hargreaves-Samani formula (Hargreaves and Samani, 1985) requiring latitude as well as daily maximum, mini
mum, and average air temperature that were retrieved from ERA5 product, and spatially averaged at each catchment scale. The use of 
ERA5 temperature data was motivated by its suitable temporal coverage and previous utilization for hydrological modeling both in 
Morocco and throughout Africa (Tarek et al., 2020, 2021; Tramblay et al., 2023). The choice of the Hargreaves-Samani formula on the 
other hand is supported by its comparatively good performance in computing potential evapotranspiration in arid and semi-arid re
gions in Morocco (Er-Raki et al., 2010) and worldwide (Pimentel et al., 2023), and by the fact that over two-thirds (69 %) of the study 
area falls under the category of arid regions according to the Köppen-Geiger classification. The daily data output by this formula was 
then converted into monthly time-steps. 

2.4. Observed streamflow data 

Concerning observed streamflow data, 30 gauging stations that represent the outlets of the 30 studied catchments were used for the 
calibration and validation of the hydrological models. Similar to precipitation data, the collected discharge data featured a mix of daily 
and monthly records, and the daily records were aggregated to generate monthly ones, while considering a month as missing if one or 
more of its daily values are missing. On average, the percentage of months with missing discharge data is 7 %. 

2.5. Catchment features 

To study how models’ performance is related to catchments’ characteristics, 227 features were selected in this study, belonging to 8 
categories:  

− Morphometric, Topographic, and Hydrographic Network Characteristics (17 features).  
− Catchment Coordinates and its Relative Location to Rainfall Stations [used to provide its precipitation input] (7 features).  
− Hydro-Climatic Features (59 features).  
− Hydro-Climatic Features in Calibration (59 features).  
− Hydro-Climatic Features Disparity: Calibration vs. Validation (59 features). Each of the characteristics of this category is calculated 

as the feature’s value during calibration minus its value in the validation period.  
− Climate Classes (9 features).  
− Land Cover Classes (7 features, including the temporal change in the land cover classes).  
− Soil Textures and Properties (10 features). 

Table 1 
Summary of the main characteristics of the 30 catchments included in this study.  

Characteristic Unit 10th percentile Average Median 90th percentile 

Area Km2 222 2305 831 6667 
Mean elevation m 1250 1844 1863 2432 
Mean slope - 18 % 31 % 31 % 46 % 
Mean annual precipitation (P) mm 146 233 215 312 
Mean annual runoff (Q) mm 12 77 49 159 
Mean annual potential evapotranspiration (PET) mm 1042 1189 1208 1283 
Mean annual temperature ◦C 10.9 14.2 14.1 17.4 
Aridity Index (P/PET) - 0.11 0.20 0.18 0.26 
Runoff Coefficient (Q/P) - 0.07 0.30 0.24 0.52 
Temporal average of Shrub cover percentages - 16 % 42 % 32 % 84 % 
Temporal average of Grass cover percentages - 8 % 25 % 21 % 49 % 
Temporal average of Barren cover percentages - 2 % 31 % 26 % 71 % 
Percentage of Arid (B) Climate - 7 % 54 % 46 % 100 % 
Percentage of Temperate (C) Climate - 0 % 34 % 32 % 77 % 
Percentage of Cold (D) Climate - 0 % 12 % 4 % 42 % 

The data sources of the mentioned characteristics will be presented in Section 2.2, Section 2.3, Section 2.4, and Section 2.5. 
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Table 2 
Description of the three employed precipitation products.  

Notation ERA5 CHIRPS PERSIANN-CDR 

Temporal 
coverage 

1979-present 1981-present 1983-present 

Spatial 
resolution 

0.25◦ 0.05◦ 0.25◦

Description Precipitation is obtained using data assimilation by combining 
the physical-based integrated forecasting system of ECMWF 
with observed data 

Precipitation results from the incorporation of NASA and 
NOAA gridded satellite-based precipitation estimates with in- 
situ precipitation data 

Precipitation is developed by the University of California and is derived 
using an artificial neural networks algorithm that utilizes gridded satellite 
(GridSat-B1) infrared data. 

Reference (Hersbach et al., 2020) (Funk et al., 2015) (Ashouri et al., 2015)  
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The exhaustive list of the used features can be found in Appendix A. 
The datasets used for catchment features determination are given in Table 3: 
Additionally, hydro-climatic features included the diversity of temperature data, characterized by the presence of cold and hot 

years, as well as the richness of precipitation and runoff data, characterized by wet and dry years. Z-score was employed to classify the 
years, with − 1 and 1 being used as threshold values distinguishing between cold/wet, normal, and hot/dry categories, as it is 
commonly the case for many drought indices and studies (Elair et al., 2023; Jain et al., 2015; Mahmoudi et al., 2019; Salih et al., 2023). 

3. Methods 

The methodology proposed for tackling the aforementioned research questions is presented in the following flowchart(Fig. 2) 

3.1. Hydrological models 

The eight monthly lumped hydrological models selected for comparison are listed in Table 4: 
It should be noted that the references from which the VUB model was derived, present more than one way for runoff computation 

depending on multiple combinations of mathematical equations used for the calculation of evapotranspiration, direct and indirect 
runoff components. The VUB equations used in this study are the ones that yielded the best validation results in the studied catchments 
and are provided in Appendix B. 

All the employed hydrological models incorporate a soil moisture storage. GR2M and GR5M have an additional routing storage, 
while abcd, DWBM, and Wapaba integrate a groundwater storage. The remaining models do not feature any additional reservoir. The 
2-parameter models have one runoff component, direct runoff which in this case is equivalent to total runoff, and the remaining models 
have an additional component: indirect runoff. 

Additionally, the selected models require monthly inputs, which are more available than daily data, especially in developing 
countries (Adla et al., 2019). These models were chosen with the primary aim of studying the impact of model complexity – defined 
here as the number of model parameters – and model structure while isolating the effects of spatial structure and the inputs’ number, 
types, and timescales. The ease of the model’s utilization was also considered, with a preference for lumped models known for their 
simplicity and suitability for operational hydrology tasks (Mouelhi et al., 2006; Perrin et al., 2001; Tramblay et al., 2016). 

Among the selected hydrological models in this study, GR2M model is by far the most used in Morocco, particularly for climate 
change impact assessment studies (Driouech et al., 2010; Hrour et al., 2023; El Khalki et al., 2021; Saouabe et al., 2022). 

