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Ship Detection With SAR C-Band Satellite Images:
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Abstract—Detecting and tracking ships remotely is now required
in a wide range of contexts, from military security to illegal immi-
gration control, as well as the management of fisheries and ma-
rine protected areas. Among the available methods, radar remote
sensing is increasingly used due to its advantages of being rarely
affected by cloud cover and allowing image acquisition during both
day and night. The growing availability over the past decade of free
synthetic aperture radar (SAR) data, such as Sentinel-1 images,
enabled the widespread use of C-band images for ship detection.
There is, however, a broad range of SAR data processing methods
proposed in the literature, challenging the selection of the most
appropriate one for a given application. Here, we conducted a
systematic review of the literature on ship detection methods using
C-band SAR data from 2015 to 2022. The review shows a partition
between traditional and deep learning (DL) methods. Earlier meth-
ods were mainly based on constant false alarm rate or polarimetry,
which require limited computing resources but critically depend
on ships’ physical environment. Those approaches are gradually
replaced by DL, due to the growth of computing capacities, the
wide availability of SAR images, and the publication of DL training
datasets. However, access to these computing capacities may not be
easy for all users, which could become a major obstacle to their
development. While both methods have the same objective, they
differ both technically and in their approaches to the problem.
Traditional methods mainly focus on ship size in spatial units
(meters), whereas DL methods are mainly based on the number
of ship pixels, regardless of image resolution. These latter methods
can result in a lack of information on ship size and, therefore, a lack
of knowledge that could be useful to specific applications, such as
fisheries and protected area management.

Index Terms—Maritime domain awareness, remote sensing,
small ship, synthetic aperture radar (SAR), vessel detection.

I. INTRODUCTION

THE characterization and monitoring of human activities
at sea are of growing interest in various fields, such as

maritime traffic [1], marine pollution monitoring [2], fisheries
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management [3], protected area management [4], [5], and border
control [6], [7], [8]. These activities can involve ships of various
sizes, tonnages, and shapes. Nowadays, maritime transportation
represents more than 80% of goods transported worldwide [9],
with more than 102 000 ships of 100 gross tons (GT) and above
sailing across the globe in 2022. In accordance with several
global, regional, and national regulations, certain ships (e.g.,
large ships or any ship carrying passengers) must be equipped
with onboard GNSS transponders that transmit ships’ positions
in near real time. In the remainder of this article, “ship” refers
to any large boat, mobile or not, transporting people or goods.
The ability to accurately locate and characterize ships is the key
to a variety of applications, ranging from safety and security
to environmental monitoring and commercial activities [10].
Systems exist to help track ships’ movements, including the
automatic identification system (AIS), the long-range identifi-
cation and tracking, and the vessel monitoring system used more
specifically in fisheries enforcement [11], [12].

An AIS was initially designed for ship collision avoidance,
environmental protection, and navigation efficiency [13]. It is
now required on all ships over 500 GT and over 300 GT on
international voyages, and those transporting more than 12 pas-
sengers [13]. Countries and intergovernmental organizations can
also impose their own requirements. All European Union flagged
fishing ships over 15 m in length and all commercial United
States flagged fishing ships over 65 feet (about 20 m) in length
are, for instance, required to be equipped with AIS [14], [15].
AIS information includes ships’ identification, position, and
type (among 16 classes) [13]. However, as AIS is not mandatory
on all ships, it does not track most leisure ships and small fishing
ships that are, therefore, not monitored within the framework of
management plans. Some ships are also known to operate in the
dark, turning OFF or altering their AIS signal [16]. Consequently,
the use of the maritime domain remains partly unknown, with
potentially many “not publicly tracked” ships or “dark fleets”
imperiling our ability to manage and survey coastal areas that
are the most critical for fisheries, security, human impact, and
biodiversity conservation [17].

For this reason, systems such as AIS are often combined with
other sensors when trying to assess maritime traffic and fishing
efforts [18]. Satellite remote sensing has been increasingly used,
both with optical and synthetic aperture radar (SAR) sensors, to
improve ship detection at sea [19], [20], [21], [22]. Due to its
higher spectral and often spatial resolutions, optical imagery is
an efficient and complementary solution to SAR imagery for
ship detection but is dependent on low cloud coverage, making
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its application particularly challenging in tropical regions and
during some seasons [20]. SAR remote sensing is an alternative
to obtain images independently from weather conditions and at
night time [23], [24], [25] but it can be challenging in terms
of data processing. The noise present in SAR images, known
as speckle, increases the average signal level in the image and
can make distinguishing the signal from a ship difficult. If the
speckle and the potential presence of false positives (rocks,
wrecks, waves, and offshore infrastructures) can complicate
automatic detection and identification of ships [26], the high
contrast between the background water and the ships when
using SAR images facilitates ships’ detection and identification
[27]. The increasing number of C-band SAR sensors, including
RADARSAT-2 (RS2) launched in 2007, Sentinel-1 (S1) in 2014,
Gaofen-3 (GF3) in 2016, and the RADARSAT Constellation
Mission (RCM) in 2019, allows the massive and rapid acquisi-
tion of diverse SAR data that can be used for ship detection. Yet,
the only C-band SAR sensor providing free images is S1 from
the European Space Agency, making S1 an increasingly popular
remote-sensing sensor for ship detection.

