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A B S T R A C T

Since 2001, the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor on board the Aqua and Terra 
platforms has made great strides in providing information on global burned areas (BA). However, the MODIS 
mission is nearing its end. The Visible Infrared Imaging Radiometer Suite (VIIRS) sensors, presented as the 
MODIS Aqua heritage, could be an excellent alternative to ensure the temporal continuity of this information at a 
moderate resolution. This paper describes and evaluates the effectiveness of our developed hybrid algorithm, 
which utilizes VIIRS reflectance and active fire products on the Google Earth Engine platform, in producing 
efficient information about BA. The study investigates the algorithm’s performance in sub-Saharan Africa as the 
region of interest in 2019, using biweekly outputs and a spatial resolution of 250 m. The algorithm encompasses 
several steps, including pre-processing individual scenes, creating cloud-free composites, generating binary 
reference data for burned and non-burned areas, conducting a supervised classification using random forest, and 
performing region shaping. The VIIRS-BA final product, which includes three confidence levels (low, moderate, 
and high) known as the uncertainty layer, is compared to four other burned area products. The validation is 
conducted against 27 reference sampling units from the Sentinel-2 Burned Area Reference Database dataset, 
allowing for a comprehensive uncertainty assessment across five various biomes. The VIIRS-BA product iden-
tified 5.1 million km2 of BA, which was significantly larger than other global coarse resolution BA products such 
as FireCCI51, FireCCIS310, and MCD64A1 and close to the fine resolution FireCCISFD20 with a difference of 
7.3%. The differences were less significant in biomes such as “Tropical Savannas” and “Temperate Grasslands” 
which are characterized by persistent biomass burning. Based on a stratified random sampling, the validation 
results demonstrate varying levels of accuracy for the VIIRS-BA product across different confidence levels. The 
commission error (CE) ranges from 7.8% to 23.4%, while the omission error (OE) falls between 29.4% and 
58.8%. Notably, there is a significant reduction in OE (ranging from 40.7% to 50.5%) compared to global BA 
products like FireCCI51, FireCCIS310, and MCD64A1. When compared to VIIRS-BA, the FireCCISFD20 regional 
product has a 37% better OE performance. While VIIRS-BA shows great potential in detecting fires that global 
products miss, the VIIRS-BA with low confidence level tends to overestimate BA in regions with high fire activity. 
To address this, future versions of the algorithm will integrate the updated VIIRS reflectance data alongside VIIRS 
active fire from the National Oceanic and Atmospheric Administration to reduce CE and improve understanding 
spatial patterns.
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1. Introduction

Biomass combustion by wildfires is considered as a major component 
of the terrestrial carbon cycle and a substantial source of greenhouse gas 
emissions (Kumar et al., 2022; Vernooij et al., 2021). In addition, fires 
influence plant species functioning and dynamic (Pathak et al., 2017), 
land use (Frost et al., 2020; Van Wees et al., 2022), soil erosion, and 
hydrological cycles (Rostami et al., 2022) and other societal impacts as 
air pollution, human health and assets (Schneider et al., 2021; Xie et al., 
2022), now increasingly assembled in fire risk assessment frameworks 
(Chuvieco et al., 2023).

Satellite-derived burned area (BA) and active fires data are used to 
analyse spatiotemporal patterns of fire activity, providing valuable in-
sights into the drivers behind fire occurrence (Haas et al., 2022), its 
impacts (Ramo et al., 2021), and numerous diverse purposes (Chuvieco 
et al., 2019; Mouillot et al., 2014). A major field of research using global 
BA is climate modelling given fire disturbance defined as part of the 
Essential Climate Variables (GTOS, 2009; GCOS, 2016), and a keystone 
information vegetation model benchmarking (Hantson et al., 2016). 
More specifically, BA and active fires statistics are essential for atmo-
spheric emission models and combustion characteristics (Kaiser et al., 
2012; Van Der Werf et al., 2017). However, quick access to BA infor-
mation at both local and global levels enabled the identification of other 
relevant users (Mouillot et al., 2014). Wildfire managers and related 
services use fire history to assess fire risk and apply risk reduction 
measures; insurance companies and health planners may benefit from 
modelled fire impacts on human health (Uda et al., 2019) and safety of 
properties (Bowman et al., 2017; Moritz et al., 2014), derived from BA 
data; policymakers can monitor progress in sustainable development 
goals (Honeck et al., 2018).

In the context of fire monitoring and management, several in-
stitutions and/or countries are contributing to the development of 
mapping-based resources for systematic assessment of BA. In the early 
2000s, the Joint Research Centre of the European Union produced the 
first global BA product, called Global Burned Area (Tansey, 2004). 
Simultaneously, the European Space Agency (ESA) developed the 
GLOBSCAR BA product (Simon, 2004). They were both based on the 
SPOT Vegetation (VGT) sensor with 1 km2 resolution. NASA has a 
long-standing history of global BA assessment using the Moderate Res-
olution Imaging Spectroradiometer (MODIS) sensor, with a latest 
collection of BA products (MCD64A1) at 500 m resolution (Giglio et al., 
2018). According to Lizundia-Loiola et al. (2020) research, the Fire-
CCI51 (based on MODIS data at 250 m), from the Fire_cci project part of 
ESA’s Climate Change Initiative program, is currently the most accurate 
among existing global BA products at moderate spatial resolution.

In a step forward using new sensors, Lizundia-Loiola et al. (2022)
used Copernicus Sentinel-3 Synergy data and demonstrated that, by 
incorporating various inputs including moderate spatial resolution as 
the primary input, they successfully identified more than 1 million km2 

of BA that remained undetected by FireCCI51. That study highlighted 
one of the major limitations of those precursor global BA products, 
specifically, that the base spatial resolution of these products was larger 
than the size of many fires, therefore omitted in the total BA. Randerson 
et al. (2012) used MCD64A1 product to find that approximately 25% of 
global BA are small fires that are not captured in the data. Similarly, 
other studies found that up to 55% of total BA are comprised of small fire 
patches that are completely absent from the data for Africa (Ramo et al., 
2021; Roteta et al., 2019). Accuracy evaluations of these BA products 
showed that, on average, the omission rate was considerably higher than 
the commission rate, reaching up to 70% (Boschetti et al., 2019; Liz-
undia-Loiola et al., 2020). The use of higher spatial resolution data now 
available from the new generation of satellite sensors appears as an 
alternative to fill these gaps and should increase the detection threshold 
and include these small fires.

Various approaches have been experimented with the main goal to 
accurately delineate BA using medium spatial resolution (between 10 

and 30 m) (Roteta et al., 2021a; Tanase et al., 2020), including inte-
grating different sensors such as optical and radar (Belenguer-Plomer 
et al., 2021), and merging higher spatial resolution datasets such as 
Landsat and Sentinel-2 (S2) into a single algorithm (Abdikan et al., 
2022; Ngadze et al., 2020; Roy et al., 2019). These efforts have yielded 
encouraging outcomes regarding their spatial precision. However, these 
previous studies creating BA products have mostly been limited to 
well-defined geographical contexts (Chuvieco et al., 2022; Pinto et al., 
2021). The development of a BA product at global scale requires sig-
nificant data storage and processing capabilities. Additionally, it is 
worth noting that even with improved spatial resolution, not all small 
fires can be detected. In addition, daily temporal coverage for accurate 
identification of the burning dates is a pre requisite for accurate bio-
sphere/atmosphere interactions (Voulgarakis and Field, 2015), near real 
time delivery (Urbanski et al., 2018), daily fire-weather relationships 
(Potter and McEvoy, 2021), and accurate time-dependent pixel aggre-
gation into fire patches (Moreno and Mouillot, 2021). This becomes 
even more crucial in tropical ecosystems where cloud cover is persistent 
and the post-fire signal is brief inducing delays in reflectance change 
detection (Lasko, 2019). An additional issue remains on agricultural 
burnings, often small in size and fast spreading, where high-resolution 
imagery should be available at least once a day (Hall et al., 2021). 
The huge processing effort and the limited temporal resolution of me-
dium spatial resolution sensors (8 days if both Landsat-7 and 8 are used, 
and up to 3–5 days at best if we combine Sentinel-1 and S2) mean that 
global BA products still heavily rely on moderate spatial resolution 
sensors with 250–500 m pixel sizes and 1–2 days revisit time.

