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Lakes provide societies and natural ecosystems with valuable services such as freshwater supply and flood
control. Water level changes in lakes reflect their natural responses to climatic and anthropogenic stressors;
however, their monitoring is costly due to installation and maintenance requirements. With its advanced
hardware and computational capabilities, altimetry has become a popular alternative to conventional in-situ
gauging, although subject to the temporal availability of altimetric observations. To further improve the tem-
poral resolution of altimetric measurements, we here combine radar altimetry data with Differential Interfero-
metric Synthetic Aperture Radar (D-InSAR), using ten lakes in Sweden as a testing platform. First, we use
Sentinel-1A and Sentinel-1B SAR images to generate consecutive six-day baseline interferograms across 2019.
Then, we accumulate the phase change of coherent pixels to construct the time series of InSAR-derived water
level anomalies. Finally, we retrieve altimetric observations from Sentinel-3, estimate their mean and standard
deviation, and apply them to the D-InSAR standardized anomalies. In this way, we build a water-level time series
with more temporal observations. In general, we find a strong agreement between water level estimates from the
combination of D-InSAR and Satellite Altimetry (DInSAlt) and in-situ observations in eight lakes (Concordance
Correlation Coefficient - CCC >0.8) and moderate agreement in two lakes (CCC >0.57). The applicability of
DInSAlt is limited to lakes with suitable conditions for double-bounce scattering, such as the presence of trees or
marshes. The accuracy of the water level estimates depends on the quality of the altimetry observations and the
lake’s width. These findings are important considering the recently launched Surface Water and Ocean Topog-
raphy (SWOT) satellite, whose capabilities could expand our methodology’s geographical applicability and
reduce its reliance on ground measurements.

1. Introduction

Lakes are freshwater stocks supporting significant aquatic biodiver-
sity and lacustrine ecosystems (Barzegar et al., 2021). They also play a
key role in the hydrological cycle and act as indicators of climate change
due to their high sensitivity to changing hydro-climatic conditions (Kao
et al., 2020; Magsar et al., 2021; Woolway et al., 2020; Zhang et al.,
2020). The nature- and human-driven changes in seasonal and
inter-annual water levels regulate water quality and quantity in these
water bodies (Myrzakhmetov et al., 2022; Yao et al., 2021). Prior to
extreme changes in a lake’s status, water levels can show early warning
signs and supply information for sustainable water management
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(Barzegar et al., 2021), mitigating risks related to the ecosystem service
of freshwater provision (Myrzakhmetov et al., 2022).

To understand how water availability is changing in the world’s
lakes and to be able to attribute these changes to specific climatic and
human drivers, we must first track changes in the amount of freshwater
in the lakes (Cooley et al., 2021). This includes changes in water extent,
level, and corresponding variations in stored water volume. Lake water
levels can be measured on-site with gauges. However, this is done only
in a few locations worldwide, and the number of gauging stations is
declining due to the costly maintenance and installation in remote lakes
(Alsdorf et al., 2007; Aminjafari et al., 2024a; Cooley et al., 2021; Shi-
klomanov et al., 2002). Lake water levels can also be tracked using
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airborne technologies such as Lidar/Radar and photogrammetry
(Bandini et al., 2017; Ridolfi and Manciola, 2018), which, although
accurate, can only provide a snapshot in time of water levels and
expensive flight operations do not permit high temporal resolutions.

Radar altimetry missions were initially launched to determine the
marine geoid and sea level and are now used for measuring the water
levels of lakes and rivers along their track (Abdalla et al., 2021; Cretaux
et al., 2017). Satellite altimeters transmit Laser or Radar signals in a
Nadir-looking direction and measure the water level based on the sig-
nal’s travel time. With the advances in new technology and processing
techniques, satellite altimeter sensors can now measure water levels
over the ocean and freshwater bodies (Abdalla et al., 2021; Bandini
et al.,, 2017; Markus et al., 2017; Zhang et al., 2011). For instance,
smaller footprints and higher along-track resolutions of lake water levels
can be obtained with the Synthetic Aperture Radar (SAR) mode of
altimetric sensors (e.g., Sentinel-3, Sentinel-6, and Cryosat-2; Abileah
and Vignudelli, 2021) and using higher frequency signals (Ka instead of
Ku band) on Satellite with ARgos and ALtiKa (SARAL) altimeter sensor
(Verron et al., 2021). Recent developments in Fully Focused Synthetic
Aperture Radar (FFSAR) technology have shown that off-nadir water
levels can also be derived, significantly enhancing spatial coverage and
resolution (Boy et al., 2023). This advancement could mitigate some
spatial limitations previously attributed to nadir altimetry. Furthermore,
the quality of altimetry observations has also increased with the
uploading of the elevation data on the sensors by Open-Loop Tracking
Command (instead of the older Closed Loop), which increases the
positioning of the receiving window, especially for water bodies in
mountainous areas (Biancamaria et al., 2017, 2018; Taburet et al.,
2020).