The automatic ship detection on SAR images remains chal-
lenging. Many data processing methods have been proposed
to automatically identify ships from SAR images and have
been broadly classified into two categories: traditional and deep
learning (DL) based methods [28], [29]. Traditional methods
are largely dominated by the constant false alarm rate (CFAR),
a method that consists of modeling the water noise (i.e., clutter)
using statistical models in order to separate features on the SAR
image likely to be associated with ships from the rest. Clutter
is a characteristic noise caused by the movement of water. It
can cause a strong backscatter approaching that of a target and
limiting its detection. The clutter effect can be mitigated by a
robust clutter model in the case of traditional algorithms or, in
the case of DL algorithms, by training data under a variety of
conditions, including scenes with significant clutter (e.g., using
the SAR-Ship-Dataset [30]).

Since the arrival of S1 and GF3, the amount of SAR data avail-
able has exploded, allowing the emergence of new data-intensive
methods based on DL that are revolutionizing many research
fields but require large datasets for training the algorithms [28].
For ship detection, many of these DL-training datasets are the
result of cross-referencing SAR images with AIS information
[31], [32], [33] or expert labeling of ships on images [30], [34].
While extensive literature is available on the topic, specific ques-
tions and challenges still need to be addressed. It can be difficult
to know which method is more efficient or more appropriate
for certain applications (e.g., ship size) or contexts (e.g., sea
conditions). As SAR images from S1 play an increasing part in
today’s ship detection efforts, we focus on studies attempting to
detect ships from C-band SAR images. This article presents a
systematic review of the literature on the use of C-band SAR
images for the detection of ships at sea. Systematic reviews are
increasingly acknowledged as being the most robust approach
to provide an unbiased overview of a given scientific field. We
first describe the commonly used preferred reporting items for
systematic reviews and meta-analyses (PRISMA) methodology
used for this systematic review, presenting the databases, the

keywords, and the years selected used for the review. After
providing an overview of the field of ship detection, we present
selected methods and data from our selection of articles. We
then discuss the limitations of current detection methods and
the reproducibility of the proposed methods to finally propose
perspectives for this field.

II. REVIEW METHOD

This study uses the PRISMA [35], which aims to enhance
transparency in reporting systematic reviews by outlining the
rationale, methods, and findings. In this section, we focus on
the criteria and search engines, as well as the article selection
workflow that was used to establish the final selection of articles.

A. Bibliographic Search Engine Selection

Six search engines were used for the literature review, with
one specific to the field of computer sciences (ACM digital
library) and five more interdisciplinary ones (IEEE, Scopus,
Taylor and Francis, Wiley, and the Web of Science). The choice
of search engines was informed by Gusenbauer and Haddaway
[36], selecting them for their ability to handle queries using spe-
cific keywords and specific semantic elements, such as logical
operators (e.g., AND, OR, NOT) and parentheses. We have also
retained search engines listing “remote sensing” in their topics
and have, for practical reasons, restricted our choice to search
engines offering bulk downloads of the results.

B. Search Criteria

Four sets of search criteria were used in our review, helping
select papers that mentioned SAR images, ship detection, and
C-band sensors (e.g., S1). The final criterion aimed to exclude
airborne sensors, hence restricting the search to satellite ones.
The selected search criteria are built around logical operators to
form the following search expression.

“(SAR OR “synthetic aperture radar”) AND (“ship detec-
tion” OR “vessel detection” OR “ship identification” OR “vessel
identification” OR “ship detector” OR “vessel detector”) AND

(“Sentinel-1” OR “RCM” OR “RADARSAT Constellation Mis-
sion” OR “Gaofen-3”) NOT (“airborne” OR “aircraft”).”

Among C-band SAR satellites, only S1 provides free data,
making it key for some approaches. This is why the search was
restricted to papers published since 2015, the first complete year
of S1 SAR images release, to November 2022, when this review
was carried out.

C. Final Selection

The search identified 1188 publications (e.g., journal papers
and conference proceedings), from which 240 were duplicates
that were excluded (see Fig. 1). Publications were further
screened for their accessibility (incorrect DOI, papers not avail-
able), from reading their title and abstract, and finally following
a review of the entire document. Papers not in the English
language, with incorrect topics, not using C-Band sensors, or
not discussing specific algorithms were excluded. This screening
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Fig. 1. PRISMA workflow presenting the selection process of articles about
ship detection using C-band SAR imagery.

resulted in identifying 291 papers, including one book chapter,
88 conference papers, and 202 journal articles.

A three-point scoring system was established (3 being the
best score) and applied to assess the overall relevance of the 291
publications. This scoring took into account the thoroughness of
the method description and considered whether the data used by
the publication were commercial or open-source. The maximum
score was given to a publication whose code was shared and
fully reproducible using free data. Papers with a score of 1 were
excluded and the final selection included 138 papers, including
11 conference papers and 127 journal articles.

This final set of papers was analyzed using descriptive statis-
tics and a co-occurrence graph to study the evolution and linkage
of method types over the chosen period. Co-occurrence networks
are nondirectional graphical representations of the use frequency
of variables and the frequency with which they appear together.
This co-occurrence network was produced using the R package
Bibliometrix [37] and using the abstracts and keywords of the
papers as input.

