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ABSTRACT
The Tropical Indo-Pacific (TIP) includes about two thirds of the world’s tropical
oceans and harbors an enormous number of marine species. The distributions of
those species within the region is affected by habitat discontinuities and
oceanographic features. As well as many smaller ones, the TIP contains seven large
recognized biogeographic barriers that separate the Red Sea and Indian Ocean, the
Indian from the Pacific Ocean, the central and eastern Pacific, the Hawaiian
archipelago, the Marquesas and Easter Islands. We examined the genetic structuring
of populations of Cirrhitichthys oxycephalus, a small cryptic species of reef fish, across
its geographic range, which spans the longitudinal limits of the TIP. We assessed
geographic variation in the mitochondrial cytb gene and the nuclear RAG1 gene,
using 166 samples collected in 46 localities from the western to eastern edges of the
TIP. Sequences from cytb show three well-structured groups that are separated by
large genetic distances (1.58–2.96%): two in the Tropical Eastern Pacific (TEP), one
at Clipperton Atoll another occupying the rest of that region and the third that ranges
across the remainder of the TIP, from the central Pacific to the Red Sea and South
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Africa. These results indicate that the ~4,000 km wide Eastern Pacific Barrier between
the central and eastern Pacific is an efficient barrier separating the two main groups.
Further, the ~950 km of open ocean that isolates Clipperton Atoll from the rest of the
TEP is also an effective barrier. Contrary to many other cases, various major and
minor barriers from the Central Indo-Pacific to the Red Sea are not effective against
dispersal by C. oxycephalus, although this species has not colonized the Hawiian
islands and Easter Island. The nuclear gene partially supports the genetic structure
evident in cytb, although all haplotypes are geographically mixed.

Subjects Aquaculture, Fisheries and Fish Science, Biogeography, Genetics, Marine Biology,
Zoology
Keywords Tropical Indo-Pacific, Biogeographic barriers, Haplogroups, Genetic structure,
Cirrhitidae

INTRODUCTION
Contemporary and historical habitat discontinuities are fundamental drivers of geographic
patterns of genetic structure and differentiation among natural populations. The wide
range of dispersal strategies found among marine species is presumed to influence micro-
and macro-evolutionary process (Kinlan & Gaines, 2003; Bullock, Shea & Skarpaas, 2006;
Riginos et al., 2014). In addition to biological aspects, factors such as oceanographic
conditions and/or habitat availability, may limit or enhance dispersal (Lessios, Kessing &
Pearse, 2001; Luiz et al., 2012; Sandoval-Huerta et al., 2019; Palmerín-Serrano et al., 2021;
Torres-Hernández et al., 2022a, 2022b). Over time, the geographic barriers that limit the
movement of individuals between populations can lead to the evolution of discrete
phylogenetic clades (Taylor & Hellberg, 2006).

The Tropical Indo-Pacific (TIP), the vast, ~28,000 km wide, region that stretches from
the Rea Sea to west coast of the American continent, is home to an enormous diversity of
marine organisms. Numerous studies have demonstrated that many marine species in the
TIP show patterns of genetic structure that reflect limitations on dispersal by historical
geographical or oceanographic barriers, suggesting that the fish diversity is underestimated
due to the presence of species complexes in widely distributed groups (Lessios et al., 1999;
Lessios, Kessing & Pearse, 2001; Sandoval-Castillo et al., 2004; Lessios & Robertson, 2006;
Zemlak et al., 2009).

Within the TIP seven major biogeographical barriers have shaped the distributions of
tropical marine species. The first is the Red Sea Barrier, represented by the shallow Strait of
Bab al Mandab which reduces water exchange between the Red Sea and the Indian Ocean
during glacial maxima (Rohling et al., 1998; Siddall et al., 2003; Bailey, 2009; DiBattista
et al., 2016). Second, the Indo-Pacific Barrier, a recognized partition in the Indo-Malayan
Archipelago that separates the Indian and Pacific Oceans (Briggs, 1974; Gaither et al.,
2011b; Gaither & Rocha, 2013), reflects effects of repeated episodes of lowered sea level
during the Plio-Pleistocene glaciations, when the emergence of the Sunda Shelf separated
those two oceans (Voris, 2000; Reid et al., 2006). The third is the mid-Indian Ocean oceanic
barrier, the large deep-water area west of the Lakshadweep-Maldives-Chagos
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archipelagoes (Borsa et al., 2016). The fourth is the Marquesas Barrier, formed by the
geographical isolation and unusual oceanographic conditions (Randall, 2001; Gaither
et al., 2010). The fifth, the Hawaiian Barrier, attributed to the island isolation and ocean
currents (Gaither et al., 2011a). The sixth is the deep water isolating the Easter Island
Province (sensu Briggs & Bowen, 2012) from French Polynesia. Finally, the Eastern Pacific
Barrier (EPB), the world’s widest (4,000 km) deep-water barrier, separates the Tropical
Eastern Pacific (TEP) from the remainder of the TIP (Robertson, Grove &McCosker, 2004).
Crandall et al. (2019) examined various schemes proposed for biogeographic and
provincial subdivisioning of the TIP in relation to the existence of those large scale, and
other, smaller-scale barriers in a variety of reef organisms. The region known as the
Tropical Indo-Central Pacific (TICP) includes the Red Sea and Western Indian Ocean
provinces (WIOP) in the Indian Ocean, the Indo-Polynesian, Hawaiian, Marquesan (IP-
H-M) and the Easter Island Provinces in the area stretching from the west coast of
Australasia to the islands bordering the western edge of the EPB. This represents the
scheme of Briggs & Bowen (2012), with the addition of the Red Sea Province (RSP). The
TEP includes the Cortez and Panamic Provinces on the mainland and the Oceanic Island
Province (Robertson & Cramer, 2009; Briggs & Bowen, 2012). Environmental
heterogeneity within the TEP has allowed for the development of unique local evolutionary
processes, which are reflected in various patterns of geographic genetic differentiation
within widely distributed species in the region (Hastings, 2000; Mora & Robertson, 2005;
Sandoval-Huerta et al., 2019; Palmerín-Serrano et al., 2021; Torres-Hernández et al., 2022a,
2022b).