As the presence of a bright target in the altimeter’s footprint is
essential for measuring water level, single-sensor altimetry over small
lakes (along-track width <200 m) sometimes results in low coverage
(Baup et al., 2014) and low temporal resolutions (e.g., 27 days for
Sentinel-3, and 91 days for ICESat-2). With multi-sensor altimetry, a
higher number of satellite ground tracks pass over the water surface,
leading to improved temporal resolution (Biancamaria et al., 2017). To
further enhance the temporal resolution of satellite altimetry, it is
necessary to combine altimetry data with other technologies.

Synthetic Aperture Radar (SAR) retrieves the phase and amplitude of
the received signal. Differential Interferometric SAR (D-InSAR) is the
process of calculating SAR phase differences between two SAR images of
a specific location at two different times, delivering information on
water level changes (Alsdorf et al., 2000; Aminjafari et al., 2024b; Jar-
amillo et al., 2018; Liu et al., 2020; Palomino—Angel et al., 2022). Many
studies have used D-InSAR with long- (L-band) and short- (C-band)
wavelength SAR sensors to retrieve water-level relative changes be-
tween neighboring pixels over water surfaces covered by vegetation.
These characteristics provide the necessary coherence of the SAR signal
for phase unwrapping (Chen et al., 2020; Hong et al., 2010; Siles et al.,
2020; Wdowinski et al., 2008).

In the case of open water bodies (e.g., lakes), the SAR signal is mainly
incoherent and spatially discontinuous, limiting phase unwrapping
(Alsdorf et al., 2000). However, recent studies have found that the
accumulated phase changes of the high-coherence individual pixels on
the lake surface do correlate with hydrological observations (Aminjafari
et al., 2024b; Palomino—Angel et al., 2022). Based on this finding, we
propose a new method using D-InSAR to support satellite altimetry by
improving its temporal resolution.

2. Methods and materials
2.1. Study area
Amongst more than 100,000 lakes in Sweden (Larson, 2012), less

than 1% have long and continuous gauged water level observations
(Aminjafari et al., 2024a, 2024b). This low number highlights the
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challenges of their monitoring. These daily lake water level observa-
tions, some dating back to the 1930s, are recorded by the Swedish
Meteorological and Hydrological Institute (SMHI). Among lakes with
in-situ data, ten fall under the ground tracks of the Sentinel-3A/B sat-
ellites (Fig. 1 and Table 1). We use D-InSAR and satellite altimetry data
in these lakes to construct a water level time series with at least six-day
intervals, which we validate with gauge observations.

2.2. Methods

In summary, we generate six-day interferograms between Sentinel-
1A/B SAR pairs in ice-free months in 2019 in ten lakes in Sweden.
After identifying high-coherence pixels on the lake surface area in all
interferograms, we accumulate their InSAR-derived phase change from
the first to the last interferogram. If the accumulated phase change
correlates with actual water level observations, we assume their
normalized anomalies are identical. Hence, we apply the standard de-
viation and the average of the altimetry-based water levels to the water
level anomalies derived from D-InSAR to obtain a high temporal reso-
lution (less than six days) time series of water levels.

2.3. D-InSAR theory and data

In this study, we build on the methodology introduced by Aminjafari
et al. (2024b), which assesses the application of D-InSAR for water level
change calculations in lakes, to estimate lake water level anomalies (i.e.,
deviation from the average). While in the middle of a lake, the trans-
mitted signal from the Radar sensor bounces in a different direction than
in the satellite Line Of Sight (LOS), resulting in zero temporal coherence
of the SAR signal; in the vicinity of a lake, the vegetation cover can
reflect the signal from the water surface to the satellite, resulting in high
coherence (Aminjafari et al., 2024b). The so-called double bounce
mechanism can happen in sporadic pixels near the lake’s shoreline,
where trees and marshes are common.

First, we calculate the phase difference between pairs of SAR images
with six-day temporal baselines to estimate water level changes. The
phase difference (A¢) for each pixel is extracted from the interferogram
and has four main components: the ground target’s displacement (4¢q),
the stereoscopic effect of the Earth’s topography (4¢opo), the difference
between the two acquisitions’ geometry (A¢ge,), and atmospheric phase
delays and instrument’s noise (A@oher) (Aminjafari et al., 2024b):

Ap= A(pd + A(pwpo + A(pgeo + A(:oother 1)

We remove A¢opo, Ageo, and Agoemer With a Digital Elevation Model
(DEM), orbital information of the satellite at the acquisition times, and
spectral and band filtering to obtain A¢ as Agg. After finding the
equivalent pixels in the two images, the cross-correlations between them
(called coherence; C) and the phase change are generated and filtered by
the adaptive Goldstein filter (Goldstein and Werner, 1998). The inter-
ferometric quality of pixels is shown by coherence values (0-1; full noise
to no noise). To ensure the consistency of high-coherence pixels over
time, we assess the coherence of these pixels across all interferograms
throughout the study period. While coherence can vary slightly due to
environmental changes, we choose pixels that consistently exhibit
coherence values larger than 0.25 (Aminjafari et al., 2024b).