III. RESULTS

A. Methods Used for Ship Detection

The final 138 publications used methods that could be classi-
fied into two main categories: traditional methods and DL-based

methods (see Table I), each of them being composed of subcat-
egories. Methods from each of these categories have advantages
and limitations that are summarized in Table II. All SAR image
detections share a common preprocessing step that includes
image despeckling. By applying a filter, this step smoothes the
noise generated by the sensor. As this step is common to all
methods, it is not specifically described in the methods that
follow.

1) Traditional Methods: CFAR is a technique commonly
used in signal processing, particularly in radar systems, to detect
targets against a background of noise (sea clutter, the radar
echoes produced by the sea surface). The mathematical prin-
ciples behind CFAR involve statistical hypothesis testing and
adaptive thresholding. CFAR assumes that the background sig-
nal (or noise) follows a known statistical distribution. The most
commonly used in the reviewed articles are Gamma [39], [44],
[48], Log-normal [40], [53], and K-distributed models [11], [46],
[47]. CFAR then uses adaptive thresholding, based on the local
noise level and the use of concentric moving windows, to detect
targets. The center window contains the cells under test (CUT),
and therefore the possible targets. The furthest window from the
CUT is the background window where the clutter statistics are
computed. The intermediate guard window serves as a protection
to prevent any leakage of target pixels into the background
region. Statistics are calculated from neighboring cells or back-
ground samples. These statistics represent the noise level in the
vicinity of the cell being tested for the presence of a target. CFAR
employs statistical hypothesis testing to decide whether a signal
in a cell corresponds to a target or is merely background noise
with the objective to maintain a CFAR over varying background
noise levels. This means that the probability of falsely detecting
a target (false alarm) remains the same regardless of changes in
noise intensity or environment. Different types of CFAR can be
used for target detection. Two typical methods are cell-averaging
CFAR (CA-CFAR) and two-parameter CFAR (2P-CFAR) [48].
CA-CFAR uses the mean of adjacent cells to estimate the clutter
(1), while 2P-CFAR uses both the average and standard deviation
of the adjacent cells

Pn =
1

N

N∑

i=1

xi (1)

where Pn represents the estimated noise power, N is the number
of training cells, and xi is the sample in each training cell.

The main challenge with these methods lies in adapting the
models to sea conditions, such as waves, that alter the statistical
properties of pixels and hence impact the set thresholds [11]. A
threshold set too low will result in more targets being detected at
the cost of increased false alarms. Conversely, if the threshold is
set too high, the number of nondetected targets will increase but
the occurrence of false alarms will be reduced, risking to miss
potential ships on the images.

Among all the articles using CFAR methods, the search for
unidentified maritime objects (SUMO) algorithm [11] stands
out with 17 citations among the articles selected for this review.
SUMO models sea clutter using a K-distribution is available
in open-access on GitHub [168] and can process SAR images
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TABLE I
TYPOLOGY OF SHIP DETECTION METHODS

TABLE II
ADVANTAGES AND LIMITATIONS OF SHIP DETECTION METHODS

from different sensors and different wavelengths, such as S1,
RS2, TerraSAR-X (TSX), TandemX (TDX), and ALOS2.

We found other CFAR methods developed to increase the
detection rate and limit false alarms. Lin et al. [38] added a vari-
ance correction term to the log-logistic model to improve CFAR
ship detection under a complex background. This method could
reduce false alarms by 20% when compared with a conventional
log-logistic model.

Tian et al. [41] proposed a two-stage kernel density estimation
CFAR. The first step is a prescreening with a global threshold,
followed by a local threshold based on a moving window. Com-
pared with a traditional CFAR with K-distribution, the authors
obtained a rise of 8% in the detection rate and a drop of 4% in
the false alarm rate. Calculation time was also reduced by more
than 60%.

Ji et al. [42] proposed a variability index and excision CFAR
(VIE-CFAR) function of the signal’s mean and variance. VIE-
CFAR achieved better results than CA-CFAR both in terms of
the number of detected ships and the number of false alarms.

Zhang et al. [44] proposed a CFAR method for superpixel
segmentation with a Gamma distribution of clutter. In contrast
to a CFAR method with a moving window, the authors chose
to model the clutter as close as possible to the target pixels for
better clutter estimation and to avoid window computation time.
This method achieves better results than other CFAR methods
and considerably reduces calculation times.

Leng et al. [47] proposed a CFAR method based on a K-
distributed model, with different calculations of clutter statis-
tics depending on image resolution. For low-resolution images
(>3 m), the clutter is modeled on a reference window, such as
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a conventional CFAR. For high-resolution images, the clutter is
modeled using pixels located on the edges of the images that have
been cut into 512×512 pixel thumbnails. This method aims to
reduce computing time on high-resolution images, such as TSX.

Ai et al. [53] proposed a bilateral-trimmed-statistics-based
CFAR (BTS-RCFAR) based on a 2P-CFAR that uses a log-
normal distribution. BTS-RCFAR uses two-sided adaptive
thresholding to eliminate high- and low-intensity outliers and
obtain a pure clutter sample. BTSR-CFAR obtains better re-
sults in terms of detection rate and false alarms than classical
CA-CFAR and 2P-CFAR but is more time consuming.