3.2. Models’ calibration and evaluation 

The eight hydrological models were calibrated using the Differential Evolution optimization algorithm (Storn and Price, 1997) with 
the Kling-Gupta efficiency (KGE) used as an objective function (Gupta et al., 2009). In its formulation, KGE is based on three equally 
weighted components: Pearson correlation (r) for matching the timing and shape of the observed hydrograph, bias (β) for reproducing 
the observed runoff volume, and variability ratio (α) for capturing the observed flows’ spread: 

KGE = 1 −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(1 − r) + (1 − β) + (1 − α)

√
(1)  

with: β = μs(Q)/μo(Q) and α = σs(Q)/σo(Q); μo(Q) and σo(Q) represent, respectively, the mean and standard deviation of the observed 
runoff, while μs(Q) and σs(Q) represent, respectively, the mean and standard deviation of the simulated runoff. 

The period of analysis is composed of 36 hydrological years of monthly data, with each hydrological year spanning from 1st 
September to 31st August. One year served as a warm-up period and the remaining years were divided into two independent periods: 
calibration period and validation period. Comparable to the odd/even split-sample testing used for example by (Arsenault et al., 2016; 

Table 3 
Datasets used for catchment features determination.  

Category of features Dataset used Reference 

Morphometric, Topographic, and Hydrographic 
Network Characteristics 

Shuttle Radar Topography Mission (SRTM) Global 1 arc second. (Farr et al., 2007) 

Hydro-Climatic Features ERA5 was used to retrieve temperature data, which was then used for the 
estimation of potential evapotranspiration. 

(Hersbach et al., 2020) 

Ground observational data were used to calculate features related to 
precipitation and runoff. 

- 

Land Cover Classes Yearly data of MODIS Land Cover Type (MCD12Q1) from the period 
2001–2019. 

(Sulla-Menashe and 
Friedl, 2022) 

Climate Classes Köppen-Geiger classification. (Beck et al., 2018) 
Soil Textures and Properties iSDAsoil dataset was used to retrieve soil textures at 0–20 cm and 20–50 cm 

depths. 
(Hengl et al., 2021) 

Field capacity and Saturated hydraulic conductivity were estimated using 
average values based on soil textures. 

(Th van Genuchten et al., 
1991) 
(Gong et al., 2012)  
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Essou et al., 2016; Gowda et al., 2012), a similar approach was employed in which each period (calibration and validation) is formed 
by uniting sets consisting of two consecutive years, with each set being separated from the next by two consecutive years as shown in  
Fig. 3. 

The hydrological models’ performances were assessed in the validation period because the validation mode is generally the most 
used mode in operational contexts (Perrin et al., 2001) in addition to the fact that the performance obtained in the calibration period is 
potentially subject to the problem of over-fitting that can result from over-parameterization (Seibert et al., 2019). This performance 
was assessed by employing KGE since it provides a more comprehensive evaluation of the overall hydrograph (Ahmed et al., 2023) and 
it is currently considered to be the most used and recommended criterion for assessing the performance of hydrological models 
(Stefania Camici et al., 2020). Additionally, the KGE bias component β was only used to investigate whether the models manifest a bias 
towards overestimating or underestimating runoff, without utilizing it for comparing the models. 

3.3. Models’ performance predictors identification 

The focus of this task is on identifying catchment features that influence the validation performance. This identification was 
accomplished using exploratory correlation analysis between the models’ performance and the catchments’ characteristics, following 
the same approach used by (Kim and Lee, 2014; Knoben et al., 2020; Massmann, 2020; Pham et al., 2021). Spearman correlation was 
adopted for this analysis. The influence of a given feature on the performance metric (KGE) was considered significant only if the 
p-value of the corresponding Spearman correlation coefficient was lower than 0.05 (a threshold that is commonly used in hydrological 
studies (Poncelet et al., 2017)) for at least half of the employed hydrological models. This latter condition was considered to minimize 
the possibility of maintaining, and therefore studying, weak relationships between models’ performance and the identified features. 

4. Results and discussion 

The results presented in Sections 4.1 through 4.4 were obtained using observed rainfall as forcing data for the hydrological models. 

4.1. Models’ performance assessment and comparison 

Fig. 4 illustrates the spatial distribution of KGE in the validation period for all the hydrological models. This figure shows a large 
spread of performance across the studied catchments, for all the investigated models, ranging from below 0 to more than 0.75, with a 

Fig. 2. Flowchart of the adopted methodology.  
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Table 4 
Characteristics of the 8 studied hydrological models.“X” and “-“ indicate respectively the existence and absence of the corresponding characteristic.  

Model GR2M XM WM VUB abcd DWBM GR5M Wapaba 

Reference (Mouelhi 
et al., 2006) 

(Xiong and 
Guo, 1999) 

(G. Q.  
Wang et al., 
2014) 

(G. L. Vandewiele and 
Ni-Lar-Win, 2009; G.  
Vandewiele and Xu, 1992) 

(Thomas Jr. 
Harold, 1981) 

(L. Zhang 
et al., 
2008) 

(Mouelhi 
et al., 2006) 

(Q. J. Wang 
et al., 2011) 

Number of parameters 2 2 3 3 4 4 5 5 
Storages Number of storages 2 1 1 1 2 2 2 2 

Type of storages Soil moisture 
storage 

X X X X X X X X 

Routing storage X - - - - - X - 
Groundwater 
storage 

- - - - X X - X 

Runoff components Number of runoff components 1 1 2 2 2 2 2 2 
Type of runoff 
components 

Direct runoff X X X X X X X X 
Indirect runoff - - X X X X X X 

Non-linearity of total runoff 
generation with regard 
to variables 

Precipitation X X - X X X X X 
Potential evapotranspiration X X - X - X X X 
Soil moisture storage level X X - X X X X X 

Number of parameters included in direct runoff calculation 2 2 1 1 3 2 4 3 
Number of parameters included in total runoff calculation 2 2 2 2 4 3 5 4  
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predominance of the yellow (0.25 < KGE < 0.50) and white-blue (0.50 < KGE < 0.75) categories. Additionally, and consistently across 
all models, three is the highest number of catchments with a negative KGE and two is the maximum number of catchments with KGE >
0.75. While there is no noticeable spatial trend of performance aligned with any specific geographic orientation for all eight models, 
the models nonetheless exhibit different levels of performance as further shown in Fig. 5. 

