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Abstract
Background  Persons living with HIV (PWH) harbor an altered gut microbiome (higher abundance of Prevotella and 
lower abundance of Bacillota and Ruminococcus lineages) compared to non-infected individuals. Some of these 
alterations are linked to sexual preference and others to the HIV infection. The relationship between these lineages 
and metabolic alterations, often present in aging PWH, has been poorly investigated.

Methods  In this study, we compared fecal metagenomes of 25 antiretroviral-treatment (ART)-controlled PWH 
to three independent control groups of 25 non-infected matched individuals by means of univariate analyses 
and machine learning methods. Moreover, we used two external datasets to validate predictive models of PWH 
classification. Next, we searched for associations between clinical and biological metabolic parameters with 
taxonomic and functional microbiome profiles. Finally, we compare the gut microbiome in 7 PWH after a 17-week 
ART switch to raltegravir/maraviroc.

Results  Three major enterotypes (Prevotella, Bacteroides and Ruminococcaceae) were present in all groups. The first 
Prevotella enterotype was enriched in PWH, with several of characteristic lineages associated with poor metabolic 
profiles (low HDL and adiponectin, high insulin resistance (HOMA-IR)). Conversely butyrate-producing lineages were 
markedly depleted in PWH independently of sexual preference and were associated with a better metabolic profile 
(higher HDL and adiponectin and lower HOMA-IR). Accordingly with the worst metabolic status of PWH, butyrate 
production and amino-acid degradation modules were associated with high HDL and adiponectin and low HOMA-IR. 
Random Forest models trained to classify PWH vs. control on taxonomic abundances displayed high generalization 

Major depletion of insulin sensitivity-
associated taxa in the gut microbiome 
of persons living with HIV controlled 
by antiretroviral drugs
Eugeni Belda1,2*†, Jacqueline Capeau3†, Jean-Daniel Zucker1,2, Emmanuelle Le Chatelier4, Nicolas Pons4,  
Florian Plaza Oñate4, Benoit Quinquis4, Rohia Alili2, Soraya Fellahi3,9, Christine Katlama5, Karine Clément2, 
Bruno Fève3, Stéphane Jaureguiberry6, Cécile Goujard6, Olivier Lambotte6,7, Joël Doré4,8, Edi Prifti1,2† and  
Jean-Philippe Bastard3,9†

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12920-024-01978-5&domain=pdf&date_stamp=2024-8-13


Page 2 of 21Belda et al. BMC Medical Genomics          (2024) 17:209 

Background
Current suppressive antiretroviral therapy (ART) allows 
a sustained efficient long-term control of HIV infection 
in persons living with HIV (PWH). However, when aging, 
they often present a dysmetabolic profile with truncal fat 
redistribution associated with insulin resistance [1–4]. 
In particular, the level of insulin resistance, as evaluated 
by the HOMA-IR index, appears disproportionally high 
according to their body mass index (BMI) when com-
pared with the general population [5–7]. This insulin-
resistant profile can explain, at least partly, the increased 
risk of diabetes and cardio-vascular disease reported in 
aging ART-controlled PWH [8]. It likely results from 
multiple factors, including an altered gut microbiota, the 
residual HIV infection, the HIV reservoir size or some 
ART. Altered gut microbiota has been largely demon-
strated in PWH, dysbiosis in terms of decreased levels 
of alpha-diversity and altered microbiome composition 
vs. non-infected individuals being present in ART-naïve 
subjects and persisting in ART-controlled PWH [9, 10]. 
This altered gut microbiota is characterized by decreased 
levels of microbiome diversity and loss of microbial spe-
cies associated to the production of Short Chain Fatty 
Acids (SCFA) from dietary fibers in parallel with enrich-
ment of pro-inflammatory lineages like Enterobacte-
riaceae, Desulfovibrionaceae, and Fusobacteria, and has 
been shown correlated with markers of inflammation and 
disease progression ( [11] and references therein). These 
alterations are further exacerbated in PWH developing 
further comorbidities in terms of cardiovascular events, 
kidney diseases or cancer [12], or in PWH with severe 
immunocompromised status [13].

In PWH with immunocompromised status or ART-
naive common co-infections are frequent with oppor-
tunistic pathogens not only from microbial origin but 
also from fungal, viral or protozoan origin. Hepatitis C 
virus co-infection in PWH is estimated to affect 2.3 mil-
lion individuals worldwide, particularly in intravenous 
drug users or in men having sex with men (MSM), with 
an immunopathology more deleterious than each infec-
tion separately [14]. Also, fungi are major opportunistic 
pathogens in PWH with advanced infection or with low 
CD4 count, mainly Pneumocystis jirovecii (pneumo-
cystosis), Cryptococcus neoformans (cryptococcosis), 

Histoplasma capsulatum (histoplasmosis), and Talaro-
myces (Penicillium) marneffei (talaromycosis) [15, 16]. 
Altered fungal microbiome (mycobiome) composition in 
the oral and respiratory tract ecosystems has been also 
observed in PWH characterized by increased coloni-
zation of Candida and other fungal lineages in the oral 
cavity that dramatically decreases after ART therapy [17, 
18], and pathogens like Pneumocystis, Cryptococcus, and 
Aspergillus in the lung [19, 20]. At the gut level, a recent 
study on 24 PWH and 12 healthy controls from Spain has 
shown that PWH exhibited a higher mycobiome richness 
with an enrichment of Debaryomyces hansenii, Candida 
albicans, and Candida parapsilosis, with a positive cor-
relation between Candida species and the levels of pro-
inflammatory cytokines, interleukin 22, and CD8 + T cell 
counts [21].

At prokaryotic level, increased Prevotella and 
decreased Bacteroides at the genus level, associated 
with increased inflammation and immune activation 
[9, 22] are constant findings in PWH as compared with 
non-HIV-infected controls. This profile has been clearly 
associated with men having sex with men (MSM) sexual 
preference [23, 24]. In addition, a decreased level of Fae-
calibacterium species and/or of other butyrate-producing 
bacteria has been observed in PWH as well as a global 
Ruminococcaceae depletion correlating with the presence 
of noncommunicable diseases, and this, independently 
of sexual preferences [24]. Moreover, two other studies 
in PWH reported decreased Faecalibacterium presence 
in individuals with metabolic syndrome [25, 26]. How-
ever, the direct correlation with insulin resistance and the 
metabolic profile was not precisely studied. Moreover, in 
PWH, the relative abundance of Faecalibacterium spe-
cies and/or butyrate producing bacteria was reported 
not modified in individuals with diabetes compared with 
nondiabetics in one study [27], whereas it tended to be 
decreased in diabetics in another one, which focused 
only on women. Similarly, a recent prospective study 
on the Women’s Interagency HIV Study cohort (WIHS) 
have shown this decrease in butyrate-producing bacte-
rial lineages (Ruminococcus genus) in diabetic women 
with and without HIV infection [28]. However, evalua-
tion in women allowed to consider mainly the effect of 
diabetes, while decreasing the interference of microbiota 

performance on two external holdout datasets (ROC AUC of 80–82%). Finally, no significant alterations in microbiome 
composition were observed after switching to raltegravir/maraviroc.

Conclusion  High resolution metagenomic analyses revealed major differences in the gut microbiome of ART-
controlled PWH when compared with three independent matched cohorts of controls. The observed marked insulin 
resistance could result both from enrichment in Prevotella lineages, and from the depletion in species producing 
butyrate and involved into amino-acid degradation, which depletion is linked with the HIV infection.

Keywords  HIV, Human gut microbiome, Metabolic status, Machine learning



Page 3 of 21Belda et al. BMC Medical Genomics          (2024) 17:209 

modifications linked to anal intercourse in MSM [29]. 
In this context, these butyrate-producing lineages like 
Ruminococcaceae and Lachnospiraceae were included in 
an HIV-related Microbiota Index derived from metage-
nomic signatures altered in PWH vs. controls in MSM 
and non-MSM groups based on 16  S profiling on the 
Copenhagen Comorbidity in HIV Infection cohort 
(COCOMO), an index that was positively associated with 
an excess risk of metabolic syndrome and that is stronger 
in individuals with severe immunocompromised status 
[13].

In the present study, using shotgun metagenomics, we 
estimated the relative abundance of the microbial spe-
cies as well as their functional potential in stools, and 
compared their distribution between PWH and matched 
HIV-negative controls by age, gender and BMI from 
three independent cohorts. We confirmed previous find-
ings with increased Prevotella lineages, possibly linked 
to the MSM status, and revealed novel association with 
insulin resistance. We confirmed the reduced level of 
Faecalibacterium and other butyrate-producing bac-
teria in PWH, both in the MSM and not-MSM groups, 
and revealed a novel association with an insulin-resistant 
profile associating increased HOMA-IR to reduced HDL 
and adiponectin. We hypothesize that the marked insulin 
resistance observed in PWH could result from the sexual 
preference associated with increased Prevotella lineages 
and from the deep defect in gut butyrate-producing 
bacteria associated with HIV infection. Finally, by using 
different machine learning approaches, we built classifi-
cation models discriminating PWH from controls based 
on several of these signatures and which generalize well 
on two external cohorts with 80% ROC AUC.