Few species span the entire TIP. One such species is the Coral Hawkfish, Cirrhitichthys
oxycephalus (Bleeker, 1855), an ideal subject for examining the effects of these different
biogeographic barriers because its geographic range extends across the entire TIP (Allen &
Erdmann, 2012) except the Hawaiian (NE central Pacific) and Pitcairn-Easter Island (SE
Central Pacific) Provinces where it is absent (Fig. S1) (Randall, 1999, 2007; Randall, Cea &
Meléndez, 2005). Cirrhitichthys oxycephalus is a cryptobenthic reef fish typically found at
depths of less than 40 m (Lieske & Myers, 1994). Like other hawkfishes, C. oxycephalus is
sexually dimorphic in body size (males are larger) (Donaldson, 1988) and likely is a
protogynous hermaphrodite (Sadovy & Donaldson, 1995). Populations are organized in
social groups or harems in which there is a dominant male and one or more females of
different sizes. Each social group defends a territory with individuals resting on a variety of
substrata, especially within branching corals of the genus Pocillopora, which are common
shallow-water corals throughout the TIP range of the Coral Hawkfish. Cirrhitichthys
species spawn pelagic eggs, and the duration of the pelagic larval stage of C. oxycephalus is
about 36 to 51 days (Brothers & Thresher, 1985; Robertson, Grove & McCosker, 2004).
Although the species is considered a non-obligated, coral-dwelling species, this may vary
with geographic location (Donaldson & Myers, 1988; Donaldson, 1989; Robertson & Allen,
1996; Palacios & Zapata, 2014; our observations in the TEP). For example, at Cabo Pulmo
reef in the TEP the species is considered to be live-coral dependent (Alvarez-Filip & Reyes-
Bonilla, 2006), whereas in Chagos in the IP-H-M, C. oxycephalus is found on pavement
habitats rather than live-coral habitat (Coker et al., 2015).
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The distribution of C. oxycephalus across almost the entire TIP (except the Hawaiian
and Easter Island Provinces (sensu Briggs & Bowen, 2012; see Randall, 1999, 2007; Randall,
Cea & Meléndez, 2005)), along with its life history traits raise questions about the effects of
known major biogeographic barriers on the geographic genetic structuring of its
populations and their taxonomical status. Accordingly, using mitochondrial and nuclear
markers, we analyzed the genetic structure of C. oxycephalus throughout all major parts of
its TIP range to (a) determine the extent and patterns of genetic connectivity or
fragmentation across its enormous geographic distribution, and (b) understand the
influence of large- and small-scale habitat discontinuities and oceanographic processes on
the distribution of genealogical lineages. We expected to find a phylogeographic pattern
with various isolated populations due to this species’ association with coral reefs, the depth
range at which its lives, and its pelagic larval duration (PLD), and because geographic
barriers represented by expanses of deep water in various parts of the TIP are known to
have promoted genetic differentiation in many reef organisms, including many fishes.
Futhermore, Lessios & Robertson (2006) examined trans-EPB genetic relationships of
populations of C. oxycephalus, using two mitochondrial genes (different to that used here)
and concluded that the Coral Hawkfish originated in the TEP and spread westward to the
TICP. A more comprehensive dataset involving data from another gene and populations
scattered throughout its entire geographic range should provide information relevant to
that conclusion.

MATERIALS AND METHODS
Sample collection
We collected 166 individuals of Coral Hawkfish from 45 sites at 20 locations found in all
biogeographic regions and provinces from the TIP (Fig. 1 and Table S1). Specimens were
collected on SCUBA using, in different locations and at different times, various
combinations of rotenone ichthyocide (Robertson & Smith-Vaniz, 2008), clove oil
anesthetic (Piñeros et al., 2019) and either aquarium hand nets, a suction tool or
pole-spears. We preserved tissue samples in either DMSO buffer or 95–96% ethanol and
stored them at either −20 �C or −76 �C. Specimens were deposited in the fish
collections at the Universidad Michoacana de San Nicolás de Hidalgo, Mexico, University
of Central Florida, USA, The National Museum of Natural History of the Smithsonian
Institution, USA, the King Abdullah University of Science and Technology, Saudi Arabia,
University of California Santa Barbara, USA, and Ho Chi Minh City University of Science,
Vietnam (Table S1). Organism collection was supported and allowed by the following
institutions and permits by Mexican Ministry of Environment and Natural Resources
under collection permits numbers (PPF/DGOPA-035/15; and F00.DRPBCPN.DIR.RBAR-
100/2015-CONANP), and for El Salvador (MARN-AIMA-004-2013), Panama
(SC/A-17-19), Costa Rica (007-2013-SINAC and R-056-2105-OT-CONAGEBIO), and
Ecuador (013/2012 PNG; N�21-2017-EXP-CM-2016-DNB/MA and MAAE-DBI-CM-
2021-0152).
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DNA extraction and sequencing
We extracted total genomic DNA from tissue samples using the phenol-chloroform
protocol of Sambrook, Fritsch & Maniatis (1989). We PCR amplified a 652 base pair (bp)
fragment of the mitochondrial cytochrome b (cytb) gene, using the primers GluDG
(forward) and H16460 (reverse) (Perdices & Doadrio, 2001). Because the samples from
Clipperton failed to amplify using these universal primers, we designed specific primers
1F31 ACGGCTGACTAATCCGTA (forward) and 1R61 AATTAGGGATGCGA
CTTGTCC (reverse). Taking into account the degree of variation found in the cytb, we also
amplified a 132 bp fragment of the recombination-activating nuclear gene 1 (RAG1) in a
subsample of 45 samples using the primers RAG 1F (forward) and RAG 9R (reverse)
(Quenouille, Bermingham & Planes, 2004). We performed all PCRs in a total volume of
12.5–16.5 mL with 1 mL (50–100 ng) DNA template, 0.25 ml of 10 mM for each primer,
0.2–0.5 ml of 50 mMMgCl2, 0.25–0.9 ml of 10 mM dNTPs, 0.0625–0.088 mL of 5 U/mL Taq
polymerase (Invitrogen, Waltham, MA, USA), 1.25–1.5 mL of 10X buffer and deionized
sterile water to reach the final volume. Those PCRs utilized the following thermocycling