The calibration performance results can be found in Appendix C. 
Fig. 5 presents several statistics detailing the models’ validation performance within the study area. In terms of median KGE 

performance, WM exhibited the lowest value (0.36) while the other seven models showed comparable performances with medians 
ranging from 0.42 (VUB) to 0.48 (XM). As for the average KGE performance of the models, XM, WM, and VUB demonstrated similar 
results with a mean of 0.36 which is lower than the remaining models’ average performance of 0.43, with Wapaba having the 
maximum KGE average. However, as displayed in Table 5, it should be noted that no hydrological model was the best in all catchments 

Fig. 3. Calibration/Validation setup.  

Fig. 4. Spatial distribution of the eight models’ validation performances (KGE) at the studied catchments’ outlets.  
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(all percentages <100 %). Moreover, each model was the best in at least three catchments (10 %) with GR5M being the best- 
performing model. These results are in line with (Bai et al., 2015) in their comparison of monthly water balance models. More 
generally, the observation of the nonexistence of a best-performing model across all catchments was also identified by (Knoben et al., 
2020; Orth et al., 2015; Perrin et al., 2001) in their comparative assessments of daily hydrological models. (De la Fuente et al., 2023) 
even recommended abandoning the concept of a “best” model and suggested focusing instead on learning from the strengths of each 
model representation. Furthermore, this nonexistence of a best-performing model might have partially accounted for the rationale 
behind the development of blended models (e.g., (Chlumsky et al., 2021)) that calculate each modeled hydrological process as a 
weighted average of different mathematical formulations, not just a single one as it is the case for most conceptual rainfall-runoff 
models, thus providing a greater adjustment capability to suit a larger variability of catchments. Another finding is that no hydro
logical model was the worst in all catchments (all percentages <100 %) and each model, except for Wapaba, was the worst in at least 1 
catchment (3 %) with WM being the worst-performing model. 

Another criterion that can be used for models’ comparison is the percentage (or number) of catchments for which a hydrological 
model achieved a KGE score exceeding the 0.5 threshold. While any threshold can serve for the comparison, we opted for 0.5 due to its 
prior utilization as a KGE threshold between “good” and “bad” hydrological performance in a large-sample hydrological study (Ste
fania Camici et al., 2020). Based on this criterion, XM, DWBM, and Wapaba are the top-ranked (Table 5). 

From the above results (Table 5) and analysis, it is apparent that while using only one performance metric KGE, the hydrological 
models can be compared using different criteria (median performance, average performance, percentage of catchments with best 
model performance, percentage of catchments with worst model performance, percentage of catchments with model performance >
threshold), each of which may result in a distinct model ranking as shown in Table 5. 

For this reason, we opted for the introduction of a new aggregated comparative measure, which we have named the Multi-Criteria 
Comparative Performance Score (MCCPS), and believe that it provides a more encompassing comparison between the models. For each 
hydrological model, MCCPS is calculated as the mean of the normalized values (normalized using the min-max normalization) of the 
five used comparison criteria in Table 5, namely: the median KGE, the average KGE, the percentage of catchments for which a model 
demonstrated the best KGE performance, the percentage of catchments for which a model demonstrated the worst KGE performance, 
and the percentage of catchments for which a model scored a KGE above 0.5. Therefore, MCCPS ranges potentially from 0 to 1: a score 
of 1 indicates that the model has achieved the best value for all the five used criteria, whereas a score of 0 suggests that the model has 
obtained the worst value for these criteria. The MCCPS of the investigated models is displayed in Fig. 5. 

Fig. 6 illustrates that based on MCCPS, Wapaba is the best-ranked model, followed by abcd and GR5M which yielded comparable 
results. DWBM and GR2M constitute the second-best group with homogenous scores. WM however is by far the worst-performing 
model with a MCCPS of zero, meaning that this model had the lowest median performance, the lowest average performance, the 
lowest percentage of catchments with best model performance, the lowest percentage of catchments with worst model performance, 
and the lowest percentage of catchments with model performance > 0.5. WM had nonetheless the best model performance in three 
catchments. 

In relation to the question of whether the employed hydrological models overestimate or underestimate the runoff, Fig. 7 shows 
that for all the models, the validation KGE bias component β at 80 % of the catchments is between 0.7 and 1.4 with median and average 
values ranging from 0.9 to 1.1, indicating that the models on average and for 50 % of the catchments reproduce reasonably the total 

Fig. 5. Boxplots of KGE validation performance in the different studied catchments for all the hydrological models. As illustrated on the right side of 
the figure, and in all the figures containing boxplots throughout the paper, the orange line represents the median, the dotted green line represents 
the average, the box edges represent the 25th and 75th percentiles, and the whiskers represent the 10th and 90th percentiles. 
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Table 5 
Values of five model comparison criteria during the validation period for the eight models, along with their rankings based on each criterion. These criteria are: median KGE – Criterion-1, average KGE – 
Criterion-2, percentage of catchments for which the model demonstrated the best KGE performance – Criterion-3, percentage of catchments for which the model demonstrated the worst KGE performance 
– Criterion-4, and percentage of catchments for which the model scored a KGE greater than 0.5 – Criterion-5.   

Criterion- 
1 

Rank according to 
Criterion-1 

Criterion- 
2 

Rank according to 
Criterion-2 

Criterion- 
3 

Rank according to 
Criterion-3 

Criterion- 
4 

Rank according to 
Criterion-4 

Criterion- 
5 

Rank according to 
Criterion-5 

GR2M  0.447  5  0.425  4  23 %  2  13 %  5  37 %  6 
XM  0.478  1  0.361  7  17 %  4  33 %  7  43 %  1 
WM  0.363  8  0.333  8  10 %  6  40 %  8  30 %  8 
VUB  0.424  7  0.374  6  10 %  6  13 %  5  40 %  4 
abcd  0.465  2  0.432  2  20 %  3  3 %  2  40 %  4 
DWBM  0.457  3  0.425  5  10 %  6  7 %  4  43 %  1 
GR5M  0.438  6  0.427  3  30 %  1  3 %  2  37 %  6 
Wapaba  0.456  4  0.433  1  17 %  4  0 %  1  43 %  1  
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runoff volume with the exception of XM that comparatively demonstrates a tendency to overestimation. 
The MCCPS is the measure of model performance that will be used for studying the models’ performance with respect to model 

complexity and structure. It is important to highlight that the observations as well as the [non]significance of the relationships re
ported below remain valid in the case of choosing the average KGE, instead of MCCPS, as the measure of overall model performance. 

Fig. 6. MCCPS of the eight hydrological models. The models are sorted in descending order from top to bottom.  

Fig. 7. Boxplots of the KGE bias component β (in validation period) in the different studied catchments for all the hydrological models.  

