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A R T I C L E I N F O

Edited by Marie Weiss

Keywords:
UAS
SfM
Machine learning
Canopy fuels
Biomass
California forests

A B S T R A C T

There is a pressing need for well-informed management to reduce wildfire hazard and restore fire's beneficial
ecological role in the Mediterranean- and temperate-climate forests of California, USA. These efforts rely upon
the accessibility of high spatial and temporal resolution data on biomass and canopy fuel parameters such as
canopy base height (CBH), mean canopy height, canopy bulk density (CBD), canopy cover, and leaf area index
(LAI). Remote sensing using unoccupied aerial system Structure-from-Motion (UAS-SfM) presents a promising
technology for this application due to its accessibility, relatively low cost, and possibility for high temporal
cadence. However, to date, this method has not been studied in the complex mosaic of forest types found across
California. In this study we examined the capacity of structural and multispectral information obtained from
UAS-SfM, in conjunction with machine learning methods, to model aboveground biomass and forest canopy fuel
structural parameters using an area-based approach across multiple sites representing a diversity of forest types
in California.
Based on correlations with field measurements, fuel parameters separated into vertical (biomass, CBH, and

mean height) and horizontal (LAI, CBD, canopy cover) groups. UAS-SfM random forest models performed well
for modelling the vertical structure canopy fuels parameters (R2 0.69–0.75). These models exhibited strong
performance in comparison to ALS, as well as when transferred to a novel site. Vertical structure predictors were
prominent in these models, and did not improve with the addition of spectral predictors. UAS-SfM random forest
models of horizontal structure parameters mainly used raster-based spectral indices (primarily NDVI) and had
relatively low performance (R2 0.49–0.59). In addition, these models underperformed ALS and had poor per-
formance when applied to a novel site. When applied to a region with widespread UAS-SfM coverage, models
from both groups successfully produced contiguous maps that could be used for modelling fire behavior or in
management decision making and monitoring.
These findings indicate that UAS-SfM, without the need for multispectral sensors, is well suited for mapping

area-based vertical-structure canopy parameters across diverse landscapes supporting a wide range of forest
types. In contrast, the identification of spectral mean variables for modelling horizontal structure canopy fuels
suggests the potential of multi- or hyperspectral sensors or high-resolution satellite imagery for meeting man-
agement information needs.

* Corresponding author.
E-mail address: sean.reilly@ouce.ox.ac.uk (S. Reilly).

Contents lists available at ScienceDirect

Remote Sensing of Environment

journal homepage: www.elsevier.com/locate/rse

https://doi.org/10.1016/j.rse.2024.114310
Received 10 November 2023; Received in revised form 28 June 2024; Accepted 3 July 2024

mailto:sean.reilly@ouce.ox.ac.uk
www.sciencedirect.com/science/journal/00344257
https://www.elsevier.com/locate/rse
https://doi.org/10.1016/j.rse.2024.114310
https://doi.org/10.1016/j.rse.2024.114310
https://doi.org/10.1016/j.rse.2024.114310
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2024.114310&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Remote Sensing of Environment 312 (2024) 114310

2

1. Introduction

Wildfires shape many ecosystems across the globe, giving rise to
highly heterogeneous landscapes due to the spatial and temporal vari-
ation inherent in natural wildfire behavior (Beaty and Taylor, 2008;
Hessburg et al., 2015; Staver et al., 2011). Fire is a naturally self-limiting
process whereby previous burns act as barriers to subsequent fires due to
the removal of fuels, defined as biomass available for consumption
(Collins et al., 2009; Husari et al., 2006; Keeley et al., 1999; Minnich,
1983; Park et al., 2021; Parks et al., 2015). However, when fire is sup-
pressed or excluded, fuel loads continually rise, eventually surpassing
historical levels and eliminating controls on future fire spread or in-
tensity (Prichard et al., 2021; Stephens and Ruth, 2005). As a result of
historical suppression practices in the United States, fires now burn at
higher severity and on broader scales, despite intensifying suppression
efforts (Dennison et al., 2014; Miller et al., 2012; Miller et al., 2009).
Fuel loads in forests of California, USA are a key driver of high-

severity fire and are the only parameter governing fire behavior over
which managers may exert influence (Duff et al., 2017; Parks et al.,
2018). Forest treatments, such as mechanical thinning of the understory,
fire breaks, and prescribed fire, can reduce overall fuel quantities and
disrupt the spatial continuity of fuels (Agee and Skinner, 2005; Prichard
et al., 2021; Stephens and Moghaddas, 2005). To achieve widespread
fire hazard mitigation benefits, decision making for treatment optimi-
zation and targeting relies upon detailed understanding of fire behavior
across the landscape, which, in turn, depends on spatially explicit maps
of fuels and/or fuels-related forest structural parameters (Collins et al.,
2010; Gale et al., 2021). For example, the initiation of crown torching
depends upon vertical forest structural components, such as canopy base
height (CBH), while horizontal canopy structural attributes, such as
canopy bulk density (CBD) and canopy cover (CC), govern sustained
canopy ignition and spread among crowns (Agee and Skinner, 2005; Van
Wagner, 1977). Aboveground tree biomass presents an additional
parameter of interest for informing treatment selection due to the high
imperative for maximizing stable carbon sequestration in the face of
climate change (Foster et al., 2020; Hunter and Robles, 2020; Mog-
haddas et al., 2018).
Measuring these forest attributes presents a significant challenge due

to their inherent spatial and temporal variability (Alonso-Rego et al.,
2021; Arellano-Pérez et al., 2018). Consequently, remote sensing ap-
proaches provide an advantage over traditional field-based manual
sampling approaches in that they can estimate continuous fuels pa-
rameters over broad extents and are unencumbered by terrain or vege-
tative barriers to site access. Spaceborne passive sensors generally
approximate fuel distributions through the application of fuel density
models to observed vegetation classes (Aragoneses and Chuvieco, 2021;
Arroyo et al., 2008; Shaik et al., 2022; Stefanidou et al., 2022). These
methods are constrained by their reliance on externally-derived fuel
models with irregular updates, vegetation maps derived from coarse
resolution satellite-based optical imagery, and their inability to account
for variation in canopy structure or fuel distribution within a vegetation
class, a significant limitation in the structurally-complex forests of Cal-
ifornia. Alternatively, methods utilizing active sensors, namely airborne
laser scanners (ALS) or lidar, provide a means to measure forest struc-
ture and fuel loads directly over regional spatial scales (Alonso-Rego
et al., 2021; Andersen et al., 2005; García-Cimarras et al., 2021; Hillman
et al., 2021b; Kramer et al., 2014; Rocha et al., 2023). However, high
cost and equipment requirements of ALS severely limit the capacity of
this approach to provide either the spatial coverage or the frequency of
repeated measurements required to inform ongoing management of
dynamic fuel loads and recurrent fire events at plot to stand scales
(Chuvieco et al., 2020; Filippelli et al., 2019; Szpakowski and Jensen,
2019). While lidar mounted on an unoccupied aerial system (UAS) could
reduce this barrier, these systems cannot provide spectral data and are
not yet sufficiently cost effective to be readily operationalizable in
management settings (Gale et al., 2021; Hillman et al., 2021a).