We apply the tropospheric correction to interferogram phase change
by using the atmospheric datasets provided by the Generic Atmospheric
Correction Online Service for InSAR (GACOS) (Yu et al., 2017, 2018a,
2018b) based on the High-Resolution ECMWF weather model (The Eu-
ropean Center for Medium-Range Weather Forecasts), Shuttle Radar
Topography Mission (SRTM) DEM (Farr and Kobrick, 2000), and
Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) GDEM (Abrams et al., 2020). We calculate the equivalent at-
mospheric phase change between the six-day consecutive Sentinel-1
images and subtract the troposphere-corrected phase change of a
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Fig. 1. The ten lakes in Sweden with in-situ water levels, altimetry tracks of the Sentinel-3A/B sensor (lake panels) and Sentinel-1 SAR scenes over the lakes

(center panel).

geodetic reference point from the troposphere-corrected phase change
of pixels on the water surface. To further minimize the tropospheric
phase delay, we choose the reference points within one km distance
from the lakes’ shores and calculate the uncertainty of the D-InSAR es-
timations inside a 1 x 1 km? area containing the reference point
(Aminjafari et al., 2024b).

When six-day in-situ water level changes seldom exceed a full cycle
of SAR signal, the time series of consecutive interferograms for each
pixel has been found to correlate with the time series of in-situ water
levels (Aminjafari et al., 2024b). The vertical component of the phase
change for each pixel (Ahp) is calculated by the sensor’s wavelength (4
= 5.6 cm for Sentinel-1) and incidence angle (), which represents the
direction of the changes in water level (Aminjafari et al., 2024b):

Ax Ag,
" 47 % cos cos 0

Ahp )

By accumulating Ahp from the first interferogram to the last one, we
can obtain water levels (hp) relative to the water level of the first
acquisition (Aminjafari et al., 2024b) as:

hp=") " Ahj, ©)
i=1

where n is the total number of interferograms. To have a similar vertical
reference for validation purposes, we set the water level height at the
first acquisition date to zero for both D-InSAR- and gauged water levels
(hp and hg, respectively).
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Table 1
The physical characteristics of 10 lakes in Sweden with three sources of water
level data: in-situ, satellite altimetry, and D-InSAR.

Lake name  Gauge Area Max Mean Length/  Elevation
name (km?) depth depth Width (m asl)
(m) (m)
Tornetrask  Abisko 332 168 51.8 6.36 341
Kaalasjarvi ~ Kaalasjarvi 16.4 0 0 4.94 461
Virihaure Staloluokta 112 130 39.4 1.80 579
Tjeggelvas Stenudden 66.9 65 - 6.67 450
Malaren Malaren 1072 64 13 1.85 0.7
Hjélmaren Hjélmaren 483 20 6.2 3.00 22
Baven Sibro2 64 48 9.4 9.20 21.1
Vattern Motala 1893 128 39.5 4.35 88.5
Vanern Vanern W 5650 106 27 1.85 44
Mockeln Mockeln 46 10 2.8 2.73 136
Table 2

Sentinel-1 data for each lake. Column “A/D” shows the sensor transition pass
(Ascending/Descending).

Lake # of images Interval in 2019 Path Frame A/D
Tornetrask 25 19 May-10 Oct 95 365 D
Kaalasjarvi 25 19 May-10 Oct 95 365 D
Virihaure 28 20 May-29 Oct 29 218 A
Tjeggelvas 25 24 May-15 Oct 168 369-370 D
Malaren 29 19 May-3 Nov 95 395 D
Hjélmaren 29 19 May-3 Nov 95 395 D
Baven 29 19 May-3 Nov 95 395 D
Vattern 29 24 May-8 Nov 175 187 A
Vanern 42 19 Mar-25 Nov 73 190 A
Mockeln 43 17 Mar-30 Nov 146 183 A

We obtained 221 Sentinel-1A/B images from the National Aero-
nautics and Space Administration’s (NASA) Alaska Satellite Facility
Distributed Active Archive Center (ASF DAAC) to generate 214 in-
terferograms with a six-day temporal resolution (Table 2). The images
cover late spring to late autumn in 2019, when the lakes’ surface areas
are not frozen (Fig. 1 and Table 2). For the lakes above 60° latitude, we
use the ASTER DEM 30-m resolution, and for the lakes below 60° lati-
tude, SRTM DEM 30-m resolution for co-registration to remove the
topographic phase and be able to geocode the interferograms and
coherence maps.