With the end of the MODIS lifetime, the scientific community is 
facing a challenging situation (Smith, 2022). The adaptation of 
MODIS-based algorithms and products to new satellites and sensors is 
necessary to ensure the provision and continuity of BA products in the 
future. One potential solution is the use of Visible Infrared Imaging 
Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting 
Partnership and NOAA-20 satellites to replace the 1:30am/pm MODIS 
Aqua data stream. VIIRS has been developed based on the experience 
gained from previous sensors developments, particularly MODIS. It has a 
large image swath (~3040 km wide) and a relatively short revisit time, 
which ensures at least two observations a day in 22 spectral bands at 
375 m and 750 m. Two active fires detection products are currently 
produced based on VIIRS data (Csiszar et al., 2014; Schroeder et al., 
2014). Several studies have shown that VIIRS has the potential to 
replace MODIS as a viable alternative for global BA mapping 
(Fernández-Manso and Quintano, 2020; Li et al., 2020). To ensure the 
development of high-quality global BA products, further testing and 
validation of VIIRS data is needed.

This paper describes the development of a new global BA algorithm 
called VIIRS-BA, which solely relies on the VIIRS reflectance and active 
fires products and is run in Google Earth Engine (GEE) (Gorelick et al., 
2017). While GEE has been used for over a decade (L. Wang et al., 2020), 
there has been limited research on global BA using this tool (Daldegan 
et al., 2019; Roteta et al., 2021a; Seydi et al., 2021). Given the rich 
satellite databases and the ability to process large-scale information 
available in GEE, it represents an effective choice for our methodology. 
We used the random forest (RF) algorithm (Breiman, 2001) as a machine 
learning approach in GEE to develop our hybrid algorithm for detecting 
BA at 250 m resolution every 15 days. RF offers advantages over other 
machine learning algorithms such as artificial neural networks, support 
vector machines, and recurrent neural networks in BA detection, thanks 
to its ability to manage high-dimensional and noisy datasets, and pro-
vide feature importance rankings (Mashhadi and Alganci, 2021). 
Moreover, RF has demonstrated promising results by effectively 
handling the spectral response complexities of burned areas (Roteta and 
Oliva, 2020).

In the following sections, we provide a detailed explanation of the 
algorithm, its implementation, and the choice of the final spatial reso-
lution of the VIIRS-BA product. (section 2.3), along with its accuracy to 
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map BA in that region (section 2.4). We provide an overview of our BA 
products at different confidence levels (section 3.1). We also compared 
the distribution of the BA generated by VIIRS-BA with other contem-
porary products such as FireCCI51, FireCCIS310, FireCCISFD20 and 
MCD64A1 products (section 3.2). The reasons for selecting these data-
sets are based on their ability to meet at least two of the following three 
criteria for end-user products.

(1) spatial resolution: these datasets offer spatial resolutions similar 
to the intended new BA products;

(2) temporal resolution: they provide consistent time series data, 
with at least monthly updates, which is essential for temporal 
comparisons on a monthly basis;

(3) area coverage: these datasets cover the selected study area used 
to evaluate the VIIRS-BA product, which is Sub-Saharan Africa 
(SSA), ensuring comprehensive spatial analysis.

Additionally, we performed validation using a robust reference 
dataset from the Burned Area Reference Database (BARD) in different 
biomes, produced specifically for SSA (Stroppiana et al., 2022) (section 
3.3). Our study focused on the year 2019 because, at the time of writing 
this manuscript, the other BA products required for comparison were 
primarily available only/up to that year.

2. Study area and data

2.1. Study area

The VIIRS-BA Algorithm has been tested in SSA, excluding 
Madagascar, which is depicted in Fig. 1. Fire patterns in Africa vary 
across different regions and are influenced by a combination of climatic, 
ecological, and anthropogenic factors (Haliuc et al., 2023). Human ac-
tivities, such as crop management, grazing, and hunting, are the primary 
causes of fires in this region (Grégoire et al., 2013; Lewis et al., 2015). 
Africa has the highest BA compared to any other region in the world (up 
to 70%) (Giglio et al., 2013; Chuvieco et al., 2018). According to Ramo 
et al. (2021), the area burned by fires in Africa each year is comparable 

to the size of Europe. Africa is crucial in global carbon emissions, 
contributing nearly half of all carbon released by landscape fires annu-
ally (Van Der Werf et al., 2010), estimated at approximately 1.0 (±0.22) 
petagrams of carbon per year (Valentini et al., 2014). African fires ac-
count for about 30%–50% of the total biomass burned worldwide each 
year. However, the conversion of natural vegetation to croplands due to 
land cover changes has led to a decrease in the total BA (Grégoire et al., 
2013; Andela et al., 2017).

Section 2.2 further elaborates on the major classification of biomes in 
this area. Fires predominantly occur during the dry season in both the 
Northern and Southern African hemisphere (NHAF, SHAF), ranging 
from October to March north of the Equator and from May to October in 
the south (Chuvieco et al., 2022).

2.2. Satellite datasets

An overview of the satellite datasets used in this study, including 
surface reflectance data, active fires data, and land use/land cover 
(LULC) data, are presented in Table 1.

2.2.1. VIIRS surface reflectance and active fires/hotspots data
The Visible Infrared Imaging Radiometer Suite (VIIRS) instruments 

are aboard the Suomi National Polar-orbiting Partnership (Suomi NPP) 
and National Oceanic and Atmospheric Administration (NOAA-20) 
satellites. For the present study, only VIIRS data from Suomi NPP were 
used as it provides a daily time series beginning in January 2012, while 
the NOAA-20 data only became available from January 2020. VIIRS 
collects visible and infrared imagery and global observations of land, 
atmosphere, cryosphere, and oceans.

The surface reflectance (VIIRS-SR) dataset used in this study is the 
VNP09A1 collection 1 product (Vermote et al., 2014). It has five reso-
lution imagery channels (bands I1 to I5) with 32 detectors each, 16 
moderate resolution channels (bands M1 to M16), and a panchromatic 
day–night band (DNB) with 16 detectors each. The nominal spatial 
resolution is 375 m for the I bands and 750 m for the M bands and the 
DNB. It is directly available in the GEE environment were the I bands are 
resampled to 500 m and M bands to 1 km. These bands were used to 

Fig. 1. Study area with the subdivision of the Northern and Southern African hemisphere (NHAF, SHAF) according to the GFED regionalization (Van Der Werf et al., 
2017) and the reclassified (Olson et al., 2001) major biomes.
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derive vegetation indices and the tasselled cap transformation (section 
2.3.2).

VIIRS 375 m active fires product VNP14IMGML (Schroeder et al., 
2014) is also used. This product was designed using VIIRS 375 m (I 
bands) channels and can be downloaded from the Fire Information for 
Resource Management System (FIRMS) website since it is not yet 
available in GEE (FIRMS, last accessed March 2023). The VIIRS data 
complement the MODIS fire detections but have improved spatial res-
olution and night-time performance (Justice et al., 2013). It represents 
the center of a 375 m pixel and provides a more sensitive response to 
fires on relatively small areas, as well as improved mapping of large fire 
perimeters, making it well-suited for use in support of fire management 
and other scientific applications requiring improved fire mapping fi-
delity (Li et al., 2018).

For this study, available daily VIIRS-SR and VIIRS active fires (VIIRS- 
AF) data for the year 2019 in sub-Saharan Africa were used.