UAS Structure-from-Motion (SfM), the photogrammetric derivation
of 3D spatial information from overlapping images, presents a promising
technology that could fill this need for readily-acquirable spatial data
that directly measures canopy structure and fuel loads at the stand scale
(Lowe, 2004; Westoby et al., 2012). The advent of commercial SfM
software, coupled with the development of UAS platforms, has signifi-
cantly reduced the barriers to obtaining and processing highly accurate
structural data (Aasen et al., 2018; Adjidjonu and Burgett, 2021; Agüera-
Vega et al., 2017; Fraser and Congalton, 2018). At the stand scale, the
relatively low cost and ease of imagery acquisition make UAS-SfM well
suited for mapping dynamic ecological forces like fuel load accumula-
tion and interannual wildfire events (Chamberlain et al., 2021), as well
as effects of management activities (e.g., prescribed burns, thinning).
This method has been successfully employed in a variety of ecological
applications that measure vegetation structure (e.g., Fu et al., 2021;
Navarro et al., 2020; Swayze et al., 2021), including aspects of fire
ecology and management (Szpakowski and Jensen, 2019). When
coupled with the appropriate sensor, the capacity of UAS-SfM to collect
coincidental multispectral data provides additional capability in
measuring forest structure and health beyond the limits of lidar data or
Red-Green-Blue UAS-SfM (e.g., Abdollahnejad and Panagiotidis, 2020;
Reilly et al., 2021).
The capacity of UAS-SfM to measure canopy fuel parameters has only

received limited investigation to date (e.g., Shin et al., 2018), especially
in California forests (e.g., Forbes et al., 2022; Lamping et al., 2021). The
majority of previous related research has focused on coniferous forests
(e.g., Alonzo et al., 2018; Sun et al., 2023) or plantation sites (e.g.,
Chandrasekaran et al., 2022) to measure specific canopy parameters.
These studies have achieved strong results due to the ease of tree seg-
mentation under these forest conditions. However, current tree seg-
mentation algorithms fail to segregate individual tree crowns when
applied to more complex mosaic canopies, such as oak woodlands (e.g.,
Chávez-Durán et al., 2024). Consequently, there is a large research gap
for UAS-SfM methods, such as area-based approaches, that are capable
of modelling canopy fuel loads across a wide range of complex forest
types without the prerequisite step of tree segmentation.
In our past research in California forests, we found UAS-SfM pos-

sesses the capacity to measure upper-canopy structure and to detect the
persistent influence of burn severity on ecosystem structure and vege-
tation recovery (Reilly et al., 2021). However, our and other research
has found the passive sensor mainly detects upper-canopy photons,
which hampers UAS-SfM's ability to detect subcanopy structure or
directly measure key fuel attributes related to internal structure or
lower-canopy strata, such as ladder fuels, CBD, or CBH (Forbes et al.,
2022; Reilly et al., 2021; Shin et al., 2018). Modelling approaches to
estimate stand parameters can overcome these limitations in photo-
grammetric techniques by leveraging inherent relationships among
distinct components of canopy structure (Filippelli et al., 2019). The
capability of this approach to meet the aforementioned research gap in
fuels mapping particularly needs to be assessed across a broad spectrum
of forest types that characterize heterogeneous forestlands like the ones
found across California. Consequently, this paper explores the capability
of multispectral UAS-SfM and area-based machine learning to model
tree aboveground biomass and canopy fuel parameters across a set of
study sites containing forest types representative of the diversity found
in California.
Specifically, we address the following objectives:

1. Across a diverse range of forest types, evaluate the accuracy of ma-
chine learning models produced using UAS-SfM data to estimate tree
aboveground biomass and five important canopy fuel structural pa-
rameters: mean height, canopy base height (CBH), canopy cover
(CC), canopy bulk density (CBD), and leaf area index (LAI).

2. Compare the accuracy of the best modelling technique produced
using UAS-SfM data with the same models produced using ALS data,
which has deeper canopy penetration.
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3. Using the best modelling technique, evaluate model variable selec-
tion and importance.

4. Demonstrate the mapping capability of this modelling approach
when utilized in conjunction with wide coverage UAS-SfM data.

5. Evaluate the accuracy of machine learning models produced using
UAS-SfM data when applied to a novel site.

2. Methods

2.1. Study sites

We collected UAS-SfM and field data at four sites across northern
California that span a wide range of ecosystem types. Data were
collected in the summer from 2018 through 2021. LaTour Demonstra-
tion State Forest covers 3550 ha in the Cascade mountains of Shasta
County ranging in elevation from 1150 m to 2050 m (Fig. 1A). The site is
in the Cascades ecoregion (Level 3; Shasta County; Griffith et al., 2016),
and populated by mixed conifer forests, with white fir (Abies concolor) as
the most prevalent species especially at higher elevations (Berbach et al.,
1995). The site has active stand thinning and some plots had open
canopies. We sampled 27 preexisting 0.04-ha circular California Forest
Inventory (CFI) plots between 7 July and 17 July 2020. Jackson
Demonstration State Forest covers 19,700 ha acres in the Coast Range
ecoregion (Mendocino County) ranging in elevation from 24 m to 670 m
(Fig. 1B). The site predominantly contains second-growth coast redwood
(Sequoia sempervirens) and Douglas fir (Pseudotsuga menziesii) that are
<120 years old with some isolated remaining old-growth groves and
residual trees (Eng, 2015). Most plots had dense, closed canopies. We
sampled 10 0.04-ha circular CFI plots between 15 June and 2 July 2020
and an additional 17 CFI plots between 8 July and 12 July 2021. Pep-
perwood Preserve covers 1261 ha in the Central California Foothills and
Coastal Mountains ecoregion (Sonoma County) ranging in elevation
from 61 m to 475 m elevation. The site is vegetated with a diverse
mosaic of species assemblages including Douglas fir forest, oak wood-
lands, chaparral, and grasslands (Ackerly et al., 2020; Evett et al., 2013).
Note that Pepperwood was almost completely burned in the 2017 Tubbs
Fire, with a range from low to high severity across the site. We sampled
22 plots between 1 Sept and 15 Oct 2019. These 0.04-ha square plots

have been sampled since 2013 as part of a Sentinel plot network at the
site, and the ground truth data for this study were taken from summer
2018 field work (Ackerly et al., 2013; Oldfather et al., 2016). The final
site, Saddle Mountain Open Space Preserve, covers 390 ha and is 8 km
southeast of Pepperwood. The site has a similar vegetation assemblage
to its neighboring Pepperwood site. We established and sampled 22
0.04-ha circular plots between 4 August and 9 August 2020. These plots
were established within 60-m of the road and collected as paired points
in different forest types. Pepperwood and Saddle Mountain have a
Mediterranean climate, whereas Latour and Jackson have a climate
associated with temperate coniferous forests. For the sites with preex-
isting networks of plots (CFI for Jackson and LaTour, Sentinel plot
network at Pepperwood), we used a stratified random sampling of plots
near roads and away from powerlines, with strata determined by a
Principal Components Analysis on ALS structure metrics, adding in an
additional consideration of Tubbs burn severity for Pepperwood.
Our plot size was dictated by the preexisting sampling network

employed by managers and researchers at our sites for their long-term
studies. For management applications and understanding of fire
behavior, study plot resolution needs to capture fine-scale forest varia-
tion and connectivity. Our small plot size of 0.04-ha, therefore, is well
suited for mapping the heterogeneity of biomass and fuels across a site as
required to address our research aims (Shugart et al., 2010). The data
collected from this scale of plot, however, should be understood to
represent local conditions, rather than provide representative mea-
surements of the site as a whole.