Figure 1 Collection areas along the Tropical Indo-Pacific (TIP). Biogeographical provinces and
regions (sensu Briggs & Bowen, 2012; but with the addition of the Red Sea Province) are shown in colors.
Numbers in parentheses are samples sizes for each collection site. The red lines represent the hypothetic
barriers of mitochondrial gene shown by the K = 3 with SAMOVA. Lines in black represent the positions
of the biogeographic barriers: I = Red Sea Barrier, II = mid-Indian Ocean oceanic Barrier; III = Indo
Pacific Barrier, IV = Eastern Pacific Barrier, V = Hawaiian Barrier, VI = Marquesas Barrier, VII = Eastern
Island Barrier. BCS = Baja California Sur; REV = Revillagigedo Islands; MEX = central Mexico;
CLIPP = Clipperton; ES = El Salvador; PAN = Panama; COS = Costa Rica; COL = Colombia; GAL=
Galapagos; ECU = Ecuador (for detailed locality information see Table S1). C. oxycephalus is present
throughout the map areas except for the Hawaiian and Pitcairn-Easter Island Province. Map was done in
Qgis, base map layer is from http://datacatalog.worldbank.org/search/dataset/0038272/World-Bank-
Official-Boundaries. Modified to World Country Polygons-Very High-Definition (zip file wb_coun-
tries_admin0_10m) CC-BY 4.0. Photo credit: Francisco Martínez-Servín.

Full-size DOI: 10.7717/peerj.18058/fig-1
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conditions: initial denaturation at 94 �C (3 min) and a final extension at 72 �C (10 min),
with an intervening 35 cycles of 30 s at 94 �C, 45 s at the annealing temperature (51 �C for
cytb; 59 �C for RAG1), and 1 min at 72 �C. We visualized the PCR products on 1.5%
agarose gels and sent amplicons to MACROGEN Inc. (Seoul, South Korea) for sequencing.

We edited and aligned all the sequences using chromatograms with the software MEGA
v7.0.2 (Kumar, Stecher & Tamura, 2016). We conducted the recombination test for the
nuclear genes with the software Split Tree v4 (Huson & Bryant, 2006) for the RAG1 gene.
We deposited cytb unique sequences in GenBank (Table S1) and sequences of RAG1 are
available at https://doi.org/10.5281/zenodo.11323581.

Data analyses
Phylogenetic analyses and haplotype networks
For our phylogenetic analyses, we determined the best fit evolutionary model of
substitution for the mitochondrial (cytb) and nuclear (RAG1) genes using the Akaike
Information Criteria (AIC) and the optimal partition setting using PartitionFinder v.1.1.0
(Lanfear et al., 2012). We conducted phylogenetic reconstructions using a Maximum
Likelihood (ML) approach and Bayesian Inference (BI) for each gene separately. ML
analyses were conducted using RaxMLGUI v8 (Stamatakis, 2014) and the Generalized
Time Reversible substitution model (GTR) with gamma distribution, invariable sites, and
10,000 bootstrap replicates. We generated the Bayesian Inference (BI) reconstruction using
MrBayes v3.2.6 (Ronquist et al., 2012) with the substitution model GTR + Gamma + I, and
ran it for 50 million generations, with two independent runs implementing four Markov
Chain Monte Carlo (MCMC) processes and sampling every 1,000 generations. We
evaluated the chains convergence using effective sample sizes (ESS) >200 for all parameters
in Tracer v1.6 (Rambaut et al., 2015) and discarding the initial 10% of the generations as
burn-in to construct the consensus tree (σ = 0.0002). We included Cirrhitichthys aprinus
(Cuvier, 1829) as the outgroup. MrBayes runs were preformed using the CIPRES portal
(Miller, Pfeiffer & Schwartz, 2010).

To examine the relationships between sequences, we constructed a statistical parsimony
network for each gene using the Median-Joining algorithm in the software PopArt v.1.7
(http://popart.otago.ac.nz).

Genetic diversity, genetic distances, and genetic structure
To determine levels of genetic variability partitioned within and among populations an
analysis of molecular variance (AMOVA) was performed in ARLEQUIN (Excoffier,
Smouse & Quattro, 1992; Excoffier & Lischer, 2010) for the two loci separately, with the
application of a Bonferroni correction (Rice, 1989) to correct for multiple comparisons.
The analysis was carried out (1) with all samples without grouping, (2) partitioned into the
three groups found in the haplotype network, (3) according to the modified regionalization
of Briggs & Bowen (2012) (Red Sea Province = RSP/Western Indian Ocean
Province = WIOP/Indo-Polynesian and Marquesas Island Provinces = IP-M/TEP Region)
and (4) according to sampled location/regions.
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We also ran a spatial analysis of molecular variance (SAMOVA 1.0) (Dupanloup,
Schneider & Excoffier, 2002) for the cytb dataset for values of K = 2 to 10 (Eble et al., 2011).
Due to the lack of spatial resolution in the RAG1 haplotype network, we did not run the
SAMOVA for this gene. We calculated uncorrected genetic p-distances (pd) and ΦST
using MEGA v7.0 (Kumar, Stecher & Tamura, 2016) for pairwise comparison, according
with sampled location/regions, Briggs & Bowen (2012) regionalization, and the tree genetic
groups found in haplotype network and supported by the genetic structure analyses. An
isolation by distance (IBD) analysis was performed using the Mantel test on the R platform
v4.1.2 using the packages vegan (Oksanen et al., 2018) and fossil (Goslee & Urban, 2007), to
verify the correlation between the genetic distance matrixes (estimated by pairwise ΦST)
and geographical distances. We ran the IBD tests using (1) all the samples and (2) samples
separated into two groups: the TICP and TEP samples. We estimated the number of
haplotypes (hn), segregating sites (SS), haplotype diversity (h), nucleotide diversity (π) in
relation to the sampled location/regions, the modified Briggs & Bowen (2012)
regionalization and for the three groups resolved in the haplotype networks and the
AMOVA and SAMOVA analyses using the software DnaSP v.5.0 (Librado & Rozas, 2009).