Table 3
Sentinel-3 data for each lake and the maximum lake coverage of ground tracks.
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2.4. Satellite altimetry theory and data

Radar altimeters measure the distance in the nadir direction between
the satellite and the surface of the Earth (or range; R) by emitting a
microwave signal (23.8 and 36.5 GHz for Sentinel-3). Altimeter-based
geodetic heights are obtained by removing the range and several cor-
rections accounted for delays caused by the path through the atmo-
sphere and geophysical corrections from the orbit height (Hs). To obtain
the orthometric height (hy), it is necessary to subtract the geoid height
(Frappart et al., 2021):

hA =Hs — (R + Cion + Cdry + Cuet + Csolid Earth + Cpole) -N ()]

where Cion, Cdry, and Cy, are the corrections for the atmospheric delay
related to the ionosphere and dry and wet components of the tropo-
sphere, calculated with atmospheric models (Frappart et al., 2021), and
Csolid Earth and Cpole are the corrections for the Earth’s crustal movements
caused by the solid-Earth and pole tides, N is the geoid height given by
EGM2008. Range values are obtained from the Ice-1 retracker based on
the Offset Center of Gravity (OCOG) retracking algorithm (Bamber,
1994; Wingham et al., 1986) which is commonly used for retrieving
water levels of inland water bodies (e.g., Frappart et al., 2006).

The Sentinel-3A and Sentinel-3B satellite altimetry data (GDR;
Geophysical Data Records) were provided by the Center for Topographic
Studies of the Ocean and Hydrosphere (CTOH). The European Space
Agency (ESA) launched the two satellites in 2016 and 2018 on the same
orbit with a 180° phase shift and a 27-day revisit time. The ground tracks
crossing each lake are shown and listed in Fig. 1 and Table 3. We use the
Altimetry Time Series software (AITiS), developed by CTOH (Frappart
et al., 2021), to clean the data from outliers and land-contaminated
signals before deriving altimetry-based water levels. The AITiS is a
Python-based software with a Graphical User Interface that allows users
to manually exclude invalid data by displaying different variables in
GDR files such as R, atmospheric and tide corrections, and retracked
water level heights. To obtain the time series of water levels from
Sentinel-3A/B GDR files, we crop the data outside surrounding the lakes
in the AITiS software and manually remove the outliers. The data
cleaning is a gradual process; first, the outliers are vividly distinguish-
able from the valid data, but, after several steps of data cleaning, the
remaining outliers are difficult to locate, and the standard deviation of
water levels varies in a low range compared to the range of the data
itself. For example, we show the software outputs for Lake Mockeln in
Figs. S1 and S2. We select only the ground tracks with fewer outliers

Lake Pass number (all available tracks) Pass number (tracks used) Max lake coverage (km) Cycle period

Tornetrask S3A-16, 197, 130 S3A-16, 197, 130 11 17-Mar-2016
S3B-311, 244, 130 S3B-311, 244, 130 9-Dec-2021

Kaalasjarvi S3A-197, 244 S3A-197 1.9 12-May-2016
2-Nov-2021
Virihaure S3A-672, 511 S3A-672, 511 6.1 9-Mar-2016
8-Dec-2021

Tjeggelvas S3A-511, 130 S3A-511, 130 4.5 13-Apr-2016
S3B-244 8-Dec-2021
Mélaren S3A-369, 44, 483, 158, 597 S3B-44, 483, 158 17.5 6-Dec-2018
S3B-44, 483, 158, 597, 272 6-Dec-2021

Hjalmaren S3A-255, 700, 369 S3A-255, 700, 369 14.5 10-Mar-2016
S3B-44, 369, 700 S3B-44, 369, 700 3-Dec-2021
Béven S3B-483, 158 S3B-483, 158 2.7 6-Dec-2018
6-Dec-2021

Vittern S3A-141, 27 S3A-141, 27 23.6 13-Apr-2016
S3B-141, 700 S3B-141, 700 5-Dec-2021
Vanern S3A-358, 683, 27, 472 S3A-358, 683, 27, 472 65 3-Jan-2014
S3B- 683, 472, 27, 141 1-Apr-2022
Mockeln S3A-683, 700 S3A-683, 700 6.6 9-Mar-2016

18-Nov-2021
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based on trial and error for each lake. So, a low standard deviation is
achieved faster in data cleaning with the selected tracks than all avail-
able tracks (Table 3). During the manual data cleaning in AITiS, we aim
at a maximum standard deviation of 25 c¢cm for each epoch of altimetry
observations, as shown in Fig. S2. Then, we take the median of all ob-
servations within that epoch.