Polarimetric synthetic aperture radar (PolSAR): The general
mathematical principles of using PolSAR for target detection
involve the understanding of polarization diversity, the analysis
of scattering matrices, the statistical characterization of polari-
metric signatures, and the application of specialized algorithms
for target detection in radar imagery. PolSAR uses the polari-
metric properties of the SAR signal to characterize the scattering
behavior of different objects. This method uses the four possible
vertical (V) and horizontal (H) polarization modes (i.e., VV,
VH, HV, and HH) to model the interactions between detected
objects and scattering [169]. In PolSAR, the scattering properties
of targets are characterized by the complex scattering matrix.
This matrix describes how incident radar waves are scattered in
different polarization channels after interacting with the target.
Targets show specific polarimetric signatures (due to their shape,
orientation, and material properties), which are filtered using
polarimetric decomposition models (e.g., Freeman–Durden de-
composition, Cloude–Pottier decomposition) to analyze statis-
tically and interpret PolSAR signal by breaking down the total
backscattered signal into different scattering mechanisms, such
as surface scattering, double-bounce scattering, and volume
scattering. Yet, PolSAR is limited in its use by the type of sensor,
which must transmit and receive waves in all four polarization
modes. Only C-band commercial SAR images from RS2, RMC,
and GF3 are fully polarized, offering a limited choice of data
compared to other methods. Some authors compared their results
with other methods based on CFAR and simple polarization.

Mahgoun et al. [55] used RS2 SAR images to compare
CA-CFAR, 2P-CFAR, and the generalized likelihood ratio test
methods. It demonstrates that CA-CFAR, when associated with
singular value decomposition (SVD), achieves better results than
CA-CFAR with single polarization or fusion. In the best case,
CA-CFAR with SVD achieves a detection probability of 91%
for a false alarm of 0.05%.

Zhang et al. [56] used a covariance matrix prior to span
(summation of the three polarimetric intensity channels) and
compared this method to 2P-CFAR. The method achieves better
detection results but the calculation time can be 160 times longer
than 2P-CFAR when the image size is large (1465×1940 pixels).

Marino and Hajnsek [61] used the geometrical perturbation-
polarimetric notch filter on RS2 SAR images. Authors showed
that polarimetric data are particularly beneficial when the detec-
tion is aimed at small or fast-moving targets in high sea clutter
compared to a single-channel detector.

Other traditional methods are mentioned in the literature
but are less common. Schwegmann et al. [66] used Haar-like

feature extractions after initial zone identification (prescreening)
using the CA-CFAR method. The Haar-like classifier is used
to eliminate persistent false alarms from the CFAR method,
resulting in a detection accuracy of 89%. However, this method
computes a large number of features, which may result in long
computation times.

Two articles used support vector machine (SVM) classifiers in
their ship detection method. Li et al. [54] used an SVM classifier
on rotation domain features from polarimetric RS2 and GF3
data. He et al. [67] used an SVM classifier on a gray-level co-
occurrence matrix from S1 SAR images and reported increased
accuracy and reduced false alarms compared to a CFAR method.

Proença and Marques [68] proposed a wavelet-based method
that is faster than SUMO but needs to be tested on larger
datasets. Leng et al. [69] used complex signal kurtosis (CSK) to
detect ships. This method takes advantage of the non-Gaussian
nature of the model to best discriminate clutter and ships, even
in difficult conditions. This method considerably reduces false
alarms caused by radio frequency interferences (RFIs).

While these methods offer improvements in accuracy over
the CFAR, they are less frequently used in the literature. As the
studies were carried out under conditions specific to each article,
it is difficult to assert whether these methods would offer better
results in other contexts.

2) Deep Learning-Based Methods: Existing reviews have
been published specifically on DL ship detection methods (see
[12], [28], and [29]), offering detailed taxonomies of algorithms.
We will hence cover those methods more rapidly. Object de-
tection methods based on DL fall into three main categories
(defined in the literature cited above): two-stage detector, one-
stage anchor-based, and anchor-free (see Fig. 2).

Two-stage approaches are based on the principle of “region
proposal,” where the image to analyze is not fed directly to the
detector. Instead, the first stage splits the image into regions
that could contain the object to be detected before proceeding
to the rest of the analysis. Fast R-convolutional neural network
(R-CNN) and faster R-CNN are prime examples of two-stage ap-
proaches [76], [82], [83]. Other studies use traditional methods,
such as CFAR, as region proposal [26], [71] before conducting
the detection stage using a CNN. Two-stage approaches are
generally considered slower but more accurate than one-stage
ones [28].

One-stage anchor-based approaches use anchors—bounding
box (bbox) rectangles—initialized on each image cell. As soon
as an anchor box is identified as containing part of the object
to be detected, it is aggregated with its neighbor, which is also
identified as containing part of the object, until it contains the
entire object. Several boxes, of different shapes and sizes, can
be initialized to increase the accuracy of the algorithm, with a
potential negative effect on inference time. The YOLO series is a
good example of such an approach [149], [150], [153]. Anchor-
based methods are faster than two-stage ones but sensitive to
hyperparameters, such as bbox size and ratio, and to the accuracy
of training set bboxes.