RESULTS
We resolved 166 cytb sequences (652 bp) that generated 108 haplotypes and shows 163
polymorphic segregating sites, out of which 89 were variable, 68 were parsimoniously
informative and 84 were singleton variable sites. For RAG1 (132 bp) we obtained 90
sequences (including the two alleles) and 17 genotypes. For that gene we found 12
polymorphic segregation sites, six of which were parsimoniously informative, and six
singleton variables sites. We found no evidence of recombination in this nuclear gene
(RAG1 = 0.052 p > 0.05).

Phylogenetic analyses and haplotype networks
The phylogenetic analysis for cytb shows a basal polytomy that includes all 59 samples
from the various provinces within the TICP and another group composed of all 107 TEP
samples. In the TEP group there are two sub-clades, one represented by all but one of 19
samples from Clipperton, plus four of 21 samples from Revillagigedo Archipelago and two
of 25 from Mainland Mexico, the CL-TEP sub-clade. The second sub-clade (TEP), which
had low support, includes the remaining 82 samples from the (23 samples from Mexico
mainland, 17 from the Revillagigedo Archipelago, five from El Salvador, one from Costa
Rica mainland, nine from Cocos Island, six from Panama, two from Colombia mainland,
seven from Ecuador mainland, 12 from the Galapagos Archipelago) and one from
Clipperton Atoll (Fig. 2). The phylogenetic analyses for the RAG1 gene show a basal
polytomy without resolution (see Fig. S2).

The cytb haplotype network resolved three haplogroups. One haplogroup (TICP, Fig. 3)
includes all the samples from the TICP and includes a mixture of haplotypes from the
different regions and provinces, with 1–10 mutation steps separating different haplotypes
from their closest neighbors. The TICP haplogroup is separated by 10 mutational steps
from haplotypes in the main TEP haplogroup (Fig. 3), which included 44 of 46 samples
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from the mainland TEP, one of 19 samples from Clipperton Atoll, 17 of 21 samples from
the Revillagigedo Archipelago, and all nine samples from Cocos Island and 12 from the
Galapagos Archipelago. The TEP haplogroup in turn was separated by six mutation steps
from the Clipperton haplogroup (CL-TEP). In contrast to cytb haplotype network, RAG1
resolved no geographic structuring and the two most common alleles in this dataset were
represented in all regions and provinces (Fig. 4).

Genetic structure, distances, and genetic diversity
In general, AMOVA results for cytb found the highest genetic variation among groups,
with all comparisons being statistically significant (Table 1). The arrangement of three
groups (TICP/TEP/CL-TEP) showed the highest and significant value of ΦCT (64.39%)
(Table 1). Results for RAG1 should be taken with caution due to the lack of samples in the
Red Sea Province (representing the only one of four total regions without RAG1 samples),
which we were unable to amplify. The highest percentage and statistically significant values
for RAG1 were for the within populations (89.19%) comparison in the three-group
arrangement (Western Indian Ocean Province/Indo-Polynesian and Marquesas Island

Figure 2 Phylogenetic tree based on the cytb gene and ML and BI. Bootstrap/posterior probability
supports are shown in the nodes. Colors represent the different haplogroups (Hg) found in the haplotype
network (Fig. 3). TICP: Tropical Indo-Central Pacific; TEP: Tropical Eastern Pacific region except for CL-
TEP: Clipperton-TEP. Full-size DOI: 10.7717/peerj.18058/fig-2
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Province/TEP Region; Table 1). For cytb, the K = 3 arrangement maximized the differences
between groups in the SAMOVA analysis with the highest and significant value of ΦCT
(59.36%), segregating the populations into three groups: TICP, TEP and CL-TEP (Fig. 1
and Table 2). We obtained high and significant levels of genetic differentiation among
those three groups. The highest and most significant ΦST value for cytb was obtained
between TICP and CL-TEP groups (ΦST = 0.637), and the lowest between TEP and
CL-TEP (ΦST = 0.493). The largest genetic distance (pd) detected among groups also was
between the TICP and CL-TEP (2.96%), and the lowest between the TEP and CL-TEP
(1.58%). For RAG1 the highest pd genetic distance was between TEP and TIP (1.3%) and
the lowest between CL-TEP and TIP (0.9%), while the highest and significant ΦST value
was between TEP and CL-TEP (0.114) and the lowest between TIP and CL-TEP (0.012)
(Table 3). For location/regions comparisons involving cytb the highest and significantΦST
was obtained between Galapagos and Vietnam (0.818), and the lowest between RSP and
WIOP (−0.02), while the highest pd distances was obtained between Mexican and Arabian
populations (3.228%) and the lowest between the Cortez and Panamic Provinces of the
TEP (0.001). For RAG1 the highest pd was between Mexican and Christmas populations
(1.799%) and lowest between the Galapagos and Clipperton populations (0.379), whereas
the highest and significant ΦST (0.298) was between Mexican and Clipperton populations
and the lowest between Dongsha and Kiribati populations (0.001) (for more details see
Table S2). For the modified Briggs & Bowen (2012) 4-area scheme the highest pd was

Figure 3 Median-joining networks for cytb. Sizes of the circles indicate the frequency of the haplotype. Colors in circles correspond to the areas
where the samples were collected. Each dash or numbers in the white circle represent the number of mutation steps. TICP: Tropical Indo-Central
Pacific region (sensu Briggs & Bowen, 2012, with the addition of the Red Sea Province), which includes the IP-M: the East Indian Ocean plus
Indo-Polynesian Province plus the Marquesan, the WIOP: Western Indian Ocean Province; the RS: Red Sea Province; and the TEP: Tropical Eastern
Pacific region, which includes CL-TEP: Clipperton-TEP. Full-size DOI: 10.7717/peerj.18058/fig-3
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between the RSP and TEP (2.94%), and the lowest between RSP and IP-M (1.47%), with
the highest and significant ΦST obtained between RSP and TEP (0.617) and the lowest
between RSP and WIOP (−0.029) (Table S3).

The Mantel test showed a significant correlation between genetic- and geographic
distances across the entire TIP dataset (r = 0.49, p < 0.05) but not within either the TICP
(r = 0.11, p > 0.05) or the TEP (r = 0.05, p > 0.05).