2.2.2. Land cover and biome data
Global land cover classification datasets derived from remote sensing 

technology are continuously being developed, providing valuable in-
formation at regional and global scales. For our BA algorithm, we uti-
lized the MODIS Land Cover Type MCD12Q1 version 6.1, which 
characterizes five global land cover classification systems (Hansen et al., 
2000). These systems describe land cover properties derived from ob-
servations spanning a year’s input of observation data from the Terra 
and Aqua satellites. The MODIS LULC map was chosen over other LULC 
data available on GEE, which had a higher spatial resolution, because of 
its longer coverage period (from 2001 to 2021) and consistent annual 
update. For consistency in future assessments of fire emissions using the 
derived BA product, we made a deliberate choice to opt for the Uni-
versity of Maryland’s level 3 product (Friedl and Sulla-Menashe, 2022), 
which comprises 15 distinct LULC classes. The reason behind selecting 
this LULC data was that it closely aligns with the fire type classes 
identified by Akagi et al. (2011).

The Olson’s Biomes dataset originally contained 16 different biomes, 
which were later reclassified into 7 major biomes to simplify the 
assessment of BA across different regions. As a result of this reclassifi-
cation, five major biomes were identified for the SSA region (Fig. 1). The 
original and final biome names are provided in Table 2.

2.2.3. Global/regional burned area products
The product derived from this research (VIIRS-BA) was compared to 

four current state-of-the-art BA products. These included three global BA 
products: MCD64A1 (Giglio et al., 2018), FireCCI51 (Chuvieco et al., 
2018), and FireCCIS310 (Lizundia-Loiola et al., 2022), as well as a 
regional BA product at fine resolution, FireCCISFD20 (Chuvieco et al., 
2022).

MCD64A1 and FireCCI51 are both based on surface reflectance 
measurements and standard products generated by the MODIS sensors 
onboard the Terra and Aqua satellite platforms, covering a common 
period from 2001 to 2019. MCD64A1 detects and maps daily fires at 500 
m by combining MODIS Terra and Aqua daily surface reflectance 
products with MODIS active fires data. FireCCI51 provides higher 
spatial resolution at 250 m and was developed to complement existing 
BA products. It identifies and maps BA by integrating daily Terra MODIS 
red and near-infrared reflectance measurements and MODIS monthly 
active fires data. FireCCIS310 is a new product that uses a hybrid al-
gorithm based on Copernicus Sentinel-3 Synergy (SYN) data and VIIRS- 
AF for global detection of BA. It relies on SYN shortwave infrared bands 
to compute a multi-temporal separability index and active fires from the 
VIIRS sensor to generate spatio-temporal clusters for determining local 
detection thresholds. FireCCIS310 overcomes some limitations of the 
precursor FireCCI51 product, particularly the low temporal reporting 
accuracy and border effects between tiles. The FireCCISFD20 algorithm 
utilizes S2 MSI and VIIRS-AF to produce a 20 m BA output. The algo-
rithm compares S2 tiles using six variables and two spectral indices, 
generating two independent products that are merged to obtain the final 
output. Each scene is compared to the previous four scenes to complete 
areas masked as not burnable.

3. Methods

3.1. Burned area framework

The algorithm developed in this study relies on VIIRS-SR and VIIRS- 
AF to generate biweekly BA at 250 m resolution from 2012 onwards. Our 
study was restricted to the year 2019, as the others BA products required 
for comparison are predominantly accessible up to/only to that year. 
Furthermore, analysing results conducted with these products in the 
same year would be more convenient.

GEE easily handles the combination of bands with different spatial 
resolutions by automatically adjusting for resolution differences during 
processing (Google Developers, last accessed March 2024). This built-in 
feature streamlines data processing and ensures user-friendly opera-
tions. GEE performed all preprocessing and calculations to derive the 
VIIRS-BA product, while R software generated the analysis, graphs, and 
maps.

During the export stage, users can customise the output spatial res-
olution to meet their specific needs. However, two challenges arise when 
deciding on our final product’s spatial resolution. The final choice is not 
arbitrary. Choosing a spatial resolution lower than 250 m exceeds the 
memory limit of GEE. Therefore, the dilemma lies in selecting the 
original or resampled spatial resolution within GEE for the inputs. This 

Table 1 
List of satellites dataset used in this study. MCD64A1, FireCCI51 and FireCCIS310 and FireCCISFD20 were used for comparison.

Satellite/Product Sensor Description Product Code (collection/version) Resolution Availability

Spatial Temporal

Suomi NPP VIIRS Surface Reflectance VNP09GA (collection 1) 375 m daily from 2012
Suomi NPP VIIRS Active Fire VNP14IMGML (collection 1) 375 m daily from 2012
Terra/Aqua MODIS Land Cover MCD12Q1 (version 6.1) 500 m annual from 2000
Terra/Aqua MODIS Burned Area MCD64A1 (collection 6) 500 m daily from 2000
Terra/Aqua MODIS Burned Area FireCCI51 (version 5.1) 250 m daily from 2001
Sentinel-3 Synergy Sentinel-3 OLCI and SLSTR Burned Area FireCCIS310 (version 1.0) 300 m daily 2019
Sentinel-2 Sentinel-2 MSI Burned Area FireCCISFD20 (version 2.0) 20 m daily 2019

Table 2 
Reclassification of the eight original categories from Olson et al. (2001)’s biomes 
classification in the study area.

New categories Original biome categories

Mediterranean Forests Mediterranean forests
woodlands and scrub

Others Deserts and xeric shrublands
Mangroves

Temperate Grasslands Flooded grasslands and shrublands
Montane grasslands and savannas

Tropical Forests Tropical as subtropical moist broadleaf forests
Tropical as subtropical dry broadleaf forests

Tropical Savannas Tropical and subtropical grasslands
savannas and shrublands
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decision involves considering the inherent resolutions of the Suomi NPP 
sensor (375 m, 500 m, 750 m, or 1 km) based on the following 
information.

- VIIRS-AF: 375 m
- original VIIRS-SR: I bands 375 m or M bands 750 m
- resampled VIIRS-SR in GEE: I bands 500 m or M bands 1 km.

Options involving spatial resolutions greater than 500 m (750 m, 1 
km) were rejected. For comparison purposes, the goal is to have at least 
one spatial resolution similar to that of the currently available BA 
products.

We then conducted prior tests to evaluate how the final VIIRS-BA 
spatial resolution affects accuracy and BA detection capability. Appen-
dix A1 provides the methodology and results of these tests. We 
compared VIIRS-BA images at three different spatial resolutions: 250 m, 
375 m, and 500 m. The 250 m spatial resolution did better in these 
preselection tests than the 375 m and 500 m. This supports what 
Boschetti et al. (2004) found about how low spatial resolution affects the 
accuracy of the BA product and the idea of “low-resolution bias”.

The workflow of the BA algorithm can be summarized as follows: (1) 
pre-processing of individual scenes, (2) creating cloud-free composites 
of pre-fire and post-fire images, (3) generating a binary classification of 
fire and no-fire pixels and creating a training dataset, (4) applying a 
supervised classification using RF with burned/unburned core data as 
response and spectral indices as predictors, and (5) applying post- 
processing steps to filter small isolated BA and fill gaps in larger BA 
(Fig. 2). The final VIIRS-BA product is compared to some global BA 
products and validated against BARD reference dataset.

3.1.1. Pre-processing
The main input underwent several processing steps, including cloud 

masking, filtering, and reclassification.
The GEE platform provides a surface reflectance quality flag band 

called QF1 for VIIRS-SR, which contains cloud mask information. To 
ensure the quality of the cloud mask, cloud detection and confidence 
levels were evaluated. Only the clear-sky pixels labelled as “Confident 
clear” in cloud detection and confidence and “High” in cloud mask 

quality were selected, based on the QF1 parameter.
The VIIRS-AF data was filtered based on specific conditions related 

to hotspot detection (Schroeder and Giglio, 2018). Non-fire related 
hotspots, such as those from active volcanoes, gas flares, and industrial 
burning, were removed using type-0 detections, which are presumed to 
be vegetation fires. Only high-confidence detections, representing pixels 
free of sun glint contamination, were included. The last condition 
required the fire radiative power to be greater than 0.