Methods
Subjects HIV-infected
We evaluated at first 11 subjects issued from the ROC-
nRAL ANRS-157 study, a phase II, single-arm, multi-
center clinical trial designed to evaluate the capacity of 
the Raltegravir (RAL) plus Maraviroc (MVC) combi-
nation to maintain HIV-viremia below 50 copies/ml in 
PWH with controlled viral load under ART and with 
trunk fat redistribution [30] (ClinicalTrials.gov regis-
tration number: NCT01420523, first trial registration: 
18/08/2011). Stool collection was performed as described 
below. Patients had a second evaluation after a median of 
17 weeks post RAL/MVC initiation (mean duration = 124 
days; minimum = 84 days; maximum = 168  days) and a 
second stool sample was recovered for 7 of them (64%) 
for metagenomics analysis. We also collected stools from 
14 additional PWH, ART-controlled, issued from the 
outpatients of the infectious diseases and the internal 
medicine and immunology departments of Bicêtre Hos-
pital. Clinical and biological parameters were analyzed on 

fasted blood samples. All patients were ART-controlled 
with a viral load < 50 copies/ml. 60% were receiving a 
protease inhibitor (PI), 16% an integrase strand transfer 
inhibitors (INSTI) 80% nucleosidic reverse transcriptase 
inhibitors (NRTIs) and 44% a non-nucleosidic reverse 
transcriptase inhibitor (NNRTI). In terms of co-infection 
with Hepatitis C (HCV), 22/25 PWH were HCV negative 
or cured, 1/25 was HCV positive and 2 were unknown 
for HCV status. In terms of co-infection with Hepati-
tis B (HBV), 16/25 PWH were HBV negative, 4/25 were 
HBV positive and 5/25 were unknown for HBV status. 
In terms of ethnicity, 22/25 PWH were Caucasian, 2/25 
were Black and 1/25 was unknown for ethnicity status.

Overall, 25 PWH were included in this study for shot-
gun metagenomic profiling, of which 7 were profiled 17 
weeks post RAL/MVC (n = 32 fecal samples for shotgun 
metagenomic profiling).

Regarding the ethical aspects, the trial was approved by 
ANRS and CPP Ile de France VI. All patients gave their 
written approbation to the protocol.

Selection of controls from MetaHit, MicroObes and 
MetaCardis studies
We defined 3 different control groups of non-HIV indi-
viduals from 3 public external cohorts: n = 177 healthy 
Danish individuals from the MetaHit study [31, 32], 
n = 95 healthy French individuals from MetaCardis study 
[33] and n = 35 French individuals of the MicroObese 
study, corresponding to baseline samples of individuals 
with moderate obesity before a nutritional intervention 
[34], for which quantitative metagenomic profiles were 
available using the Integrated human Gut microbiome 
Catalog (IGC) [35].

For each external cohort, 25 individuals matched by 
age, gender and BMI with the 25 PWH cases of this study 
were selected using two different approaches. In the first 
approach, a matrix of Euclidean distances derived from 
age, gender and BMI between the 25 PWH and each of 
the reference control cohorts were computed with base 
R dist function. For each PWH individual, the control 
sample with the smallest Euclidean distance was selected 
iteratively, excluding at each iteration the selected con-
trol sample. In the second approach, we carried out 
100 iterations of the propensity score method from the 
Matching R package [36]. The final selection of each 
control cohort (n = 25) between those obtained by the 
Euclidean approach and the Propensity score approach 
was achieved by evaluating differences between PWH 
and selected controls (Wilcoxon rank-sum test for age 
and BMI; Chi-square test for gender) and selecting the 
one that minimizes the overall differences defined as the 
maximum average p-value from the 3 tests. This work-
flow allowed us to select control groups from MetaCardis 
and MetaHit cohorts that were fully paired on the three 

http://ClinicalTrials.gov
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covariates (non-significant differences vs. the 25 PWH at 
significance level of 0.05, Table 1), whereas the in the case 
of MicroObese cohort, the 25 selected controls could 
be matched on age but still discordant on gender (most 
women) and BMI (higher levels in selected MicroObese 
controls; Table 1).

Stool collection, DNA extraction and metagenomic 
sequencing
PWH collected fecal samples in two 20 mL tubes within 
24 h before each visit. Samples were either stored imme-
diately at − 80 °C or briefly conserved in home freezers, in 
anaerobic conditions, before transport to the laboratory 
where they were immediately frozen at − 80 °C following 
guidelines. The total fecal DNA from 32 samples (n = 25 
baseline samples and 7 follow-up samples, 20 weeks after 
RAL/MVC initiation) was extracted, sequenced and 
analyzed. DNA extraction used quenching solutions to 
protect DNA from degradation by DNases and a bead-
beating step that ensures the lysis of particularly robust 
cells. A barcoded fragment library was prepared for each 
sample and DNA sequencing data were generated using 
SOLiD 5500xl.

Metagenomic analyses
Primary analysis of shotgun metagenomic data from the 
n = 32 PWH samples, from read quality control to map-
ping against the Integrated Gene Catalog (IGC) of the 
human gut microbiome [35] and quantification of gene 
abundances was performed using METEOR [37]. First, 
read quality control was performed by excluding low 

quality reads having an average quality score < 20. In 
addition, reads aligned to the human genome (GRCh38.
p13) or to the SOLiD adapter sequences were discarded. 
Second, host or food associated reads were filtered out 
by aligning reads against the Homo sapiens (GRCh37.
p10), Bos taurus (Btau_4.6.1) and Arabidopsis thaliana 
reference genomes with bowtie [38]. Third, an average of 
103.6 million high-quality reads per sample (sd. 31.8 M) 
were mapped against the IGC 9.9 million gene reference 
catalogue [35] using bowtie with a maximum of three 
mismatches. An average of 47.48  million high-quality 
reads per sample (sd. 18.33 M) were mapped to the IGC 
catalog (45.02% of high-quality reads per sample on aver-
age, sd. 7.13%). Full details of the number of total reads, 
high-quality reads and mapped reads on the IGC catalog 
for the 32 PWH samples are available in Supplemental 
Table 1. A raw gene abundance table of PWH samples 
was generated by means of a two-step procedure previ-
ously described that handles multi-mapped reads [39]. 
First, uniquely mapping reads (reads that maps to a single 
gene in the IGC catalogue) were attributed to their corre-
sponding genes. Second, shared reads (reads that mapped 
with the same alignment score to multiple genes) were 
attributed according to the ratio of their unique mapping 
counts.

The raw gene abundance table of PWH samples (n = 25 
PWH and n = 7 follow-up) was integrated with the equiv-
alent raw gene abundance tables of the n = 75 matched 
controls from the MetaHit, MicroObes and MetaCar-
dis studies into a unified raw gene count table of n = 107 
samples. To decrease technical bias due to different 

Table 1  Clinical and biological characteristics of the subjects
PWH vs. Microobes PWH vs. Metahit PWH vs. Metacardis
PWH N=25 Microobes 