Overall, nucleotide diversity (p) for cytb was 0.017 and haplotype diversity (h) was
0.976, with values of 0.011 and 0.803, respectively, for RAG1. For the three groups resolved
in the haplotype networks CL-TEP shown the highest values for haplotype diversity (cytb
h = 0.989 +/− 0.006 and RAG1 h = 0.827 +/− 0.046) and TEP the lowest values for
nucleotide diversity (cytb p = 0.754 +/− 0.071 and RAG1 p = 0.703 +/− 0.101) (Table 4).
For genetic diversity according to the Briggs & Bowen (2012) plus Red Sea regionalization,
the highest haplotype diversity values were from the Red Sea Province (cytb h = 1 +/−
0.177) and the Western Indian Ocean Province (RAG1 h = 1 +/− 0.500). The lowest value
was for Australia (cytb h = 0) and Arabia, Vietnam, Australia and the Galapagos (RAG1
h = 0) (Table 5). For genetic diversity according with location/regions, the highest values
were from the Mexican Province (cytb h = 0.989 +/− 0.031) and from South Africa and the

Figure 4 Median-joining networks for RAG1 gene. Size of the circles indicate the frequency of the
haplotype. Colors in circles correspond to the areas where the samples were collected. Each dash
represents the mutation steps. TEP, Tropical Eastern Pacific region; IP-M, East Indian Ocean, Indo-
Polynesian and Marquesas Province; WIOP, Western Indian Ocean Province.

Full-size DOI: 10.7717/peerj.18058/fig-4
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Table 1 Molecular variance. AMOVA results for the mitochondrial cytb gene and nuclear RAG1 gene.

N Groups ΦST ΦCT ΦSC Within
populations

Among
groups

Among
populations
within groups

Cytb 1 Oveall 0.564*** 0 0 43.58 0 56.42

3 Red Sea Province + Western Indian Ocean Province +
Indo-Polynesian and Marquesas/TEP/CL-TEP

0.662*** 0.644*** 0.05 33.82 64.39 1.78

4 Red Sea Province/Western Indian Ocean Province/Indo-
Polynesian, and Marquesas /TEP Region

0.642*** 0.553*** 0.198*** 35.79 55.36 8.85

16 Saudi Arabia/SouthAfrica + Reunion/Christmas/Vietnam/
Dongsha/Australia/Kiribati/Chagos/Marquesas/Revillagigedo/
Cortez/Mexican/Panamic/Cocos/Clipperton/Galapagos

0.504*** 0.534*** −0.063 49.54 53.42 −2.96

RAG1 1 Oveall 0.121 0 0 87.93 0 12.07

3 Western Indian Ocean Province + Indo-Polynesian and
Marquesas/TEP/CL-TEP

0.142* 0.056 0.090 85.77 5.65 8.58

3 Western Indian Ocean Province/Indo-Polynesian and
Marquesas/TEP Region

0.108** 0.039 0.072* 89.19 3.91 6.90

13 SouthAfrica/Christmas/Dongsha/Australia/Kiribati/Chagos/
Marquesas/Revillagigedo/Cortez/Mexican/Panamic/Cocos/
Clipperton/Galapagos

0.123** 0.05 0.077 87.7 4.94 7.36

Note:
One asterisk = p < 0.05, two asterisks = p < 0.01 and three asterisks = p < 0.001. N, number of groups; TEP, Tropical Eastern Pacific (minus Clipperton); CL-TEP,
Clipperton of the Tropical Eastern Pacific.

Table 2 Spatial analysis of molecular variance. SAMOVA results for the mitochondrial cytb gene.

K Groups ΦST ΦCT ΦSC Within
populations

Among
groups

Among populations within
groups

2 TEP, CL-TEP/TICP 0.643*** 0.565*** 0.178*** 35.7 56.57 7.73

3 TEP/CL-TEP/TICP 0.611*** 0.594*** 0.043*** 38.88 59.36 1.77

4 TEP/CL-TEP/TIWP/KWA 0.606*** 0.593*** 0.031*** 39.39 59.33 1.28

5 TEP/CL-TEP/TIWP/KWA/AUS 0.601*** 0.592*** 0.021*** 39.88 59.24 0.87

6 TEP/CL-TEP/TIWP/KWA/AUS/
MAR

0.591*** 0.591**** 0.018 40.13 59.14 0.74

Note:
One asterisk = p < 0.05, two asterisks = p < 0.01 and three asterisks = p < 0.001. TICP, Tropical Indo-Central Pacífic; TIWP, Tropical Indo-West Pacific; TEP, Tropical
Eastern Pacific (minus Clipperton); CL-TEP, Clipperton of the Tropical Eastern Pacific; KWA, Kwa Zulu-Natal; AUS, Australia; MAR, Marquesas-Islands.

Table 3 Genetics values. Above diagonal pairwise population comparison (ΦST) and below diagonal
mean genetic distances (pd) in percentage for cytb and RAG1 genes.

cytb TICP TEP CL-TEP

TICP 0 0.601* 0.637*

TEP 2.7 0 0.493*

CL-TEP 2.96 1.58 0

RAG1 TICP TEP CL-TEP

TICP 0 0.094* 0.012

TEP 1.3 0 0.114*

CL-TEP 0.9 1.1 0

Note:
*Significant values (p < 0.05). TICP, Tropical Indo-Central Pacific; TEP, Tropical Eastern Pacific (minus Clipperton);
CL-TEP, Clipperton of the Tropical Eastern Pacific.
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Marquesas (RAG1 h = 1 +/− 0.500). The lowest values were from Australia (cytb h = 0) and
Arabia, Vietnam, Australia, and the Galapagos (RAG1 h = 0) (Table S4).

DISCUSSION
The phylogenetic analyses, haplotype network, AMOVA, SAMOVA, genetic distances and
ΦST analyses presented here for cytb of the Coral Hawkfish reveals the existence of two
divergent and geographically structured clades, one distributed throughout in the TICP
and other in the TEP. Within the TEP, two sub-clades were identified, one mainly
restricted to Clipperton atoll and the other distributed primarily across the rest of the TEP
(Figs. 2 and 3, Tables 1–3). For RAG1 this differentiation was partially supported by the
ΦST results, even though alleles were not distributed in a geographically restricted manner,

Table 4 Diversity indices. Values for the mitochondrial cytb and nuclear RAG1 genes according to the
regionalization presented by Briggs & Bowen (2012), with the addition of a Red Sea Province.