2.2. Data sources

2.2.1. Field-based measurements
For this study, we collected tree-level measurements of diameter at

breast height (DBH), tree height, and lowest live crown for all stems with
DBH >10 cm. We measured DBH at 1.37 m above the ground on the
uphill side of the trunk. We employed a Laser Technology Impulse 200
LR Rangefinder to determine tree height. Lowest live crown was defined
as the height above the ground of the lowest branch supporting live
vegetation within 2 m of the next highest branch and was measured with
either a tape measure or laser rangefinder, as practical. At Saddle

Fig. 1. Map of study sites (a) LaTour, (b) Jackson, (c) Pepperwood, and (d) Saddle Mountain within California, USA. Red boxes denote UAS flight zone perimeters.
Black points represent field sites. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

S. Reilly et al.



Remote Sensing of Environment 312 (2024) 114310

4

Mountain, we collected all field measurements. At Pepperwood, we
utilized DBH measurements previously collected in 2018 as part of the
Sentinel site monitoring program. At LaTour, we utilized preexisting
DBH and height measurements from a California Department of Forestry
and Fire Protection (CAL FIRE) survey conducted in 2020, supple-
menting as needed with field measurements for plots that had not been
included in their campaign. At Jackson, we also utilized preexisting DBH
and tree height measurements from CAL FIRE collected in 2020. How-
ever, due to the extreme tree height and high canopy cover of the red-
wood forests at that site, tree heights at Jackson cannot be measured
directly. Tree heights, therefore, were estimated from DBH measure-
ments using preexisting CAL FIRE models of the relationship between
DBH and tree height (J. Leddy, personal communication, May 17, 2021).
We computed individual tree aboveground biomass from DBH and
height measurements using the California Air Resource Board's carbon
offset protocols based on the U.S. Forest Service's Forest Inventory and
Analysis Program volume and biomass equations (FIA, 2014). We took
the mean of individual tree measurements for height, aboveground
biomass, and lowest live crown to determine plot-level mean height,
total aboveground biomass, and canopy base height (CBH), respectively.
We calculated the mean of five measurements per plot (center and 7

m from center in cardinal directions) from the LI-COR LAI-2000 Plant
Canopy Analyzer and Forestry Suppliers spherical crown densiometer to
measure leaf area index (LAI) and canopy cover, respectively. Canopy
cover was estimated in cardinal directions at each of the five locations
within the plot, and all cover estimates were averaged for a plot-level
measurement. The LAI-2000 uses a handheld wand to measure the
percentage of radiation passing through the forest canopy in order to
estimate canopy gap fraction and LAI (Keane et al., 2005; Welles and
Norman, 1991). LAI-2000 gap fraction measurements were used to
compute canopy bulk density (CBD) using the equations from Keane
et al. (2005). Keane et al. (2005) conducted destructive sampling at five
sites dominated by conifer trees in the western United States to directly
measure plot level CBD at varying levels of basal area removal. They
modelled the relationship between these measurements and coinciden-
tally collected LAI-2000 measurements as CBD = 0.2231–0.2012
LAI2000A, where LAI2000A represented the mean gap fraction across
five zenith angles. This relationship was found to be significant, but with
a modest R2 of 0.56. When using the LAI-2000, we placed one wand in
open-canopy areas to measure top-of-canopy radiance, and we strived to
take measurements with a second wand within plots during early
morning hours to avoid direct sunlight. Both wands had a 45◦ optic
cover with the opening facing away from the sun. The five LAI estimates
in a plot were averaged to create one plot-level measurement.

2.2.2. UAS-SfM data collection and processing
This study utilized a MicaSense RedEdge-MX multispectral sensor

onboard two UAS platforms. The Micasense sensor detects five spectral
bands: blue (475 nm center, 20 nm bandwidth), green (560 nm center,
20 nm bandwidth), red (668 nm center, 10 nm bandwidth), red edge
(717 nm center, 10 nm bandwidth), and near-IR (840 nm center, 40 nm
bandwidth). At Pepperwood and Saddle Mountain, the sensor was flown
using a SenseFly eBee X fixed-wing UAS platform. We flew Pepperwood
between September 27 to October 15, 2019 and Saddle Mountain on
August 4 and 5, 2020. At Jackson and LaTour, we flew a DJI Matrice 200
(M200) quadcopter UAS platform.We flew Jackson on June 29 to July 2,
2020 and added more sites in July 8–12, 2021. We flew LaTour between
July 11 to 16, 2020. UAS platform selection depended upon the avail-
ability of a suitable location for fixed-wing take-off and landing. The
SenseFly allows for significantly greater mapping coverage per flight but
requires a large soft-landing area free from obstructions. The M200 was
used in heavily forested sites where these landings were not possible.
Additionally, we used an onboard MicaSense Downwelling Light

Sensor (DLS) 2, along with a MicaSense calibration panel
(RP04–1926247-OB), for radiometric calibration to convert raw radi-
ance measurements to reflectance values that could be compared

between flights across sites. We flew each flight box twice at a flight
altitude of 122-m (400 ft) above ground level using a perpendicular
crosshatch pattern to ensure maximum coverage. SenseFly's eMotion 3
software (version 3.7) controlled the fixed-wing eBee to collect imagery
at 75% latitudinal and longitudinal overlap while the Micasense Atlas
app controlled the quadcopter M200 to collect imagery at 85% overlap.
We generated reflectance orthomosaics and SfM 3D point clouds

from the collected imagery using Pix4Dmapper (Fig. 2, Pix4D, Lausanne,
Switzerland, version 4.4.12). The resulting orthomosaics had 5-cm res-
olution at LaTour, Jackson, and Saddle Mountain, and 15-cm resolution
at Pepperwood. Pepperwood had a lower resolution because of a change
in sampling method to prioritize coverage over a larger area. Due to
battery flight time restrictions, the eBee had to fly with lower overlap to
cover the required area. This resulted in a drop in final orthomosaic
resolution when processed through Pix4D. The SfM points clouds had a
mean density of 320 points/m2 with a range from 36 to 672 points/m2

depending on site characteristics.
We calculated the following spectral indices from the multispectral

orthomosaics (Dash et al., 2018):

Normalized Difference Vegetation Index (NDVI)

= (NIR–Red)/(NIR+Red).

Normalized Difference Red Edge (NDRE)

= (NIR–Red Edge)/(NIR+Red Edge).

Green NDVI (GNDVI) = (NIR–Green)/(NIR+Green).

We calculated these spectral index rasters at the same resolution as
the orthomosaic imagery from their respective site (i.e., 5 cm for LaTour,
Jackson, and Saddle Mountain, and 15-cm for Pepperwood). These
indices were selected based on the available Micasense Rededge MX
spectral bands and their relationships with plant physiology (Dash et al.,
2018). We then spatially-joined reflectance bands and spectral indices
with the point cloud in R (version 4.2.3) using the lidR package (R Core
Team, 2023; Roussel et al., 2023). Following the method of Reilly et al.
(2021), we identified ground points within the point cloud with a cloth
simulation filter and removed erroneously misclassified vegetation
points using an NDVI filter (Zhang et al., 2016). We then used these
ground points to register the point clouds to preexisting ALS digit terrain
models (DTM) (Fig. 2., see section 2.2.3 below). For flight boxes with
insufficient identified ground points due to high canopy cover, primarily
at Jackson, we performed registration on the complete UAS-SfM and ALS
point clouds. Following registration, we height normalized the UAS-SfM
point cloud using the ALS DTM and extracted the points within the field
plot boundaries.
This study utilized an area-based approach to extracting information

from the UAS-SfM data. To summarize these data at the plot level, 216
predictors were generated for modelling inputs (Table 1, Fig. 2). We
extracted these predictors directly from the point cloud, rather than
from a digital surface model. We computed 40 vertical distribution
predictors based on Filippelli et al. (2019) and Marino et al. (2018).
These included variables of the height profile, height variation, density
bands, and cover. For the density band variables (DHx), we divided the
vertical distribution of points at each plot into ten equal height bands
and computed the percentage of points that fell within each of them. For
the canopy cover bands, we computed the percentage of points above
either 1 m or the mean. Finally, we computed the canopy relief ratio as
(mean height – minimum height) / (max height – minimum height)
(Marino et al., 2018).
In addition to the vertical distribution predictors, we also generated