N=25
p. 
overall

PWH N=25 Metahit 
N=25

p. overall PWH N=25 Metacardis 
N=25

p. 
overall

BMI (kg/m2) 25.0 (4.2) 32.7 (3.7) 8.7e-07 25.0 (4.2) 26.0 (4.4) 0.64 25.0 (4.2) 23.2 (1.58) 0.071
Waist circumference (cm) 97.9 (6.2) 105 (9.2) 0.024 97.9 (6.2) . (.) . 97.9 (6.2) 83.1 (7.17) 1.1e-05
Hip circumference (cm) 98.7 (3.6) 114 (9.3) 5.3e-06 98.7 (3.6) . (.) . 98.7 (3.6) 96.3 (5.2) 0.24
CRPus (mg/L) 5.9 (10.4) 5.3 (6.9) 0.23 5.9 (10.4) . (.) . 5.9 (10.4) 1.5 (1.7) 0.082
INS (µU/ml) 19.2 (20.1) 8.11 (3.7) 0.0031 19.2 (20.1) . (.) . 19.2 (20.1) 5.23 (3.35) 2.2e-06
LDL-cholesterol (mmol/L) 2.83 (0.92) 3.30 (0.75) 0.066 2.83 (0.92) . (.) . 2.83 (0.92) 2.82 (0.70) 0.77
HDL-cholesterol (mmol/L) 1.22 (0.32) 1.41 (0.36) 0.037 1.22 (0.32) . (.) . 1.22 (0.32) 1.66 (0.43) 0.00036
SBP (mm Hg) 138 (22.6) 119 (13.0) 0.026 138 (22.6) . (.) . 138 (22.6) 123 (15.8) 0.074
Glycemia (mmol/L) 5.79 (1.02) 5.31 (0.46) 0.14 5.79 (1.02) . (.) . 5.79 (1.02) 4.92 (0.52) 0.00031
IL-6 (pg/mL) 3.73 (5.72) 2.17 (1.72) 0.99 3.73 (5.72) . (.) . 3.73 (5.72) 1.67 (1.05) 0.62
sCD14 (ng/mL) 1595 (226) 1382 (390) 0.009 1595 (226) . (.) . 1595 (226) 1470 (305) 0.039
Adiponectin (µg/mL) 3.30 (2.04) 14.1 (6.93) 1.3e-07 3.30 (2.04) . (.) . 3.30 (2.04) 6.28 (4.18) 0.0027
HOMA-IR 5.12 (5.03) 1.93 (0.91) 0.00081 5.12 (5.03) . (.) . 5.12 (5.03) 1.16 (0.73) 1.7e-06
Gender: 0.00023 0.7 1
   Female 5 (20.0%) 19 (76.0%) 5 (20.0%) 3 (12.0%) 5 (20.0%) 5 (20.0%)
   Male 20 (80.0%) 6 (24.0%) 20 (80.0%) 22 (88.0%) 20 (80.0%) 20 (80.0%)
Age (years) 53.1 (7.0) 47.9 (10.3) 0.14 53.1 (7.0) 52.7 (8.2) 0.83 53.1 (7.0) 53.2 (12.5) 0.55
Results are given as mean (SD). Pairwise differences in clinical variables between PWH and each of the control groups were evaluated by Wicoxon rank-sum test 
(continuous variables) and Chi-square tests (categorical variables). BMI: body mass index; INS: fasting insulinemia; SBP: systolic blood pressure; sCD14: soluble CD14
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sequencing depth, rarefaction (or downsizing) was per-
formed by randomly selecting 11 million reads were for 
each sample using a draw without replacement. Finally, 
rarefied gene abundances were normalized according to 
the FPKM (fragments per kilobase of transcript per mil-
lion mapped reads) strategy (normalization by the gene 
size and the number of total mapped reads reported in 
frequency) to give the gene abundance profile. Microbial 
gene richness was measured by counting the number of 
genes that were present for a given sample after rarefac-
tion (i.e. with at least one read aligned on them; Supple-
mental Table 2).

Computation of microbial species abundance was per-
formed using the metagenomic species (MGS) approach 
[40] implemented in the momr R package [41]. Abun-
dance for each MGS was computed as the average abun-
dance of the 50 most correlated genes as proposed in 
the original study [40]. Only MGS with more than 500 
genes were considered for downstream statistical analy-
ses. MGS taxonomic annotation was performed by align-
ing their genes against the GTDB r214 representative 
genomes [42] with blastn [43]. A species-level assignment 
was given if > 50% of the genes matched the same refer-
ence genome at a threshold of 95% of identity and 90% of 
gene length coverage. The remaining MGS were assigned 
to a given taxonomical level from genus to superkingdom 
level, if more than 50% of their genes had the same level 
of assignment. MGS abundance table and taxonomic 
annotations are available in Supplemental Table 3.

Functional profiles based on KEGG ortholog groups 
were derived from functional annotations of the IGC 
gene catalog obtained by the MOCAT2 framework [44]. 
Gut Metabolic Modules (GMMs) were computed from 
KO abundance matrix using the GOmixer R package [45] 
and KEGG functional modules were quantified from KO 
abundance matrix as the harmonic average of module 
KO abundances using the FAM R package (https://git.
ummisco.fr/pipelines/fam.git). GMM and KEGG module 
abundance tables are available in Supplemental Tables 4 
and 5 respectively.

Enterotyping of the n = 107 samples was performed 
following the Dirichlet Multinomial Mixture (DMM) 
method of Holmes et-al. [46] using MGS abundance 
matrix collapsed at the genus level. The DMM approach 
groups samples if their taxon abundances can be mod-
eled by the same Dirichlet-Multinomial (DM) distribu-
tion. Classification at K = 3 groups (3 DM distributions) 
showed best model fit performance based on the Laplace 
metric (Supplemental Fig.  1A). Clustering in three 
groups (k = 3) was driven by the main bacterial lineages 
(Prevotella, Bacteroides, Ruminococcaceae) that defined 
the original enterotypes [47] based on non-parametric 
Kruskal-Wallis test and environmental fitting on the 
PCoA ordination (Fig. 1B), including also a significantly 

high microbial gene richness in Ruminococcaceae entero-
type (Supplemental Fig. 1B). Enterotype assignments are 
available in Supplemental Table 2.

The estimation of the explanatory power of clini-
cal covariates on microbiome profiles derived from 
genus-level MGS abundance data was performed using 
distance-based redundancy analyses (dbRDA) as imple-
mented in the R package vegan v2.6-4 [48]. Microbiome 
inter-individual variation was visualized by principal 
coordinates analysis using Bray–Curtis dissimilarity on 
the genus-level MGS abundance data. Environmental 
fitting of clinical covariates with significant impact on 
microbiome composition based on dbRDA analyses over 
PCoA ordination from Bray-Curtis inter-sample dis-
similarity matrix was computed with the vegan::envfit 
function.

External validation datasets
Two external datasets were used to validate the clas-
sification models. The cohort from the Bai et-al study 
[49] (PRJNA692830 ENA study accession) consisted of 
24 Swedish individuals including 12 PWH under anti-
retroviral therapy and 12 controls. The cohort from the 
Lu et-al study [50] (PRJNA391226 ENA study acces-
sion) consisted of 71 Chinese individuals (61 HIV and 10 
healthy controls).

Raw reads from each study were downloaded from the 
ENA repository and processed with NGLess v1.5.0 [51] 
for quality trimming (minimum read quality = 25; mini-
mum read length = 40), host contaminant removal vs. ref-
erence human genome (min. identity = 90%, min. match 
size = 45), alignment filtered reads over the ICG 9.9-mil-
lion gene catalog [35] (min. identity = 95%, min. match 
size = 45), and generation of raw gene abundance tables 
with the dist1 metric (first the gene abundances are com-
puted from unique mapped reads and then are corrected 
by the multiple mapped reads weighted by the coverage 
of unique mapped reads). The raw gene abundance tables 
were processed as described above for rarefaction (11 M 
reads x sample), normalization and MGS abundance cal-
culation with the momr R package [41].

Classification analyses
The Predomics R package v1.01 [52] was used to build 
binary classification models of PWH (baseline) vs. each 
of the three control groups based on MGS abundance 
profiles. Models were trained using three different algo-
rithms including Random Forest as state-of-the-art 
(SOTA) method, and the Binary and Ternary native Pre-
domics models that were learned with the Terbeam heu-
ristic. The Binary and Ternary models describe simple 
ecological relationships in microbial ecosystems. Details 
of the different heuristics and BTR models can be found 
in [52]. Each sample group (baseline PWH and 3 control 

https://git.ummisco.fr/pipelines/fam.git
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groups) was divided into a training set of n = 20 samples 
and a holdout set of n = 5 samples. Models were trained 
on the training data and evaluated for accuracy and AUC 
on a 10 times 10-fold cross-validation schema, and the 
results of the best algorithm were further explored in the 
case of Binary and Ternary models to study the family 
of best models (FBM), described as models whose accu-
racy is within a given window of the best model’s accu-
racy. This window is defined by computing a significance 
threshold, assuming that accuracy follows a binomial 
distribution (p < 0.05). No hyperparameter optimization 
was performed. Features included in the FBM were fur-
ther explored in terms of prevalence across models and 
groups as well as their importance, described as the mean 
decrease accuracy (MDA) of the model after feature 

removal. The best model in each prediction task was 
evaluated on two different holdout datasets consisting in 
the 5 samples of each group that were excluded from the 
training process and the two external datasets described 
above.