Anchor-free methods are designed to be similar to human
vision and do not initialize anchors prior to detection. They can
directly predict key points relative to the object (center or top-left
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Fig. 2. Overview of key steps of different ship detection methods. (a) CFAR.
(b) Polarimetry. (c) Two-stage. (d) Anchor-based. (e) Anchor-free.

bottom-right) before delineating the bbox containing the object
detected [157], [162], [170]. This approach can be particularly
useful for ship detection when ships are sparsely distributed in
the image. With this method, there is no need to create multiple
anchors where there are no ships. Although this technique is
faster, it is relatively new and has not yet been widely used for
ship detection.

3) Evaluation Metrics: In order to better understand the
results described in the papers referred to in Section III-B,
we describe common metrics used to evaluate the algorithms
encountered in this review as follows:.

Accuracy =
TP + TN

TP + TN + FP + FN
× 100% (2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1− Score = 2× Precision × Recall
Precision + Recall

(5)

where TP is the number of true positives (ships detected), TN is
the number of true negatives (ship absences detected), FP is the
number of false positives (wrong ship detections), and FN is the
number of false negatives (ships missed).

Accuracy represents the proportion of correctly classified
objects out of the total number of samples. Precision measures

Fig. 3. (a) Number and (b) proportion of publications reviewed dealing with
traditional or DL methods to detection ships per year.

the accuracy of positive predictions. Recall, also called sensi-
tivity, measures the ability of the model to capture all positive
instances.

F1-Score provides a balanced measure of a model’s perfor-
mance, considering both false positives and false negatives.

4) Global Trends in Ship Detection Methods: Since 2015,
there has been a rapid increase in the number of articles dealing
with ship detection using C-band SAR imagery, suggesting a
strong research interest in this topic [see Fig. 3(a)]. We observe
two major increases in the proportion of DL-based articles, in
2017 and 2019, that could be related to the publication of the
now widely used SAR ship detection dataset (SSDD) [171] in
2017 [based on Sentinel-1 full-capacity (2016) and GF3 SAR
images (2016)], and the publication of SAR-Ship dataset [30]
in 2019.

Used in nearly 90% of all studies in recent years, DL-based
algorithms largely dominate today’s publications in the field
of ship detection using SAR imagery. This can be seen in
Fig. 3(b) but also in the terminology used in publications. The
co-occurrence graph based on abstract and keywords (see Fig. 4)
shows a clustering into four groups of the vocabulary used
in the studies, and the importance of the links between them,
materialized by the thickness of the lines. The DL (red) and
traditional methods (green) are organized around the generic
ship detection terms (blue).

DL-related terms include “data,” “feature,” “network,” and
the frequently recurring “SSDD” dataset. This part of the graph
occupies the largest space, showing once again the prominence
of these methods in our selection of articles.
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Fig. 4. Co-occurrence network of words from the papers’ abstracts and key-
words created using Bibliometrix [37]. The size of the circles indicates the
frequency of words used and the lines’ thickness indicates the frequency of
terms used together. The DL (red) and traditional methods (green) are organized
around the generic ship detection terms (blue). Purple refers to polarimetry.

Traditional methods (green) are characterized by terms such
as “CFAR,” “clutter,” or “distribution.” Although technically
opposed, there are weak relationships in the graph, materialized
by fine links between traditional and DL methods that point
to the fact that some DL methods use traditional algorithms as
region proposals, to prescreen SAR.

Articles related to polarimetry are distinguished by terms such
as “polarization” or “polarimetric” (purple). These terms are
limited in number and are relatively distinct from other method-
ologies, with minimal connections to the other approaches.

B. Ship Size

The size of detected objects is a crucial element when eval-
uating the detection capacities of algorithms that have not been
discussed in other reviews in the field. In this section, we will
analyze the representation of ship size in data and detection al-
gorithms through the prism of both traditional and DL methods.

1) Ship Size in Data: Three types of data are used in the
papers reviewed: 1) unmodified SAR images, as provided by
the sensors and processed for use; 2) portions of SAR images
contained in datasets created to train and test the DL algorithms,
often in the form of annotated SAR thumbnails—some contain-
ing ship size information from AIS data; and 3) AIS data, the
“ground truth” used to build datasets or validate the output of
detection algorithms. This is generally the source of information
for the size of detected ships.

Traditional methods generally combine SAR with AIS data
at the validation stage. In articles using traditional methods, free
SAR images are the most widely used, with S1 present in 50%
of articles (see Fig. 5). In orbit from 2007 to 2017, RS2 has
the longest operating life of any sensor used for traditional ship
detection methods. Almost half of the reviewed articles used
RS2 data.

In total, 12 training datasets were identified in the reviewed
papers with DL methods (see Table III). All datasets contain
C-band SAR images and some also add X-band data, offering a
finer spatial resolution. The most widely used dataset is SSDD
(see Fig. 6), composed of RS2, TSX, and S1 SAR images,

Fig. 5. Proportion of articles using the four most used SAR sensors in tradi-
tional methods.

Fig. 6. Proportion of articles using the five most used datasets per year.

published in 2017. Other datasets were derived from SSDD and
specialized by the sensor (e.g., Gaofen-SSDD, Sentinel-SSDD)
or for small-sized ships (e.g., Large-Scale-SSDD, LS-SSDD).

