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Abstract
1. Forests display tremendous structural diversity, shaping carbon cycling, micro-

climates and terrestrial habitats. An important tool for forest structure assess-
ments are canopy height models (CHMs): high resolution maps of canopy height
obtained using airborne laser scanning (ALS). CHMs are widely used for monitor-
ing canopy dynamics, mapping forest biomass and calibrating satellite products,
but surprisingly little is known about how differences between CHM algorithms
impact ecological analyses.

2. Here, we used high- quality ALS data from nine sites in Australia, ranging from
semi- arid shrublands to 90- m tall Mountain Ash canopies, to comprehensively
assess CHM algorithms. This included testing their sensitivity to point cloud deg-
radation and quantifying the propagation of errors to derived metrics of canopy
structure.

3. We found that CHM algorithms varied widely both in their height predictions
(differences up to 10 m, or 60% of canopy height) and in their sensitivity to point
cloud characteristics (biases of up to 5 m, or 40% of canopy height). Impacts of
point cloud properties on CHM- derived metrics varied, from robust inference
for height percentiles, to considerable errors in above- ground biomass estimates
(~50 Mg ha−1, or 10% of total) and high volatility in metrics that quantify spatial
associations in canopies (e.g. gaps). However, we also found that two CHM algo-
rithms—a variation on a ‘spikefree’ algorithm that adapts to local pulse densities
and a simple Delaunay triangulation of first returns—allowed for robust canopy
characterisation and should thus create a secure foundation for ecological com-
parisons in space and time.

4. We show that CHM choice has a strong impact on forest structural characterisa-
tion that has previously been largely overlooked. To address this, we provide a
sample workflow to create robust CHMs and best- practice guidelines to minimise
biases and uncertainty in downstream analyses. In doing so, our study paves the
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1  |  INTRODUC TION

Forests across the globe display tremendous structural diversity, 
ranging from open woodlands to tall, dense, multi- layered tropical 
forests. Quantifying structural differences across and within forest 
ecosystems is vital, as they shape climate at both small (De Frenne 
et al., 2021) and large scales (Alkama & Cescatti, 2016), are tightly 
coupled to carbon fluxes (Fischer et al., 2019) and resource provision 
(Felipe- Lucia et al., 2018), influence the resilience of forests to dis-
turbance (Koontz et al., 2020) and create habitats for forest- dwelling 
organisms (Gouveia et al., 2014).

For a long time, the main challenge to quantifying the vertical 
and horizontal structure of forest canopies was data acquisition. It 
involved the painstaking delineation of canopy gaps from the ground 
(Meer & Bongers, 1996) or the manual measurements of tree crowns 
to generate canopy profile diagrams (Baker & Wilson, 2000). The 
advent of remote sensing has radically changed this, with ever- 
increasing opportunities to quantify forest structural complexity 
(Atkins et al., 2018; Ehbrecht et al., 2021; Fischer & Jucker, 2024). In 
particular, airborne laser scanning (ALS) has emerged as a key tech-
nology in this field, allowing researchers to probe forest canopies 
from above using high- frequency laser scanners mounted on air-
planes, helicopters or even drones. Whenever a laser pulse emitted 
by the scanner hits an obstacle—a leaf, a branch or the ground—the 
reflected energy spike can be converted into a geolocated point, 
capturing the forest as a 3D ‘point cloud’. The unique value of these 
ALS- derived point clouds is the ability to characterise forest struc-
ture and topography in high detail (e.g. 1- m2 resolution), while also 
covering areas large enough (e.g. 10s of km2) to map landscape 
patterns (Lines et al., 2022). With large- scale coverage available in 
many countries, ALS is now a tool ready for global ecological analysis 
(Jucker, 2022).

A particularly useful feature of ALS point clouds is that they can 
be used to generate high- resolution maps of canopy height, known 
as canopy height models (CHMs). CHMs are 2.5 dimensional rep-
resentations of canopies that primarily rely on top- canopy returns 
from ALS pulses. They sacrifice some of the 3D information con-
tained in point clouds, but in return gain robustness to differences in 
instrumentation, acquisition platform and flight parameters (Asner, 
Mascaro, et al., 2013; Mielcarek et al., 2018; Zhang et al., 2024). They 
are also smaller in data volume than point clouds, easier to manipu-
late and can be accompanied by rasterised metadata, which makes 
them highly accessible to non- expert users. ALS- derived CHMs are 
already widely used for forest carbon mapping (Asner, Mascaro, 

et al., 2013; Coomes et al., 2017; Labriere et al., 2018), tree delin-
eation (Aubry- Kientz et al., 2019; Kaartinen et al., 2012), modelling 
of forest attributes (Bottalico et al., 2017; Næsset, 2002), studies 
of canopy dynamics and gaps (Asner, Kellner, et al., 2013; Dalagnol 
et al., 2021; Goodbody et al., 2020; Huertas et al., 2022), the cal-
ibration of forest models (Fischer et al., 2020) and habitat assess-
ments (Davies & Asner, 2014; Zellweger et al., 2013). CHMs are also 
expected to play an increasingly important role in the calibration of 
global satellite products (e.g. through initiatives like GEO- TREES, 
https:// geo-  trees. org). Moreover, growing access to multi- temporal 
ALS surveys (e.g. through networks like NEON, https:// www. neons 
cience. org) make CHMs a simple, yet powerful tool to monitor fine- 
scale canopy dynamics at increasingly large scales (Jucker, 2022).

However, to leverage the full potential of CHMs for ecological 
research, we first need to better understand how sensitive they are 
to the properties of the point clouds from which they are derived, 
so that we can develop standardised pipelines for generating them 
(Moudrý et al., 2023). While considerable effort has gone into op-
timising ALS- derived terrain models (Andrade et al., 2018; Chen 
et al., 2017) and point cloud- derived metrics (Almeida et al., 2019; 
Magnussen et al., 2010; Næsset, 2009; Pearse et al., 2019; Riofrío 
et al., 2022; Roussel et al., 2018; Vincent et al., 2023; Wilkes 
et al., 2015), there is surprisingly little guidance for ecologists 
on how to generate robust CHMs that are comparable across in-
struments and sampling designs. For example, the most frequent 
approach to obtaining CHMs is to rasterise the highest point at a 
target resolution and then subtract the resulting surface model from 
a digital terrain model. This is accurate when the density of emit-
ted pulses (or their returns) is high (e.g. ≥20 pulses m−2), but will 
underestimate canopy height at low pulse densities, as laser shots 
miss branches and leaves or fail to produce ground returns (LaRue 
et al., 2022; Leitold et al., 2015; Roussel et al., 2017). Pulse den-
sity is likely the strongest determinant of CHM quality but bias can 
also result from variations in laser energy, scan angles and footprint 
size (Keränen et al., 2016; Næsset, 2009; Roussel et al., 2017, 2018). 
Several algorithms have been developed to improve CHM robust-
ness (e.g. Khosravipour et al., 2014, 2016), some of which are avail-
able in open- source software such as the lidR R package (Roussel 
et al., 2020). However, assessments of multiple CHM algorithms 
have so far been limited to single acquisitions or reference height 
points (Mielcarek et al., 2018; Quan et al., 2021).