To improve the land filtering process in our algorithm, the MCD12Q1 
LULC data was reclassified to obtain a binary image that represents 
vegetation and non-vegetation classes. The non-vegetation class in-
cludes areas classified as “urban” and “water”.

3.1.2. Image composite
In the initial stage, a processing interval period is defined, consisting 

of a water mask period, pre-fire and post-fire periods, and a target period 
(Fig. 3).

The aim is to detect burn scars that occurred within a biweekly in-
terval called the target period. It is important to note that in our study, a 
month can only have two target periods, and the first target period starts 
from the first day of the month and ends on the 15th day of the month. 
The second target period starts from the 16th day of the month and ends 
on the last day of the month, but it may not necessarily be 15 days. This 
paper uses this specific time interval for comparison with other prod-
ucts, but the algorithm can be applied to any biweekly interval. The pre 
and post-fire periods were based on the approach used by Liu et al. 
(2019), with the pre-fire period starting one month before and ending 
one month after the first day of the target period, and the post-fire period 
starting on the first day of the target period and ending one month after 
the first day of the target period.

To improve the accuracy of the results and remove noise, a composite 
image is created by combining the best features of each individual 
image. A per-pixel composite is performed on the cloud-masked VIIRS- 
SR to obtain a new set of VIIRS-SR that represents the best possible 
observation for each pixel during the number of days of that period. The 
pre-fire image collection is generated by compositing the maximum 
surface reflectance per pixel over the pre-fire period and the minimum 
surface reflectance per pixel for the post-fire period. This is based on the 

Fig. 2. Workflow of VIIRS-BA illustrating the process of mapping burned area using Google Earth Engine over a two-week interval. VIIRS-SR: VIIRS surface 
reflectance; VIIRS-AF: VIIIRS active fire; SI: spectral indices; FRP: fire radiative power.
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assumption that BA generally have a high value for pre-fire and a low 
value for post-fire (Liu et al., 2019).

The water mask period corresponds to one month before the pre-fire 
period. A water mask is commonly used in biomass burning studies to 
eliminate the influence of water bodies and reduce false alarms in BA 
detection (Long et al., 2019). We utilize the Modified Normalized Dif-
ference Water Index (MNDWI; Xu, 2006) to generate the water mask. 
Numerous studies have shown the superior effectiveness of MNDWI in 
accurately extracting water surfaces compared to other indices like the 
Normalized Difference Water Index (NDWI) (Ali et al., 2019; Fattore 
et al., 2021).

Spectral indices (SI) play a crucial role in the detection of BA as they 
can capture specific spectral changes associated with fire and distinguish 
BA from unburned ones (Seydi et al., 2021; Szpakowski and Jensen, 
2019). These indices exploit distinctive spectral signatures exhibited by 
BA, such as increased reflectance in the short-wave infrared (SWIR) and 
decreased reflectance in the visible and near-infrared (NIR) bands (Hu 
et al., 2021). The Tasselled Cap Transformation (TCT) is another valu-
able tool used in BA detection due to its ability to capture and differ-
entiate changes in brightness, greenness, and wetness, which provide 
insights into different land covers and vegetation conditions, including 
BA (Filipponi, 2019; Simpson et al., 2016). In this study, various spectral 
indices were calculated for BA mapping, as presented in Table 3. A total 
of seven vegetation indices and three TCTs were utilized, covering most 
of the relevant spectrum for identifying burn scars using SWIR and/or 
NIR bands. These bands are known for their sensitivity to moisture 
content, enabling effective discrimination of BA (Al-Maliki et al., 2022; 
Frappart et al., 2018).

For each of the indices, we use the notation SIpre and SIpost to describe 
any SI calculated from the pre-fire or the post-fire period, respectively 
(e.g., NDVIpre), in the classification step.

They are computed as following.

(1) differenced normalized index (dSI)

dSI= SIpre − SIpost 

(2) ratio normalized index (rSI)

rSI=
SIpre

SIpost
− 1 

(3) relativised index (RSI)

RSI=
dSI

SIpre + 1.001 

3.1.3. Burned and unburned core
Our algorithm uses the filtered VIIRS-AF dataset to select training 

pixels that are either burned or unburned, referred to as the burned and 
unburned core, respectively. Burned core pixels were originally identi-
fied as the center of the 375 m VIIRS-AF pixel. A 375 m buffer area 

around each point, representing the BA perimeter, is defined. This buffer 
distance may vary since technically, each active fire pixel would have a 
variable buffer based on its location in the swath layer. Indeed, the 
pixels at the edges of each swath may have a slightly different spatial 
resolution than those in the centre (Schroeder et al., 2014). However, 
this variation in spatial resolution is typically small enough that it does 
not significantly affect the delineation of the burned core surface. The 
vegetation and water masks from steps 1 and 2, respectively, were used 
as additional masks for the burned core to ensure that the burned core is 
located in the burnable LULC category.

Fig. 3. The temporal location of different periods, in relation to the sample processing for the first 15 days of March.

Table 3 
Spectral indices with formula used for the burned area mapping. At the bottom 
are the names of the spectral regions (in italics), the corresponding band names, 
and the centered wavelength in micrometers (in brackets).

Spectral indices/tasselled cap Equation Reference

Acronym Full name

NDVI Normalized 
Difference 
Vegetation Index

NDVI =
NIR − Red
NIR + Red Rouse et al. 

(1973)

NDWI Normalized 
Difference Water 
Index

NDWI =
Green − NIR
Green + NIR McFeeters 

(1996)

MNDWI Modified 
Normalized 
Difference Water 
Index

MNDWI =
Green − SWIR2
Green + SWIR2 Xu (2006)

NDMI Normalized 
Difference 
Moisture Index

NDMI =
NIR − SWIR1
NIR + SWIR1 Gao (1996)

NBR Normalized Burn 
Ratio

NBR =
NIR − SWIR2
NIR + SWIR2 Key and 

Benson 
(1999)

NBR2 Normalized Burn 
Ratio 2

NBR2 =
SWIR1 − SWIR2
SWIR1 + SWIR2 Key and 

Benson 
(2006)

MIRBI Mid-Infrared Burn 
Index

MIRBI = 10× SWIR2 − 9.8×

SWIR1+ 2 Trigg and 
Flasse (2001)

BRI Brightness BRI = (Blue × 0.3037)+
(Green × 0.2793)+ (Red ×

0.4743) + (NIR × 0.5585)+
(SWIR1 × 0.5082)+
(SWIR2 × 0.1863)

Kauth and 
Thomas 
(1976)

GRE Greenness GRE = − (0.2848 × Blue) −
(0.243 × Green) − (0.5436 ×

Red) − (0.7243 × NIR) −
(0.0840 × SWIR1) −
(0.1800 × SWIR2)

Kauth and 
Thomas 
(1976)

WET Wetness WET = (Blue × 0.1509)+
(Green × 0.1973)+ (Red ×

0.3279) + (NIR × 0.3406) −
(SWIR1 × 0.7112) −
(SWIR2 × 0.4572)

Kauth and 
Thomas 
(1976)

Blue: M3 (0.490 μm), Green: M4 (0.555 μm), Red: I1 (0.640 μm), NIR: I2 (0.865 
μm), SWIR1: I3 (1.610 μm), SWIR2: M11 (2.25 μm).

B. Ouattara et al.                                                                                                                                                                                                                               Science of Remote Sensing 10 (2024) 100165 

6 



To ensure that we only include potential burned pixels in burned 
core features, we apply a 10 km buffer around each fire hotspot. The 
pixels that fall within this buffer are excluded, while the ones outside of 
it are considered to be part of the unburned core.

Using a stratified random sampling strategy, we randomly select 
20% of the burned core pixels and an equal number of unburned core 
pixels. The final burned and unburned samples are merged and divided 
into training (70%) and test (30%) sets for the RF model.

The major steps of the BA delineation are shown in Fig. 4.