Statistical analyses
Wilcoxon rank-sum tests were used to compare micro-
bial gene richness between PWH baseline group and 
each of the 3 control groups, and chi-square test followed 
by post-hoc analyses for interpreting chi-square contin-
gency-table test results [53] was used to evaluate differ-
ences in enterotype composition between PWH and the 
3 control groups. Wilcoxon rank-sum tests followed by 
multiple test correction using the Benjamini-Hochberg 

Fig. 1  General overview of microbiome composition of ROCnRAL cohort. (A) Gene richness distribution across study groups (n = 25 individuals per 
group; p-values from pairwise Wilcoxon rank-sum test are shown in brackets). (B) Principal coordinates analysis (PCoA) analyses of samples in panel A 
with arrows representing the effect sizes of the 30 genus features with highest significant differences across enterotypes (FDR < 0.05; Kruskal-Wallis test) 
product of environmental fitting over ordination plot. (C) Enterotype compositions in each study group (n = 25 individuals per group). P-value of Chi-
squared test is shown in the top of the panel; *=FDR < 0.05, post-hoc analysis for Pearson’s Chi-squared Test for Count Data (D) Clinical variables explaining 
the microbiome compositional variation across baseline individuals of PWH, MetaCardis and MicroObes groups (n = 25 individuals each; distance-based 
redundancy analysis, dbRDA; genus-level Bray-Curtis dissimilarity; FDR < 0.05). (E) PCoA of inter-individual differences (genus-level Bray-Curtis beta-diver-
sity) across samples in panel D with samples colored by study group and shaped by enterotypes. Arrows represent effect sizes of the significant variables 
identified by dbRDA analyses in panel D product of environmental fitting over ordination plot
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method were used to identify taxonomic (MGS) and 
functional modules (GMM, KEGG modules) with sig-
nificant differences between PWH and each control 
group. Features with FDR < 0.05 were considered as sig-
nificantly different between PWH and each of the control 
groups. Similar non-parametric analyses were performed 
stratifying the PWH into MSM and no-MSM individu-
als to evaluate the impact of MSM status on the results 
observed with the entire PWH group as this variable 
(MSM status) was not available for the control groups 
(no possible adjustment). Wilcoxon signed-rank tests 
followed by FDR correction by Benjamini-Hochberg 
method were used to identify taxonomic (MGS) and 
functional modules (GMM, KEGG) with significant dif-
ferences in PWH before and 20 weeks after RAL/MVC 
initiation, and features with FDR < 0.05 were considered 
as significantly different between both time points. Dif-
ferences in microbial gene richness and enterotype com-
position between MSM and non-MSM groups were 
evaluated with Wilcoxon rank-sum tests and Fisher test 
respectively. Spearman correlations followed by FDR cor-
rection by Benjamini-Hochberg method were used to 
evaluate the association of MGS and functional modules 
derived from the univariate analyses with clinical covari-
ates available for both PWH and their matched controls 
of the MetaCardis and MicroObese cohorts, and to eval-
uate the similarity in effect sizes of feature change (Cliff ’s 
delta) between non-MSM and MSM individuals vs. the 
three control groups for both MGS and GMM abun-
dance tables (Supplemental Fig.  4). Differences in clini-
cal, anthropometric and demographic variables in study 
groups are reported in mean ± standard deviation. All 
analyses were performed in R v4.2.2.

Results
Cohort description
The main subjects’ characteristics are given on Table  1. 
Using quantitative metagenomics, we investigated the 
gut microbiome of 25 PWH, ART-controlled, aged 
53.1 ± 7.0 years, with an average BMI of 25 ± 4.2  kg/m2 
and an increased level of insulin resistance (HOMA-IR 
5.12 ± 5.03) enrolled in the ROCnRAL study [30] and 
from the Internal Medicine and Immunology department 
of Bicêtre Hospital (Kremlin-Bicêtre, France). They were 
20 men and 5 women. Regarding the HIV mode of trans-
mission, their status was: 13 men having sex with men 
(MSM), 9 heterosexuals (4 men and 5 women), 1 blood 
transfusion, and 2 unknowns.

They were compared with three groups of HIV-neg-
ative individuals from three different studies (25/177 
healthy Danish individuals from MetaHit study [31], 
25/95 healthy French individuals from MetaCardis study 
[33] and 25/35 individuals of the MicroObes study cor-
responding to baseline timepoint [34]) paired on age, 

gender and BMI: Quantitative metagenomic profiles for 
all the samples were derived using the Integrated human 
Gut microbiome Catalog (IGC) [35] (see Methods).

We observed that PWH presented significantly higher 
levels of insulin and of HOMA-IR than control individu-
als from MetaCardis and MicroObes cohorts for which 
clinical data were available (Table  1). HOMA-IR values 
were also higher (p = 0.05) in the MSM group (7.1 ± 1.7) 
compared with the non-MSM group (2.7 ± 0.4), while the 
average BMI was not significantly different (respectively 
25.7 ± 1.2 and 23.6 ± 1.6 kg/m2).

Among the 7 PWH from the ROCnRAL study who had 
been tested at baseline, there was no significant variation 
in BMI or HOMA-IR index after 17 ± 4 weeks following 
the switching to dual therapy RAL/MVC.

Microbial gene richness and composition of PWH vs. 
control groups and after ART switch
Significant differences in microbial gene richness were 
observed across study groups (p-value = 0.047; Kruskal-
Wallis test, Fig. 1A). Pairwise comparison of PWH with 
different control groups showed a significant deple-
tion of microbial gene richness only in comparison 
with the matched controls from the MicroObes cohort 
(p-value = 0.032; Wilcoxon rank-sum test; Fig.  1A), sug-
gesting no major dysbiosis in terms of microbiome 
diversity in PWH in comparison with healthy controls 
(MetaHit, MetaCardis groups).

Stratification of the individuals into different microbi-
ome composition groups (i.e. enterotypes) based on the 
DMM approach [46] showed the presence of 3 entero-
types driven by Bacteroides, Prevotella and different 
lineages of the Ruminococcaceae, Oscillospiraceae and 
Christensenellaceae families that reproduce well known 
community types of the human gut microbiome [47, 54] 
(Fig. 1B, Supplemental Fig. 1B). Chi-square tests showed 
non-significant differences in enterotype composition 
between study groups (p-value = 0.14), but post-hoc test-
ing on the adjusted standardized residuals of the Chi-
square test [53] showed that Prevotella enterotype was 
significantly enriched in the PWH group (FDR = 0.046; 
Fig. 1C).

Distance-based redundancy analysis (dbRDA) of study 
groups and 19 clinical variables available in PWH and 
control individuals from MetaCardis and MicroObes 
cohorts, for which clinical data were available, showed 
seven variables with significant impact on microbi-
ome composition (FDR < 0.05, Fig.  1D). Study group 
was the variable with the highest impact (adjR²=0.065; 
FDR = 0.01) followed by glucose levels (adjR²=0.041; 
FDR = 0.01), HOMA-IR (adjR²=0.029; FDR = 0.01), insu-
lin levels (adjR²=0.022; FDR = 0.03), adiponectin lev-
els (adjR²=0.021; FDR = 0.032), HDL (adjR²=0.021; 
FDR = 0.034) and gender (adjR²=0.017; FDR = 0.033), 
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this last variable possibly associated to the difficul-
ties encountered in the matching of controls from the 
MicroObese cohort (see Methods; Table 1). Environmen-
tal fitting of these variables on the compositional land-
scape of microbiome variation defined by the PCoA of 
these 75 individuals (PWH, MetaCardis and MicroObes 
controls) showed that metabolic health variables (glucose 
levels, HOMA-IR, insulin) were associated with regions 
of the compositional space dominated by PWH individu-
als (Fig. 1E).

Longitudinal analyses on the 7 PWH switched to RAL/
MVC therapy showed that the treatment didn’t significa-
tively impact the microbial gene richness (Supplemental 
Fig.  2A; p-value = 0.375 Wilcoxon signed-rank test) nor 
the global microbiome composition of (p-value = 1; PER-
MANOVA test). This was reflected by the proximity of 
baseline and 17-weeks microbiome samples of each indi-
vidual in ordination analyses (Supplemental Fig.  2B) as 
well as by the stable enterotype assignment at both time 
points for 4 of the 7 PWH with follow-up (Supplemen-
tal Fig. 2C). Univariate analyses on taxonomic and func-
tional profiles didn’t show significant alterations after 
FDR correction (Supplemental Tables 6–8).

Overall, these results suggest that HIV infection (study 
group) and metabolic health status (glucose levels) play 
a significant explanatory role on microbiome composi-
tional variation, with PWH showing strong enrichment 
in the Prevotella enterotype, which is in line with previ-
ous reports [9, 10].

Finally, we compared our data in MSM subjects (n = 13) 
and non-MSM subjects (heterosexual men, women or 
infected through blood transfusion, n = 10), excluding 2 
subjects for which no information was available. We did 
not observe any significant difference in microbiome 
composition (p-value = 0.107; PERMANOVA test; Sup-
plemental Fig. 3A) as well as in microbial gene richness 
(p-value = 0.41; Wilcoxon rank-sum test, Supplemental 
Fig.  3B) by MSM status in PWH. However, in terms of 
enterotype composition, we observed a tendency towards 
an enrichment in Prevotella enterotype in MSM sub-
jects and Bacteroides enterotype in no-MSM subjects, 
although overall differences in enterotype composition 
by MSM status were not statistically significant, possi-
bly due to the low number of participants (p-value = 0.5; 
Fisher’s exact test; Supplemental Fig. 3C).

Taxonomic and functional differences between PWH 
individuals and control groups
We identified 121 metagenomic species (MGS) whose 
abundance was significantly different between PWH 
and at least one of the control groups (FDR < 0.05, Wil-
coxon rank-sum tests). Of these, 27 MGS showing sig-
nificant variations in abundance (FDR < 0.05; Wilcoxon 
rank-sum test) in the same direction in PWH vs. all three 

control groups were identified as core MGS (Fig.  2A, 
Supplemental Table 9). Among these robust associa-
tions, PWH showed significant increase in 12 MGS 
belonging to the Prevotella genus and a MGS belonging 
to Succinivibrionaceae family of gamma-proteobacteria 
(CAG00726:Succinivibrio sp000431835) together with 
a significant decrease in several MGS assigned to the 
Bacillota_A phylum, including some butyrate produc-
ing lineages like Ruthenibacterium, Gemmiger and Fae-
calibacterium genus, as well as Actinobacteriota lineages 
like CAG0059: Bifidobacterium longum and CAG01272: 
Adlercreutzia hattorii (Fig. 2A).