Fig. 8. Model performance in validation as a function of model complexity.  
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4.2. Models’ performance with regard to model complexity 

Given the difference in performance between the eight hydrological models, it was essential to try to identify how much of this 
disparity can be explained by the models’ complexity. Adopting the point of view that relates model complexity solely to the number of 
free parameters in calibration (e.g., (Bai et al., 2015; Gan et al., 1997; Mathevet et al., 2020; Perrin et al., 2001; Schoups et al., 2008),  
Fig. 8 presents the model performance as a function of complexity: 

Even though the performance of the 4 and 5-parameter models is relatively high, Fig. 8 suggests that the relation between model 
performance and model complexity is not significant (p-value = 0.144 > 0.05; threshold value that has been selected to distinguish 
between significant and non-significant relations), which is clearly illustrated by the relatively high performance of the 2-parameter 
models GR2M and XM compared to the 3-parameter models WM and VUB. Our results agree with (Bai et al., 2015; Gan et al., 1997; 
Knoben et al., 2020; Mathevet et al., 2020; Perrin et al., 2001) who concluded that, for both the employed daily and monthly models, 
an increase in model complexity does not necessarily guarantee an increase in model performance, and simple models can yield 
comparable results to those of more complex models. (Massmann, 2020) argued that this can be explained either (i) by the 
over-parameterization issue generally encountered in more complex models, which in turn could result from the unsuitability of these 
models’ structures as suggested by (Perrin et al., 2001), or (ii) by the fact that the increase in model complexity did not tackle the 
underlying reason behind the poor performance of a simpler model, which hints at the possible increase in model performance if the 
shortages in the processes representation are corrected by the additional parameters as shown in the work of (Massmann, 2020), 
particularly in the arid cluster, in which the increase in model complexity translated into an increase in model performance. This was 
likely the case in their study because the employed models were related to one another in that models with more parameters contained, 
in a sense, the models with fewer parameters as a special case, thus potentially addressing the causes of the suboptimal performance 
observed in simpler models, which is not the case for the eight models in our study that are structurally distinct with parameters that 
generally have different purposes in each model. 

This finding suggests the existence of stronger explanatory elements to the models’ performance difference other than the number 
of model parameters and the model structure is the main and foremost point of consideration. 

4.3. Models’ performance with regard to model structure 

To study the models’ performance with respect to model structure, we investigated the existence of possible relations between 
model performance, represented by the MCCPS, and elements from Table 4 and found that:  

− The 2-storage models (GR2M, abcd, DWBM, GR5M, and Wapaba) perform better than the 1-storage models (XM, WM, and VUB). 
This observation is inconsistent with earlier findings by (Bai et al., 2015; Knoben et al., 2020; Massmann, 2020) in their model 
intercomparison studies, in which no apparent trend was observed between the number of storages and model performance.  

− The number of runoff components does not seem to have any influence on model performance, which corroborates the results 
obtained by (Bai et al., 2015).  

− The number of parameters included in total runoff calculation is not significantly related to model performance.  
− The relationship between model performance and the “number of parameters included in direct runoff calculation” is positive and 

significant (p-value = 0.025 < 0.05) (Fig. 9), at least to a certain threshold number. 

The inconsistency in the relationship’s significance between the number of storages and the model performance could have 
stemmed from the small sample size of just two categories: 1-storage models and 2-storage models even though eight models were 
used, and/or from the fact that the number of storages alone is insufficient to explain the variation in model performance. 

As for the number of parameters utilized in computing direct runoff, to our knowledge, there is no study that has investigated the 
relationship between this variable and model performance, and therefore further research is needed to confirm or refute the 

Fig. 9. Model performance in validation as a function of the number of parameters included in direct runoff calculation.  
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significance of this relationship, as our findings highlight its significance. 
As mentioned earlier, WM model has a MCCPS of zero, indicating that this model has the worst rank with regard to median 

performance, average performance, percentage of catchments with best model performance, percentage of catchments with worst 
model performance, and percentage of catchments with model performance > 0.5. We argue that this comparatively weak perfor
mance is a result of WM using only one parameter for direct runoff computation and being the only model that computes runoff as a 
linear function of precipitation and soil moisture storage level. The latter argument is probably the main cause behind its poor per
formance since, as highlighted by (Rajurkar et al., 2004), simple linear relationships in hydrological models fail to capture the 
non-linear dynamics that are intrinsic in rainfall-runoff transformation, especially in ephemeral streams with a low yield (Ye et al., 
1997) as those present in our study area. This argument is supported by the comparative study of conceptual model structures done by 
(Van Esse et al., 2013) in France, who found that linear runoff functions presented a lesser performance than that of non-linear ones. 

In addition, it is noteworthy that the 2-parameter model GR2M displayed a relatively good performance. We hypothesize that one 
of the factors contributing to this level of performance is the comparatively detailed description of the hydrological processes which is 
reflected, for example, in the integration of two storages and in the number of values taken by each state variable “soil moisture storage 
level” and “routing storage level” in a given time-step —three values, a distinction that sets GR2M apart from the other models except 
GR5M, as they all use only one value per time-step. 

The results of these analyses support the perspective that model performance is affected more by model structure and the way 
runoff generation is described than by increasing the total number of model parameters (Van Esse et al., 2013; Gan et al., 1997; Perrin 
et al., 2001), defined here as model complexity. 

4.4. Models’ performance with regard to catchment features 

As mentioned before, the relation between model performance in the validation period and catchment features was investigated 
using the Spearman correlation. Among the eight used categories of catchment features (see Section 2.5), only those related to hydro- 
climatic characteristics had significant relations (p-value < 0.05) for at least half of the models (Fig. 10) (these features are presented in  
Fig. 11). More specifically and for all the hydrological models, the calibration/validation-related hydro-climatic features constitute 
from 50 % to 80 % of the features with significant predictive power for hydrological performance (KGE). Pearson correlation between 
monthly rainfall and observed streamflow is the only hydro-climatic feature, independent of the calibration and validation period, that 
showed a significant correlation with KGE. 

It is worth noting that certain features were identified as significant based on the Spearman correlation coefficient’s value but were 
nonetheless excluded from the analysis. This decision was based on a visual inspection of the data using scatterplots, revealing no 
discernible relationship between these features and KGE performance, similar to the example illustrated in Fig. 4 of Anscombe’s 
quartet (Anscombe, 1973). 