3.1.4. Random forest model
The RF algorithm has gained popularity in remote sensing for the 

classification of BA due to its high accuracy and effectiveness in 
analyzing complex datasets with a large number of variables (Mashhadi 
and Alganci, 2021; Pacheco et al., 2021). Breiman (2001) proposed the 
RF technique, which is an ensemble classifier based on multiple decision 
trees for training and prediction. Each decision tree in the RF classifier 
acts as an independent base learner voting for sample predictions, 
allowing for better generalisation and more trustworthy classification 
results.

That algorithm is well-integrated into the GEE platform with the 
classification library of “ee.Classifier.smileRandomForest”. To perform 
the supervised image classification using RF, we utilized ten SI 
computed from the image composite. These included the differenced SI, 
ratio normalized SI, relativised SI, and post-fire SI, resulting in a total of 
40 predictors used in the model. Previous studies have shown that 
various parameterization schemes of the RF model minimally affect the 
classification accuracy (Pelletier et al., 2016). To minimize computa-
tional load and achieve a relatively improved classification accuracy 
(Chen et al., 2021), the number of decision trees was set to 100, with the 
other parameters were set to default values. We configured the RF al-
gorithm in “probability” mode for the classifier, which provided the 
probability (P) that a pixel was classified as “’burned”, allowing us to 
assess the confidence level of the classification. We trained the classifier 

using the burned and unburned core on the sampled predictors.
To define the confidence levels, we established three thresholds: low 

(85% > P ≥ 80%), moderate (90% > P ≥ 85%), and high (P ≥ 90%). The 
VIIRS-BA products in this study can be classified into three distinct 
categories based on their confidence levels. The naming conventions 
used for these confidence levels as standalone BA products are as 
follows.

(1) VIIRS-BA L, representing low confidence, includes pixels with 
low, moderate, and high probabilities of being burned (85% > P 
≥ 80%).

(2) VIIRS-BA M, indicating moderate confidence, consists of pixels 
with moderate and high probabilities of being burned (90% > P 
≥ 85%).

(3) VIIRS-BA H, denoting high confidence, exclusively contains 
pixels with high probabilities of being burned (P ≥ 90%).

3.1.5. Region growing
Once the confidence level is defined, we use growing region to bal-

ance commission and omission errors (Hardtke et al., 2015). It also helps 
to smooth and reduce the impact of small-scale noise and artifacts. This 
involves using a kernel filter to identify contiguous regions that have a 
high probability of being burned. Then, using a neighbourhood opera-
tion, we calculate the mode of the filtered probability within each 
connected region. This step allows us to assign a binary label of “burned” 
or “unburned” to each connected region based on a threshold value of 
the mode. Regions with a mode value above the threshold are classified 
as “burned”, while those with a mode value below the threshold are 
classified as “unburned”. A last label of “unobserved” is used for 
non-burnable areas such as water bodies and urban areas, which are 
identified using the MCD12Q1 LULC data and clouds mask within the 
target period.

Fig. 4. Major steps associated with our burned area classification near Lake Kossou in central Cote d’Ivoire (West Africa). (a) Sentinel-2 image displayed in false 
colour composition (SWIR2, NIR, RED); (b) burned and unburned candidates; (c) burned and unburned cores; (d) burned probability; (e) burned area based on 
confidence level; (e) burned area map after region growing. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.)
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3.2. Products performance

3.2.1. Burned area products intercomparison
After completing the annual analysis of VIIRS-BA, we further 

examined the VIIRS-BA based on the confidence level. Subsequently, a 
comparison was conducted between VIIRS-BA and other BA products, 
considering the BA fraction at a 0.25◦ grid resolution. The BA fraction 
represents the proportion of the land cover area within a grid that could 
potentially be affected by fire. We assessed spatial agreements and dis-
parities between the products and performed a monthly distribution 
analysis to evaluate the comparison. Additionally, a detailed compari-
son at subset sites was conducted to highlight any potential local issues 
or differences.

3.2.2. Reference data
In any accuracy assessment of BA products, having representative 

and independent reference data is crucial. Such data should accurately 
represent the spatial and temporal distribution of surfaces affected by 
fire. The BARD is a significant advance in assessing the accuracy of BA 
products, as it provides a vetted set of reference sample sites (Franquesa 
et al., 2020). BARD compiles multitemporal global and regional burned 
area reference datasets for earth observation BA products validation.

To create a BARD for Sub-Saharan Africa, Stroppiana et al. (2022) 
used S2 time series images over 50 sampling units. The sampling units 
were designed to represent major fire regimes of the African continent in 
different ecoregions. A set of conditions was used to minimize cloud 
cover and to guarantee a minimum time lag between image pairs 
(Padilla et al., 2017). S2 image pairs were classified with a RF algorithm 
to provide burned perimeters, which were then combined to create a BA 
reference dataset. The dataset includes burned and unburned polygons 
as well as masked areas and is available online (BARD, last accessed 
March 2023).

The ecoregions were grouped in major biomes based on Olson et al. 
(2001). Stratified random sampling developed by Roteta et al. (2021b)
was used to select 27 reference sampling units that represent all major 

biomes in SSA. The spatial distribution of these units is shown in Fig. 5. 
These reference sampling units provide accurate and representative data 
for assessing the accuracy of BA products in SSA. For the forthcoming 
section the sampling units will refer to validation areas (VA).

3.2.3. Accuracy assessment
Accuracy was assessed using the error matrix methodology described 

by Congalton (2001), and the following accuracy metrics were calcu-
lated: omission and commission error (OE, CE), Dice coefficient (DC), 
Jaccard Index (JI), Relative Bias (RelB), F-score (F1) and the Cohen’s 
Kappa (Kappa). The accuracy measures were also analysed by main 
biome categories.

4. Results

4.1. VIIRS-BA product overview

An overview of the VIIRS-BA product for the year 2019 is presented 
in Fig. 6. Considering the lowest confidence level as the total BA 
detected by VIIRS-BA, the estimated BA amounts to 5.1 million km2. 
When analysing the breakdown by confidence level solely, the respec-
tive BA detected for low, moderate, and high confidence levels are 
approximately 1.6 million km2 (32%), 1.3 million km2 (26%), and 2.1 
million km2 (42%) (Fig. 6a). Using the VIIRS-BA L product (low confi-
dence level), the countries with the highest BA in NHAF are South 
Sudan, Central African Republic, Nigeria, and Chad, while in SHAF, they 
are Angola, the Democratic Republic of the Congo, Mozambique, and 
Zambia (Fig. 6b).

It is widely known that fires predominantly occur during the dry 
season in SSA. The period from November to February exhibits the 
highest fire activity in NHAF with a peak month in January, while fire 
activity in SHAF is observed from June to September with a peak in 
August, as indicated by the VIIRS-BA confidence products (Fig. 6c). 
When considering the confidence levels as individual BA products, the 
burned surface area decreases from low to high confidence levels for 

Fig. 5. Validation areas selected using a stratified random sampling methodology. These areas were based on a window size of 100 × 100 km, located at the center of 
the Sentinel-2 tile. The selection of the validation areas considered the major biomes present in each area. Mediterranean Forests: 34HCJ; 34HEH; Others: 34JGP; 
Temperate Grasslands: 33LVF; 35JPN; 35LRH; Tropical Forests: 36KXA; Tropical Savannas: 29PLP; 33LZK; 34LBR, 34NCP; 35LKG; 35LKK; 35LMD; 35LNK; 35LPC; 
35LQE; 35MLN; 35PQM, 35PRN; 36JUT; 36KTF; 36LTP; 36LVM; 36PYU; 37LDC.
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each month. A notable increase in BA is observed in April and May for 
NHAF and in February for SHAF when using the VIIRS-BA L product.

Among the top ten variables with the greatest importance in both 
regions (NHAF and SHAF), NDVI pre-fire and MNDWI post-fire stand out 
as having the highest values (Appendix A1). The indices NDMI, MIRBI, 
and MNDWI are the most frequently appearing in the top ten indices. As 
for index derivatives, it appears that none have significantly greater 
importance than the others; their contributions in the top 10 are quite 
similar. However, derivatives with the post-fire index appear one more 
time than both the pre-fire index and the differenced normalized index.