Image labeling can take the form of polygons for segmen-
tation, bounding boxes, or rotated bounding boxes. Rotated
bounding boxes can provide an approximation of the observed
ship size on the SAR image. They are mostly annotated by
experts who directly label the SAR images, sometimes with the
help of additional optical images [30], [75], [171], [172], [173],
[174]. LS-SSDD [33] uses AIS as a ship position ground truth
for labeling. OpenSARShip-1.0 and 2.0 [31], [32] are the only
two datasets that use AIS data to annotate ship sizes, showing
their length, width, and AIS category. Despite this, these datasets
are only used in three articles selected in our review and do not
appear in the five most frequently used datasets (see Fig. 6).

Although these datasets are mainly used in DL, three tra-
ditional algorithms use AIR-SARShip, LS-SSDD, and high-
resolution SAR images dataset (HRSID) or SSDD [39], [48],
[43] with no more information on size than that given in the
dataset.

The HRSID [173] and dual-polarimetric SAR ship detection
dataset (DSSDD) [174] both align with the Microsoft COCO
nomenclature, a standard dataset for generic object detection
[167]. Datasets use 1024 pixels as the maximum size of a small
object, based on images whose resolutions range from 3 to 10 m
(i.e., TSX, TDX, and S1 SAR images). As a result, objects of
identical size for the DL algorithm (same number of pixels)
could have very different sizes (in meters).

The authors of LS-SSDD [33] define their dataset as
specifically designed for small-ship detection under large-scale
backgrounds. LS-SSDD defines the size of detected objects in
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TABLE III
DL DATASETS USED IN SELECTED ARTICLES

proportion to the total size of the image. For example, according
to the COCO definition, a small object is defined as being less
than 1024 pixels in size on 484 × 578 pixels images, i.e., under
0.37% of the image. Hence, regardless of the image spatial
resolution, a ship covering less than 0.37% of the image can
be considered small.

2) Ship Size in Detection Algorithms: Only two publications
using traditional methods discussed ship size in their results.
Park et al. [49] used a CFAR method following a normal dis-
tribution on S1 SAR images and compared the results with the
ship AIS positions in the area. The authors call “probability of
detection” (POD) the percentage of ships successfully detected.
The authors show the relationship between the image resolution
and the POD, with PODs around 80% for ship sizes under 20 m
that rise to 94% for ships from 30 to 150 m.

Pelich et al. [16] used the nonnormalized coherence between
VV and VH polarizations of S1 SAR images with a CFAR
algorithm. The authors used AIS data to extract ships’ sizes and
evaluate their detection rate. They argued that coherence does not
provide additional precision in terms of detection rate compared
to VV polarization, which itself gives a lower detection rate than
VH. They considered that the detection rate is high for ships
longer than 60 m (>80%) but drops sharply to 40% for smaller
ships.

Other authors use ship size only as an input parameter for
detection algorithms. Schwegmann et al. [66] used a modified
Otsu’s method for which a minimum and a maximum ship size

parameter in pixels (set at 2 and 20, respectively) must be defined
to determine the algorithm’s window size. Other authors [41],
[48] simply adjust the window size according to the size of the
ships, without going into further detail.

Lanz et al. [7] go further and try to detect ships smaller
than 15 m. The method presented is based on TSX and S1
polarimetry and deals with the detection of 12 m× 3.5 m× 0.5 m
(length/width/height) rubber inflatables. This method is exper-
imental but concludes that detection of very small nonmetallic
craft, such as inflatable refugee ships, is possible with high-
resolution SAR data and calm sea conditions.

In the DL field, improving the accuracy of ship detection
algorithms involves better detection of small objects, i.e., repre-
senting few pixels, and therefore operating at multiple scales in
the image. The main method used to detect ships at multiple
scales is the feature pyramid network (FPN), introduced by
Lin et al. [175]. FPN is regularly encountered [74], [76], [91],
[93], [97] to detect small objects. It is composed of both a
bottom–up and a top–down pathway. The bottom-up pathway
is a classical CNN for feature extraction and the top–down one
constructs higher resolution layers from a semantic rich layer.
Higher level features are exploited for detecting larger objects,
and lower level features are exploited for detecting smaller
objects.

Almost all papers based on DL algorithms mention the size of
objects to be detected but do it very briefly. Few define the size
of ships and even fewer include it in their results. By default, the
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size of an object is defined by the dimensions of its bounding
box (horizontal or rotated) in pixels.

Dechesne et al. [95] aimed at classifying detected ships and
predicting their length in meters. They collected AIS data corre-
sponding to five ship classes: tanker, cargo, fishing, passenger,
and tug. In addition to the standard metrics used in DL, they
compared the size prediction error for two models: a multi-
layer perceptron (MLP) and a multitask architecture with three
branches for detection, classification, and length estimation of
ships.

After an initial test on data from European seas, they consid-
ered the MLP inaccurate for ship length estimation. Ship length
was underestimated, with a very large standard deviation (mean
error: −7.5 m ± 128 m). Their method achieved better results
as length was slightly overestimated, with a mean error of 4.65
m ± 8.55 m for a four-class model, and a mean error of 1.93 m
± 8.8 m and an F-score of 97.4% for a five-class model.