Here we use ALS data from nine sites in Australia that cover a wide 
range of ecosystems—from open acacia woodlands to dense rain for-
ests and 90- m tall Mountain Ash stands—and assess the robustness 

way for more rigorous large- scale assessments of forest structure and dynamics 
from airborne laser scanning.
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airborne laser scanning, canopy gaps, canopy height model, forest structure, lidar, pitfree, 
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of six CHM algorithms, including two newly developed variations. By 
systematically manipulating laser point clouds, we test: (1) What are 
the main sources of uncertainty and bias in CHMs? (2) Which algo-
rithms are most robust to differences in acquisition parameters and 
point cloud degradation? And (3) how do errors in CHM construction 
propagate to canopy structural attributes such as canopy gaps, canopy 
heterogeneity and above- ground biomass estimates?

We summarise our results into 16 best- practice guidelines for 
ecologists and provide a versatile pipeline for producing robust 
CHMs in R. In doing so, we aim to raise awareness around some of 
the main challenges of creating and comparing CHMs, while also 
facilitating the use of ALS data for large- scale and multi- temporal 
analyses across ecological disciplines.

2  |  MATERIAL S AND METHODS

2.1  |  ALS data

Airborne laser scanning data were obtained from nine SuperSites be-
longing to Australia's Terrestrial Ecosystem Research Network (TERN; 
Karan et al., 2016). These sites provide an ideal testbed for assessing 
the robustness of CHM algorithms. For one, they range widely in mean 
annual temperature (8.4–27.3°C), annual precipitation (260–1950 mm) 
and elevation (50–1000 m a.s.l.), resulting in a considerable variety of 
canopy structures: maximum heights between 10 and 90 m and 30%–
100% canopy cover (Table 1). Moreover, in 2012–15, all sites were 
scanned over a consistent 5 × 5 km2 extent with a Riegl Q560 scanner
in full- waveform mode (outgoing pulse rate of 240 kHz, wavelength of 
1550 nm) and logged on a Riegl DR560 data recorder. Raw waveforms 
were then discretised via ‘Gaussian Estimation’ (RiAnalyze 4.1.2). The 
majority of sites were scanned in 41 parallel flightlines (aligned either 
N- S or E- W), spaced 125 m apart and with a 45° sweep, comprising 882 
laser shots. Exceptions were tall Eucalypt stands in Warra, Tasmania 
(50 flightlines), and Robson Creek, a dense, high- biomass rain forest in 
northern Queensland, which was scanned over 2 days (112 flightlines, 
both N- S and E- W) to capture the site's complex canopy and topogra-
phy. Nominal flying height was 300 m throughout, resulting in a maxi-
mum footprint diameter of 0.15 m and high sampling densities (19–31 
pulses m−2).

2.2  |  A standardised workflow for generating 
CHMs from ALS point clouds

2.2.1  |  Point cloud processing

We developed a standardised pipeline to convert ALS point clouds 
into digital terrain models (DTMs) and canopy height models (CHMs). 
The pipeline is executed from R (R Core Team, 2023) and processes 
data with a combination of LAStools commands (Isenburg, 2023, 
called directly from R via ‘system()’) and custom functions, mostly 
relying on the lidR, terra and data.table packages (Dowle & TA
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Srinivasan, 2023; Hijmans, 2023; Roussel et al., 2020). The pipe-
line was developed for the automatic processing of large volumes 
of data with variable structures and has been extensively tested 
across scans and sites (Jackson et al., 2024; Rosen et al., 2024). 
Further details on the pipeline and R packages can be found in the 
Supplementary Information (S1). The code and a sample workflow 
are available on Zenodo (http:// doi. org/ 10. 5281/ zenodo. 10878070). 
For the purposes of this analysis, ALS point clouds were processed in 
tiles of 500 m, with buffers of 25 m. All processing was carried out in 
parallel on an Intel® Core™ i9- 10980XE CPU with 18 physical cores 
and 64 GB of RAM.

2.2.2  |  CHM algorithms

As part of the processing pipeline, we used six alternative CHM 
algorithms (see extended descriptions in Table 2). Four are part of 
common software tools (LAStools, lidR) and run with recommended 
parameterisations to generate 1 m2 resolution CHMs. We chose 
a 1 m2 resolution as this is the default for many ALS- based raster 
products—for example CHMs provided by NEON (https:// www. 
neons cience. org) and OpenTopography (https:// opent opogr aphy. 
org)—and a common resolution in forest structure analysis (Dalagnol 
et al., 2021; Labriere et al., 2018; Silva et al., 2019). The CHM 

TA B L E  2  Canopy height model (CHM) algorithms.