More than 80% of fires in SSA occur in “Tropical Savannas”, with less 
than 10% occurring in “Temperate Grasslands” (Table 4). Our analysis 
using the high-confidence product (VIIRS-BA H) reveals that over 2 
million km2 (93%) of the burned surface in SSA corresponds to “Tropical 
Savannas”. However, this accounts for less than 10% of the total surface 
area of that biome.

4.2. Comparison with existing burned area products

4.2.1. Spatial pattern
In 2019, the VIIRS-BA product (with lowest confidence level) 

detected a total BA of 5.1 million km2, which was significantly larger 

than most of the BA estimated by other products in SSA. Specifically, it 
was 97.6% larger than the FireCCI51 product (2.6 million km2), 73.5% 
larger than the FireCCIS310 product (2.9 million km2), and 138.7% 
larger than the MCD64A1 product (2.1 million km2). However, the 
difference between the VIIRS-BA product and the FireCCISFD20 product 
(4.7 million km2) was relatively small, with a difference of 7.3%.

When comparing fire activity at a 0.25◦ grid resolution, all five 
products exhibited similar spatial patterns for both high and low fraction 
values, as shown in Fig. 6. However, the VIIRS-BA product consistently 
showed a significantly higher BA fraction in many regions compared to 
the other products (Fig. 7a–e), particularly in areas with persistent 
biomass burning like “Tropical Savannas” and “Temperate Grasslands”. 
The difference in observed BA fraction highlights a significant under-
estimation in the other inventories when using these satellite products. 
This underestimation is particularly striking, with a discrepancy of over 
80% in areas with high fire activity, especially in NHAF regions such as 
Guinea, the Central African Republic, and South Sudan. A similar trend 
can be observed in SHAF regions, specifically near Mozambique. 
Nevertheless, in specific biome like the “Tropical Forest” in West and 
Central Africa, FireCCIS310 and FireCCISFD20 detected noticeably 
more BA compared to the other products.

Regardless of the BA fraction values, the spatial agreement among 
the different BA products was found to be moderate at 51% (Fig. 7f). 
This indicates that there is a considerable degree of variation and 
inconsistency among the products in delineating BA. Approximately 5% 
of the BA detected by VIIRS-BA was not detected by the other products, 
which is up to 5 times more than the other products. It is worth noting 
that all the products only disagreed on 16% of the BA fraction surface.

4.2.2. Temporal distribution
Fig. 6c and d displays the monthly distribution of the VIIRS-BA 

output based on confidence levels. In this analysis, the BA value for 
each category represents the cumulative sum of the current category and 
all preceding categories. Notably, from the results shown in Fig. 6c and 

Fig. 6. Overview of the annual VIIRS-BA product for 2019. a) spatial distribution of VIIRS-BA L and its corresponding probability surface proportions; b) total burned 
area surface using VIIRS-BA L; c) monthly distribution of burned area in the Northern and Southern African hemispheres (NHAF, SHAF, respectively). VIIRS-BA L, 
VIIRS-BA M, VIIRS-BA H correspond respectively to VIIRS-BA product with low, moderate, and high confidence levels.

Table 4 
Burned area (103 km2) and the percentage contribution of each biome to the 
total burned area (in bold) for each confidence level (L: Low, M: Medium, H: 
High) in VIIRS-BA product.

VIIRS-BA L VIIRS-BA M VIIRS-BA H

Mediterranean forests 17.5 1.1 1.5 0.1 0.2 <1
Others 64.3 3.9 6.6 0.5 1.7 0.1
Temperate grasslands 135.3 8.2 83.6 6.5 87.9 4.1
Tropical savannas 1318.9 80.1 1130.0 87.3 1986.2 93.2
Tropical forests 111.3 6.8 72.2 5.6 54.0 2.5
Total 1647.3  1293.9  2130.0 
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d, it is evident that the highest BA values are associated with low con-
fidence, while the lowest values correspond to high confidence. To 
facilitate clearer and more straightforward comparisons, we intention-
ally focused on the moderate confidence product of VIIRS-BA M for the 
monthly comparisons with other BA products. In Fig. 8, this particular 
product is referred to as VIIRS-BA.

Both VIIRS-BA and the FireCCISFD20 product detected a larger 
amount of BA compared to the other three products throughout all 
months, particularly during periods with high fire occurrence (Fig. 8). 
The values for VIIRS-BA and the FireCCISFD20 product are quite similar, 
except for May and November when VIIRS-BA detected more BA than 
FireCCISFD20 in NHAF. On the other hand, in SHAF, FireCCISFD20 
detected more BA than VIIRS-BA during September to November. 
Despite variations in magnitude, the monthly BA shows similar trends in 
terms of fluctuation for all BA product. The peak observed in May for 
VIIRS-BA in the NHAF, which indicates a potential anomaly, will be 
thoroughly addressed in section 3.4. Typically, the majority of fire oc-
currences takes place in NHAF during November to March, while in 

SHAF, they are more prevalent from June to September.

4.3. Spatial validation

4.3.1. Overall assessment
Our VIIRS-BA product demonstrates varying levels of accuracy 

depending on the confidence level considered (Table 5). The OA aver-
ages at 75.7% (minimum: 74.7%; maximum: 76.8%). The CE ranges 
from 7.8% to 23.4%, while the OE falls between 29.4% and 58.8%. The 
DC and JC reach 64.3% and 47.3%, respectively. The RelB ranges from 
28.6% to 31.9%, indicating a positive bias throughout. The Kappa values 
indicate a fair to moderate level of agreement, ranging from 38.3% to 
45.2%. In contrast, the F1 scores are higher, reaching up to 64.3%, 
which suggests a relatively good balance between precision and recall 
despite the moderate agreement.

In general, the four other products demonstrate good accuracies, 
with an OA ranging from 79.4% (MCD64A1) to 90.7% (FireCCISFD20). 
These products had relatively low CE (below 10%) with the lowest value 

Fig. 7. Spatial distribution amongst burned area products at 0.25◦ cell grid resolution in the Northern and Southern African hemispheres (NHAF, SHAF, respectively) 
of Sub-Saharan Africa. (a) to (e): the burned area fraction by products; a) FireCCI51, b) FireCCIS310, c) FireCCISFD20, d) MCD64A1, e) VIIRS-BA. f) spatial 
agreement and discrepancy.

Fig. 8. Monthly distribution of burned area by zone (Northern and Southern African hemisphere) using FireCCI51, FireCCIS310, FireCCISFD20, MCD64A1 and 
VIIRS-BA products.
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for MCD64A1 (6.4%). For the remaining metrics, FireCCISFD20 out-
performed the others, exhibiting the lowest OE of 12.4%, the highest DC 
of 85.8%, a JI of 75.2%, and a far better balance between precision and 
recall with F1 of 85.8%. In terms of RelB and Kappa, FireCCISFD20 
demonstrated the closest agreement to the reference data with a positive 
RelB of 11.3%, whereas the others displayed a RelB exceeding 21%. Its 
Kappa percentage of 78.9% shows substantial agreement with the 
reference data.

Among the moderate spatial resolution products (excluding Fire-
CCISFD20), the VIIRS-BA L product, characterized by a low confidence 
level, exhibits the lowest OE at 29.4%. On average, it is 44.8%, with a 
range of 40.7%–50.5%, for the other moderate spatial resolution prod-
ucts. In contrast, both VIIRS-BA M (moderate confidence) and VIIRS-BA 
H (high confidence) show values that are fairly similar to the others. 
Notably, VIIRS-BA L stands out with a value close to double that of the 
others.

4.3.2. Ecoregional assessment
Accurate measurement of BA is crucial for evaluating the impact of 

wildfires on the environment across all ecoregions. The “Tropical Sa-
vannas” biome showed the best accuracies for most metrics, except CE 
and RelB. For CE and RelB, the “Mediterranean Forest” and “Others” 
biomes had the highest accuracies across all products. In contrast, these 
two biomes had the lowest accuracies for the remaining metrics.