Science of Remote Sensing 10 (2024) 100162

2.5. DInSAlt: combining D-InSAR and satellite altimetry to estimate high-
temporal resolution lake water levels

The schematic process of DInSAlt is illustrated in Fig. 2. Aminjafari
et al. (2024b) showed that in a pixel on the lake surface and close to the
forest and marsh-dominated land covers, the D-InSAR water levels (hp)
and the gauged water levels (hg) have high Pearson’s correlation coef-
ficient (R) and low Lin’s concordance correlation coefficient (CCC).
Since the direction of the change in hp and hg generally agree (high R),
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Fig. 2. The procedure of lake water level estimation by combining D-InSAR and altimetry (DInSAlt). First, the six-day water level anomalies are estimated using the
D-InSAR method, then scaled and shifted by the satellite altimetry-derived water levels, and finally, the results are tested and validated by the gauged observations.
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the anomalies of hp and hg (deviation from the average) have similar
patterns. Therefore, we can obtain similar magnitudes by scaling the
anomalies of hp and hg with their standard deviation. As a result, the
standardized anomalies of water level from D-InSAR and in-situ obser-
vations (SAp and SAg) are calculated as:

SAp = (hp — pp) / op 5)
SAG = (hG — ”G) /O'G (6)

where y and o are the average and the standard deviation of gauged and
D-InSAR water levels (hg and hp).

Standardized anomalies are usually used in meteorology and
climatology to predict extreme weather events (Grumm and Hart, 2001).
To obtain accurate water levels, we scale and shift the D-InSAR esti-
mation of water level anomalies by the 4 and o of the actual water levels
in the same seasons of the D-InSAR data period. However, instead of
using the gauged observations, we calculate y and ¢ of the satellite
altimetry data for the ten lakes and scale and shift the SAp by these
values (Eq. (8)):

hpa=(SAp x on,) + Hy, @)

where hp 4 is the final water level derived by DInSAlt, and upa and opa
are the y and o of the satellite altimetry-derived water levels (h,). Hence,
this procedure improves the temporal resolution of altimetry-derived
water levels by adding data points on a six-day temporal resolution.

For the lakes with more than eight cycles of altimetry data during the
same period of the Sentinel-1 SAR acquisitions (late spring to late
autumn 2019), we use only the altimetry-derived water levels in 2019 to
calculate y and o. For the lakes with less than eight cycles of altimetry
data in 2019, we use all years of altimetry-derived water levels within
the same season (late spring to late autumn from 2016 to 2021).

For validation, we use in-situ water levels provided by the SMHI and
calculate Pearson’s correlation coefficient (R), Lin’s Concordance Cor-
relation Coefficient (CCC), and Root Mean Square Error (RMSE) in the
ten lakes. To remove the vertical datum bias, we calculate the difference
between the average of the in-situ and DInSAlt water levels and subtract
this difference from all of the gauged observations. Therefore, the ver-
tical reference of water levels is the geoid EGM2008.

Science of Remote Sensing 10 (2024) 100162

3. Results
3.1. D-InSAR water level anomalies

For the D-InSAR processing, only interferograms with a six-day
separation between SAR pairs were generated during the ice-free
period of 2019. Fig. 3 illustrates the sequence of the images (numbers)
and the generated interferograms, using the case of Lake Vattern
(Fig. 4a), with 29 Sentinel-1A/B images from May 24 to November 8,
2019, leading to 28 interferograms (solid lines) in this period.

The short temporal baseline resulted in high-quality interferograms
and smooth fringe patterns in the lake’s surroundings (Fig. 4b; phase
change in one interferogram between July 11 and July 17, 2019). On the
other hand, only a limited number of pixels with high coherence values
could be identified (C > 0.25) on the lake’s surface area, which are
located close to the lake’s shore, as the trees along the shore are a
suitable medium for the SAR double-bounce backscattering (Fig. 4c).
Fig. 4d shows the Pearson’s correlation (R) between the accumulated
phase change across all interferograms (hp) and the time series of in-situ
water level (hg) for some pixels.

We found that Pearson’s correlation between D-InSAR and in-situ
water levels (hp and hg) in the best pixel of each lake is high (R >
0.68), but Lin’s correlation is only high when water level changes are
small (Fig. 5). The deviation of the best-fit line from the 1:1 line in Fig. 5
shows that hp values are very different from hg values (low CCC).
However, hp and hg have similar variability as the data points in Fig. 5
are closely distributed around the best-fit line (High R). This can be
explained by the direction of the water level time series (i.e., increase or
decrease), which is well replicated by the D-InSAR method. Yet, the D-
InSAR alone cannot predict the exact magnitude of the water level, or at
least when the changes in water levels are larger than the wavelength of
the SAR signal (Aminjafari et al., 2024Db).