The observed absence of significant correlations between model performance and other catchment features such as topographic, 
landscape, and soil properties aligns with the findings of (Knoben et al., 2020) who found, using correlation analysis, that the attributes 
related to topography, soil, and vegetation are among the weakest predictors of model performance. (Massmann, 2020) found that this 
is the case only for certain models. These results can be explained by (i) the non-use of the suitable performance metric as (McMillan 
et al., 2016) found that only some performance metrics were sensitive to catchment characteristics, (ii) the fact that the observed 
hydrograph is a complex result of multiple features, as argued by (Knoben et al., 2020), which challenges the isolation of the effect of 
individual features, (iii) the non-use of the appropriate catchment features that possibly have significant relationships to KGE, and/or 
by (iv) the possibility that the used catchments have limited variability with regard to these features. An example of the latter argument 
is the aridity index, often identified as a significant factor influencing model performance (Bai et al., 2015; De la Fuente et al., 2023; 

Fig. 10. Types and numbers of features with significant relationships (p-value < 0.05), for at least half of the models, with model performance 
(KGE) in validation. 
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Massmann, 2020; Poncelet et al., 2017), which is not the case in our study area, likely because all catchments have an aridity index 
below 0.5. 

Regarding the observed significance of the period-dependent hydro-climatic features in relation to model performance, this result 
supports the findings of (Bisselink et al., 2016; Mathevet et al., 2020) for the calibration-related features, and (Coron et al., 2012; 
Dakhlaoui et al., 2017; Merz et al., 2011; Motavita et al., 2019) for calibration/validation-related features, highlighting the model 
performance dependency on hydro-climatic characteristics in calibration and validation periods. 

Fig. 11 presents the details of Fig. 10. These results demonstrate that the models respond similarly to the variations of some features 
but differently to others, presumably due to the differences in the models’ structures. Nevertheless, the findings highlight that:  

− The linearity between rainfall and runoff is the most significant factor influencing model performance and proves beneficial for all 
the hydrological models; the stronger this correlation, the easier the catchment is modeled. This corroborates the findings of 
(Bisselink et al., 2016) who concluded, using 7 precipitation products as inputs for one daily model applied to four catchments, that 
model performance tends to improve with increasing linearity between monthly rainfall and observed runoff, on the condition that 
rainfall variability remains within acceptable limits.  

− The calibration data richness in terms of its content of wet and dry years relative to precipitation and runoff is of great significance 
to model performance; a conclusion that was previously stated by (Gan et al., 1997) who attributed good model performance to 
data containing both low and high flows which provide sufficient information for the models during calibration. In line with this 
discussion, (Jakeman and Hornberger, 1993) attributed the high likelihood of reliable parameter estimation to the richness of 
information contained in the used data in terms of hydrologic variability. Our results also show that, interestingly, this remains 
valid even if the calibration data is only relatively richer than the validation data and that dry conditions, specifically those related 
to precipitation, seem to have a positive greater impact on the performance compared to wet conditions. This latter observation 
agrees with (Li et al., 2012; Vaze et al., 2010) findings even in Australia’s context, and hints at the more useful information 
contained in dry periods, compared to wet periods, for model calibration.  

− We found that if the annual runoff variability – represented by the annual runoff standard deviation – is larger during calibration 
than in the validation period, the hydrological model tends to perform poorly. We hypothesize that this is the case for certain 
models due to the possibility that they may capture random fluctuations in the calibration data that do not necessarily relate to the 
underlying hydrological processes. Relevant to this observation, (Poncelet et al., 2017) revealed that, independently of the cali
bration and validation periods, the annual variability of runoff flashiness has a negative impact on model performance. 

Another factor that influences catchment hydrology, and would potentially affect model performance, is the process of snowmelt 
(Boudhar et al., 2009; Hanich et al., 2022; López-Moreno et al., 2023; Singh and Muñoz-Arriola, 2021). For this reason, the catchments 
were selected with no permanent snow cover class to limit the snow influence since the hydrological models were assessed without a 
snowmelt module. The choice of not using a snow component aligns with the main objective of this work which is to evaluate the 
performance of the hydrological models as they are in terms of complexity and structure. Nonetheless, since some studied catchments 
belong to the Atlas Mountains, we investigated the effect of snowmelt on model performance by comparing the average KGE of the 
snowmelt-affected catchments and the non-snowmelt-affected ones. The result of this comparison and the classification method of the 
snowmelt-affected catchments are provided in the Supplementary Material. Fig. S1 in Supplementary Material shows that model 
performance, on average, is worse in snowmelt-affected catchments than in the non-snowmelt-affected catchments. This finding 
highlights the importance, particularly for hydrological prediction, of the numerous research efforts carried out for the estimation of 
snow-related parameters in the Atlas Mountains (Baba et al., 2021; Bouamri et al., 2021; Bousbaa et al., 2022; Marchane et al., 2015; 
Rhoujjati et al., 2023) and points to the possible added value of including a snow component in hydrological models when the primary 
research objective is the study of individual mountainous catchments or the improvement of their discharge simulations. 

Fig. 11. Absolute value of Spearman correlation between model performance (KGE) in validation and catchment features. Only correlations with p- 
value < 0.05 for at least half of the models are shown. The characteristics in violet present a negative correlation, while those in black exhibit a 
positive one. These features are described in Appendix A. 
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4.5. Models’ performance with regard to different precipitation forcing data 

The models’ performance dependency on precipitation-related features further emphasizes the need for evaluating the models’ 
responses to various rainfall products. So, besides the observed rainfall input, the eight hydrological models were forced by monthly 
precipitation from ERA5, CHIRPS, and PERSIANN-CDR, and the obtained results in the validation period are displayed in Fig. 12. 

From a first visual inspection of this figure, it appears that, for all the models, the overall performance degrades gradually when 
forced by observed rainfall to ERA5, then to CHIRPS, and finally to PERSIANN-CDR. To verify this observation, we used the same 
metric MCCPS previously employed to evaluate and compare the models with each other, yet this time, the objective is to compare, for 
each model, the responses of the different precipitation products used. 

Fig. 13 confirms the finding that all the used hydrological models react similarly to the various precipitation products in question 
and demonstrates that for the eight hydrological models used, the overall performance obtained when using ERA5 precipitation 
product as forcing data is better than that of CHIRPS and that PERSIANN-CDR yields the poorest hydrological performance. This figure 
also shows that the observed rainfall remains, despite the sparsity of the rainfall network, the most valuable source of input for the 
hydrological models in the study area. 

It is important to note that, here again, this ranking remains valid in the case of using the average KGE as the performance metric 
instead of MCCPS. 