In the “Mediterranean Forest” biome, the OE is almost null for all 
products, while the CE is significantly greater than 95%. This results in 
high overall accuracy, exceeding 80% for all products. However, it is 

important to note that this value conceals the fact that both CE and OE 
are quite poor for all products. In the “Others” biome, we observed a 
similar trend. The VIIRS-L product has an OE below 40%, while other 
products have an OE above 80%. For the “Temperate Grasslands” and 
"Tropical Forest” biomes, the CE is low for almost all products. However, 
FireCCISFD20 outperforms others in terms of OE, followed by VIIRS-L. 
In the “Tropical Savannas” biome, FireCCISFD20 has the lowest OE, 
followed by VIIRS-L. For CE, MCD64A1 has the lowest value. Fig. 9
displays some example of BA results obtained from BARD using the four 
BA products.

4.4. Regional focus

The seasonal analysis of VIIRS-BA revealed a significant increase in 
BA during the month of May in the NHAF region. This increase appeared 
to be not previously observed when comparing the VIIRS-BA product, 
particularly the moderate confidence level, with other BA products in 
the NHAF region. Consequently, we focused in investigating the specific 
areas where these differences occurred. Fig. 10 illustrates an example of 
a small region located north of Guinea in West Africa, specifically 
examining the spatial comparison for the month of May.

Upon examination, it becomes evident that VIIRS-BA successfully 
detects a substantial portion of BA that the other products fail to capture. 
The spatial distribution is somewhat similar to that of FireCCISFD20, but 
with a higher density of BA patches, which could explain the differences 
in monthly BA. Notably, the patches appear more fragmented in Fire-
CCISFD20 compared to VIIRS-BA. While this fragmentation trend is also 

Table 5 
Confusion matrix showing the overall comparison of classification accuracy of different burned area products over the 27 validation areas. The areas are given in 
square kilometers (km2) while the error metrics are given in percentage (%). TP: true positive; FP: false positive; TN: true negative; FN: false negative; OA: overall 
accuracy; CE: commission error; OE: omission error; DC: Dice coefficient; JI: Jaccard index; RelB: Relative Bias; F1: F-score; Kappa: Cohen’s Kappa. The values in bold 
represent the best metrics for each group: (1) Global/Regional and (2) VIIRS-BA products.

TP FP TN FN OA CE OE DC JI RelB F1 Kappa

(km2) (%)

FireCCI51 108.3 36.5 363.6 82.0 79.9 9.1 43.1 64.6 47.8 23.7 64.6 51.0
FireCCIS310 112.8 31.7 368.4 77.5 81.5 7.9 40.7 67.4 50.8 21.4 67.4 54.8
FireCCISFD20 160.2 30.2 355.4 22.7 90.7 7.8 12.4 85.8 75.2 11.3 85.8 78.9
MCD64A1 94.3 25.8 374.3 96.0 79.4 6.4 50.5 60.8 43.6 24.0 60.8 47.7
VIIRS-BA L 134.4 93.6 306.5 55.9 74.7 23.4 29.4 64.3 47.3 31.9 64.3 44.9
VIIRS-BA M 110.4 57.0 343.1 80.0 76.8 14.2 42.0 61.7 44.6 28.6 61.7 45.2
VIIRS-BA H 79.9 31.3 368.9 110.5 76.0 7.8 58.8 53.0 36.0 29.3 53.3 38.3

Fig. 9. Example of burned area results obtained from BARD and confusion maps with burned area products at four sites: (a) Sentinel-2 (S2) tile 33LVF, (b) S2 tile 
33LZK. The main biome for site (a) is “Temperate Grasslands” and “Tropical Savannas” for site (b).
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observed in the other three products, their lower spatial resolution 
makes them appear coarser than FireCCISFD20.

To further illustrate the general pattern of detected BA at a local 
scale, we compare the various BA products at their original spatial res-
olution for the year 2019 (Fig. 11). For this comparison, we selected two 
sample sites situated within the “Tropical savannas” biome, which 
covers 66% of the study area and experiences over 80% of fire occur-
rences (section 3.1). The first site (Fig. 11a) is located near Benin’s 
Pendjari National Park in West Africa and consists of grasslands and 
croplands, according to the MODIS Land Use and Land Cover (LULC) 
data. The second site (Fig. 11b) is situated in eastern Zambia, South- 
Central Africa, and includes a mix of forests, savannas, and grasslands 
based on the MODIS LULC data.

In both sample sites, all BA products exhibit similar shapes, indi-
cating significant BA. However, FireCCISFD20 and VIIRS-BA exhibit 
notably higher BA densities compared to the other products. Further-
more, fire patches identified by VIIRS-BA tend to be larger in size 

compared to the other products. Interestingly, both FireCCI51 and 
MCD64A1 products show a noticeable underestimation of the BA in both 
sample sites.

5. Discussion

5.1. Detection capabilities

The estimated BA for the year 2019 obtained from the VIIRS-BA 
product, at the lowest confidence threshold, was relatively similar to 
the FireCCISFD20 product, with values of 5.1 and 4.7 million km2 

respectively. In comparison, the FireCCIS310 estimate was slightly 
lower at 2.9 million km2. When comparing the more recent BA products 
(VIIRS-BA and FireCCISFD20) to global products (FireCCI51, 
MCD64A1), it was found that the former tended to detect approximately 
twice as much BA. These findings confirm the results of Roteta et al. 
(2019) that previous moderate spatial resolution estimations of global 

Fig. 10. Comparison of burned area products in May in northern Guinea, West Africa, highlighting disparities among the different products.

Fig. 11. Comparison of different burned area products at two subset sites in Africa; (a) Pendjari National Park in Benin, West Africa; (b) Eastern Zambia, South- 
Central Africa. The burned areas in 2019 are displayed based on their corresponding day of the year.

B. Ouattara et al.                                                                                                                                                                                                                               Science of Remote Sensing 10 (2024) 100165 

12 



biomass burning may have underestimated BA in Africa. As a conse-
quence, the effect of biomass burning on fire emissions could be 
significantly larger than what was previously reported (Ramo et al., 
2021).

Two main factors could account for this discrepancy. Firstly, the 
disparity in observed results may stem from the differences in input 
resolution utilized by the algorithms. The use of moderate spatial reso-
lution satellite imagery in the MODIS-based BA products (FireCCI51, 
MCD64A1) could result in the underrepresentation of small fires and 
incomplete depiction of larger fire extents (Hall et al., 2021; Xu et al., 
2022a). Previous studies on accuracy assessments according to fire size 
actually concluded on the missing small fires and higher BA in large fires 
(Nogueira et al., 2017; Campagnolo et al., 2021). Conversely, products 
with higher spatial resolution, such as FireCCIS310, FireCCISFD20, and 
VIIRS-BA, which also employ VIIRS-AF input, exhibit enhanced sensi-
tivity to smaller fires with lower intensity, as previously anticipated by 
Schroeder et al. (2014).

Secondly, the significant improvement in performance can be 
attributed to the reduction of OE in both FireCCISFD20 (20 m) and 
VIIRS-BA (250 m). These products utilize higher spatial resolution sur-
face reflectance data in their algorithms, which surpasses the capabil-
ities of FireCCIS310 (300 m). This enhancement allows for more 
accurate detection of smaller fire patches, leading to an overall 
improvement in the performance of these products. This capability 
correlates with the concept introduced by Boschetti et al. (2004)
regarding the “low-resolution bias,” which refers to the imprecision 
introduced by the difference in spatial resolution between high and low 
spatial resolution data. Our finding is consistent with Chuvieco et al. 
(2022), who also observed an increase in accuracy performance due to 
the higher temporal resolution of the combined S2 A and B missions. The 
combination of VIIRS-SR, our composite mode, and VIIRS-AF data at a 
15-day interval effectively addresses the issue of burn scars that quickly 
disappear. This challenge is commonly observed in SSA, where there is a 
prevalence of low or moderate intensity fires with short durations. These 
fires are often a result of prescribed burning practices carried out early in 
the mild dry season for vegetation management (Teunissen et al., 2022), 
as well as the widespread use of “slash and burn” agricultural practices 
in the region (Bauer et al., 2019). These factors contribute to the gen-
eration of small fires, resulting in a mosaic-like pattern of burn patches 
with relatively low intensity. Although the pre and post-image approach 
may not be suitable for many small fires due to their short time duration 
(Hall et al., 2016), our utilization of the mentioned satellite data and 
technique allows us to better capture the highly dynamic fire regimes in 
SSA.