After conducting tests with the OpenSARShip dataset, the
authors observed that their method was dependent on the training
dataset. The difference in materials used for ships between
European and Asian waters could have impacted the algorithm
capabilities.

All other authors used pixel units to define ship size. The
number of pixels can refer to a horizontal bounding box, a rotated
bounding box, or a polygon extracted from segmentation. Chen
et al. [93] used FPN to detect small targets defined “with a scale
below 64 pixels.” Jiang et al. [136] referred to the size of the
SSDD bounding box.

Su et al. [100] created SII-Net, a two-stage algorithm specif-
ically developed for small target detection and trained with LS-
SSDD. They concluded with an improvement in the detection of
small ships compared with existing algorithms, particularly on
small targets, which they define as smaller than 30×30 pixels.
However, the detection accuracy of ships smaller than 400 pixels
remains objectively low compared with larger ships.

Chen et al. [121] attempted to improve the accuracy of their
algorithm through better detection of small ships by focusing on
anchor boxes. With a multiscale adaptive recalibration network,
authors used an FPN to propose anchor box sizes adapted to
the detected object. They also introduced the notion of a rotated
bounding box to limit the proportion of background signal in the
total bounding box signature compared to a horizontal bounding
box. Rotated bounding boxes are also more appropriate for
estimating ship size.

IV. DISCUSSION

We conducted a systematic review of the literature on ship
detection using C-band SAR. The free Sentinel-1 images are
essential for radar remote sensing, particularly for ship detection.
We, therefore, thought it useful to use the characteristics of
these SAR images as a criterion for our review. This review
has provided us with an overview of the ship detection field,
using both traditional and DL methods. It has also led us to
reach new conclusions, not covered in other, often DL-oriented,
reviews. The study of 138 articles shows a trend over time in
the types of methods used. Ship detection research has been
in constant evolution since 2015 with a rapid increase in the

number of publications and a recent shift toward the use of
DL algorithms. Beyond the increasing computing capacity, the
volume of available data has supported the growth of DL in
the field of ship detection. The large amount of data required
to train DL algorithms has long been an obstacle to the use of
such methods. The free availability of S1 data at the end of
2014 and the publication of the first SSDD dataset in 2017 were
key elements in the development of these techniques. Later, the
publication of more specialized datasets and the launch of GF3
also helped boost publications in this field. It sometimes seems
complicated to access large computing capacities (cost, knowl-
edge), such as high-performance computing centers. There is
a desire to reduce the size of DL models, which could be run
more easily on personal machines with GPUs or for on-board
solutions [141], [148].

The shift toward the use of DL algorithms is, however, not
complete, and publications using traditional methods still ac-
count for a proportion of the papers in recent years. While
DL methods prove very effective, CFAR algorithms can offer
convincing results with reduced computation times without the
need for GPUs, often being sufficient to answer the objectives
of some studies.

Recent studies such as [1] combined CFAR and DL for the
detection and classification of global maritime traffic, suggesting
that both approaches may in fact be complementary in some con-
texts. Those authors used a CFAR detection algorithm to extract
ships from S1 data and analyzed those results with DL networks
to filter out false detections (accuracy= 97.5%), classify fishing
versus nonfishing ships (accuracy= 90.5%), and estimate ships’
size (RMSE = 21.9 m). Combining the two approaches has the
advantage of limiting false positives when compared to using
CFAR alone. The DL classification algorithm acts as a filter
for CFAR detections. The use of traditional methods reduces
the number of zones where ships are potentially present and
can be detected by DL models, thus improving ship detection
performance and accuracy.

A key issue that emerged from the review is the definition of
ship size. This notion has not been encountered by the authors
in other review studies in the domain and is important in many
fields, due amongst other reasons to the role ship size plays in
diverse regulations governing the oceans. For instance, ships
above specific sizes may not be allowed to operate in specific
zones or could only be allowed at certain times. Data on ship
size derived from SAR images are then potentially useful to
monitor the level of compliance with regulations. Improving
the accuracy of ship detection algorithms means improving the
detection of challenging targets, such as small ships. It, therefore,
seems essential to define the concept of “small” ship if we are
to evaluate algorithms detecting them. In the literature, there is
a notable difference in the approach to ship size used by articles
using traditional and DL methods. While studies presenting
traditional algorithms tend to focus on geographic concepts
for distances, articles using DL-based algorithms seem more
focused on computer science concepts of image resolution and
the technical challenges of feature identification. As a conse-
quence, while studies using traditional methods report ships’
size in meters, DL studies report them as an absolute number of
pixels, or as a proportion of pixels in the image. Data used in the



14362 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

DL field are often derived from large datasets, incorporating
SAR images from several sensors of various resolutions. In
DL, as size is defined in pixels, the same object observed by
sensors of different resolutions will not have the same size.
The size of a given object can also vary depending on the
labeling method used. The MS COCO standard specifies that
an object, to be small, should be less than 1024 pixels in size.
In a horizontal bounding box, the ship will represent only a
part of these 1024 pixels. Depending on its orientation, it will
also occupy more or less pixels of the bounding box. Oriented
bounding boxes, or even segmentations, can be used to get closer
to the real size of the object in pixels. Thus, for a given object
size, the actual size occupied in pixels will be: Segmented >
Oriented BBox > Horizontal BBox. The reviewed DL algo-
rithms are unable to differentiate input image resolutions. If
size is defined as the pixel count, discriminating ship sizes is
hence impossible. This type of algorithm cannot be used, for
example, to restrict access to a certain type of ship in a given
area. To estimate the approximate size of the boats detected, SAR
images of the same resolution should be used for training and
inference.