176 spectral predictors, divided into raster-based and height-band cat-
egories. We generated 16 raster-based spectral predictors by computing
the mean and standard deviation from the orthomosaics for the five
individual spectral bands (i.e., blue, green, red, red-edge, NIR) and the

S. Reilly et al.
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three spectral indices (i.e., NDVI, GNDVI, NDRE). We also generated an
additional 160 height-band spectral predictors. To produce these, we
divided the point cloud into ten vertical bins, as we did for the vertical
density predictors, and isolated the related spectral information within
each bin. For each of these ten slices of the spectral data, we computed
the same set of 16 predictors (i.e., mean and standard deviation of the
five spectral bands and three indices) to generate 160 height-band
spectral predictors in total.

2.2.3. ALS data collection and processing
ALS data for Pepperwood and Saddle Mountain came from the 2013

Sonoma County Vegetation -Mapping and Lidar Program, which were
collected by Watershed Science between 28 Sept 2013 and 26 Nov 2013
using aircraft-mounted Leica ALS50 and ALS70 sensors (Watershed
Sciences, 2016). ALS data for Jackson were collected by Dewberry and
Quantum Spatial between 3 Mar 2017 and 24 Aug 2017 using an
aircraft-mounted Leica ALS70 sensor (Dewberry, 2018). ALS data for
LaTour were collected by Quantum Spatial between 11 Oct 2019 and 27
Dec 2019 using a Riegl VQ1560i sensor (Quantum Spatial, 2020).
Collected ALS data had a mean point density of 25 points/m2 with a
range from 6 to 49 points/m2. ALS DTMs were generated from ground
points within the data as classified following procedures by each
company.
We constrained our comparisons between models using both UAS-

SfM and ALS data to Jackson and LaTour. The ALS data at these sites
were collected within a narrow window of our UAS-SfM campaign and
no disturbance events occurred at the sites between collection times.

Saddle Mountain and Pepperwood were excluded from this analysis
because of the large temporal gap between collection times and a sig-
nificant disturbance event (the Tubbs fire) that significantly affected the
area. Following the UAS-SfM procedure, we height normalized the ALS
DTMs and extracted the points that fell within each plot boundary. Since
ALS lacks spectral information, only the vertical density subset of vari-
ables was computed from these data for modelling input (Fig. 2).

2.3. Machine learning modelling

Following the methods of de Almeida et al. (2019), we tested five
regression modelling methods using the caret package in R (Kuhn et al.,
2023). Caret, in turn, utilizes a suite of R packages to streamline model
training for complex regression and classification algorithms (Cutler,
and Original by L.B. and A., Wiener, R. Port by A.L. and M, 2022; Kar-
atzoglou et al., 2023; Miller and Based on F. Code by A, 2020). The
models tested in this study comprised three linear models (LM), support
vector machine (SVM), and random forest (RF). For each approach, we
centered and scaled the predictor variables prior to training the model
using caret's default method of subtracting the mean to center and
dividing by the standard deviation to scale. Additionally, for the LM
methods, we addressed multicollinearity in the predictor set by
removing subsets of variables that surpassed a correlation of r = 0.9
using the internal caret function.
We assessed model performance using cross validation with

spatially-blocked groups. There has been ongoing debate in the litera-
ture about the accuracy of spatially-blind cross validation (Ploton et al.,

Fig. 2. Data processing workflow.
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2020; Pohjankukka et al., 2017; Wadoux et al., 2021). If neighboring
plots are separated into testing and training sets, their inherent spatial
autocorrelation could artificially inflate the reported performance of the
model. Therefore, we computed a set of spatial variograms for each
canopy fuel parameter and used the range of the partial sill as a distance
threshold for data splitting (Table 2). The sill range of a spatial vario-
gram is the distance at which the model asymptotically levels out. The
partial sill range is the distance at which the model reaches this
asymptotic value minus the nugget, the variation in the model due to
random or sampling error (Cressie, 1988). This range represents the
distance at which spatial autocorrelation has ceased and, therefore, sites
farther apart than this distance are appropriate for comparison (Ploton
et al., 2020). All sites within this distance threshold comprised a
spatially-blocked group that would be collectively assigned to either
training or testing subsets at each cross validation split. At each cross
validation split, R2 and RMSE were computed on the held out spatially-
blocked group. At the end, the error metrics from all of the cross-
validation iterations were summarized into average metrics for the
final model. Using this spatial cross validation, each model was opti-
mized using the minimization of the root mean squared error (RMSE) of
the fuel parameter predictions.
LM methods seek to establish linear relationships between the pre-

dictor variables and given fuel parameter response. LM feature selection
occurs in a stepwise manner that can either be done forward, whereby
the algorithm starts with an empty model and adds significant variables;
backwards, whereby the algorithm starts with a complete model and

removes nonsignificant variables; or sequentially, whereby both steps
are conducted simultaneously. We tested all three approaches in this
study.
SVM is a non-parametric modelling approach that uses a kernel to

map predictor variables to higher dimensions in an attempt to generate a
linear relationship from nonlinear inputs (Mountrakis et al., 2011;
Vapnik, 2006). Based on the results of de Almeida et al. (2019), we
employed a radial kernel.
RF is an extension of tree based classifiers whereby an ensemble of

individual classification trees generated from bootstrap subsamples of
the input data cast votes on a prediction (Breiman, 2001). These models
can be tuned by setting the number of randomly selected features per
tree split or by selecting the number of trees. A grid search of these
tuning parameters found negligible impact on model accuracy.
Prior to final model training, we conducted SVM and RF predictor

selection using the Recursive Feature Elimination (RFE) function within
caret. This process ranks each feature by importance and sequentially
removes them until two remain. It then identifies the lowest number of
predictors with an RMSE within the 95% confidence interval of the
overall lowest RMSE (de Almeida et al., 2019). We then used this
identified subset of predictor variables to train the final models.
For the individual site and ALS model analyses, we followed these

same methods. However, due to the small spatial extent and limited
sample sizes, we omitted the spatial blocking from the cross-validation
process and used a smaller number of cross validation groups. For
comparison with UAS-SfM, we modelled canopy fuel parameters with
ALS only at Jackson and LaTour as these data were acquired within three
years of UAS flights, thereby minimizing differences due to vegetation
change in the intervening years. Further, these are conifer-dominated
sites with relatively low seasonal variation in leaf phenology.