Algorithm Abbreviation Description

First- return TIN CHMtin Delaunay triangulation of ALS first returns, as implemented in the LAStools blast2dem 
function. Performed on the non- normalised point cloud to create a 1 m2 resolution DSM. 
The CHM is derived by subtracting the DTM from the DSM

Highest return raster CHMhighest Gridding of highest returns at 1 m2 resolution using lasgrid, and CHM creation via 
subtraction of DTM from DSM

Pitfree algorithm CHMpitfree Pitfree algorithm (Khosravipour et al., 2014), as described in LAStools batch procedures 
(https:// github. com/ LASto ols/ LASto ols/ blob/ master/ examp le_ batch_ scripts, accessed 
on 7 February 2023). Moves through the normalised point cloud vertically and creates 
intermediate CHMs that are then combined into a final ‘pitfree’ CHM at 1 m2 resolution. 
Carried out with standard parameters, including thinning at half the target resolution 
(0.25 m2), ‘splatting out’ of returns (radius = 0.05 m) and removal of Delaunay triangles 
in intermediate CHMs with edge lengths larger than three times the target resolution 
(3 × 1 m = 3 m). Intermediate CHMs were computed at 5 m vertical steps. A DSM was 
obtained by summing DTM and CHM

Spikefree algorithm CHMspikefree Constrained Delaunay triangulation (Khosravipour et al., 2016). Triangulates points that 
are nearby both horizontally and vertically and omits non- relevant returns below already 
triangulated areas. Conceived as update to the pitfree algorithm and implemented on 
non- normalised point clouds via las2dem. The so- called ‘freeze constraint’ parameter is set 
to three times the average pulse spacing, or sqrt(1/pulse density). Note that this is not the 
original implementation, but a common heuristic described in the LAStools documentation 
(https:// rapid lasso. com/ 2016/ 02/ 03/ gener ating -  spike -  free-  digit al-  surfa ce-  model s-  from-  
lidar/  , accessed on 7 February 2023). Used to create a 1 m2 resolution DSM from non- 
normalised returns; converted to CHM via DTM subtraction

Spikefree algorithm (thinned 
point cloud)

CHMtspikefree Same as the spikefree algorithm, but based on a systematically thinned and homogenised 
point cloud (2 pulses per m2). Thinning is performed with the lasthin function at 1 m2 
resolution, retaining only first returns to increase robustness across instruments. The freeze 
constraint is set to 3 × sqrt(1/2) m, or ~2.1 m

Spikefree algorithm (locally 
adaptive)

CHMlspikefree Same as the spikefree algorithm, but using only first returns and a freeze- constraint adapted 
to local pulse densities. The algorithm first computes local pulse densities across 5 × 5 m2 
patches and divides the scan area into clusters belonging to the same pulse density class. 
Pulse density classes are defined in steps of 0.5 from 0 to 3 pulses m−2, steps of 1 from 
3 to 10 pulses m−2, steps of 2 to from 10 to 20 pulses m−2, step of 5 from 20 to 50 pulses 
m−2, and steps of 25 from 50 to 100 pulses m−2. Point cloud areas with pulse densities 
>100 m−2 are processed as if their pulse density was 100 m−2. For each cluster belonging 
to the same pulse density class, we create a buffer zone of 5 × 5 m2 and compute a DSM 
with a pulse density adapted freeze constraint. The freeze constraint is determined as: 
freeze = mfreeze ∕

(

ln
(

sfreeze × pd + ofreeze

)

+ 1.0
)

, where pd is the pulse density of the 
current patch, and mfreeze, sfreeze and ofreeze are free parameters (multiplicator, slope and 
offset, respectively). The formula is empirical and was calibrated through a grid search of 
parameters on three 1 km2 canopy extents at Alice Mulga, Robson Creek and Watts Creek. 
We here use the most robust parameter set for all subsequent calculations (mfreeze = 3.1, 
sfreeze = 1.75 and ofreeze = 2.1)

Note: Description of the six algorithms for deriving CHMs tested in the study.
Abbreviations: DSM, digital surface model; DTM, digital terrain model.

https://doi.org/10.5281/zenodo.10878070
https://www.neonscience.org
https://www.neonscience.org
https://opentopography.org
https://opentopography.org
https://github.com/LAStools/LAStools/blob/master/example_batch_scripts
https://rapidlasso.com/2016/02/03/generating-spike-free-digital-surface-models-from-lidar/
https://rapidlasso.com/2016/02/03/generating-spike-free-digital-surface-models-from-lidar/
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algorithms we tested include a simple rasterisation of the highest re-
turn per m2 (CHMhighest), a TIN- interpolation of first returns (CHMtin),
a ‘pitfree’ algorithm that builds the canopy surface by merging mul-
tiple TIN- interpolations (CHMpitfree, Khosravipour et al., 2014) and 
the ‘spikefree’ algorithm, a vertically constrained TIN- interpolation 
(CHMspikefree, Khosravipour et al., 2016). Both the pitfree and 
spikefree algorithms were designed to remove or smooth over spuri-
ous low points in the canopy (‘pits’ or ‘spikes’) that are due to laser 
pulses penetrating into small (submeter scale) openings, but the two 
algorithms use different approaches to achieve this (Table 2).

The other two CHM algorithms are newly developed versions of 
the spikefree algorithm: one that is applied to a thinned- down point 
cloud (CHMtspikefree), and one that adapts the spike- removal to local 
pulse density variation (CHMlspikefree). Both are applied to first returns 
only and address the problem that pulse densities are typically higher in 
areas closer to the scanner (centre of flightlines, tall trees, hill tops) and 
where flightlines overlap, which if uncorrected leads to inconsistencies 
in height estimates (Roussel et al., 2017). Throughout, we first created 
digital surface models (DSMs) and obtained CHMs by then subtracting 
ground heights (DTM based on LAStool's ‘lasground_new’). The excep-
tion was CHMpitfree which we derived directly from height- normalised 
point clouds to reduce computation time. A DSMpitfree was constructed 
post hoc by summing CHMpitfree and DTM.

2.3  |  Robustness of CHM generation and forest 
structure assessments

2.3.1  |  Simulating point clouds of varying quality

Pulse density (the number of emitted laser pulses per unit area) is 
usually the best first- order approximation of airborne laser scan 
quality, particularly for CHM construction. Pulse density depends 
on the frequency with which pulses are emitted, but also summa-
rises flightline properties, such as altitude, speed and overlap. It is 
highest when the laser is flown close to the canopy, at low speed and 
in narrowly spaced flightlines. As a general rule, the higher the pulse 
density, the less sensitive is a canopy reconstruction to other laser 
properties. If, for example, 1 m2 of canopy is hit by a single shot, it 
matters a lot where the shot came from, how wide its footprint was, 
and how the raw energy waveform was converted into a single point 
(Dayal et al., 2022; Keränen et al., 2016; Roussel et al., 2017, 2018). 
By contrast, if the same 1 m2 of canopy is saturated with shots from 
all directions (e.g. ≥20 pulses m−2), the canopy surface is likely well- 
approximated irrespective of these properties.