The high R-values between D-InSAR and gauged water levels in all
lakes (above 0.68; Fig. 5) imply that their standardized anomalies are
similar, evident from the time series of such anomalies (Fig. 6). There-
fore, Lin’s correlations between the standardized anomalies SAp and
SAg are high. SAp and SAg range between —2 and +3 in all lakes and
have a decreasing trend between late June and early October as the
water level decreases in the summer period.
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Fig. 3. Baseline and acquisition dates of the six-day 28 interferograms (solid lines) processed for Lake Vattern based on 29 Sentinel-1A/B images (points with
numbers). The baseline is the distance between the satellite locations during the two acquisitions.
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Fig. 4. Lake Vattern: (a) the location of the lake, (b) the wrapped vertical
phase change between the acquisitions on July 11 and July 17, 2019, after
spatial and coherence mask and tropospheric correction (c) the coherence map
of the corresponding interferogram, (d) and Pearson’s correlation (R) between
the accumulated phase change across all interferograms (hp) and in-situ water
levels (hg).

3.2. Satellite altimetry water levels

Fig. 7 shows daily in-situ water levels (hg) and satellite altimetry
water levels (hy) after cleaning the radar altimetry observations. The
availability period of the Sentinel-3 altimetry observations is from
March 2016 to January 2021 for all lakes except for Lake Malaren and
Lake Baven, as only Sentinel-3B data were available over these two lakes
during the nominal orbit phase starting in December 2018. In wide lakes
along the satellite track, high-accuracy water levels are generally ach-
ieved, and data cleaning is simpler. The best altimetric estimations occur
in lakes Mockeln and Vanern (6.6 and 65 km along-track width) with a
very high Lin’s correlation between hg and hu for approximately five
years (Fig. 7; CCC = 0.98 and 0.97).

The lowest Lin’s correlation between hg and ha occurs in Lake
Malaren (CCC = 0.75) as the ground track with extended coverage over
this lake (17.5 km, S-3B 483) is far from the gauging station (~100 km)
and may not represent the simultaneous water level of the measuring
gauge. Also, many islands on Lake Malaren affect the satellite observa-
tions and result in low CCC between hg and hy (Fig. 7). The ground
tracks near the gauging station (S-3A track 597, S3B track 272) cover
less than 1.5 km of Lake Malaren, and given the 300 m footprint of the
Sentinel-3 altimeter, the standard deviations of the radar altimetry ob-
servations do not reach a low value even after several stages of data
cleaning.
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3.3. DInSAlt (altimetry + D-InSAR) water levels

Once applying DInSAlt, we find that Lin’s correlations between
gauged- and DInSAlt water level estimates are higher than 0.5 in all
lakes, and the best estimations by the DInSAlt method occur in eight
lakes with CCC > 0.8 (Fig. 8a) where both altimetry-only water levels
(ha) and D-InSAR water level anomalies (SAp) have high correlations
with in-situ observations (Fig. 8b—c).

The lowest correlations between hp 4 and hg occur in two lakes,
Kaalasjarvi and Malaren, with CCC = 0.65 and CCC = 0.57, respectively
(Fig. 8a). This is because Lake Kaalasjarvi has the lowest estimates of
water level anomalies by the D-InSAR method among all ten lakes
(Fig. 8c), leading to a lower correlation between hp 4 and h¢ than in the
other lakes (Fig. 8a). Underestimation was observed in Lake Kaalasjarvi,
where rapid changes in water levels due to snowmelt exceeded the SAR
signal’s wavelength, leading to lower correlations between DInSAlt and
gauged water levels. In Lake Malaren, the DInSAlt method showed a
tendency to overestimate water levels during peak periods, likely due to
the limited number of altimetry observations and the influence of land
contamination from numerous small islands. Lake Malaren is an
example of poor estimates of altimetry-only water levels (Fig. 8b),
resulting in a low correlation between hp 4 and h¢ (Fig. 8a). We analyzed
the root mean square error (RMSE) to quantify these uncertainties and
found that lakes with higher quality and higher density of altimetry
observations (e.g., Lake Vanern) had lower RMSE values, indicating
higher accuracy. In contrast, lakes with more complex shorelines and
low-quality altimetry data (e.g., Lake Kaalasjarvi) showed higher RMSE
values, reflecting greater uncertainties.

The water level time series in Fig. 9 shows the importance of the
DInSAlt method in increasing the density of water level observations by
coupling altimetry water levels with D-InSAR water level anomalies. For
example, in lakes Tornetrask, Virihaure, and Tjeggelvas, the peaks of
water levels between June and August cannot be captured by altimetry-
only water levels due to the low density of observations, but with the
DInSAlt method, we can spot the time of the peaks and troughs in the
water level time series (Fig. 9, arrows on the panels of the right column).