2.3.1. Pepperwood area-based mapping
We applied the final all-site model to a large contiguous region at

Pepperwood to demonstrate the capability of this modelling approach,
in conjunction with UAS-SfM, to generate continuous maps of canopy
parameters as needed for fire behavior modelling and broad-scale
evaluation of management practices. Pepperwood was selected for this
demonstration because the site's terrain and interspersed grasslands
provided adequate landing zones for the eBee fixed-wing drone. This
allowed us to collect extensive overlapping flight boxes to generate data
over a large region to which the model could be applied (Fig. 1 –
Pepperwood).
Vegetation distribution data for Pepperwood was taken from Ackerly

et al. (2020). In their study, they utilized a support vector machine
(SVM) algorithm to generate maps of land cover classes and tree species
distributions from 2-m hyperspectral imagery by the National Aero-
nautics and Space Administration's Jet Propulsion Lab Airborne Visible
Infrared Spectrometer-Next Generation (AVIRIS-NG) on 5 June 2014.
We aggregated tree species into three forest types, namely conifer,
evergreen broadleaf, and deciduous broadleaf (Reilly et al., 2021).

2.3.2. Novel site testing
For the novel site testing, we generated a set of RF fuel parameter

models using the data from all sites except for SaddleMountain using the
same methods described above, including spatially-blocked cross vali-
dation. We then applied these models to the withheld Saddle Mountain
plots to generate a set of test predictions on samples to which the
original model had been fully blind. Saddle Mountain was selected for
this analysis since the values from Saddle Mountain for all field-based
fuels parameters fell within the range defined by the other three sites.
All other sites had at least one parameter in which their values exceeded
those from the other sites. Since RF models cannot extrapolate beyond
the limits of the training data, this would have inherently resulted in
poor model performance if the other sites had been withheld and tested
in this way.

Table 1
UAS-SfM structural and spectral predictors.

Predictor label Description N

Vertical Density
Zmax Max height 1
Z‾ Mean height 1
Px Height percentiles in 5% increments (0% to 95%) 20
ZSD Height standard deviation 1
ZCV Height coefficient of variation 1
ZKurt Height kurtosis 1
ZSkew Height skewness 1
ZIQR Height interquartile range 1
CRR Canopy relief ratio (Z‾ – Zmin) / (Zmax – Zmin) 1
DHx Height density bands 10
CC1m Percentage of points above 1 m 1
CCMean Percentage of points above mean 1

Raster-based Spectral
SPECTRA Orthomosaic mean for spectral bands and indices 8

SPECTRASD
Orthomosaic standard deviation for spectra bands and
indices 8

Height-band Spectral
SPECTRAHx Height band mean for spectral bands and indices 80

SPECTRAHxSD
Height band standard deviation for spectral bands and
indices 80
Total 216

Note. Subscript x denotes index placeholder for multiple bands. SPECTRA de-
notes placeholder for individual spectral bands (blue, green, red, red-edge, NIR)
and spectral indices (NDVI, GNDVI, NDRE).

Table 2
Cross validation spatially-blocked group distance thresholds from spatial var-
iogram partial sill range.

Parameter Abbreviation Partial sill range

Biomass – 44 m
Mean height – 75 m
Canopy base height CBH 266 m
Canopy cover CC 513 m
Canopy bulk density CBD 487 m
Leaf area index LAI 103 m

S. Reilly et al.
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3. Results

3.1. Field-based plot-level aboveground biomass and canopy fuel
parameters

The distribution of canopy data measured in the field across sites
followed expected patterns based on the dominant species compositions
at each site (Fig. 3). Pepperwood, LaTour, and Saddle Mountain
generally possessed similar parameter ranges, with Pepperwood
consistently belonging to the lowest statistically identified group. In
contrast, Jackson, the only site predominantly populated by coastal
redwood forests, consistently belonged to the highest value group for all
field-based parameters.
Correlation results segregate field-based fuel parameters into two

distinct groups which align with the conceptual structural organization
of these parameters (Fig. 4). The first group of aboveground biomass,
mean height, and CBH are principally vertical measurements of forest
structure (biomass allometry leverages height-structure relationships).
The second group consists of LAI, CBD, and canopy cover, which are
horizontal measures of canopy structure. With the exceptions of the

Fig. 3. Field-based plot-level aboveground biomass and canopy fuel parameter estimates across all sites and for each individual site. Lower case letters represent
statistically similar groups as determined by ANOVA.

Fig. 4. Field-based plot-level parameter relationships. R values denote Pearson
correlation coefficients.
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correlations between CBH and CBD (p= 0.08) and between CBH and LAI
(p = 0.053), all correlations between fuel parameters were significant.
Correlations within the identified groups were significant at α < 0.001.

3.2. Model comparison

While there were significant differences among observed model
performances, in general, random forest, SVM, and forward linear
regression models explained similar variance in the data for the majority
of parameters (Tables 3 & S1). However, across all canopy fuel param-
eters, random forest did consistently outperform or match the accuracy,
as given by R2 and RMSE, of all other methods (Table 3, Fig. 5).
Therefore, the remainder of the analysis in this paper will focus on
random forest models. See supplement sections S1 and S2 for further
analysis of model comparison and individual site model results.

3.3. Random forest model analysis

Random forest all-sites model performance differed markedly be-
tween the vertical and horizontal groups of fuel parameters. The models
for the vertical structure fuel parameters of biomass, mean height, and
CBH returned R2 values from 0.69 to 0.75 while the horizontal structure
fuel parameters values ranged from 0.40 to 0.59 (Table 3). Apart from
canopy cover, the average relationship between predicted versus
observed values approximated a one-to-one relationship (Fig. 6).
Random forest model error increased markedly for extreme values of
each canopy fuel parameter (Fig. 6). We applied the all-sites random
forest model to UAS-SfM spatial predictors at Pepperwood to produce
estimated fuel loads (Fig. 7). These maps show strong relationships be-
tween vegetation classes and canopy fuel parameters (Fig. 7). As ex-
pected, coniferous regions demonstrate higher biomass and CBH as
compared to broadleaf forest regions (Fig. 7b-c).

Height percentiles were consistently in the top five predictors for
vertical structure fuel parameter models of biomass, mean height, and
CBH (Fig. 8a-c). These predictors capture the vertical distribution of the
forest canopy. The model for biomass relied upon a mixture of height
percentiles from the lower and upper canopy while the models for both
mean height and CBH exclusively utilized height percentiles from the
upper canopy.
In contrast, the horizontal structure models of canopy cover, CBD,

and LAI had top-five predictors based on spectral indices (Fig. 8d-f). The
raster-based mean NDVI emerged as the top variable for all three fuel
parameters. The model for canopy cover relied almost exclusively upon
this index (Fig. 8d). The model for LAI also exclusively depended upon
NDVI, augmenting the raster-based mean with a combination of NDVI
height bands (Fig. 8f). The model for CBD supplemented NDVI with
other spectral predictors (Fig. 8e). None of these models included indi-
vidual spectral bands.
See supplement section S3 for SVM and LM variable selection. SVM

variable selection closely matched that of random forest and exhibited
the same separation between parameter groups. Linear models, in
contrast, demonstrated less consistency in variable selection.
Testing the models by isolating predictor variables by data type

resulted in distinct patterns between the vertical and horizontal fuel
parameter groups (Fig. 9). Restricting the predictors to only the vertical
distribution predictor subset resulted in models for the vertical fuel
parameters biomass, mean height, and CBH with performance compa-
rable to the model with all predictors, while performance for the
spectral-based data subset models lagged significantly behind.
The horizontal parameter group demonstrated much lower vari-

ability among models produced with different predictor subsets (Fig. 9).
The vertical distribution and raster-based spectral data subset models
performed nearly identically for all three fuel parameters. Model per-
formance for both predictor subsets matched that of the full-predictor
model for canopy cover but lagged for CBD and LAI. For LAI, only the
height band spectral subset model matched the full-predictor model
performance, utilizing a set of mean NDVI height bands (Fig. 9, S6). This
was the only canopy fuel parameter for which this data subset achieved
the maximum accuracy. None of the variable subset models matched
that of the CBD full-predictor model. While the performance loss was
marginal, all other fuel parameters had at least one variable subset that
returned comparable accuracy to the full-predictor model. See supple-
ment section S4 for analysis of predictor subset model variable
importance.