Pulse density is not only an important summary statistic of ALS 
quality, but also easy to manipulate post hoc through a random (or 
targeted) thinning of laser shots. Here we used this approach to 
study how robust CHM algorithms were to variations in point cloud 
quality. Starting from the high- quality TERN ALS data, we created 
systematically degraded point clouds with pulse densities of 16, 8, 4, 
2, 1 and 0.5 m−2 for each of the nine study sites. We used the homog-
enize() function in the lidR package, which simultaneously thins and 

homogenises point clouds, so that every grid cell at a target resolu-
tion (here 25 m) has the same overall pulse density. We then ran the 
processing pipeline across the degraded point clouds and created 
standard DTM and CHM products for further analysis.

While pulse density is the best overall quality indicator, other 
scan properties can also affect CHMs, particularly at low pulse den-
sities. We therefore carried out three companion analyses: (1) a cus-
tom degradation of pulse density that, unlike homogenize(), removed 
every nth shot, to assess the effects of within- scan heterogeneity; 
(2) a systematic degradation in laser penetration (i.e. the number
of returns per shot) to investigate how higher- order returns affect
CHM generation; and (3) a splitting of point clouds into flightlines,
which allowed us to study areas of overlap between two flightlines
and test whether differences in scan angles between shots from the
two flightlines also translated into differences in canopy height esti-
mates between them. For simplicity, we focus on pulse density vari-
ation throughout the main text and present the companion analyses
in the Supplementary (Sections S2–S4).

2.3.2  |  Effects of point cloud quality on CHM 
generation

The way in which CHM algorithms interpolate laser returns to cre-
ate canopy surfaces (DSM derivation) is a major source of uncer-
tainty. However, variation is also expected due to errors in ground 
classification (DTM derivation). For example, at low pulse densi-
ties, canopy height could be underestimated because of insuffi-
cient sampling of treetops (negative bias in DSM) or insufficient 
sampling of the ground (positive bias in DTM). We evaluated the 
two aspects separately: for each site and each pulse density level, 
we compared both DSMs (one for each algorithm) and DTMs to 
reference products at the highest pulse density level (16 pulses 
m−2). Robustness of algorithms was assessed through mean er-
rors (ME, or bias, in m) and root mean square errors (RMSE, in 
m) of 1 m2 pixels. Throughout, we visualise DSM/DTM stability
across all pulse density levels but only report RMSE and ME for
the most extreme but still acceptable point cloud differences (2
vs. 16 pulses m−2). To avoid edge effects, we removed the outer
25 m of all products.

2.3.3  |  Effects of point cloud quality on 
CHM- derived metrics

To assess how pulse density degradation propagated to CHM- derived 
forest structural metrics, we calculated 25 summary statistics from 
all CHMs both at 1 ha (100 × 100 m2) and 1 km2 (1000 × 1000 m2) res-
olution (see Table 3 for details on all metrics). 1 ha is a common size 
for forest plots and thus an important mapping unit for structural 
metrics and biomass (Labriere et al., 2018), while 1 km2 is sufficiently 
large to sample irregularly distributed canopy features such as large 
treefall gaps or canopy clusters (Wedeux & Coomes, 2015; Zhang 
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et al., 2023). Metrics were grouped into two categories: ‘vertical’ 
ones that summarised the height distribution in each grid cell irre-
spective of spatial associations between the underlying 1 m2 pixels, 
and ‘horizontal’ ones that explicitly assessed the connectivity of the 
1 m2 pixels within each cell. The former included metrics such as the 
mean, standard deviation, and percentiles of canopy height, while the 
latter captured spatial autocorrelation (Moran's I), height gradients 

(rumple index) and the clumping of canopy structures (gaps below 
and canopy clusters above height thresholds). We also assessed how 
robustly the frequency distribution of gap sizes could be inferred at 
1 km2 resolution by using the slope of a power law to describe the re-
lationship between number and size of gaps (Silva et al., 2019). Gaps 
had to be at least 25 m2 in size to be included and were defined via 
a height cut- off, either fixed at 10 m (Silva et al., 2019) or as 50% of 

TA B L E  3  Description of the 26 forest structure metrics tested in this study.

Type of metric Metric Calculation

Vertical Mean height (m) Mean height of CHM pixels

Median of height (m) Median height of CHM pixels

25th/75th/95th/99th 
percentile of height (m)

Height percentiles of CHM pixels

SD of height (m) Standard deviation of CHM pixels

CV of height Coefficient of variation of CHM pixels (SD/mean)

Robust CV of height Robust CV of CHM pixels (Lobry et al., 2023)

IQR of height (m) Interquartile range of CHM pixels

Canopy cover at 2 and 
10 m (%)

Percentage of CHM pixels ≥2 or 10 m in height

Horizontal Rumple index Canopy surface area divided by planar area

Normalised rumple index Rumple index calculated for a surface that has been normalised by maximum 
canopy height (99th percentile)

Moran's I Spatial autocorrelation, as measured by Moran's I in a 3 × 3 m2 neighbourhood

Number of clusters <25th 
percentile of height

The number and mean area of clusters of pixels that lie below the 25th percentile 
of height and are larger than 25 m2. A type of ‘gap’. Since gap fraction is fixed at 
25%, also applicable at small scales where other thresholds may failMean size of clusters 

<25th percentile of height 
(m2)

Number of clusters >75th 
percentile of height

The number and mean area of clusters of pixels that lie above the 75th percentile 
of height and are larger than 25 m2. A type of ‘crown cluster’. Also applicable at 
small scales where other thresholds may fail (cf. gaps above)Mean size of clusters 

>75th perc entile of height 
(m2)

Number of gaps <10 m The number, mean area and power law slope (λ) of the size frequency distribution 
of clusters of pixels that lie below a fixed height threshold of 10 m and are larger 
than 25 m2. Only used at 1 km2 scale

Mean size of gaps <10 m 
(m2)

λ of gaps <10 m

Number of gaps <50% 
mean height

The number, mean area and power law slope (λ) of the size frequency distribution 
of clusters of pixels below a relative height threshold (50% of mean canopy height) 
and larger than 25 m2. Only used at 1 km2 scaleMean size of gaps <50% 

mean height (m2)

λ of gaps <50% mean 
height

Derived Above- ground biomass 
(Mg ha−1)

Above- ground biomass (AGB), predicted from median canopy height (H50) as 
AGB = A × H50

b (Labriere et al., 2018). A and b are fitted for each CHM separately 
via the AGB of 25 1 ha field inventory plots. Only estimated at the tropical site 
Robson Creek and only at 1 ha scale