In an attempt to explain the consistency in the ranking of each model’s responses corresponding to the three precipitation products, 
we employed seven continuous statistical indices:  

− Six metrics, commonly used in rainfall products evaluation studies (Benkirane et al., 2023; Stefania Camici et al., 2020; Ouatiki 
et al., 2017; Rachidi et al., 2023; Saouabe et al., 2020), relating precipitation products to observed rainfall at the catchment scale: 
Kling-Gupta efficiency score (KGE_P-Pobs), Pearson correlation coefficient (CC_P-Pobs), a bias-related metric (Bias*, see Table 6), 
root mean square error (RMSE_P-Pobs), mean absolute error (MAE_P-Pobs), and Nash-Sutcliffe efficiency (Nash and Sutcliffe, 1970) 
(NSE_P-Pobs).  

− One metric relating precipitation products to observed runoff: Pearson correlation coefficient (CC_P-Qobs). 

It is important to note that the evaluation of the precipitation products is beyond the scope of this paper. For information purposes, 
the boxplots of these seven indices, for ERA5, CHIRPS, and PERSIANN-CDR, across the 30 studied catchments can be found in 
Appendix D. 

For all the models, we investigated for each catchment the compatibility between (i) the ranking of the precipitation products with 
regard to each metric, and (ii) the ranking of models’ responses to these products when used as forcing data. Specifically for each 
model, a catchment receives a compatibility score of 1 for a given metric if the ranking of the precipitation products according to that 
metric matches the ranking of the hydrological performances associated with these products. Otherwise, the compatibility score is 0. 
For each metric and model, we subsequently calculate the cumulative compatibility score by summing the number of catchments that 

Fig. 12. Models’ performance during validation as forced by observed rainfall, ERA5, CHIRPS, and PERSIANN-CDR precipitation products.  
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demonstrate compatibility with respect to that specific metric. Therefore, for each model, the cumulative compatibility score of a given 
metric ranges potentially from 0 to 30, and the metric with the highest cumulative score is considered the most explanatory metric for 
the hydrological performance of the precipitation products. 

Fig. 14 shows that Pearson correlation between precipitation products and observed runoff (CC_P-Qobs) is by far the most 
explanatory index for the uniformity in the models’ behavior when forced by the various precipitation products since it has the highest 
cumulative compatibility score for 7 out of 8 models, meaning that the superior hydrological performance of ERA5 (and of CHIRPS 
compared to PERSIANN-CDR) for all the models is due to its relatively high linear correlation with the observed streamflow of the 
studied catchments. This finding is supported by the evidence we found in the previous analysis in which we found that this feature is 
the most important predictor for model performance, which reinforces the similar results found by (Bisselink et al., 2016). However, 

Fig. 13. Radar chart of models’ performances in validation when forced using observed rainfall, ERA5, CHIRPS, and PERSIANN-CDR precipita
tion products. 

Table 6 
Bias-related metric used for precipitation products 
assessment.  

Notation Formula 

Bias*  Bias∗ = 1 − |1 − Bias| (2)
Bias  Bias = μS(P)/μo(P) (3)

μo(P) represent the mean of the observed rainfall while and 
μs(P) represent the mean of the simulated rainfall.  

Fig. 14. Radar chart of the cumulative compatibility score of the seven used statistical metrics for all the hydrological models.  
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this result does not align with the findings of (Stefania Camici et al., 2020) in which they concluded, using a single daily model that was 
forced by inputs from three precipitation products across more than 1300 catchments in Europe, that RMSE_P-Pobs and Bias are the 
most reliable indices to select the best-performing precipitation product for hydrological modeling. We hypothesize that this was the 
case either (i) because, for each used product, RMSE_P-Pobs and Bias were monotonically correlated to CC_P-Qobs in the context of 
their study area, or (ii) because the structure of MISDc (Brocca et al., 2011) – the daily hydrological model used in their study – differs 
greatly from that of the eight monthly models we employed. 

5. Conclusions 

The aim of this large-sample hydrology study was to assess the performance of eight monthly lumped hydrological models (GR2M, 
XM, WM, VUB, abcd, DWBM, GR5M, and Wapaba) in 30 Moroccan catchments. As part of this assessment, we examined how model 
performance, expressed as KGE, relates to model complexity, model structure, and catchment features (more than 200 features were 
used), and we investigated how the employed models react to three rainfall products (ERA5, CHIRPS, and PERSIANN-CDR) when used 
as forcing input data. The main findings can be summarized as follows, with each accompanied by its practical implication:  

− Across all catchments, no hydrological model exhibited consistently superior or inferior performance. Additionally, using a new 
comparative measure (MCCPS) that offers a more encompassing comparison between the models, Wapaba was found to be the best- 
ranked model in terms of overall performance, followed by abcd and GR5M that yielded comparable results, then by DWBM, 
GR2M, XM, VUB, and WM that scored a null MCCPS. Implication: Therefore, when possible, it is important to consider more than 
one hydrological model in runoff prediction.  

− Model performance is affected more by model structure and how runoff generation is described than by model complexity. In 
particular, the number of storages as well as the number of parameters included in direct runoff calculation seemed to affect 
positively the model performance. Additionally, the relatively good performance of the 2-parameter model GR2M and bad per
formance of the 3-parameter model WM were attributed respectively to (i) the detailed description of the hydrological processes 
and (ii) the simplistic linear representation of the runoff generation process with regard to precipitation. Implication: Therefore, in 
model development, it is crucial to place greater emphasis on the mathematical equations used to describe runoff generation – with 
the avoidance of linear relationships between runoff and precipitation – rather than solely relying on using more free parameters.  

− Contrary to non-hydro-climatic factors such as the physiographic characteristics, hydro-climatic features especially the calibration- 
related and the calibration/validation-related features are the only type of characteristics that had a statistically significant link to 
model performance. Implication: Therefore, in large-sample hydrology studies, it is worthwhile to test various calibration/vali
dation scenarios for each of the studied catchments, and then apply the most suitable scenario for each catchment. This proposed 
approach is in opposition to the conventional one employed in this study which uses a single scenario for all the catchments.  

− Model performance is significantly and positively related to the richness of rainfall and runoff calibration data regarding its content 
of wet and dry years, both in absolute terms and in calibration relative to validation, with the particularity of the dry conditions 
being more impactful than the wet ones. Implication: It is then important to find the most relevant index, to model performance, to 
characterize this richness.  

− In response to varied rainfall forcing data, all the models exhibited a consistent pattern: superior performance with ERA5 compared 
to CHIRPS, and lower performance with PERSIANN-CDR. Implication: Within the study area and in situations where observed 
rainfall data is unavailable and there is limited capacity to analyze hydrological model responses to different rainfall products, the 
use of ERA5 precipitation product is recommended.  