3.4. ALS comparison to UAS-SfM data

Apart from the models for biomass at Jackson and LAI at LaTour,
ALS-based random forest models outperformed UAS-SfM models across
sites and fuel parameters (Fig. 10). ALS performance displayed minimal
variation among parameters. Consequently, the difference in accuracy
between UAS and ALS was most pronounced for those horizontal
structure fuels parameters, namely canopy cover and CBD, which had
the largest decrease in UAS-SfM model performance relative to ALS, as
compared to the vertical structure parameter group. These differences
were particularly pronounced for Jackson, which had dense, closed-
canopy coast redwood forests.

3.5. Model testing at novel site

Model accuracy, when transferred to an independent site, differed by
fuel parameter group (Table 4, Fig. 11). The vertical parameter group of
biomass, mean height, and CBH retained adequate model accuracy at
the independent site as compared to the original model cross-validation
accuracy. In contrast, the horizontal parameter group experienced sig-
nificant drops in model performance, and none were well predicted.

Table 3
Models of canopy fuel parameters across all study sites. Mean performance re-
sults obtained from 100 replicates of 10 cross validation using spatially-blocked
groups. Underlined values denote the statistically most accurate models per
canopy parameter as determined by ANOVA at α = 0.05 (Table S1). Multiple
underlines per row denote statistically equivalent top performance metrics.
Mean and standard deviation of all field measurements given as reference for
magnitude of RMSE. SVM = Support Vector Machine; RF = Random Forest.

Fuel
parameter

Linear methods SVM RF Mean
(SD)

Forward Sequential Backwards

R2

Biomass 0.62 0.59 0.56 0.69 0.75
Mean
height

0.72 0.71 0.64 0.71 0.73

CBH 0.68 0.68 0.63 0.66 0.69
CC 0.50 0.45 0.41 0.48 0.49
CBD 0.49 0.48 0.36 0.41 0.50
LAI 0.38 0.40 0.36 0.45 0.59

RMSE

Biomass 12.36 13.00 13.41 11.17 9.28
18.79
(21.04)
Mg

Mean
height

5.04 5.07 1535.30 5.16 4.85
19.64
(10.22)
m

CBH 3.03 2.99 3.27 2.92 2.57
7.69
(5.59) m

CC 12.11 12.91 14.80 11.14 11.17
75.43
(18.61)
%

CBD 0.02 0.02 2.27 0.03 0.02
0.19
(0.04)
kg m− 3

LAI 1.51 35.10 575.9 1.34 1.13
3.54
(1.76)
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Fig. 5. Model cross validation error density. Individual error measurements taken from 9600 estimates produced across 100 replicates of 10-fold cross validation
using spatially-blocked groups.

Fig. 6. Random Forest cross-validated predictions versus observed values for all-sites models (Table 3). Grey dashed reference line represents the one-to-one
relationship between predicted and observed values. Black solid line denotes the regression best fit.
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4. Discussion

Reducing future forest fire hazard and restoring historical fire re-
gimes relies upon the accessibility of accurate spatial information about
aboveground biomass and fire fuel loads. Such data are difficult and
time consuming to obtain using traditional field-based methods. Instead,
the spatial complexity of these environmental attributes lends

themselves well to remote sensing approaches. The use of UAS-SfM has
the potential to provide a low-cost and flexible means of estimating fuels
at stand scales. In a multisite analysis representing a broad range of
forest types of California, this study found canopy fuel parameters
segregate into two distinct groups, as identified by field measurement
correlations, and this separation consistently emerged in model ana-
lyses. Specifically, model performances and variable selection displayed

Fig. 7. Pepperwood random forest fuels prediction maps at 20 m resolution from the final all site model for each parameter. White areas are grasslands and
shrublands, which were not analyzed.

Fig. 8. Relative scaled importance of top five predictors for random forest models produced across all sites.
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close similarity within groups but differed markedly between them. All
modelling methods exhibited this same performance disparity between
groups. Random forest and SVM selected the same sets of distinct pre-
dictors for the two groups, but linear regression methods did not display
a pattern in variable selection. The first group is comprised of the ver-
tical structure parameters biomass, mean height, and CBH. The second

group contains the horizontal structure parameters canopy cover, CBD,
and LAI.
In models built using the combined data from all study sites, random

forest consistently returned the highest overall accuracy, as defined by
R2 and RMSE, compared to SVM or linear regression methods. This is
consistent with previous research identifying the performance of this
method in similar applications (e.g., de Almeida et al., 2019; Arellano-
Pérez et al., 2018). Since random forest is unable to extrapolate beyond
the range of the data used to train the model, cross-validation error
increased substantially for extreme parameter values. This limitation
also restricted our novel site testing to the only site (Saddle Mountain)
whose parameters fell within the range bounded by the other three sites.
This challenge is not specific to random forest and highlights the
importance of sampling breadth and distribution when targeting an area
of interest or when applying a model to novel areas.

4.1. Vertical structure: biomass, CBH, mean height

Our model for CBH exceeded previously published photogrammetric
model accuracies by>20% (Filippelli et al., 2019; Shin et al., 2018), and
our models for biomass and mean canopy height fell within 2% of the
highest previously published performance metrics for UAS-SfM or
photogrammetry derived models from forest ecosystems around the
world (Domingo et al., 2019; Filippelli et al., 2019; Ota et al., 2019; Shin
et al., 2018), including previous work in California forests (Lamping
et al., 2021).
The performance of the model for CBH demonstrates the powerful

utility of combining machine learning with UAS-SfM to overcome SfM's
inherent limited capacity to measure subcanopy forest structure (Forbes
et al., 2022; Reilly et al., 2021) by exploiting inherent relationships in
the canopy to model attributes that otherwise elude direct detection by
photogrammetric methods (Filippelli et al., 2019). Shin et al. (2018)
only achieved 33% accuracy in their attempt to model CBH using a
single lower canopy height predictor derived from UAS-SfM data. In our
study, however, the random forest model for CBH leveraged the
observed relationship in the field data between CBH and mean height to
achieve a high accuracy for a key canopy fuel parameter that it other-
wise was unable to directly observe. Future research should investigate
whether this indirect approach can detect the effects of targeted un-
derstory treatments, such as thinning or prescribed burns.
The UAS-SfM models for these three vertical fuel parameters

demonstrated comparable accuracy to those using ALS predictors at the
two sites included in this analysis. Our UAS-SfM models for CBH and
mean height only marginally underperformed ALS models at the test
sites of Jackson and LaTour, and fell within the range of globally re-
ported ALS model accuracies for these parameters (Alonso-Rego et al.,
2021; Andersen et al., 2005; Botequim et al., 2019; Bright et al., 2017;
Chamberlain et al., 2021; Engelstad et al., 2019; Erdody and Moskal,
2010). Of note, the UAS-SfM model for biomass at Jackson out-
performed its ALS counterpart and our full-predictor UAS-SfM biomass
model outperformed previously published ALS-based models from Cal-
ifornia forest sites and from other Mediterranean-climate regions
(Alonso-Rego et al., 2021; Lamping et al., 2021). This finding aligns with
previous results demonstrating that UAS-SfM and photogrammetry
based models of biomass match or outperform ALS models in ponderosa
pine forests in the western United States (Filippelli et al., 2019; Swayze
et al., 2022). Since biomass is partially determined by canopy height, the
higher point density of UAS-SfM (e.g., 320 points/m2) at the top of
canopy may render it particularly well suited for measuring total tree
height, whereas lower ALS point density (e.g., 25 points/m2) could
result in missing maximum measurements of treetops. For this set of
vertical canopy fuel parameters, these results suggest UAS-SfM area-
based random forest models can provide comparable accuracy to ALS
based methods and may outperform ALS under certain conditions.
Reflecting the vertical structural nature of these parameters, the top

variables selected by the model for each parameter consisted solely of

Fig. 9. Random forest all-sites model accuracy produced using different pre-
dictor variable subsets, including the full-predictor dataset. Performance results
obtained from 100 replicates of 10-fold cross validation using spatially-
blocked groups.