Out of these 27 core MGS, 16 (i.e., 60%) were found 
to be significantly different in individual compari-
sons of MSM and no-MSM PWH individuals vs. at 
least one of the control groups (FDR < 0.1 in both com-
parisons; Fig.  2A). Among them, CAG00726: Succini-
vibrio sp000431835 (Fig.  2B) and CAG00323: Prevotella 
sp900543975 (Fig.  2C) were significantly higher in both 
groups of PWH individuals vs. all three control groups 
whereas CAG01272: Adlercreutzia hattorii (Fig.  2D) 
and CAG00755: Faecalibacterium sp900539945 (Fig. 2E) 
showed the opposite pattern (significantly depleted in 
both groups of PWH individuals vs. the three control 
groups). Comparison of the effect sizes of MGS changes 
between PWH and control groups (Cliff ’s Delta) in MSM 
and no-MSM individuals by means of Spearman corre-
lations showed however a strong and significant positive 
correlation (Supplemental Fig.  4A), which suggests that 
the sign of the variations in MGS abundances between 
PWH and control groups are also robust to MSM status 
despite the loss of statistical power due to reduced group 
sizes.

At the functional level we observed a consistent deple-
tion of the functional potential of the gut microbiome of 
PWH individuals when compared with the three differ-
ent control groups. 77 Gut Metabolic Modules (GMM) 
showed significant differences in abundances between 
PWH and at least one control group (FDR < 0.05; Wil-
coxon rank-sum test, Supplemental Table 10), of which 
29 core modules displayed robust and significant varia-
tions when compared against all three control groups, 
all of them being depleted in PWH (Fig.  3A). Among 
them we observed an overall depletion of the potential 
for amino acid degradation and for butyrate production 
in the gut microbiome of PWH individuals (Fig.  3A). 
Similar analyses stratified by MSM status of PWH indi-
viduals showed that the differences in 17 of the 29 core 
GMM were reproduced in individual groups of MSM and 
no-MSM PWH vs. the three control groups (FDR < 0.1 
in both comparisons, left panel in Fig.  3A). Butyrate 
production modules were retained in this subset of 17 
core GMM with robust association to MSM preferences 
(Fig.  3B, C), which suggests that depletion of butyrate 
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Fig. 2  Differentially abundant metagenomic species (MGS) across study groups. (A) Heatmap of Cliff’s Delta effect sizes (left panel) of 121 MGS with signif-
icant differences in abundance between HIV individuals (n = 25) and MicroObes (n = 25), MetaHit (n = 25) or MetaCardis (n = 25) individuals (#=FDR < 0.05; 
*=p-value < 0.05; Wilcoxon rank-sum test). Positive values correspond to MGS significantly increased in the PWH group, whereas negative values cor-
respond to MGS significantly depleted in the PWH group. Right panel represents the robustness of the associations to MSM status (FDR < 0.1; Wilcoxon 
rank-sum test in MSM vs. control and no-MSM vs. control comparisons; n = 13 MSM, n = 10 no-MSM). (B-E) Boxplots of log-transformed MGS abundances 
across study groups for the 4 MGS highlighted in green in panel A
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production potential is a strong signature of the micro-
biome of PWH and this independently of MSM prefer-
ences. Similar comparison of the effect sizes of GMM 
changes between PWH and control groups (Cliff ’s Delta) 
in MSM and no-MSM individuals by means of Spearman 
correlations showed less strong positive correlation than 
with the MGS data, although still significant, with all 
GMM showing differences in MSM and no-MSM groups 
vs. each control group being consistently depleted in the 
groups of PWH individuals (Supplemental Fig. 4B).

We observed similar results when a second functional 
space, corresponding to KEGG functional modules, 
was analyzed (Supplemental Fig.  5). 41 KEGG mod-
ules showed significant differences in abundance levels 
between PWH and all three control groups (FDR < 0.05; 
Wilcoxon rank-sum tests, Supplemental Table 11), of 
which 39 were consistently depleted and just 2 mod-
ules were consistently enriched in PWH individuals 
(Supplemental Fig.  5A). Among these, we observed 
an enrichment of a module involved in the biosyn-
thesis of the ADP-L-glycero-beta-D-manno-heptose 

Fig. 3  Gut Microbiome Modules (GMMs) with significant differences across study groups. (A) Heatmap of Cliff’s Delta effect sizes (right panel) of 77 GMMs 
with significant differences in abundance between PWH individuals (n = 25) and MetaCardis (n = 25), MetaHit (n = 25) and MicroObes (n = 25) individuals 
(#=FDR < 0.05; *=p-value < 0.05; Wilcoxon rank-sum test). Positive values correspond to GMMs significantly increased in PWH, whereas negative values 
correspond to GMMs significantly depleted in PWH. Left panel represents the robustness of the associations to MSM status (FDR < 0.1; Wilcoxon rank-sum 
test in MSM vs. control and no-MSM vs. control comparisons; n = 13 MSM, n = 10 no-MSM) (B-C) Boxplots of GMMs abundances across study groups for 
Butyrate production modules (significant decrease in PWH individuals vs. all three control groups and robust to MSM status; highlighted in green in panel 
A)
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(ADP-L-beta-D-heptose) precursor of the inner core 
lipopolysaccharide (LPS). This increase was observed 
only in the MSM group (Supplemental Fig. 5B).

Association between metagenomic features and clinical 
variables
Next, we looked for associations between core metage-
nomic features, significantly enriched or depleted in 
PWH individuals vs. all three control groups, and 13 
clinical variables that were available in PWH individu-
als and controls from the MetaCardis and MicroObes 
cohorts. At the taxonomic level, MGS enriched in PWH 
were positively associated with insulin levels (INS) and 
insulin resistance (HOMA-IR) and negatively associated 
with adiponectin and HDL levels in stratified analyses 
combining PWH and MetaCardis controls and PWH 
and MicroObes controls (Fig.  4A, Supplemental Table 
12). The opposite associations were observed for butyr-
ate producing lineages of the Bacillota_A phylum, signifi-
cantly depleted in PWH individuals (Fig. 4A). In contrast, 
associations with corpulence variables were less con-
sistent, depending on the control group, which can be 
explained by the high corpulence profile of individuals of 
the MicroObes cohort, despite the efforts in matching for 
BMI in the selection of non-PWH samples (Fig. 4A).

At the functional level, the 29 modules significantly 
depleted in PWH vs. all three control groups, including 
butyrate production potential, were all consistently nega-
tively associated with metabolic health variables (insulin 
levels, insulin resistance, glucose levels) and positively 
associated with adiponectin and HDL levels in all strati-
fied analyses combining PWH with MetaCardis and 
MicroObes controls (Fig.  4B, Supplemental Table 12). 
Overall, these results show that the depletion in butyr-
ate producing lineages and butyrate production potential 
in parallel with enrichment of Prevotella and gamma-
proteobacterial lineage of the Pseudomonadata phylum 
(CAG00726:Succinivibrio sp000431835) in PWH is con-
sistently associated with a worse metabolic profile.

Predictive power of the gut microbiome for classification 
of PWH individuals vs. controls
We next explored the predictive power of the gut micro-
biome composition in predicting the PWH status in 
binary classification tasks vs. each of the three different 
control groups using a suite of machine learning (ML) 
algorithms implemented in the Predomics R package 
[52]. We tested random forest models as well as two 
ecosystem-inspired (binary and ternary) models initially 
introduced in a previous article. These are interpretable 
simplifications of linear models that generalize well [52] 
and trained with different heuristic algorithms. Specifi-
cally, in binary models we looked for combinations of 
MGS whose cumulative abundance allows classifying 

individuals as PWH or controls if the score is above or 
below a given threshold that is learned with the model, 
whereas in ternary models we looked for a difference 
between the cumulative abundance of two groups of fea-
tures (MGS) as a signature to classify individuals as PWH 
or control (difference above or below a threshold that is 
learned by the model).

Random forest models showed the best overall per-
formance during training on cross-validation (avg AUC 
+- std error = 0.98 +- 0.003, 1.00+-0.00 and 0.99+-0.001 
in PWH vs. MetaCardis, MetaHit and MicroObes con-
trols respectively) followed by bininter (avg AUC +- std 
error = 0.88 +- 0.011, 0.94+-0.009 and 0.94+-0.01 in 
PWH vs. MetaCardis, MetaHit and MicroObes con-
trols respectively) and terinter models (avg AUC +- std 
error = 0.88 +- 0.012, 0.91+-0.011 and 0.86+-0.01 in 
PWH vs. MetaCardis, MetaHit and MicroObes controls 
respectively; Supplemental Fig.  6A). However, when 
focused the analyses on the Family of Best binary and 
ternary Models (FBM) learned by Predomics (subset of 
models whose accuracy is statistically non-different from 
the best model) their performances overall increased to 
accuracy levels similar to those learned with random 
forest (close to 1) but with a number of features ranging 
from 2 to 10 (Supplemental Fig. 6B).