Depending on the users’ needs, traditional or DL algorithms
can be used. Traditional methods are best suited to data process-
ing using desktop machines and a limited number of images. In
terms of detection, according to the results obtained by Pelich et
al. [16] and Park et al. [49], detected ships should be at least three
to six times the image resolution to obtain satisfactory POD (i.e.,
> 80%). In the DL field, only one reviewed study discusses the
physical size of detected ships [95], with highly variable results
depending on the dataset used. In a study published after the
reviewed period, Paolo et al. [1] reported slightly better results
with S1 data, detecting 95% of ships over 50 m and 80% of ships
between 25 m and 50 m in length, as long as ships are at least
1 km apart.

Detection capabilities as a function of size must be modulated
according to other parameters. Several factors such as sensor
parameters (e.g., angle, polarization), the ship environment (e.g.,
wind, clutter, inshore versus offshore), and the characteristics of
the ships themselves (e.g., size, materials) can impact detection
capabilities. Lanz et al. [7], who deal with the detection of inflat-
able rafts, indicated that the spectral signature of nonmetallic,
fiberglass, or wooden ships will be lower for an equivalent size.
Thus, according to Greidanus et al. [11], it is difficult to specify
a minimum detectable ship size. Large nonmetallic ships can
have a very low radar echo, while much smaller objects than
the image resolution can be easily detected, such as small ships
equipped with radar reflectors.

Generally, it remains challenging to reliably compare the
accuracy of ship detection algorithms whether using traditional
or DL methods. Detection and false alarm rates strongly depend
on ground truth information that remains limited. AIS data and
expert assessments may on their own be limited to assess false
alarms. In DL, this false alarm rate can be limited by training
using diverse data, including images without ships. Yet, all
stationary objects that can create false positives can be removed
from analyses [177]. In this regard, it would be interesting to
systematically compare traditional methods with DL methods

for ship detection and size estimation. To achieve this, the use of
a metric from the international measurement system as a result
standard seems essential.

Our study suggests that S1 SAR images are unavoidable for
today’s large ship detection projects, offering large volumes of
free data dating back to 2015 for the entire planet. Such an offer
should increase with the expected addition of the additional S1C
and S1D satellites into the S1 constellation in 2024 and 2025.
Moreover, these data are the most frequently used among the
reviewed articles, making them both easily exploitable through
open-source datasets and usable as input data for numerous
algorithms presented in the literature. If the spatial resolution
of S1 SAR images generally remains too low in applications
such as the detection of ships of less than 15 m in length, other
commercial solutions with a high revisit capacity exist in X-band
(TSX, CAPELA, and ICEEYE) and could make it possible to
detect smaller objects.

Our systematic review uses criteria related to the use of free
and widely available data, i.e., Sentinel-1 SAR images. However,
it should be noted that ship detection is part of the wider research
on object detection. Within this framework, which is not the
main topic of our study, we can observe works that are close
to our subject, either in terms of theme or in terms of the
detection methods used. In this common field of marine object
detection, we can mention, for example, oil spill detection using
DL or traditional algorithms [2], [175]. Conversely, more generic
algorithms, or those from other fields with similar methods,
could be used for boat detection, such as segmentation methods
or MLP [179], [180].

Given the unprecedented expansion of the ocean economy
leading to rapid growth of industrialization fishing, a global
overcrowding of main maritime routes, and severe environmen-
tal degradation, our ability to monitor accurately anthropogenic
activities at sea (both offshore and close to the coasts) is of crucial
importance. For instance, the positions of about three-quarters
of the world’s industrial fishing ships are not publicly disclosed
and can only be detected using remote sensing technologies [1].
This “dark fleet” may threaten vulnerable species even inside
marine protected areas [181]. Therefore, with the goal to protect
at least 30% of the ocean before 2030 for biodiversity, food,
and climate [182], we urgently need better monitoring systems
at high temporal frequency. Toward this objective, the coupling
between high-resolution satellite imagery and the most efficient
ship detection algorithms could be a major step forward [173].
Yet, despite the multiplication of sensors with a large variety
of technical capacities, satellite imagery still fails to fill some
gaps in ship detection and monitoring. Ship detection using high
resolution SAR imagery has still the potential to improve our un-
derstanding of the dynamics of anthropic activities in the oceans,
both in time and space, throughout the year, independently from
weather conditions. The S1 constellation offers the capability of
acquiring SAR images at different times of the day, covering a
broad range of anthropic activities at sea [171], and an overview
of maritime traffic over large areas. Satellite imagery shows us
what would otherwise remain unseen: a quarter of transport and
energy vessel activity and three-quarters of all industrial fishing
vessels are not publicly tracked [170].
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