Fig. 10. UAS-SfM vs ALS model performance. Random forest individual site
model results from 100 replicates of 5-fold cross validation without
spatial blocking.

Table 4
Model accuracy when applied to a novel site withheld from training. Model
generated using 100 replicates of 10-fold cross validation using spatially-
blocked groups from all sites except Saddle Mountain. Saddle Mountain accu-
racy metrics derived from the application of this model to the site without
further training.

Canopy fuel parameter R2 RMSE

Model Saddle Mtn Model Saddle Mtn

Biomass 0.82 0.74 8.89 14.71
Mean height 0.79 0.84 4.25 6.31
CBH 0.74 0.69 2.60 2.40
CC 0.65 0.05 11.01 8.20
CBD 0.55 0.20 0.020 0.010
LAI 0.60 0.31 1.18 1.15
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point cloud height percentiles and model performances were negligibly
affected by the removal of spectral data in the predictor subset analysis.
Other studies have reported similar structural variable selection for
these parameters (e.g., Lamping et al., 2021; Swayze et al., 2022).
Additionally, when applied to a novel site, these models retained a high
level of performance. This suggests the vertical distribution predictor
relationships identified by the random forest models persist across sites
and among forest types. Consequently, these vertical structure canopy
fuel parameters are well suited to 3D-based mapping approaches and the
addition of spectral information does not significantly affect model
accuracy.

4.2. Horizontal structure: LAI, CBD, canopy cover

The horizontal structure parameters of LAI, CBD, and canopy cover
demonstrated consistently lower model accuracy than the vertical
structure parameters, never exceeding R2 of 0.60 for any of the random
forest models. In contrast to the vertical parameters, the random forest
models for these horizontal parameters relied upon spectral attributes of
the UAS-SfM data, with raster-based mean NDVI arising as the top
contributor in all models. These horizontal parameters pertain directly
to aspects of the forest canopy, namely its composition, spatial distri-
bution, and density of live and dead leaves and branches. Consequently,
it appears that these random forest models leveraged the relationships
between spectral indices and live-canopy characteristics, such as con-
centration of photosynthetic activity, to model these plot-scale hori-
zontal attributes.
Our canopy cover model accuracy falls below the lowest previously

published UAS-SfM derived canopy cover models from forests around
the globe (Belmonte et al., 2019; Shin et al., 2018; Wallace et al., 2019;
Zahra et al., 2022). However, Belmonte et al. (2019) demonstrated a
significant 30% decrease in model performance with increasing canopy
cover in ponderosa pine forests, with accuracy dropping to match our
results in their highest density stands. Considering that only the Pep-
perwood site contained a majority of plots below their high-density
threshold, our results align with the Belmonte et al. finding that UAS-
SfM struggles to model canopy cover under high-cover conditions. For

this parameter, plot level mean NDVI appears to represent a proxy for
percentage of live canopy in relation to ground and below-canopy sen-
esced vegetation or exposed soil. This finding aligns with other studies
that have identified NDVI as a highly accurate single predictor for
canopy cover from UAS-SfM (Shin et al., 2018; Zahra et al., 2022). ALS,
on the other hand, is particularly well suited for mapping canopy cover
since it is able to actively detect subcanopy structure regardless of level
of cover and, globally, has reported accuracies >99% (Cai et al., 2021;
Dai et al., 2022).
For CBD, our modelling approach utilizing spectral indices returned

a significant improvement over previous literature. Few existing studies
have modelled CBD using photogrammetric techniques and, to our
knowledge, only Shin et al. (2018) utilized UAS-SfM for this purpose.
Shin et al. (2018) only achieved an accuracy of <1% in ponderosa pine
forest in their attempt to reconstruct CBD through allometric equations
based on their UAS-SfM derived measurements of canopy height.
Consequently, this study's demonstrated accuracy of 50% represents a
significant improvement in performance over this previous UAS-SfM
study and also exceeds the highest photogrammetric accuracy in the
literature (Filippelli et al., 2019). Our demonstrated increase in perfor-
mance over these previous studies likely arises from the utilization of
predictors derived from the multispectral data and spectral indices
included in this study that were absent from these previous works. The
power of these predictors, in turn, was further augmented by the ma-
chine learning methods we employed, specifically random forest, as
compared to the allometric reconstruction approach used by Shin et al.
(2018) or the linear regression method (without stepwise predictor se-
lection) utilized by Filippelli et al. (2019). In accordance with our
observed lower UAS-SfM performance compared to our ALS models of
CBD, our UAS-SfMmodel accuracy is at the bottom end of published ALS
CBD models from around the world (Alonso-Rego et al., 2021; Andersen
et al., 2005; Bright et al., 2017; Chamberlain et al., 2021; Engelstad
et al., 2019; García et al., 2017). We further note that CBD is difficult to
measure in the field, and CBD model uncertainty is further increased by
the weak relationship in the equations from Keane et al. (2005) used to
estimate CBD from LAI-2000 gap fraction, and the model's focus on
conifer forests.

Fig. 11. Saddle Mountain random forest model transfer accuracy. Dotted reference line denotes idealized one-to-one relationship between measured and pre-
dicted values.
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While our model for LAI performed better than those of the other
horizontal parameters, it underperformed compared to previously
published photogrammetry models (Li et al., 2022; Liu and Wang, 2018;
Stobbelaar et al., 2022; Zhang et al., 2019) and ALS models (e.g.,
Sumnall et al., 2021; Wang et al., 2023; Yin et al., 2022) from forests
around the world. The previous photogrammetric studies were con-
ducted within single forest types. Consequently, our lower performance
may be due to the breadth of forest types represented in our multi-site
analysis. Further, as with CBD, LAI was estimated based on an equa-
tion applied to LAI-2000 gap fraction measurements, and factors such as
variable overhead sunlight conditions could add to model error. How-
ever, the saturation of spectral indices presents a much more likely
mechanism for this decline in model accuracy. In models from forest
sites around the globe, satellite-based NDVI has been demonstrated to
possess the strongest relationship with LAI field measurements when LAI
values are below two, and NDVI becomes asymptotically saturated when
LAI rises further (Gao et al., 2023; Haboudane, 2004). Only Pepperwood
had a majority of plots with LAI below this level. As a result, our model
of LAI displayed a sharp prediction threshold as LAI increased above
three, strongly suggesting the impact of this oversaturation effect
influenced the performance of our models.
Models for all three canopy fuel parameters followed a similar trend