N hn SS h π

cytb

Red Sea Province 4 4 24 1 +/− 0.177 0.019 +/− 0.004

Western Indian Ocean Province 7 7 36 1 +/− 0.076 0.018 +/− 0.00223

Indo-Polynesian and Marquesas 48 38 67 0.987 +/− 0.008 0.011 +/− 0.001

TEP Region 107 60 97 0.95 +/− 0.014 0.010 +/− 0.001

RAG1

Red Sea Province 0 0 0 0 0

Western Indian Ocean Province 2 2 2 1 +/− 0.500 0.015 +/− 0.008

Indo-Polynesian and Marquesas 30 11 9 0.825 +/− 0.048 0.011 +/− 0.002

TEP Region 58 10 7 0.773 +/− 0.041 0.011 +/− 0.001

Note:
N, number of individuals per haplogroup; hn, number of haplotypes; SS, segregating sites; h, haplotype diversity;
p, nucleotide diversity.

Table 5 Diversity indices. Values for the mitochondrial cytb and nuclear RAG1 genes in relation to the
three groups resolved in the haplotype networks.

N hn SS h p

cytb

TICP 59 49 93 0.989 +/− 0.006 0.012 +/− 0.006

TEP 88 53 91 0.932 +/− 0.021 0.008 +/− 0.004

CL-TEP 19 7 25 0.754 +/− 0.071 0.004 +/− 0.002

Overall 166 108 163 0.976 +/− 0.006 0.017 +/− 0.008

RAG1

TICP 32 11 9 0.827 +/− 0.046 0.011 +/− 0.001

TEP 44 9 6 0.785 +/− 0.042 0.012 +/− 0.001

CL-TEP 14 5 3 0.703 +/− 0.101 0.007 +/− 0.001

Overall 90 17 12 0.803 +/− 0.030 0.011 +/− 0.001

Note:
N, number of individuals per haplogroup; hn, number of haplotypes; SS, segregating sites; h, haplotype diversity;
p, nucleotide diversity. TICP, Tropical Indo-Central Pacific; TEP, Rest of the Tropical Eastern Pacific; CL-TEP,
Clipperton of the Tropical Eastern Pacific.
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with the two most frequent alleles found in all biogeographic regions and provinces (Fig. 4
and Table 3).The discordance between the mitochondrial and nuclear genomes is a
common phenomenon that occurs in many cases among animals, with a higher frequency
in mammals and fishes than in other taxa (Toews & Brelsford, 2012). This may be due to
differences in mutation rates between these two genes. For example, in 12 species of sharks
from a range of genera the mutation rate for RAG1 is substantially lower (2.5 × 10−10 yr−1)
than that of the mitochondrial cytb gene (7.0 × 10−10 yr−1) (Martin, 1999). A similar
pattern has been observed in various bony-fish groups (Šlechtová, Bohlen & Perdices, 2008;
Reece et al., 2011; Palmerín-Serrano et al., 2021; Pérez-Rodríguez et al., 2023). Incomplete
lineage sorting driven by the higher effective population size of nDNA could also have
affected our results. Genetic drift, which promotes divergence between isolated
populations, occurs four times slower in nDNA than mtDNA (Hare, 2001; Larmuseau
et al., 2010) due to the lower effective population size of the mitochondrial genome.
Another possibility is the relatively low number of base pairs utilized in the RAG1 gene,
coupled with the smaller sample size compared to the mitochondrial gene potentially
could have introduced bias into our final results.

When we consider all 45 populations of Coral Hawfish we found a significant
correlation between geographic and genetic distances. However, this dataset included
samples on both sides of ~4,000 km wide EPB, which is an effective biogeographic barrier
for many marine species. To test if our finding of IBD was driven by this barrier, we also
assessed the situation within each of the two main clades, TICP and TEP, and found no
indication of IBD in either dataset. According with these results, we consider that, except
for effects of the EPB, geographic distance is not a major factor affecting genetic structure
in C. oxycephalus.

Two evolutionary lineages: an effect of the Eastern Pacific Barrier
The results presented here, based upon mtDNA, indicate that C. oxycephalus populations
from two separate evolutionary units (lineages) (Fig. 3 and Tables 1–3), one distributed
across the Tropical Indo-Central Pacific, and the other restricted to the Tropical East
Pacific, separated by ten mutation steps, between 2.7 to 2.9 pd and with significant ΦST
results. These results support a previous study by Lessios & Robertson (2006) using the
mitochondrial ATPase six and eight genes, which indicated that the two regional clades are
relics of long past isolation, with significant genetic structure and no gene flow for at least
the past ca. 700,000 years. Their results led them to suggest that C. oxycephalus originated
in the TEP and spread westward across the EPB to the TICP. However, they only
compared populations in the TEP with those on the western edge of the EPB, not across
the entire TICP. Although we also found that the mainland TEPmtDNA group is centrally
positioned, the mitochondrial phylogenetic tree and nuclear results do not support the idea
of a TEP origin. Further, the fact that the TEP group is not the most diverse genetic one in
C. oxycephalus and that the center of diversity of the genus Cirrhitichthys, with seven other
species, is in the Western Pacific, seems to indicate a TICP origin for C. oxycephalus. The
EPB is a 4,000–7,000 km extension of deep water that has been present for about 65 Myr
(Grigg & Hey, 1992; Lessios & Robertson, 2006). Darwin (1872) thought of it as an
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impassable barrier due to the large deep-sea distances between islands. As with the results
presented here, some recent studies found that the EPB can be crossed it remains an
effective barrier that isolates populations of some organisms, including a lobster (Panulirus
penicillatus), a benthic mollusk (Conus ebraeus), and a widespread Indo-Pacific pipefish
(Doryhamphus excisus) on both sides of the EPB (Lessios & Robertson, 2006; Duda &
Lessios, 2009; Chow et al., 2011; Iacchei et al., 2016). However, some transpacific reef fishes
do have low levels of trans-EPB genetic differentiation (Rosenblatt & Waples, 1986, Lessios
& Robertson, 2006). Scheltema (1988) found that species of benthic invertebrates that can
cross the EPB are those likely to have an exceptionally long larval life i.e., those with
telepathic larvae, while other forms lacking that larval characteristic are unable to do so.
The PLD has been frequently linked to the dispersal potential of marine species and hence
to the degree of genetic connectivity of populations separated by long distances (e.g.,
Baums, Paris & Chérubin, 2006; Bowen et al., 2006; Reece et al., 2011). Glynn, Veron &
Wellington (1996) indicated that due to the flow rate of ocean currents across the EPB that
barrier could be bridged in 60 to 120 days. Romero-Torres et al. (2018) using a
spatially-explicit biophysical model of larval dispersal and, assuming extreme El Niño
events, found the time of larval transport of 110–130 days from the Line Islands to
Clipperton Atoll. The PLD of the Coral Hawkfish ranges from 36–51 days (Brothers &
Thresher, 1985; Robertson, Grove & McCosker, 2004). Among members of other genera of
Cirrhitids PLDs (based on very few specimens) range from ~45 to 73 days, based on very
few specimens (Brothers & Thresher, 1985; DeMartini, Wren & Kobayashi, 2013).
However, PLDs do vary within species, often considerably so and that of C. oxycephalus
evidently is sufficient to have allowed it to cross the EPB in the distant past.