Note: The metrics can be broadly grouped into vertical ones that ignore spatial connections between CHM pixels, and horizontal ones that instead 
reflect relationships between CHM pixels (1 m2) and their neighbours. As an additional test, we evaluated above- ground biomass, which requires 
both CHM and field inventory data for derivation and is thus reported separately. Unless otherwise noted, each metric was calculated at both 1 ha 
and 1 km2 scale. We note that we use the power law slope of gap size frequency distributions as an indicator of forest structure, but we did not test 
whether gap patterns actually conformed to power laws.
Abbreviation: CHM, canopy height model.
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the mean canopy height at 1 km2 resolution (Table 3). Moreover, for 
one site (tropical forest at Robson Creek) we estimated the impacts 
of CHM uncertainty and bias on above- ground biomass (AGB) esti-
mation. This was done by regressing field estimates of AGB from 25 
1 ha plots against CHM- derived estimates of median canopy height 
(Labriere et al., 2018). For a more detailed explanation of the AGB 
analysis see Section S5 of the Supplementary.

For each metric, we again calculated MEs and RMSEs between 
degraded and reference data sets (2 vs. 16 m−2), but now at 1 ha and 
1 km2 resolution. To make metrics comparable and assess their utility 
in deciphering ecological variation, we calculated MEs and RMSEs 
for each metric and study site separately, and then divided them by 
the metric's standard deviation either within or across sites (here-
after rMEs and rRMSEs). For the most robust metrics, biases and 
uncertainties should be dwarfed by biological variation across and 
within sites (e.g. rMEs ≪0.1 and rRMSEs ≪0.2). To assess the prac-
tical effects of mixing high and low- quality point clouds in ecological 
analyses, we also randomly swapped 50% of cells between 2 and 
16 m−2 grids (for each site, both at 1 ha and 1 km2 resolution) and cal-
culated Spearman's R2 between the re- shuffled grids (R2

rankswapped).
A high R2

rankswapped (>0.9) indicates that forest structure assess-
ments are stable even if low and high pulse densities occur in the 
same analysis.

2.3.4  |  Transferability to other datasets and 
forest types

To assess the generalisability of our results to woody ecosystems 
not included in the TERN data (e.g. conifer forests) we identified a 
second dataset comprising nine highly diverse forest ecosystems 
from the U.S. for each of which we were able to obtain ALS data 
covering a spatial extent of 3 × 3 km2. Using these data, we repeated
the main analysis of how pulse density degradation affects the sta-
bility of the CHMs and their derived metrics. The site description, 
methodology and results of this validation analysis are reported in 
the Supplementary Materials (Section D).

3  |  RESULTS

3.1  |  Sources of uncertainty and bias in canopy 
height estimation

Canopy height varied strongly across sites, algorithms and pulse 
densities (Figures 1 and 2; Tables S4 and S5). When averaged across 
algorithms, mean canopy height ranged from 2.5 m in the semi- arid 
acacia woodlands of Alice Mulga to 36.1 m in the wet sclerophyll 
forests at Watts Creek (Δh = 33.6 m). However, values depended 
strongly on the CHM algorithm: the same sites ranged from 3.4 to 
39.7 m for CHMhighest (Δh = 36.3 m) and from 1.7 to 28.9 m for CHMtin 
(Δh = 27.2 m). The largest relative difference between algorithms at a 
single site was observed at the savanna site in Litchfield where many 

low canopy returns resulted in a mean height of 2.9 m for CHMtin, 
but 7.3 m for CHMhighest (i.e. 2.5 times the value of CHMtin).

Variation in pulse density had a strong effect on canopy height 
estimates, with decreases from 16 to 2 m−2 resulting in a mean 
absolute bias of up to −5.6 m for tall, wet forests (CHMhighest at 
Watts Creek, or −14% of mean canopy height). In short, open and 
dry forests, absolute biases were much lower (as low as −0.76 m 
at Credo) but relative biases reached up to −42% of mean canopy 
height (CHMpitfree at the acacia woodland of Alice Mulga). RMSEs 
at pixel- level (i.e. 1 m2 resolution) reached up to 14 m when com-
paring CHMs generated at 16 versus 2 pulses m−2 (Watts Creek, 
CHMhighest) and in places exceeded 100% of mean canopy height 
(savanna site Litchfield, CHMtin). Comparable uncertainties due 
to within- scan heterogeneity in pulse density were also observed 
across sites (Figure S5). Most of these errors and uncertainties 
were due to the CHM algorithms, with little additional effects due 
to DTM generation (bias ≤0.5 m for most sites). The exception was 
the tropical rain forest at Robson Creek, where relative changes in 
canopy height were smaller than for the other sites, dropping by 
only 3.6 m (13%) from CHMhighest to CHMtin and 1.9 m (7%) from 16 
to 2 pulses m−2 for CHMhighest. By contrast, Robson Creek exhib-
ited the strongest DTM degradation, with positive biases of 2–5 m 
at low pulse density, low laser penetration and oblique scan angles 
(Figure 2; Figure S9; Table S5). Below 2 pulses m−2, deviations be-
tween and within CHM algorithms became even more extreme at 
all sites (Figures 1 and 2; Table S3).

3.2  |  Robustness of CHM algorithms

Among the six algorithms we tested, CHMlspikefree was the most 
robust to degradation in pulse density, followed by CHMtin, with 
both showing little degradation between 16 and 2 pulses m−2, 
even in tall canopies (maximum bias of −0.52 and +0.57 m respec-
tively, Table S3). However, between the two, CHMtin was much 
noisier than CHMlspikefree, which had the overall lowest RMSEs 
(Figure 1; Table S3). Deviations in the other four algorithms were 
variable, but typically much larger (Table S3). For example, at 2 
pulses m−2, height biases in two commonly used CHM types 
(CHMhighest and CHMpitfree) routinely reached several metres. In 
addition, CHMhighest degraded rapidly in coverage (~4% NA val-
ues at 2 pulses m−2, ~42% at 0.5 m−2). A visual assessment of al-
gorithms confirmed the highest consistency in CHMlspikefree and 
the clearest degradation in CHMhighest (Figure 1; Figures S1–S4). 
However, it also showed that, at high pulse densities, contours 
were sharper in CHMhighest and CHMspikefree than in CHMtin (too 
noisy) and CHMlspikefree (too smooth).