In general, the temporal resolutions of water levels are considerably
improved in all lakes with DInSAlt, especially in those lakes where
satellite altimetry observations are scarce. Owing to the short revisiting
time of the Sentinel-1 constellation (6 days), DInSAlt can achieve tem-
poral resolutions of less than six days. The best improvement occurs in
Lake Vanern (2.5 days temporal resolution), where the frequency of the
observations doubles that of altimetry-only data (Fig. 10).

4. Discussion

Satellite altimetry observations have been combined with D-InSAR
water levels in other studies, but only for the case of wetlands, to derive
absolute water level changes from the relative unwrapped interfero-
metric phase (Cao et al., 2018, p. 2; Lu et al., 2009; Yuan et al., 2017;
Zhang et al., 2016). In a novel way, we combined these two technologies
to improve lake water level detection from space. We find that the
DInSAlt method improves the temporal resolution of retrieved water
levels from space in large and small lakes. However, its performance
depends on the specific conditions of the D-InSAR application and the
quality of the satellite altimetry observations. Aminjafari et al. (2024b)
showed that marsh-dominated wetlands and forests near a lake are ideal
for double-bounce backscattering, resulting in several coherent pixels
near the shores of the lakes. In the same way, cliffs or large rocks around
the lake may also enable a double-bounce backscattering, as observed in
high-altitude lakes in Ecuador (Palomino-Angel et al., 2022). It is
important to consider the potential biases and uncertainties inherent in
the method. Our validation process revealed instances of overestimation
and underestimation, influenced by several factors including the quality
and frequency of altimetry observations, and the presence of coherent
scatterers for SAR signal processing. Biases in the DInSAlt method were
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Fig. 5. The scatter plot of in-situ water levels (hg; cm) vs. D-InSAR water levels (hp; cm) for ten lakes. The deviation of the best-fit line from the 1:1 line shows that
the exact values of water level are not well estimated by D-InSAR (low CCC), but the direction of the change in water level time series is well estimated as the data
points are close to the best-fit line (high R).



S. Aminjafari et al.

Apr Mg_\r Jllm Jul Aug S_PFp Opt N9v2015

Science of Remote Sensing 10 (2024) 100162

Apr  May Jun Jul Aug Sep Oct Nov2019

3l coc=ggs rornetrask T

2| RMSE =0.56 - - Gauge

SA

-1

2}

3k

2}

ccc=0es ) Kaalaspamvi —o-—cr0y |
RMSE =084}, - - Gauge

3t ccc=og2 Virhaure — D-InSAR

2. RMSE=0.60 , . - - Gauge
L7y A

SA

Al

¥l
Apr May Jun Jul Aug Sep Oct Nov

ccc=089 Tjeggelvas [—pinsAR]| |
RMSE =046 -- Gauge

Apr May Jun Jul Aug Sep Oct Nov

3. CCC=084 Malaren — D-InSAR
RMSE = 0.58 - - Gauge

SA

Al

24

CCC=094 Hjalmaren |—D-InSAR| |
RMSE = 0.40 - - Gauge

Apr May Jun Jul Aug Sep Oct Nov

L L

CCC=088 PBaven — D-InSAR
RMSE = 0.25 - - Gauge

2]

SA

-2+

L L L I i L L

3

CCC=0.85 Vattern — D-InSAR
RMSE = 0.53 -- Gauge

L L i i L L L

ccc=086 Vanern — D-InSAR
RMSE = 0.62 - - Gauge

At

2|

CCC=0.92 Mockeln |— D-InSAR | |
RMSE =0.40 - - Gauge

Apr _May Jun Jul Aug Sep Oct Nov

Apr _May Jun Jul  Aug Sep Oct Nov Dec

Fig. 6. The time series of the standardized anomalies for the gauged- and D-InSAR water levels in 10 lakes. The observation frequency for both gauged- and D-InSAR
is six days. The shaded gray area shows the SAp, uncertainties for the pixels inside the 1 x 1 km? box containing the reference point.

particularly evident in lakes with complex shorelines and significant
land contamination, such as Lake Malaren. Here, the presence of
numerous islands and the limited ground track coverage resulted in
overestimation during peak water levels. Similarly, in high-altitude

lakes like Lake Kaalasjarvi, rapid water level changes due to snowmelt
led to underestimation, as the SAR signal’s wavelength was insufficient
to capture these rapid fluctuations. Therefore, some level of bias re-
mains, which should be considered when interpreting the results.
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Fig. 7. The time series of water level (WL) from altimetry-only observations of Sentinel-3 and gauge observations between Mar 2016 and Jan 2021. The dashed line
represents gauge observations and the orange circles are altimetry water levels. (For interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)

The number and the length of the satellite ground tracks crossing
over the lake’s surface area also play an important role in the perfor-
mance of this method. For example, in Lake Malaren, with low CCC
between DInSAlt- and in-situ water levels (CCC = 0.18) compared to
other lakes, only a short portion of the satellite ground tracks (<1.5 km)
are crossing over the lake surface area near the gauging station. Even for
the ground tracks farther from the station, the land contamination, due
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to the high number of small islands all over the lake, deteriorates the
quality of the radar altimetry measurements and leads to inaccurate
water levels.