− The primary factor that significantly impacts model performance is the linear relationship between rainfall and runoff; a stronger 
linear correlation between these two variables results in enhanced model performance. Implication: Thus, in hydrological appli
cations, it is advantageous for the performance of hydrological models to base the choice of (i) a method for filling missing rainfall 
values, (ii) a technique for spatially interpolating rainfall data, or (iii) a precipitation product for forcing hydrological models, on 
the highest linear correlation with the observed runoff. 
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Appendix A. List of catchment Features  

Table A1 
List of the used catchment features in the correlation analysis.  

Category of feature Feature Abbreviation Unit 

Morphometric, Topographic, and Hydrographic 
Network Characteristics 

Area A Km2 

Perimeter Pr Km 
Gravelius Compactness Index Gc - 
Maximum Catchment Elevation Z_max m 
Mean Catchment Elevation Z_mean m 
Median Catchment Elevation Z_median m 
Minimum Catchment Elevation Z_min m 
Catchment Elevation Range Z_range m 
Mean Catchment Slope S_mean - 
Median Catchment Slope S_median - 
Longest Flow Path Stream_L Km 
Stream Slope Stream_S - 
Maximum Stream Order SO_max - 
Total Length of Streams L_total Km 
Drainage Density DD Km/ 

Km2 

Hypsometric Integral HI - 
Time of Concentration Tc h 

Catchment Coordinates and its Relative Location to 
Rainfall Stations 

Catchment Latitude Latitude_C ◦

Catchment Longitude Longitude_C ◦

Outlet Latitude Latitude_O ◦

Outlet Longitude Longitude_O ◦

Number of Rainfall Stations NB_stations - 
Rain Gauge Density Stations_density Km2 

Distance to the Nearest Station D_nearest_station Km 
Hydro-Climatic Features Mean Annual Precipitation P mm 

Annual Precipitation Standard deviation P_std mm 
Annual Precipitation Coefficient of variation P_cv - 
Percentage of Wet years with regard to Precipitation %_Wet_P_Z-score - 
Percentage of Dry years with regard to Precipitation %_Dry_P_Z-score - 
Percentage of Normal years with regard to 
Precipitation 

%_Normal_P_Z-score - 

Dry Precipitation-Wet Precipitation difference %_Dry_P-Wet_P_Z-score - 
Wet Precipitation-Normal Precipitation ratio %_Wet/Normal_P_Z-score - 
Dry Precipitation-Normal Precipitation ratio %_Dry/Normal_P_Z-score - 
Winter Rainfall P_winter mm 
Spring Rainfall P_spring mm 
Summer Rainfall P_summer mm 
Fall Rainfall P_fall mm 
Percentage of missing monthly runoff %_Missing_Q - 
Mean Annual runoff Q mm 
Annual runoff Standard deviation Q_std mm 
Annual runoff Coefficient of variation Q_cv mm 
Percentage of Wet years with regard to Runoff %_Wet_Q_Z-score - 
Percentage of Dry years with regard to Runoff %_Dry_Q_Z-score - 
Percentage of Normal years with regard to Runoff %_Normal_Q_Z-score - 
Dry Runoff-Wet Runoff difference %_Dry_Q-Wet_Q_Z-score - 
Wet Runoff-Normal Runoff ratio %_Wet/Normal_Q_Z-score - 
Dry Runoff-Normal Runoff ratio %_Dry/Normal_Q_Z-score - 
Winter Runoff Q_winter mm 
Spring Runoff Q_spring mm 
Summer Runoff Q_summer mm 
Fall Runoff Q_fall mm 
Combined Wet and Dry percentages for Precipitation 
and Runoff 

%_Wet+Dry_Q+P_Z-score - 

Annual Potential Evapotranspiration PET mm 
Winter Potential Evapotranspiration PET_winter mm 
Spring Potential Evapotranspiration PET_spring mm 

(continued on next page) 
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Table A1 (continued ) 

Category of feature Feature Abbreviation Unit 

Summer Potential Evapotranspiration PET_summer mm 
Fall Potential Evapotranspiration PET_fall mm 
Mean annual Temperature T ◦C 
Annual Temperature Standard deviation T_std ◦C 
Annual Temperature Coefficient of variation T_cv - 
Percentage of Cold years with regard to Temperature %_Cold_T_Z-score - 
Percentage of Hot years with regard to Temperature %_Hot_T_Z-score - 
Percentage of Normal years with regard to 
Temperature 

%_Normal_T_Z-score - 

Hot Temperature -Cold Temperature difference %_Hot_T-Cold_T_Z-score - 
Cold Temperature -Normal Temperature ratio %_Cold/Normal_T_Z-score - 
Hot Temperature -Normal Temperature ratio %_Hot/Normal_T_Z-score - 
Winter Temperature T_winter ◦C 
Spring Temperature T_spring ◦C 
Summer Temperature T_summer ◦C 
Fall Temperature T_fall ◦C 
Combined Richness for Precipitation and 
Temperature 

%_Wet+Dry_P+%_Cold+Hot_T_Z- 
score 

- 

Aridity Index P/PET - 
Winter Aridity Index P/PET_winter - 
Spring Aridity Index P/PET_spring - 
Summer Aridity Index P/PET_summer - 
Fall Aridity Index P/PET_fall - 
Runoff Coefficient Q/P - 
Winter Runoff Coefficient Q/P_winter - 
Spring Runoff Coefficient Q/P_spring - 
Summer Runoff Coefficient Q/P_summer - 
Fall Runoff Coefficient Q/P_fall - 
Pearson correlation between monthly Precipitation 
and Runoff 

CC_Pearson_P-Q - 

Ratio of the standard deviation of annual runoff and 
precipitation 

Q_std/P_std - 

Hydro-Climatic Features in Calibration The Hydro-Climatic Features during calibration. They are labeled using the same notations as the Hydro- 
Climatic Features, with an added ", cal" suffix. 

Hydro-Climatic Features Disparity: Calibration vs. 
Validation 

The Hydro-Climatic Features’ values during calibration minus their values in the validation period. They 
are labeled using the same notations as the Hydro-Climatic Features, with an added ", cal/val" suffix. 