We obtained very similar results when applying the various 
CHM algorithms to the second dataset of nine sites from the United 
States, indicating that CHMlspikefree and CHMtin are able to gener-
ate robust surface models across a wide range of forest types and 
scanning configurations (Supplementary Material R1 and Table R2). 
Moreover, the results focused on pulse density modulation were 
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consistent with companion analyses of scan angle and laser pene-
tration, where CHMlspikefree- based estimates also came out as the 
most robust, closely followed by CHMtin (Table S3). However, even 
for CHMlspikefree and CHMtin, canopy height was systematically un-
derestimated at larger scan angles (site- dependent biases ranging 
from 0.0 to −1.12 m and from −0.09 to −1.05 m, respectively, for scan 
angle increases of 15° or more; Table S3; Figure S4).

3.3  |  Robustness of CHM- derived forest structure 
metrics

Downstream analyses were strongly affected by errors in CHM cre-
ation. We compared the calculation of a total of 25 metrics between 
2 and 16 pulses m−2 at both 1 ha and 1 km2 scales (see Figure 3 for 
examples, and Figures S10–S23 for a full overview), and RMSEs and 
MEs often reached or exceeded the standard deviation of the tar-
get variables within sites (rRMSE of 50%–100% or more; Tables S6 

and S7). In a few cases, errors and biases even exceeded cross- site 
variation by a factor of 2 or more, and some metrics never reached 
R2

rankswapped > 0.9 within sites even in comparisons between high- 
quality scans, indicating an inherent instability in those metrics 
(Table S12).

However, there were clear differences between CHM algo-
rithms and between vertical and horizontal metrics. CHMlspikefree 
and CHMtin were the most robust, with CHMlspikefree performing 
slightly better. It had low rRMSEs and rMEs for all vertical met-
rics (<10% across sites and 10%–20% within sites; Tables S6–S9) 
and highly conserved rankings when randomly combining mea-
surements at low and high pulse densities (R2

rankswapped ~ 1.00
across and R2

rankswapped ~ 0.90–0.95 within sites; Tables S10 and
S11; Figures S10–S23). The consistency of CHMlspikefree- inferred 
vertical metrics translated to derived products, such as above- 
ground biomass (AGB; Figure 3; Table S12). Errors due to pulse 
density degradation (16.1 Mg ha−1) were small compared to those 
of other algorithms such as CHMhighest and CHMpitfree (49.2 and 

F I G U R E  1  Canopy height models across pulse densities for a single tree at Robson Creek. Shown are canopy height models (CHMs, 1- m2 
resolution) for a tree at Robson Creek (crown diameter = 23 m) from 16 down to 0.5 pulses m−2. Each row corresponds to a CHM algorithm.
Algorithms degrade severely below 2 pulses m−2, which is why robustness was assessed only above this sampling threshold (see Figures S1–
S4 for a visualisation of CHMs for different types of degradations and sites).
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34.2 Mg ha−1, respectively), errors in the biomass models them-
selves (41.9 Mg ha−1) and the mean biomass across the entire area 
(483.3 Mg ha−1). Horizontal metrics were also the most robust when 
derived from CHMlspikefree, but showed considerable errors and un-
certainties within sites (50%–100% rRMSE and rME; R2

rankswapped

of 0.3–0.7). An exception were canopy gap statistics, when gaps 
were defined as clusters of pixels that lie below 50% of the mean 
canopy height at 1 km2 resolution. For CHMlspikefree, their number,
mean size and power law slopes were well- preserved across (rRM-
SEs ~10% and rMEs ~5%) and within sites (~25% and 10%).

CHMtin- derived metrics were also robust, and for some metrics 
(e.g. upper percentiles of height), all algorithms performed well. But 
CHMlspikefree was more consistent overall and the only algorithm for 
which at least some horizontal metrics had within- site rRMSEs below 
40% and R2

rankswapped > 0.9 (Tables S7 and S11). On the other hand,
two commonly used algorithms, CHMhighest and CHMpitfree, were 
consistently the worst- performing, with errors regularly exceeding 
100% and rank- consistency <0.9 for most metrics (Tables S10 and 
S11). The same patterns were found in our replication study in U.S. 
forests (Tables R3–R8).

F I G U R E  2  Changes in mean canopy height across pulse densities and algorithms for all TERN SuperSites. Shown is mean canopy height 
from 0.5 to 16 pulses m−2 across canopy height model (CHM) algorithms and study sites. To separate out effects on topography from effects 
on canopy surfaces, CHMs are computed by subtracting a reference digital terrain model (DTM) generated using high- quality point clouds 
(16 pulses m−2) from digital surface models generated using increasingly degraded point clouds. Also shown is a pulse- density specific DTM 
(black line), normalised by the reference DTM of each site. Changes below 2 pulses m−2 are plotted with transparency, as they were not used 
for robustness assessments. Figures S7 and S8 show the equivalent for laser penetration degradation and scan angle differences.
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4  |  DISCUSSION

Laser scanning technology is advancing fast, and ALS data are in-
creasingly available in huge, open archives (e.g. https:// opent opogr 
aphy. org/ ). This presents a unique opportunity for ecologists to 
characterise ecosystems in time (Huertas et al., 2022) and in space 
(Jucker, 2022). In particular, ALS- derived CHMs hold a lot of prom-
ise, as they are easy to create, share and interpret, more robust 
than point cloud- derived metrics (Mielcarek et al., 2018; Zhang 
et al., 2024) and a core part of most point cloud processing tools 
(Roussel et al., 2020). ALS- derived CHMs already play a key role 
in the validation and calibration both of regional forest structure 
products (Wagner et al., 2024) and of global satellite- derived prod-
ucts (Duncanson et al., 2022; Lang et al., 2023; Tolan et al., 2024). 
Moreover, as multi- temporal ALS data become increasingly avail-
able, CHMs will allow the fine- scale monitoring of forest dynamics 

at large spatial scales—making it imperative that we develop robust 
approaches for generating them.

Using high- quality ALS data from nine TERN SuperSites in 
Australia that span a wide range of forest types, we show that many 
of the ecological metrics we typically derive from ALS (e.g. height, 
gaps, AGB) are highly susceptible to the choice of CHM algorithm. 
We found that estimates of forest structure vary widely both be-
tween CHM algorithms and for the same algorithm under different 
degrees of point cloud degradation. However, robust assessments 
of canopy structure are possible through careful methodological 
choices. As a way forward, we present a new type of CHM that 
improves the robustness of an existing algorithm (Khosravipour 
et al., 2016). We accompany this with an openly available pipeline to 
derive and compare these CHMs in R, and a set of 16 best- practice 
guidelines that will allow ecologists to make the most of growing 
access to ALS data (Figure 4).