Predomics generated 718 best binary models (FBM), 
which selected a total of 39 different MGS in the clas-
sification tasks of PWH vs. each of the 3 control groups 
(Fig.  5A). Among these features we observed several 
of the core MGS retrieved in univariate analyses with 
similar variations in PWH vs. each of the three control 
groups and robust to MSM status, including CAG00323: 
Prevotella sp90054375 and CAG00755: Faecalibacterium 
sp900539945 retained in 62.23% of the FBM of PWH 
vs. MetaCardis controls, or CAG00726: Succinivibrio 
sp000431835, which is retained in all FMB in PWH vs. 
MicroObes controls, showing the overall highest mean 
feature importance (Fig.  5A). Most of the binary mod-
els in FBM of PWH vs. MetaHit and MicroObes con-
trols included exclusively MGS enriched in the PWH 
group, several of them like CAG00726: Succinivibrio 
sp000431835 or CAG00323: Prevotella sp90054375 and 
the other 2 core MGS retained in at least one of the FBM 
in all three binary prediction tasks being highly specific 
of PWH even in terms of prevalence (rightmost panel 
in Fig.  5A; MGS with prevalence near zero in the three 
control groups vs. 100% prevalence in PWH). CAG00175: 
Bacteroides clarus seems to be specifically retained in 
the FBM trained to classify PWH vs. MetaHit controls, 
explained by the specific absence of this MGS in the 
MetaHit controls (0% prevalence vs. 45% prevalence in 
the MetaCardis and MicroObes controls and 80% preva-
lence in PWH; rightmost panel in Fig.  5A). In contrast, 
FBM of the binary method identified when classifying 
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Fig. 4  Associations between metagenomic features and clinical variables in ROCnRAL sub-cohorts. (A) Heatmap of spearman correlations between 27 
core MGS (y-axis) from Fig. 2A (significant differences in abundance between PWH (n = 25) and all three control groups) and clinical variables (y-axis) in 
PWH and MetaCardis individuals (left panel) and PWH and MicroObes individuals (right panel). #=FDR < 0.05, *=p-value < 0.05, Spearman correlation tests. 
(B) Same as panel A for 29 core Gut Metabolic Modules (GMM) in Fig. 3A
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PWH from MetaCardis controls included mainly MGS 
enriched in the MetaCardis controls, including multiple 
butyrate-producing lineages from the Faecalibacterium, 
Gemmiger and Ruthenibacterium genus (leftmost panel 
of Fig. 5A).

When focusing on the Predomics ternary models, 37 
MGS were observed in the 669 FMB trained to classify 
PWH vs. each of the three control groups. These models 
combine groups of MGS enriched in PWH with groups 

of MGS enriched in the different control groups (red and 
blue MGS in the leftmost panel of Fig. 5B respectively). 
Among these MGS we continued to observe several of 
the core MGS described above in binary models, as well 
as notably CAG01272: Adlercreutzia hattorii, which is 
retained here in 21.42% 18.70% and 49.6% of the FBM of 
PWH vs. MetaCardis, MetaHit and MicroObes controls 
respectively (Fig.  5B). Also, we observed an interesting 
co-presence of CAG00726: Succinivibrio sp000431835 

Fig. 5  Composition of Predomics Family of Best Models (FBM) in PWH classification vs. control groups. (A) Summary plot of the feature presence/absence 
(left panel), mean feature importance (center panel) and feature prevalence across study groups (right panel) for the 39 MGS (y-axis) retained in 718 
bininter models included in the FBM in each prediction task (PWH vs. different control groups; n = 511 models in PWH vs. MetaCardis, 132 models in PWH 
vs. Metahit; 75 models in PWH vs. MicroObes). (B) Same as panel B for the 37 MGS retained in 669 terinter models included in the FBM in each prediction 
task (PWH vs. different control groups; n = 14 models in PWH vs. MetaCardis, 155 models in PWH vs. Metahit; 500 models in PWH vs. MicroObes). Blue and 
red MGS in model presence/absence and feature importance panels represent MGS with high mean abundances in control or PWH groups respectively. 
Core facet corresponds to MGS retained at least once in the FBM of each prediction task
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(enriched in PWH group) and CAG00384: Alistipes sha-
hii (enriched in the control group) in the FBM issued 
from the PWH vs. MicroObes binary classification 
(co-present in 51.4% of FBM and co-absent in 48.2% of 
FBM), indicating potentially specific trade-offs between 
the abundances of these two MGS that changes between 
PWH and MicroObes controls (Fig. 5B).

Finally, we evaluated the performance of the best pre-
diction models on different sets of unseen samples dur-
ing the training process (testing sets of cross validation, 
see methods). The best binary models were extremely 
simple, with 3, 4 and 2 MGS to classify respectively PWH 
vs. MetaCardis, MetaHit and MicroObes controls, and 
retained core MGS retrieved in univariate analyses sig-
nificantly enriched in PWH vs. the three control groups 

and robust to MSM status like CAG00726 Succinivibrio 
sp000431835 and CAG00323: Prevotella sp900543975, 
being also the ones with the highest feature importance 
(Fig.  6A, left panel). Best models including CAG00726: 
Succinivibrio sp000431835 performed at AUC of 100% 
when tested with 5 PWH and 5 control samples from 
each group that were excluded from the training pro-
cess (internal holdouts), but generalizes poorly (AUC 
= 53–65) when applied to two external holdout datas-
ets (study PRJNA692830: 13 PWH ART-controlled and 
12 healthy controls; study PRJNA391226: 61 PWH and 
10 healthy controls) (Fig. 6A, right panel). The best ter-
nary models are equally sparse (3 MGS each), similar in 
composition to the binary ones in the inclusion of MGS 
enriched in the PWH group (CAG00726: Succinivibrio 

Fig. 6  Performance of best prediction models (binary and ternary Predomics models and random forest models) of PWH vs. control groups on hold-out 
datasets. (A) Best Predomics bininter models for the classification of PWH vs. the 3 control groups. Left panel represents the MGS (x-axis) included in each 
model (y-axis) with colors representing the feature importance (mean decrease accuracy) and labels representing the sign of the association between 
groups (PWH = increased in PWH group; C = increased in control group). Right panel represents the AUC of each best model vs. different hold-out datasets 
(x-axis). Internal holdouts correspond to 5 PWH and 5 control samples from each of the three control groups unseen during the training process. External 
holdouts correspond to PWH and control samples coming from two external quantitative metagenomics studies (PRJNA692830: 13 PWH ART-controlled 
and 12 healthy controls; PRJNA391226: 61 PWH and 10 healthy controls) for which MGS abundances in the IGC reference space has been generated (see 
methods for details). (B) and (C) represent the same results as (A) for the best Predomics terinter models and random forest models respectively. In panel 
C, the left panel is limited to the top 20 MGS with the highest GINI score in each model
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sp000431835 and CAG00323: Prevotella sp900543975) 
but including also MGS enriched in all three control 
groups and robust to MSM status like CAG01272: Adler-
creutzia hattorii (Fig.  6B, left panel). In terms of per-
formance, models including CAG00726: Succinivibrio 
sp000431835 and CAG01272: Adlercreutzia hattorii 
performed at AUC of 100% with internal holdout data, 
showing better generalization (AUC = 64–71) than binary 
models on the two external holdout datasets (Fig.  6B, 
right panel).

Random forest models showed the best performance 
on the external holdout datasets, reaching AUC lev-
els of 82.04% and 80.06% on the PRJNA391226 and 
PRJNA692830 studies respectively for the best model 
trained on PWH vs. MicroObes controls (Fig.  6C, right 
panel). However, these models are much more complex 
than those learned by predomics (n = 100 MGS; num-
ber of trees = 500; avg ± sd nodes = 6.2±1.57, 5.78±1.52, 
5.52±1.49 for random forest models of PWH vs. Meta-
Cardis, MetaHit and MicroObes classification), but 
among the top 20 MGS with the highest contribution 
in terms of mean decrease Gini Score are commonly 
retained core MGS retrieved in univariate analyses with 
similar variations in PWH vs. the three control groups, 
robust to MSM status, and included in the sparse Predo-
mics models like CAG00726: Succinivibrio sp000431835, 
CAG00755:Faecalibacterium sp900539945, CAG00323: 
Prevotella sp900543975 and CAG01272: Adlercreutzia 
hattorii.