Land Cover Classes Temporal average of Shrub cover percentages Shrub_% - 
Temporal average of Grass cover percentages Grass_% - 
Temporal average of Barren cover percentages Barren_% - 
Temporal standard deviation of Shrub cover 
percentage 

Shrub_std - 

Temporal standard deviation of Grass cover 
percentage 

Grass_std - 

Temporal standard deviation of Barren cover 
percentage 

Barren_std - 

Mean absolute year-to-year fluctuations of Shrub 
cover percentage 

Shrub_MAy2y - 

Mean absolute year-to-year fluctuations of Grass 
cover percentage 

Grass_MAy2y - 

Mean absolute year-to-year fluctuations of Barren 
cover percentage 

Barren_MAy2y - 

Climate Classes Percentage of Arid Desert Climate BW_Climate_% - 
Percentage of Arid Steppe Climate BS_Climate_% - 
Percentage of Temperate Climate with Dry Summer Cs_Climate_% - 
Percentage of Cold Climate with Dry Summer Ds_Climate_% - 
Percentage of Arid Climate B_Climate_% - 
Percentage of Temperate Climate C_Climate_% - 
Percentage of Cold Climate D_Climate_% - 

Soil Textures and Properties Percentage of Clay Loam soil texture at 0–20 cm 
depth 

ClayLoam_0–20 cm_% - 

Percentage of Sandy Clay Loam soil texture at 
0–20 cm depth 

SandyClayLoam_0–20cm_% - 

Percentage of Sandy Loam soil texture at 0–20 cm 
depth 

SandyLoam_0–20cm_% - 

Percentage of Clay Loam soil texture at 20–50 cm 
depth 

ClayLoam_20–50 cm_% - 

Percentage of Sandy Clay Loam soil texture at 
20–50 cm depth 

SandyClayLoam_20–50cm_% - 

Percentage of Sandy Loam soil texture at 20–50 cm 
depth 

SandyLoam_20–50cm_% - 

(continued on next page) 
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Table A1 (continued ) 

Category of feature Feature Abbreviation Unit 

Field Capacity at 0–20 cm FieldCapacity_0–20 cm - 
Field Capacity at 20–50 cm FieldCapacity_20–50 cm - 
Saturated Hydraulic Conductivity at 0–20 cm Ks_0–20 cm mm/h 
Saturated Hydraulic Conductivity at 20–50 cm Ks_20–50 cm mm/h  

Appendix B. Runoff and evapotranspiration equations used in VUB model 

S+
t− 1 = max(St− 1, 0) (B.1)  

ETt = PETt ×

⎛

⎜
⎝1 − a3

(Pt+S+t− 1)
PETt

⎞

⎟
⎠ (B.2)  

Qt = a1 × S+
t− 1 + a2 ×

̅̅̅̅̅̅̅̅̅

S+
t− 1

√

×

⎛

⎜
⎝Pt − PETt ×

⎛

⎜
⎝1 − e−

Pt
PETt

⎞

⎟
⎠

⎞

⎟
⎠ (B.3)  

St = St− 1 + Pt − ETt − Qt (B.4) 

St: Soil moisture storage level, St− 1: Soil moisture storage level of the previous month, 
ETt: Evapotranspiration, PETt: Potential evapotranspiration, Pt: Precipitation 
a1, a2, and a3 are the model’s parameters and represent respectively the slow runoff coefficient, fast runoff coefficient, and 

evapotranspiration coefficient. 

Appendix C. Calibration KGE performance in the different studied catchments for all the hydrological models 

. 

Fig. C.1. Boxplots of KGE calibration performance in the different studied catchments for all the hydrological models.  

Appendix D. Results of precipitation products assessment at the catchments’ scale 

.  
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Fig. D.1. Performances of the precipitation products ERA5, CHIRPS, and PERSIANN-CDR with respect to the observed rainfall data, and their 
correlation with the observed runoff data, over the study catchments during the period of analysis. 

Appendix E. Supporting information 

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.ejrh.2024.101899. 
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Coron, L., Andréassian, V., Perrin, C., Lerat, J., Vaze, J., Bourqui, M., Hendrickx, F., 2012. Crash testing hydrological models in contrasted climate conditions: an 
experiment on 216 Australian catchments. Water Resour. Res. 48 (5), 5552. https://doi.org/10.1029/2011WR011721. 

Dakhlaoui, H., Ruelland, D., Tramblay, Y., Bargaoui, Z., 2017. Evaluating the robustness of conceptual rainfall-runoff models under climate variability in northern 
Tunisia. J. Hydrol. 550, 201–217. https://doi.org/10.1016/J.JHYDROL.2017.04.032. 

Darbandsari, P., Coulibaly, P., 2020. Inter-comparison of lumped hydrological models in data-scarce watersheds using different precipitation forcing data sets: case 
study of Northern Ontario, Canada. J. Hydrol.: Reg. Stud. 31, 100730 https://doi.org/10.1016/J.EJRH.2020.100730. 

De la Fuente, L.A., Gupta, H.V., Condon, L.E., 2023. Toward a multi-representational approach to prediction and understanding, in support of discovery in hydrology. 
Water Resour. Res. 59 (1), e2021WR031548 https://doi.org/10.1029/2021WR031548. 
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Gupta, H.V., Perrin, C., Blöschl, G., Montanari, A., Kumar, R., Clark, M., Andréassian, V., 2014. Large-sample hydrology: a need to balance depth with breadth. 
Hydrol. Earth Syst. Sci. 18, 463–477. https://doi.org/10.5194/hess-18-463-2014. 

Hadri, A., Saidi, M.E.M., Saouabe, T., El Fels, A.E.A., 2021. Temporal trends in extreme temperature and precipitation events in an arid area: case of Chichaoua 
Mejjate region (Morocco). J. Water Clim. Change 12 (3), 895–915. https://doi.org/10.2166/WCC.2020.234. 

Hanich, L., Chehbouni, A., Gascoin, S., Boudhar, A., Jarlan, L., Tramblay, Y., et al., 2022. Snow hydrology in the Moroccan Atlas Mountains. J. Hydrol.: Reg. Stud. 42, 
101101 https://doi.org/10.1016/J.EJRH.2022.101101. 

Hapuarachchi, H.A.P., Bari, M.A., Kabir, A., Hasan, M.M., Woldemeskel, F.M., Gamage, N., et al., 2022. Development of a national 7-day ensemble streamflow 
forecasting service for Australia. Hydrol. Earth Syst. Sci. 26 (18), 4801–4821. https://doi.org/10.5194/HESS-26-4801-2022. 

Hargreaves, G.H., Samani, Z.A., 1985. Reference Crop Evapotranspiration from Temperature. Appl. Eng. Agric. 1 (2), 96–99. https://doi.org/10.13031/2013.26773. 
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