Most species of hawkfish (five out of seven in the IP-H-M) prefer live coral habitats,
although in the Chagos Archipelago, C. oxycephalus apparently prefers rock-pavement
habitats (Coker et al., 2015). However, C. oxycephalus is considered to be dependent on live
Pocillopora corals on TEP reefs (Robertson & Allen, 1996; Alvarez-Filip & Reyes-Bonilla,
2006). Cirrhitichthys oxycephalus is the only species of this genus in the TEP and one of the
few fishes strongly associated with live Pocillopora corals (Robertson & Allen, 1996;
Alvarez-Filip & Reyes-Bonilla, 2006), which are not only common element of structural
coral reefs in the TEP but also are commonly present as small, attached growths on the
rocky shorelines that represent the predominant shallow reef type throughout the TEP.
Reduced interspecific competition due to the absence of congeners and other
coral-associated species, could have aided the establishment and spread throughout that
region of C. oxycephalus.

Tropical Indo-Central Pacific group
Even though many reef fishes show high levels of endemism in different TICP provinces
(Bowen et al., 2016; Cowman et al., 2017), the ΦST value and the mixture of cytb
haplotypes found in C. oxycephalus between provinces and populations distributed across
the breadth of that vast area that extends over approximately half of the circumference of
the globe, from the Red Sea, through Western Indian Ocean and the Indo-Malayan
archipelago and eastern Australia, to the Line Islands and the Marquesas (Briggs & Bowen,
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2012; Toonen et al., 2016), do not provide evidence of phylogeographic pattern across the
TICP for this mtDNA. Although we must approach these results with caution, given the
low sample sizes in some regions (e.g., only four in Red Sea Province), they still offer the
opportunity to formulate phylogenetic and evolutionary hypotheses.

Biogeographic studies in the distribution range of C. oxycephalus across TICP region
have generally taken into account four semipermeable barriers, the Indo-Pacific Barrier of
the Indo-Malayan archipelago, the Red Sea Barrier, the Marquesas Barrier and the
mid-Indian Ocean Barrier (Briggs, 1974; Gaither & Rocha, 2013; Borsa et al., 2016). The
first of those is considered to be a harder barrier to dispersal formed by a group of islands
with large land areas that can prevent dispersal (Craig et al., 2007), the second is
considered to be a ‘softer barrier’ due the unusual environmental conditions and
narrowness of the Red Sea entrance (DiBattista et al., 2016), the third barrier is attributable
to a combination of geographical isolation (a biogeographical barrier to dispersal),
unusually variable sea temperatures for an equatorial archipelago (ecological
distinctiveness), hydrographical isolation (cold upwelling, prevailing currents) and young
geological age (few marine habitats) (Randall, 2001; Gaither et al., 2010), while the last and
largest barrier to shallow-water reef fishes in the Indian Ocean is thought to be the wide
expanse of deep sea west of the Lakshadweep-Maldives-Chagos archipelagoes. Many
marine species that are found spread across large parts of the TICP have genetic
population partitions that geographically coincide with one or more barriers between the
Red Sea, the Western and mid-Indian Ocean, and the Indo-Polynesian, the Hawaiian, the
Marquesas and the Easter Island Provinces (Williams & Benzie, 1998; Lessios, Kessing &
Pearse, 2001; Borsa et al., 2016). However, the six internal barriers within the TICP seem to
have had little effect on the dispersal of C. oxycephalus throughout that region except for
the stretches of deep water isolating the Hawaiian and Easter Island Provinces from the
central Pacific. Since reefs in both of those provinces harbor abundant Pocillopora corals
(Grigg, 1983; Glynn et al., 2003; Irving & Dawson, 2013), the oceanic distances isolating the
Hawaiian and Easter Island Provinces are less (>2,000 km) than the EPB crossed by Coral
Hawkfish and given the versatility in habitat use of the Coral Hawkfish (Coker, Pratchett &
Munday, 2009; Coker et al., 2015), the absence of the species in both areas is likely due to
local extinction after colonization or to its failure to disperse, mediated by oceanographic
conditions, across their isolating barriers, rather than ecological limitations or
competition. The Coral Hawkfish joins the small group of reef fishes from a diversity of
taxa known to show mismatches between genetic differentiation and other internal TICP
geographic barriers, with high inter-oceanic gene flow occurring on a relatively recent
evolutionary timescale across TICP ranges as large as that of C. oxycephalus. Those include
four species of moray eels (Reece et al., 2011); the snapper Lutjanus kasmira (Gaither et al.,
2010), four species of surgeonfishes in the genus Naso (Horne et al., 2008; Horne & Van
Herwerden, 2013), the butterflyfish Chaetodon meyeri and the cornetfish Fistularia
commersonii (Jackson et al., 2015; Borsa et al., 2016). In addition, while the snapper
Pristipomoides filamentosus exhibits a lack of genetic structure across the sampled parts of
the TICP that are also occupied by the Coral Hawkfish, it does show differentiation of the
Hawaiian Island population (Gaither et al., 2011a). Fistularia commersonii is the only
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reef-fish to date that has been shown to lack significantmtDNA structure across the entire
longitudinal extent of the TIP, from the TEP to the Red Sea. However, unlike the situation
in C. oxycephalus, in none of those 12 species has sampling included populations on both
sides of all major barriers that separate all their known populations and only two of them
(Naso hexacanthus and F. commersonii) have included samples from the Red Sea.