It is worth noting that a low number of altimetry observations can
still result in high correlations between DInSAlt- and gauged water
levels, such as the cases of lakes Virihaure and Tjeggelvas, where a few
altimetry-derived observations (5 and 3, respectively) result in high
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one-year data (2019).

correlations after applying DInSAlt (0.83 and 0.82, respectively). This is
due to long ground tracks (6.1 km and 4.5 km, respectively) over the
lakes’ surface areas, which produce accurate measurements of the range
between the satellite and the water surface (low land-contaminated
signal). Therefore, as long as one satellite altimetry ground track
covers a sufficient area of the lake’s surface, the DInSAlt estimations are
consistent with the actual water levels.

As the lakes in this study are distributed across the Swedish land-
scape and latitudinal gradient, DInSAlt’s performance is subject to the
specific characteristics of the lakes. However, when water level changes
often exceed the full cycle of the phase change of the SAR signal between
acquisitions in lakes with smaller surface areas and higher altitudes,
anomalies of the actual water levels are not precise (Aminjafari et al.,
2024Db). As a result, the DInSAlt does not perform well in lakes with
frequent large changes in water levels.

It is worth highlighting for potential users of DInSAlt that the pres-
ence of more than one scatterer in one SAR cell increases the risk of the
Radar speckle that can affect some of the coherent pixels in SAR images
(Aminjafari et al., 2024b; Karimi and Taban, 2021). Hence, careful
attention is needed when choosing interferometric pixels to estimate
water level anomalies. Applying conventional filtering (e.g.,
muti-looking and Goldenstein filter) can reduce noise (Aminjafari et al.,
2024b), and using the median of the coherent pixels can moderate the
risk of reliance on a few pixels.

In our study, identifying D-InSAR pixels that exhibit standardized
anomalies correlating with in-situ water levels relied on in-situ mea-
surements. This approach inherently limits the scalability and applica-
bility of our findings, especially in regions where such measurements are
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unavailable. However, the recently launched Surface Water and Ocean
Topography (SWOT) satellite significantly expands the potential use of
our framework. SWOT was jointly developed by NASA and the French
Space Agency (CNES: Center national d’études spatiales) in partnership
with the Canadian Space Agency (CSA) and the United Kingdom Space
Agency (UKSA). SWOT’s small-incidence angle InSAR technology is
designed to provide precise and comprehensive water surface mea-
surements across vast geographic scales with ~4 observations per 21
days in high latitudes (Aminjafari et al., 2024a). This capability allows
for identifying relevant D-InSAR pixels without the direct dependence
on in-situ data and enhances our ability to monitor and analyze water
levels in remote or ungauged water bodies. Therefore, SWOT can
potentially expand the geographical applicability of our findings and
reduce the reliance on ground measurements.

The DInSAlt method could be further improved by using future
technologies. For example, its use on upcoming SAR missions with long-
wavelength images (L-Band and S-Band), such as the NASA-ISRO SAR
(NISAR) mission to be launched in 2025 (Rosen and Kumar, 2021) that
can measure water levels below dense canopy with tall vegetation
covers.

5. Conclusion

In this study, we use D-InSAR to improve the temporal resolution of
altimetry water level measurements using a new methodology called
DInSAlt. We test and validate the methodology across ten lakes in
Sweden with on-site gauged observations. We found that DInSAlt suc-
cessfully estimated the actual water levels in eight of ten lakes in Sweden
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and increased the temporal resolution of altimetry water level mea-
surements. The accuracy of water level estimation was highest in lakes
with long ground satellite altimetry passing over the lake surface and
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with suitable conditions for a double-bounce backscattering of the SAR
signal. The DInSAlt methodology can be applied to both large and small
lakes in both mountainous and flat areas and can capture both subtle and
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rapid changes in water levels that cannot be obtained with D-InSAR or
altimetry data alone. The inclusion of multi-sensor altimetry data re-
mains a valuable future direction. Future studies with longer observa-
tion periods and enhanced altimetry datasets may further explore the
integration of these multi-sensor approaches for comprehensive lake
monitoring. The DInSAlt methodology can benefit from the data of the
newly launched SWOT satellite for lake water level estimation without
relying on in-situ measurements.
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