in performance, exhibiting a clustering of model predictions and loss of
accuracy at the highest end of their respective ranges, suggesting this
impact of oversaturation to be ubiquitous. In the novel site testing at
Saddle Mountain, model performance declined considerably for all three
parameters. The Saddle Mountain plots fall at the top end of the
observed range for this group. Since random forest cannot extrapolate,
this error at the end of the range could be an artifact of insufficient
training data at elevated fuel parameter levels such as high canopy
cover. Additionally, since our novel site testing was limited to a single
site, this decline in model performance could also be due to some un-
detected irregularity of the plots at Saddle Mountain. However, the most
likely explanation for this failure is the aforementioned loss of infor-
mation due to the oversaturation of spectral indices.
In the predictor subset analysis for the horizontal fuels, both the

spectral-based vertical distribution and raster-based models returned
comparable accuracy to one another for all three parameters. The raster-
based model variable selection resembled the top variables from the full
predictor models and, once again, all models identified mean NDVI as
the key predictor. The model with vertical distribution predictors
selected top variables relating to the point distribution within the mid-
dle third of the canopy, pointing to the relationship between the bulk
distribution of the point cloud and these horizontal canopy fuel pa-
rameters. However, despite their performance in subset models, the
combination of the spectral and vertical data in the full-predictor model
did not significantly improve the accuracy beyond that of the subset
models for canopy cover or CBD. LAI was the only fuel parameter for
which the combined structural and spectral capacity of UAS-SfM
appeared to significantly impact overall model performance. Based on
these findings, future studies into horizontal canopy fuel parameters
should prioritize the multispectral capabilities of UAS-SfM.

4.3. Future research

As stated previously, the random forest models for vertical fuel pa-
rameters relied exclusively upon point cloud height percentile pre-
dictors, with no improvement from the addition of spectral data. Future
photogrammetric studies into this parameter set, therefore, should focus
on sensors that prioritize image resolution and view angle (e.g., high-
definition RGB cameras with view angle control), rather than spectral
breadth, to maximize canopy structure detection. Furthermore, this
sensor selection could provide higher sub-canopy structure detection,
and therefore potentially greater model accuracy, through the collection
of oblique imagery beyond the capabilities of the nadir restricted
Micasense RedEdge-MX sensor employed in this study (Wallace et al.,

2019). Other lidar methods, such as UAS or terrestrial lidar, could also
be explored to determine the range of achievable accuracies with this
area-based multisite modelling approach.
In contrast, since the models for LAI, CBD, and canopy cover solely

utilized spectral indices, modelling using satellite-based spectral data
may be able to provide comparable accuracies to those observed in this
study. The 0.04 ha scale of the ground validation plots underlying this
study dictated the spatial resolution at which the UAS-SfM modelling
could be performed. Consequently, despite its high-resolution, reducing
the UAS-SfM data to a matching spatial resolution could have resulted in
potentially significant loss of detail and accuracy, potentially exacer-
bating an already weak information signal due to the oversaturation of
spectral indices. The 0.04 ha resolution at which these analyses were
conducted is comparable to that provided by modern satellite multi-
spectral sensors, such as Landsat 8–9 and Sentinel 2. (e.g., Drusch et al.,
2012). In post-fire mapping applications, Sentinel-2 derived NDVI has
been demonstrated to correspond to coincidental measurements ob-
tained from multispectral UAS-SfM (Pádua et al., 2020). Consequently,
models built using these satellite-based spectral indices could match the
performance accuracy to the methods employed in this study (Arellano-
Pérez et al., 2018; Chuvieco et al., 2020; Gale et al., 2021), with the
advantage of greater temporal frequency and spatial extent for lower
monetary cost. For example, while they failed to model vertical canopy
fuels, Pierce et al. (2012) successfully modelled CBD and canopy cover
at a site neighboring LaTour using Landsat derived indices. The addi-
tional spectral bands, and therefore potential indices, available via sat-
ellite sensors could assist in mitigating the oversaturation that may have
hampered our models (Gao et al., 2023). Future studies should further
investigate the capacity of these direct modelling approaches using
satellite spectral indices for horizontal canopy fuels since the accessi-
bility of these data would render them of high value to land managers,
particularly in tracking change over larger areas or with greater fre-
quency than is feasible with UAS-SfM. However, the decreased accuracy
of our spectra-based models when applied to a novel site testing scenario
suggests that the spatial and temporal consistency of these methods
requires extensive validation prior to being employed for operational
applications.
Lastly, future studies could also explore the potential of deeper ma-

chine learning approaches such as convoluted neural networks (CNN) to
model fuel parameters (e.g., Talebiesfandarani and Shamsoddini, 2022;
Tian et al., 2024; Zhang et al., 2022). Our random forest model for CBD
outperformed previous models in the literature, in part due to our uti-
lization of a more complex modelling approach, and measures of vari-
able importance and partial dependency in this technique provide model
interpretability. Consequently, it may be possible for more advanced
modelling approaches to provide even greater performance than
observed here, although the feature and decision space in these ap-
proaches may be less interpretable (e.g., SVM, CNN). However, the
sample size required to train these models presents a prohibitive barrier
to their implementation.

4.4. Conclusions

This study presents novel analysis of UAS-SfM structural and multi-
spectral area-basedmachine learningmodels of biomass and canopy fuel
parameters across a broad range of complex forest types characteristic of
California and other Mediterranean regions. We found the following:

• Fuel parameters segregate into vertical (biomass, CBH, and mean
height) and horizontal (LAI, CBD, canopy cover) groups based on
correlations between field measurements and these relationships
persist throughout model results.

• UAS-SfM random forest models are well suited for modelling the
vertical structure canopy fuels parameters. These models retained
high performance in comparison to ALS and when transferred to a
novel site.
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• Models for vertical fuel parameters rely exclusively upon UAS-SfM
vertical structure predictors and exhibit no model improvement
with the addition of spectral predictors. Future studies on this group,
therefore, should focus on image resolution to improve structural
information gathering, rather than spectral resolution.

• UAS-SfM random forest models provided less accurate estimates of
the horizontal structure parameters. In addition, these models
exhibited significant loss in accuracy in comparison to ALS and in the
novel site transfer.

• Models for horizontal fuel parameters rely primarily upon raster-
based spectral indices, primarily NDVI. Due to the similarity be-
tween the plot size in this study and satellite imagery resolution,
future work should explore if models using satellite-based spectral
data can provide comparable performance to the UAS-SfM spectral
results presented here.

The mitigation of wildfire hazard and restoration of historical fire
regimes in the forests of California, USA relies upon the accessibility of
accurate data on the spatial distribution of fuel loads to inform man-
agement decision making. Canopy fuel parameters present a critical
component of forest structure for these purposes since they moderate
crown torching and sustained ignition, hallmarks of high severity fire
events. Future work should expand on these results to ascertain better
methods for performing widespread mapping coverage and developing
models that are robust to transfer to novel sites. These two factors will
significantly improve the operational use of these methods by land
managers. In our case, our ability to generate widespread maps was
limited to Pepperwood due to the landing requirements of the fixed-
wing drone and the battery limitations of the quadcopter. However,
future research using new UAS technology such as vertical takeoff and
landing fixed-wing drones will be able to overcome these limitations and
generate meaningfully large maps for ongoing management monitoring
and decision making around fire hazard mitigation.
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Martínez-Calvo, A., Pérez-Cruzado, C., Castedo-Dorado, F., González-Ferreiro, E.,
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