F I G U R E  3  Robustness of CHM- derived structural metrics at Robson Creek under point cloud degradation. Shown are a selection of 
six measures of forest structure. The top row shows vertical metrics and those derived from them, including (a) the robust coefficient of 
variation (Lobry et al., 2023) of height, (b) canopy cover at 10 m above- ground and (c) above- ground biomass (AGB), all estimated at 1 ha 
resolution. The bottom row shows horizontal metrics calculated at 1 km2 resolution, including the number (d), average size (e) and power law 
slope (f) of gaps, where gaps are defined as clusters of all 1 m2 pixels <50% of mean canopy height and >25 m2 in total area. We rescaled tick
marks on the y- axis to correspond to 50% of each metric's typical standard deviation at 16 pulses m−2. Biases smaller than inter- tick mark 
distance thus indicate robustness, while those exceeding it denote instability.

https://opentopography.org/
https://opentopography.org/
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4.1  |  Not all canopy height models are created 
equal…

A clear takeaway from our analysis is that canopy height cannot be 
compared across CHM algorithms and that variation in point cloud 
properties adds large errors. Mean canopy height estimates could 
differ by up to 10 m between algorithms and up to 60% in relative 
height, and point cloud degradation added biases of up to ~5 m, or up 
to ~40% in relative terms. This is true even when staying within rea-
sonable quality ranges (e.g. densities ≥2 pulses m−2) and despite the 
general robustness of CHMs to differences in light extinction and 
good retrieval of top canopy height (Mielcarek et al., 2018). To make 
matters worse, errors were inconsistent across sites—higher abso-
lute errors in tall, higher relative errors in short forests (Table S3)—
and within scans (Figure S5; Table S3). Large scan angle differences 
(15–20°) also introduced a negative bias in height estimates, but 
across- scan pulse density variation was the single most important 
factor in determining CHM quality, in agreement with previous stud-
ies that found similar effects of pulse or return densities (e.g. LaRue 
et al., 2022).

Errors and uncertainties in CHM algorithms had disproportion-
ately large effects on derived structural metrics, often exceeding 
ecological variation within sites. For extremely sensitive metrics 
(Moran's I or gap statistics from CHMhighest), errors and uncertainties 
even exceeded variation across the entire gradient from open Acacia 
woodlands to 90- m tall Mountain Ash forests. This is beyond most 
ranges seen in ecological studies and, barring stand- replacing distur-
bance, exceeds forest dynamics by orders of magnitude. Even at a 
single site (Robson Creek) and for a comparatively robust definition 
of canopy gaps (clusters of pixels <50% of mean height and >25 m2

in size), values ranged from ~800 to ~2200 gaps km−2 between algo-
rithms, and could go from ~1200 to ~2600 gaps km−2 across pulse

densities for a single algorithm (CHMhighest). In comparison, esti-
mates of above- ground biomass were more stable, but degradation 
in pulse density could still lead to biases in excess of model calibra-
tion errors (~50 Mg ha−1 for CHMhighest) and >10% of the landscape- 
level estimates (~485 Mg ha−1).

4.2  |  … but we can make them more equal

There is, however, a clear way forward when it comes to implement-
ing robust high- resolution (1 m2) forest structure assessments (see 
Figure 4 for a condensed version). As a general rule, we recommend 
masking areas below 2 pulses m−2 (averaged at 5–10 m) and below 
4 m−2 in rugged terrain with dense vegetation (see degradation 
in Figures 1 and 2; Figure S9). The effects of scan angle variation 
and laser penetration were small relative to those of pulse density 
(Figure S4), but became noticeable at 15–20°, so we recommend 20° 
as upper limit (see Dayal et al., 2022). Masking of areas is also rec-
ommended when DTMs cannot be reliably inferred due to a lack of 
ground returns.

Second, forest structural estimates should be derived from a 
single, consistent CHM, ideally one that uses only first returns and 
adapts to pulse density variation. Two of our algorithms fulfilled 
these criteria (CHMlspikefree and CHMtin). CHMlspikefree, an algorithm 
that we developed as part of this study as a refinement to the 
pre- existing ‘spikefree’ algorithm (Khosravipour et al., 2016), had 
the lowest errors across metrics (<5% of across- site variation). It 
also preserved most canopy properties when mixing scans from 
high and low pulse densities (R2

rankswapped = 0.95–1.0 across and
within sites) and was the only algorithm that estimated gap statis-
tics with reasonable accuracy (rRMSE ~25% within sites). CHMtin, a 
much simpler Delaunay- triangulation of first returns, matched the 

F I G U R E  4  Sixteen simple guidelines 
for robust forest structure analysis. 
Shown are best- practice guidelines for 
robust assessments of forest structure 
from airborne laser scanning via canopy 
height models (CHMs). We assume that 
(a) scans have been acquired at pulse
densities high enough to produce accurate
ground models, (b) the target resolution
for CHMs is 1 m and (c) that the aim is
to compare forest structural properties
across scans and sites. For some goals,
such as tree crown delineation across a
single high- quality scan, other algorithms
such as CHMhighest or CHMspikefree may 
prove useful.
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low biases in CHMlspikefree, but created noisy and porous canopy 
surfaces. The application of CHMtin is thus context- dependent—
better for estimating light- penetration, worse for estimating top 
height—but it offers a useful complement to CHMlspikefree. In con-
trast, two of the most commonly used algorithms, CHMhighest and 
CHMpitfree, performed badly throughout. We recommend their 
application only in specific cases, such as when sample areas 
are scanned with the same instruments or at high densities (>20 
pulses m−2).