Overall, these results showed that the microbi-
ome of PWH of this study harbors highly specific 
metagenomic signatures (CAG00726: Succinivibrio 
sp000431835, CAG00755:Faecalibacterium sp900539945, 
CAG00323:Prevotella sp900543975 and CAG01272: 
Adlercreutzia hattorii) robustly identified in univariate 
analyses vs. the three control groups and robust to MSM 
status that are extremely powerful at predictive level 
but that generalizes poorly on external datasets by itself 
in the context of simple predictive models (Predomics 
models). However, the generalization on these external 
datasets improves markedly with more complex models 
(random forest), where these key MGS harbor the high-
est weight in terms of feature importance (Fig.  6C, left 
panel).

Discussion
In this study we show that the gut microbiome of 25 
aging ART-controlled PWH compared to 3 indepen-
dent groups of paired non-HIV infected controls, pres-
ents major alterations linked with insulin resistance and 
a dysmetabolic profile. First, a core set of metagenomic 
species, some of which belonging to the Prevotella genus, 
were robustly enriched in PWH vs. each of the 3 matched 
control groups. These markers are also related with 

worsened insulin resistance profiles. This signature does 
not seem to be explained by MSM sexual preferences 
alone as tested based on stratified analyses by this vari-
able. Second, depleted butyrate-producing lineages of the 
microbiome could also be responsible for worsened met-
abolic profile and insulin resistance in PWH individuals, 
consistent across MSM sexual preferences. This defect 
is probably related to the HIV infection, even though all 
patients were controlled with ART modification. And 
third, machine learning methods uncovered robust pre-
dictive signatures, consistent with univariate analyses, 
which generalized relatively well in two additional exter-
nal cohorts. This indicates the specific impact of the HIV 
infection in the microbiome ecosystem.

An initial limitation of this study was that only PWH 
were recruited, so to characterize the specific microbial 
signatures in the microbiome of PWH we capitalized 
on the availability of quantitative metagenomic profiles 
from three studies (MetaHit, MicroObese, MetaCardis). 
These external cohorts included individuals from differ-
ent countries (French in MicroObese and MetaCardis; 
Danish in MetaHit), with variations in corpulence pro-
files (non-obese in MetaCardis and MetaHit; moderately 
obese and obese in MicroObes), and with metagenomic 
data generated with different sequencing technologies 
(SOLiD in MicroObese, Illumina in MetaHit, IonTorrent 
in MetaCardis). These as well as other technical and clin-
ical/lifestyle covariates (stool collection methods, library 
preparation protocol, nutritional profiles) could have a 
major impact on the metagenomic profiles and derived 
signatures associated to study groups in quantitative 
metagenomic studies [55–57].

The reference databases may also play a major role in 
quantitative metagenomic profiling [58, 59], although 
important effort is put to harmonize metagenomic data 
from different studies into common reference space [60]. 
Moreover, different library preparation methods and 
sequencing technologies may have an important effect on 
the final abundance profiles. All these different aspects 
would be impossible to de-confound in this study if a sin-
gle control group was included. Indeed, the integration of 
our PWH data with the metagenomic data in three con-
trol groups on the same reference space allowed to iden-
tify a core set of taxonomic and functional signatures that 
characterizes the microbiome of PWH with robust varia-
tions across all three control groups. We cannot exclude 
that other potential cofounder factors not accounted for 
in our study like diet, lifestyle, ethnicity or and medica-
tion adherence could impact the gut microbiome compo-
sition and metabolic parameters in PWH. These factors 
could explain the decrease in performance of predictive 
models (Predomics and Random Forest models) fitted 
on classification PWH from controls with our data when 
applied on two independent external studies, particularly 
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of simple models (Predomics) that penalizes larger mod-
els and as consequence contains a limited number of 
species (2–4 MGS). However, we observed that complex 
models derived from state-of-the-art machine learning 
approaches (Random Forest) allowed to correctly classify 
the samples of PWH vs. healthy controls in these inde-
pendent external studies (80–82% AUC), showing better 
generalization of the microbiome signatures identified in 
our PWH.

Among these signatures we observed a strong enrich-
ment of Prevotella lineages in PWH that is reflected at 
both MGS and enterotype levels and that constitutes a 
signature that has already been identified as enriched in 
the microbiome of PWH in other studies [22] but that 
has been also shown as potentially cofounded by the 
sexual preferences [23]. Here we lack information for this 
variable in the control groups, but stratified analyses on 
PWH by sexual preference shows a non-significant ten-
dency towards higher enrichment of Prevotella entero-
type in PWH of the MSM group (Supplemental Fig.  2) 
that would be in line with previous reports. However, we 
also observe that the increase of several core MGS of the 
Prevotella genus in the PWH was robust to sexual prefer-
ences (Fig. 2B, Supplemental Fig. 4).

In addition to these well-known signatures, our study 
identified other MGS that were highly specific of the 
microbiome of PWH and robust to MSM status like nota-
bly CAG00726: Succinivibrio sp000431835, an MGS that 
was predominantly absent from the three control groups 
and that showed the highest importance in the classifica-
tion models of PWH vs. different control groups. In this 
context, a longitudinal study of PWH with 16 S profiling 
showed drastic increase in the Succinivibrio genus under 
conventional ART therapy [61], and a 16 S-based cross-
sectional study showed also that Succinivibrio genus 
abundance was specifically associated to treatment- naïve 
PWH specifically infected by HIV-C subtype62. On 
the other side of the balance, the depletion of butyrate-
producing firmicutes lineages of the Bacillota_A phyla, 
notably from the Faecalibacterium genus and evolution-
ary close lineages like Gemmiger and Ruthenibacterium 
[63], that were described in previous studies character-
izing the microbiome of PWH [22, 25] were also repro-
duced in our cohort. This includes MGS like CAG00755: 
Faecalibacterium SP900539945, CAG00463: Faecalibac-
terium prausnitzii_I or CAG00208: Gemmiger qucibialis 
included in the core MGS consistently depleted in PWH 
in comparison to the three control groups and robust to 
MSM preferences (Fig. 2). But we also observed the near 
complete absence of CAG01272: Adlercreutzia hattorii 
in the microbiome of PWH individuals (MSM and no-
MSM). This lineage was recently characterized as a close 
relative (93% ANI values) of Adlercreutzia equolifaciens 
[64], a bacterium with anti-inflammatory properties 

both in vitro and in vivo in a humanized mouse model of 
NAFLD whose abundance decrease with the severity of 
hepatic disease [65]. In the context of PWH, 16 S metab-
arcoding studies have previously shown a depletion of 
Adlercreutzia genus in women with HIV infection with 
or at high risk of HIV having developed carotid artery 
atherosclerosis [66] as well as a consistent depletion in 
women with HIV with and without T2D in comparison 
with non-HIV and non-T2D controls [29]. However, a 
recent study also shown that Adlercrutzia equolifaciens 
abundance was significantly reduced in the context of 
T2D in women with and without HIVS from the Wom-
en’s Interagency HIV Study (WIHS), being included as 
signature of gut dysbiosis associated to T2D independent 
of HIV infection [28]. Here, thanks to the availability of 
shotgun data and precise taxonomic annotation based 
on the Genome Taxonomy DataBase42, we report to 
our knowledge the first evidence of the near complete 
absence Adlercreutzia hattorii in the microbiome of 
PWH, which could be associated to the inflammatory 
profile and altered metabolic status of PWH.

In the present study our focus has been the compre-
hensive profiling of the microbial gut ecosystem of PWH 
by using a comprehensive non-redundant gene catalog of 
human gut microbes (IGC) [35], which has the drawback 
of not covering other taxonomic groups relevant in the 
context of PWH etiology. Opportunistic infections (OIs) 
by a variety of bacteria, viruses, fungi and protozoan are 
common in individuals with highly immunocompro-
mised status due to advanced disease or naïve to ART 
[67], and co-infection with Hepatitis C and B viruses 
(HBV, HCV) are also common among PWH ( [14] and 
references therein). In addition to prokaryotic communi-
ties, fungal communities has been shown altered in PWH 
not only on the gut but on other human ecological niches 
like notably the oral cavity or the respiratory tract ([68] 
and references therein). In this context, the IGC catalog 
only includes 4 non-prokaryotic metagenomic species 
belonging to Blastocystis genus, a common intestinal 
protist lineage in human feces that has been punctually 
studied in relation with HIV infection ([69–73]), and for 
which we found no significant differences between PWH 
and none of the control groups (FDR > 0.05, Wilcoxon-
rank sum tests; Supplemental Table 9). Future studies 
with more taxonomically broad reference catalogs as 
well as direct metagenomic assembly on large cohorts of 
PWH individuals will be needed to fully evaluate the con-
tribution of non-prokaryotic communities of the human 
gut to PWH clinical profile.