While some reef fishes with relatively short PLDs do show much more marked
geographic genetic differentiation than species with longer PLDs (Borsa et al., 2016), PLDs
among the 12 species referred to above range from relatively short (~31 days in L. kasmira)
to very long (up to 180 days in P. filamentosus). Although it has been hypothesized that the
longer the PLD, the farther larvae can disperse, recent studies have concluded that this
relationship does not always hold, that PLD alone is not a determining factor in successful
colonization, which is likely affected by navigation, swimming ability, oceanic conditions,
habitat availability in the colonized region, number of migrants and certain life history
traits (Selkoe et al., 2010; Leis, Siebeck & Dixson, 2011; Selkoe & Toonen, 2011; Luiz et al.,
2012; Szabó et al., 2014). While the lack of geographic structure across the TICP in C.
oxycephalus could reflect ongoing gene flow facilitated by moderate-length PLD or
versatility in habitat preferences that enhance dispersal within the region, it could also be
due to a recent geographic expansion by a species with a large population size.

Tropical Eastern Pacific group
Results within the TEP reveal two divergent groups with cytb, one composed of haplotypes
largely restricted to Clipperton and the other that includes samples collected throughout
the rest of the TEP islands and continent, results that are also supported by the RAG1ΦST
test. The two TEP groups are well segregated by six mutation steps (Fig. 3) and show
significant values in the ΦST for both genes, significant differentiation in cytb AMOVA
and SAMOVA analyses and pd = 1.58% (Tables 1–3). Clipperton Atoll is the most isolated
shoaling reef in the TEP, 950 km from the nearest emergent reef at Socorro Island in the
Revillagigedos. However, the dispersal capacity of the species seems to be not strongly
related to Clipperton’s isolation, since a Mantel test not found correlation between genetic
distances and geographic distances among the TEP samples. There are a few Clipperton
haplotypes also present at the Revillagigedo Islands and continental Mexico and one from
the mainland TEP mtDNA group at Clipperton and such apparent vagrants of other
species are seen at various oceanic islands in the TEP (Muss et al., 2001; Robertson, Grove
& McCosker, 2004; Palmerín-Serrano et al., 2021). In Hawaii, mesoscale eddy-currents
transport fish eggs into entrapment centers where they are retained long enough to mature
and then return to the reef of origin (Lobel & Robinson, 1986). Similar processes may tend
to limit long-distance dispersal of C. oxycephalus larvae and promote the larval retention
and the return of larvae to Clipperton. This process was proposed to account for the
isolation of Epinephelus clippertonensis by Craig et al. (2006), which is now known to also
occur in the Revillagigedos and mainland Baja (Robertson & Allen, 2015), and a
biophysical model by Romero-Torres et al. (2018) indicates potential isolation of two
reef-building coral species of Clipperton based on a biophysical model of larval dispersal.
Clipperton’s fish fauna includes various local endemic species and oceanographic
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processes that must maintain the long-term persistence of populations of those species at
this island likely also produce genetically differentiated populations that may eventually
become endemic species. However, other oceanographic processes in the general area of
Clipperton likely enhance larval dispersal further afield, including northwards towards the
Revillagigedos (Adams & Flierl, 2010).

Taxonomic considerations
Cirrhitichthys oxycephalus was described from type specimens collected in Indonesia.
Randall (1963) included this species in a taxonomic review of the family and synonymized
three other species with it, including C. corallicola (Tee-Van, 1940), type locality Gorgona
Island, on the Pacific coast of Colombia. The original description of C. corallicola, which
incorporated specimens from mainland sites in Mexico to Colombia but none from the
TEP oceanic islands, makes no mention of C. oxycephalus. Randall (1963) synonymized C.
corallicola with C. oxycephalus after examining “all available specimens of Cirrhitidae”
from various museums, including the USNM. That museum houses 31 specimens
collected from Gorgona that, based on the 1935 collection date, he likely assessed.
Unfortunately, it is unclear from Randall’s (1963) brief reference to C. corallicola whether
the TEP population differs morphologically from the TICP populations. However, our cytb
results suggest that C. corallicola could be a valid species that encompasses all the TEP
populations, as suggested by Lessios & Robertson (2006), while C. oxycephalus extends
throughout the remainder of its range across almost the entire TICP. Populations of C.
oxycephalus in the TEP and TICP clearly need a detailed integrative systematic analysis
that includes morphological and genomic assessments at both intraregional and
interregional spatial scales. Such an analysis would expand the range of information about
any geographic variation related to barriers within both those major biogeographic
regions.

CONCLUSIONS
This work revealed a large-scale phylogeographic pattern in C. oxycephalus across the
Indo-Pacific range of the species based on mitochondrial cytb, which was partially
supported by the RAG1 nuclear marker. That pattern, which includes three largely
allopatric genetic groups, is related primarily to the effects of the East Pacific Barrier, the
world’s widest (4,000+km) open ocean barrier to migration of tropical reef fishes. Our
results agree with previous studies that indicated strong genetic differences between
populations of some widely distributed reef fishes between the TICP and TEP and support
the potential resurrection of C. corallicola, type locality Colombia, which was synonymized
with C. oxycephalus (type locality Indonesia) by Randall (1963). Within the TICP,
however, known barriers between the Indian Ocean and west Pacific, and large distances
separating isolated islands and archipelagos in those two oceans evidently have had no
equivalent effects in phylogeographic differentiation among C. oxycephalus populations,
although such may be detectable using more sensitive genetic markers. In contrast, we did
find phylogeographic differentiation within the TEP, between Clipperton and the rest of
that region. Clipperton, which has a number of endemic reef fishes, is the most isolated reef
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in the entire TEP, which probably accounts for the isolation of its Coral Hawkfish
population. This Clipperton-specific result adds to the range of patterns of genetic
differentiation of conspecific populations found in the offshore islands and mainland of
the TEP.
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