Third, for most applications we recommend using statistics that 
summarise the vertical distribution of canopy elements, such as the 
mean, standard deviation or percentiles of canopy height. Vertical 
metrics are simple to calculate and interpret, robust and have been 
successfully used for the modelling and mapping of forest plot attri-
butes (Pearse et al., 2019; Tompalski et al., 2019; Wilkes et al., 2015). 
In contrast, horizontal metrics that quantify the connectivity of 
CHM pixels—spatial autocorrelation, height gradients and canopy 
features such as gaps or other types of canopy pixel clusters—are 
less robust. They are attractive, because they open up many eco-
logical questions around canopy dynamics and biodiversity (Asner, 
Kellner, et al., 2013; Jucker, 2022). However, they are difficult to 
interpret and proved extremely volatile, with only a single gap defi-
nition (clusters of pixels <50% of mean canopy height) producing 
moderately reliable statistics, and only for the most robust algorithm 
at the largest spatial scale (CHMlspikefree at 1 km2).

Finally, any measurement will involve some form of error. Even 
the most robust algorithms, such as CHMlspikefree and CHMtin, 
showed small biases in this study, and some features of ALS data 
(e.g. footprint size, or acquisition timing and its relation to phenology 
or snow cover) were difficult to correct for. We therefore recom-
mend including summaries of point cloud quality (pulse densities and 
scan angles) and ecological confounders of structure (e.g. vegetation 
indices that reflect phenology) into statistical models. Crucially, ef-
fect sizes should always be put into context of the typical noise and 
biases of CHMs and derived metrics. Differences <1.0 m in canopy 
height, for example, should be interpreted with great caution. When 
in doubt, it may be useful to repeat analyses with a second type of 
CHM.

4.3  |  Towards a robust analysis of forest canopies 
at global scales

Our study provides a systematic assessment of the robustness of 
six different CHM algorithms and derived forest structure metrics 
under point cloud degradation. Our results hold across a broad range 
of forest types, but their interpretation may vary in specific research 
contexts and study systems. For one, there are several caveats: we 
ignored interactions between pulse density degradation and other 
sources of uncertainty (e.g. an operator flying at higher altitudes can 
compensate lower return densities by increasing laser power) and 
focussed on sites with relatively flat terrain, except for the tropical 
forests at Robson Creek (Figure S9). Furthermore, some sources of 

point cloud variation (e.g. rotational patterns of scanners, varying 
footprint sizes or waveform- to- discrete- point conversion) were be-
yond the scope of our analysis due to the systematic scanning set- up 
at the TERN SuperSites. Robustness assessments of these proper-
ties and how they interact would require further investigation with 
different instruments and software as well as flights at different 
altitudes (Boucher et al., 2023; Brede et al., 2022; Næsset, 2009). 
Footprint size, for example, has been found to introduce moderate 
(0.1–0.5 m) but variable biases into height estimates that include 
both positive (Næsset, 2009), negative (Morsdorf et al., 2008; 
Roussel et al., 2017) and site- dependent (Goodwin et al., 2006) 
shifts when comparing small and large footprints. However, prop-
erties such as footprint size are often inconsistently reported, and 
their effects generally diminish as pulse density and sampling of the 
canopy increases. Therefore, pulse density, an inherent feature of 
ALS point clouds, provides the best first- order correction for forest 
structure analysis.

Second, if a study relies on a single scan or a set of scans with 
the same sampling design, some of our rules- of- thumb could be 
relaxed. For example, to estimate tree top heights (generally the 
most robust, Tables S10 and S11), it might be advantageous to 
retain pulse densities <2 m−2 and maximise information by using
CHMs based on all returns (Mielcarek et al., 2018). Similarly, one 
could use the sharper contours of CHMhighest or CHMspikefree for 
tree crown delineation together with targeted height corrections 
(Roussel et al., 2017). It may even sometimes make sense to use 
unstable metrics such as the rumple index, as there is an accuracy- 
robustness trade- off: many metrics are unstable precisely be-
cause they are sensitive to fine- scale variation in point cloud 
distributions. For high- quality scans—such as modern, large- scale 
surveys that easily reach densities of 50–100 pulses m−2 (McNicol 
et al., 2021)—these metrics may provide a lot of ecological infor-
mation in return for only small biases. However, there are caveats: 
most scans in open archives (e.g. https:// opent opogr aphy. org/ 
) have both low and spatially variable pulse densities and even 
high- quality scans can vary strongly in pulse density (Figure S5). 
Moreover, some metrics such as Moran's I may be so inherently 
noisy or bias- prone that they should be generally avoided (sub-
stantial differences even between 8 and 16 pulses m−2; Table S10). 
Finally, any use of non- robust metrics limits comparability across 
studies and precludes investigations of temporal change.

Third, while the nine TERN SuperSites in Australia cover a wide 
range of forest structural types—from semi- arid shrublands all the 
way to dense tropical rainforests—they cannot be representative of 
all forest ecosystems. To address the lack of conifer or mixed forest 
types in this dataset, we carried out a replication test with ALS data 
from nine additional US sites (Supplementary Material, Section D). 
The replication sites included a wide range of ecosystems with an 
emphasis on conifer forests—including subtropical pine forests 
in Florida, redwoods in California, temperate montane forests in 
the Pacific Northwest and boreal black spruce forests in Alaska 
(Table R1)—and showed the same patterns as the TERN SuperSites. 
We again found clear biases at low pulse densities in two commonly 

https://opentopography.org/
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used CHM algorithms (CHMhighest and CHMpitfree), an increase in 
absolute biases with canopy height and a much larger sensitivity to 
pulse density among horizontal than vertical metrics. But we also 
again found high robustness in CHMlspikefree and CHMtin, particular 
for vertical forest structure metrics. Overall, this suggests that our 
general recommendations are applicable across ecosystems globally.

Finally, our study does not provide an exhaustive picture of all 
potential metrics that can be derived from ALS. In the future, we 
might be able to derive more robust metrics or develop more stable 
CHM algorithms. Crucially, our analysis also does not peek below 
the canopy surface, but this is where a lot of important ecological 
processes are happening. Expanding our robustness analysis to 
point cloud or voxel- derived metrics (Pearse et al., 2019; Vincent 
et al., 2023) is a priority, and the current developments are exciting. 
Several recent studies systematically assessed how point cloud and 
instrument properties propagate to the measurement of ecologically 
interesting features (Dayal et al., 2022; LaRue et al., 2022; Roussel 
et al., 2017, 2018; Tompalski et al., 2019; Vincent et al., 2023). It is 
through studies such as these that ecology will be able to separate 
out scanning artefacts and noise from biological variation. This cre-
ates a secure foundation for the quantification and monitoring of 
fine- scale canopy and carbon dynamics, microclimates and animal 
habitats at global scales.
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