Our study strongly suggests that insulin resistance can 
be partly related to the HIV status and partly to sexual 
preference in MSM, a highly represented population 
in Caucasian PWH in Western countries, but this lat-
ter point has not been precisely addressed. First, a high 
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level of insulin resistance has been commonly reported in 
PWH as compared to the general population. In the gen-
eral population, the average HOMA-IR was 1.1 in indi-
viduals with normal BMI and low body fat and of 1.6 in 
those with high body fat [6]. The HOMA-IR value was 
markedly higher in the Modena cohort in Italy: among 
2000 ART-controlled PWH, 68% men, aged in median 
45 years old and with a median BMI of 23 kg/m2, median 
HOMA-IR was 2.4 (IQR 1.4-4) and half patients were 
considered as insulin-resistant (HOMA-IR > 2) [5]. In 
the TANGO trial including more than 700 ART-con-
trolled PWH, 92% men, 79% Caucasian, with a BMI of 26, 
median HOMA-IR was 2.6 with about 70% being insulin-
resistant [74]. Second, the role played by the sexual pref-
erence in the level of insulin resistance in PWH has not 
been directly explored. Interestingly, in MSM from the 
MACS cohort, HOMA-IR was high in non-HIV infected 
MSM aged 44.9 years at 2.9 for a BMI of 26.3  kg/m2, 
and was significantly increased in MSM PWH aged 40.6 
years at 3.3 for a significantly lower BMI at 25.4  kg/m2 
[7], strongly suggesting that sexual preference in MSM 
could enhance insulin resistance. Accordingly, a high 
level of HOMA-IR was not found in the corresponding 
WIHS cohort of women infected or not by HIV, with an 
HOMA-IR of 2.0 for a BMI of 29.4 kg/m2 in non-infected 
women and a HOMA-IR of 1.9 for a BMI of 26.2 kg/m2 
for women PWH [75]. Thus, elevated HOMA-IR in MSM 
PWH could result both from sexual preference and from 
HIV infection.

Here, in 25 PWH with a mean BMI of 25  kg/m2 we 
observed a very high level of insulin-resistance (mean 
HOMA-IR 5.1) that is not clearly explained by BMI or 
metabolic disorders. Moreover, HOMA-IR was higher 
in the MSM vs. the non-MSM group. We propose that 
altered microbiota, with increased Prevotella, which 
could be influenced by sexual preference (we observed 
a non-significant potential enrichment of Prevotella 
enterotype in PWH-MSM group; Supplemental Fig.  3), 
and decreased species producing butyrate, which could 
be linked to HIV infection, could both play a role in the 
insulin-resistant profile observed in PWH.

The relationship between gut dysbiosis and insu-
lin resistance has been poorly addressed in PWH. A 
decreased level of butyrate-producing bacteria has been 
reported in several studies [10, 12] being independent 
on sexual preference [12, 24] with no reference to insu-
lin resistance. Two studies evaluated gut microbiota 
in PWH with or without metabolic syndrome, in the 
absence of non-infected controls. They reported that 
Faecalibacterium was reduced in those with a metabolic 
syndrome [25] and was related to the liver fat index [26]. 
In patients with diabetes, one study evaluating women 
with HIV and diabetes reported a marginal decrease in 
Faecalibacterium as compared to non-diabetics (p = 0.07) 

[29]. However, in another study evaluating PWH and 
non-infected controls, with or without diabetes, the over-
all capacity for butyrate metabolism as predicted by a 
PICRUSt analysis did not differ between the groups [27]. 
Conversely, such bacteria have been negatively linked 
to prediabetes and also with diabetes in non-infected 
individuals (for a review see [76]) in most studies but 
a positive relationship between Faecalibacterium and 
HOMA-IR has been recently reported in non-diabetic 
subjects with overweight or obesity [77]. In the pres-
ent study, we present the clear link between their major 
reduction in PWH as compared to the three control 
groups and higher insulin resistance. This is translated at 
the functional level into an overall depletion of butyrate 
production potential in the microbiome of PWH, inde-
pendent of sexual preferences. In this context, a recent 
study has shown that this depletion in the butyrate pro-
duction potential of the microbiome of PWH was not 
reflected into systemic nor fecal levels of butyrate deter-
mined by metabolomics experiments, but that a deple-
tion of propionate derived from microbiome lactate 
consumption was better reflected at both metagenomic 
and metabolomic level as signature of ART-treated PWH, 
with levels that decreases in PWH preceding morbidity 
and mortality [12]. Interestingly, among the functional 
modules significantly depleted in PWH vs. the three 
control groups we observed a signature of lactate con-
sumption, robust to MSM preferences only in compari-
sons vs. the MicroObes control cohort (MF0080: Lactate 
consumption II; Fig.  3). We also report an association 
between several modules linked to amino-acid degrada-
tion and insulin sensitivity, although such an association 
has been previously reported in non-diabetic overweight 
or obese subjects [77].

Regarding microbial diversity, we observed a ten-
dency to a decreased microbial gene richness in PWH 
vs. the MetaCardis and MetaHit group, but a significant 
decrease was only observed vs. the MicroObes group. 
We cannot exclude that potential biases associated with 
different sequencing technologies could influence these 
results, even if data was properly downsized to same 
equal sequencing depth and normalized. In previous 
studies with PWH, discordant results have been reported 
regarding microbial diversity, being either decreased or 
not [9]. This discrepancy could be also related to sexual 
preference, MSM individuals presenting higher diver-
sity compared with non-MSM individuals [23, 24]. Our 
stratified analyses of microbial gene richness between 
MSM and non-MSM individuals revealed no significant 
difference between both groups. The results on diversity 
appear to be counterbalanced between sexual preference 
and HIV infection.

We observed that the module accounting for LPS pro-
duction was higher in PWH as compared to controls. 
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However, when considering the MSM and non-MSM 
groups, LPS production was higher in the MSM group 
but not in the non-MSM group as compared to the 3 
control groups. This suggests that higher LPS production, 
in favor of a pro-inflammatory profile, could be linked to 
the Prevotella enrichment in the MSM group, in good 
accordance with previous studies reporting the pro-
inflammatory profile of Prevotella [10]. As well, we do 
not observe a strong association between tested inflam-
matory markers (IL-6, CRP) and MGS abundances in our 
group of PWH.

We were also able to analyze the evolution of gut 
microbiome according to ART. In fact, we analyzed 7 
ART-controlled PWH first when talking ART including 
a protease inhibitor and second after a mean duration of 
17 weeks when taking a dual therapy including an inte-
grase strand transfer inhibitor (RAL) and a CCR5 inhibi-
tor (MVC). While this shift was associated with a major 
modification in the profile of genes expressed in subcuta-
neous adipose tissue [78], with a profile indicating higher 
insulin resistance and decreased T lymphocytes acti-
vation, we did not observe major differences in the gut 
microbiome profile. In particular, the level of butyrate-
producing bacteria was not modified, in accordance with 
the unmodified HOMA-IR index. While several studies 
compared gut dysbiosis before and after ART initiation 
and indicated the persistence of dysbiosis [9, 10], only 
a few studies evaluated gut microbiome modifications 
according to the nature of ART. Lower microbiota rich-
ness as compared to HIV-negative controls was observed 
in PWH receiving protease inhibitors while the richness 
was similar in those receiving integrase strand transfer 
inhibitors [79], but the sexual preference was not taken 
into consideration. The effect of maraviroc on gut micro-
biota has not been previously evaluated in PWH, so we 
cannot exclude that the 17 weeks period is not enough 
to observe a significant alteration of the gut microbiome 
after ART switch. Importantly, we analyzed the same 
subjects twice. Nevertheless, the low number of PWH in 
our study precludes the identification of small differences 
related to ART. More comprehensive longitudinal datas-
ets would be needed to fully evaluate the impact of RAL/
MVC therapy on gut microbiome composition.

Conclusion
We identified major modifications in gut microbiome in 
PWH when compared to three independent groups of 
paired non-infected individuals robust to sexual prefer-
ences and that remains unaltered 17 weeks after switch-
ing to RAL/MVC therapy. Among these signatures we 
confirm previously described alterations in the micro-
biome of PWH like strong enrichment of Prevotella 
lineages in parallel with a decrease of butyrate-pro-
ducing lineages, together with novel and highly specific 

signatures of the microbiome of PWH like the absence 
of Adlercrutzia equolifaciens/hattorii or a strong enrich-
ment of a metagenomic specie of Succinivibrio genus 
which show a strong predictive power in random for-
est models of classification that generalizes to AUC lev-
els of 80–82% on two external cohorts of PWH/Control 
individuals. This is translated to an overall depletion 
of the potential for butyrate production and amino-
acid degradation of the microbiome that robustly cor-
relates with an altered metabolic status, suggesting that 
besides BMI, marked insulin resistance in PWH could 
result both from enrichment in Prevotella lineages, and 
from the depletion in species producing butyrate and 
involved into amino-acid degradation. PWH currently 
encounter a higher prevalence of cardiometabolic com-
plications as they age than paired non-infected controls. 
Our study suggests that dysbiosis may play a role in this 
status. Reversing dysbiosis may be an important goal to 
reduce cardiometabolic burden. Future studies with large 
sample sizes and more extensive phenotyping of PWH 
and control individuals in terms of lifestyle, ethnicity, or 
diet would be needed to confirm this hypothesis towards 
a better understanding of the role of gut microbiome in 
the interplay of HIV infection with metabolic health of 
individuals.
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