As a result, FireCCISFD20 and VIIRS-BA emerge as the most accurate 
products in terms of OE. The findings reveal a substantial reduction in 
OE with VIIRS-BA, presenting OE values between 58% and 68% lower 
than those of other global BA products. However, the regional product 
FireCCISFD20 demonstrates a 37% improvement in OE compared to 
VIIRS-BA. VIIRS-BA exhibits CE up to three times higher than the CE of 
other BA products. The observed superiority of FireCCISFD20 over the 
others is not unexpected. This anticipated disparity may be attributed to 
the fact that, in contrast to FireCCISFD20 with a 20 m resolution, each 
pixel of VIIRS-BA represents a 250 m × 250 m area. The validation data 
used also has a 20 m resolution, leading to higher CE in VIIRS-BA. 
Consequently, the total burned surface area estimated by VIIRS-BA is 
slightly higher than that of FireCCISFD20. In fact, one pixel identified as 
burned in VIIRS-BA covers approximately 150 times the area of a pixel in 
FireCCISFD20, highlighting an acknowledged edge effect in moderate 
spatial resolution BA detection (Humber et al., 2019). While improve-
ments in pre-processing could potentially address this issue, a study by 
Franquesa et al. (2022) suggests that moderate spatial resolution sensors 
like VIIRS or MODIS may already be close to the maximum achievable 
CE.

VIIRS-BA offers two significant advantages over FireCCISFD20. 
Firstly, the main input data for VIIRS-BA has been consistently available 

for a longer period compared to FireCCISFD20. This is particularly 
beneficial for users who require long time-series data on BA (Mouillot 
et al., 2014). Generating long-term records necessitates the combination 
of products derived from different input datasets, and ensuring their 
consistency is crucial to avoid any disruptions in temporal trends 
(Lizundia-Loiola et al., 2021). Secondly, the processing time required to 
generate FireCCISFD20 for large areas presents two main challenges. 
Firstly, there is a large volume of input data that needs to be processed, 
which can be time-consuming. Additionally, the complexity of the time 
series analysis needed to detect BA adds to the processing time 
(Chuvieco et al., 2022). Although the S2 satellites provide a higher 
spatial resolution, the presence of a time gap of around 3–5 days be-
tween overpasses (excluding cloud cover) leads to relatively significant 
errors (Hall et al., 2021). The theoretical temporal resolution is likely to 
further decrease during the rainy season, thus challenging the consistent 
assessment over time.

5.2. Challenges and future directions

Some internal issues were identified in the VIIRS-SR, specifically in 
the Collection 1 used in this study (Giglio et al., 2019). One of the 
problems encountered is the presence of cloud mask artifacts, which can 
lead to higher CE along the edges of inland water bodies and at high 
latitudes. These artifacts may explain the unusually high BA values 
observed in May for NHAF and February for SHAF. To address this issue, 
in the current version of VIIRS-BA, we recommend utilizing either the 
moderate or high confidence products for specific time and spatial areas. 
It is advised to consider the associated per-pixel uncertainty layer, 
similar to the one used by the Fire_cci project (last accessed in June 
2023). It is worth noting that the upcoming VIIRS-SR Collection 2 is 
expected to resolve this problem (Giglio et al., 2023).

Until the potential limitation mentioned above are addressed, the 
question regarding a potentially new insight into fire activity in SSA 
remains unresolved. VIIRS-BA, in particular, detected an extended fire 
season in the NHAF, with a notable increase in the detection frequency 
of late fires. However, the existence of any temporal shift or new pattern 
in BA in that region is yet to be determined.

In general, moderate to low spatial resolution BA products often 
encounter mixed pixel issues, where a single pixel may contain a blend 
of burned and unburned areas or different land cover types. This chal-
lenge is also relevant to our VIIRS-BA product, given its base spatial 
resolution of 250 m. However, most BA products with moderate to low 
spatial resolution, such as those used for comparing with our VIIRS-BA 
product in the literature, primarily differentiate between burned and 
unburned classes. Yet, the accuracy of final products can be enhanced 
with additional steps to reduce potential errors in estimating the actual 
extent of BA. Strategies to improve accuracy include integrating VIIRS 
data with higher resolution data (e.g., S2) through fusion approaches to 
enhance spatial detail, as demonstrated by studies such as those by Pinto 
et al. (2021) and Seydi et al. (2022) for forest fires in Europe. However, 
challenges remain regarding data continuity for long-term analysis, 
especially since S2 data are relatively recent and may not cover large 
regions like the SSA comprehensively. Additionally, handling 
high-resolution data can pose computational challenges. Another 
approach involves using statistical methods or machine learning tech-
niques to model and compensate for mixed pixel effects in BA mapping, 
as exemplified by technologies like super-resolution burned-area map-
ping (SRBAM) (Wang et al., 2019). Similarly, the Burned-Area Subpixel 
Mapping (BASM) workflow has been designed to accurately identify BA 
within mixed pixels, benefiting post-fire management, carbon budget 
quantification, and other assessments (Xu et al., 2022b). However, these 
techniques are not infallible, as spectral confusion can still arise when 
distinguishing between BA and other land cover types within the same 
pixel (Liu et al., 2019).

In the future, an assessment of our VIIRS-BA can be conducted by 
comparing it with the planned NASA VIIRS Collection 2 VNP64A1 BA 
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product (Giglio et al., 2023). The upcoming version of our VIIRS-BA will 
incorporate the NOAA-20 VIIRS-AF data, which has been available since 
2020 (FIRMS, last accessed March 2023). This integration of active fire 
data from both Suomi NPP and NOAA-20 has the potential to further 
enhance the accuracy of VIIRS-BA.

5.3. Research contributions and potential impacts

The findings of this study underscore the significant impact of inte-
grating VIIRS-SR and VIIRS-AF into BA mapping algorithms, benefiting 
not only the fire community but also various applications. The West 
African Science Service Centre on Climate Change and Adapted Land 
Use (WASCAL) plans to integrate this product (VIIRS-BA) into their 
climate and environmental services. This integration aims to provide 
harmonized and up-to-date information on BA in SSA addressing the 
current lack of such services in the region. The improved detection ca-
pabilities, along with enhanced spatial and temporal accuracies, have 
far-reaching implications. One notable implication is the utilization of 
higher spatial resolution data for obtaining more precise information on 
biomass burning patterns. This offers advantages such as easier and 
faster access to near real-time information compared to FireCCISFD20, 
despite FireCCISFD20 having a higher spatial resolution. This 
advancement holds particular importance in understanding the envi-
ronmental consequences of biomass burning, identifying fire sources 
and causes (Ramo et al., 2021), enhancing fire monitoring and predic-
tion (Chen et al., 2022), and guiding land use and fire management 
policies (Zhao et al., 2017).

6. Conclusion

As the MODIS mission is coming to an end, it is important to find 
suitable replacements to continue providing global maps of BA at a 
moderate level of detail in the future. The VIIRS instrument shows 
promise as a potential replacement for MODIS due to its enhanced ca-
pabilities. In this study, a new regional BA product called VIIRS-BA was 
introduced, which solely utilizes data from the VIIRS instrument, 
including VIIRS-SR and VIIRS-AF data. The current version of VIIRS-BA 
allows for the detection of burned scars at a resolution of 250 m and 
provides updates every 15 days. The product utilizes spectral indices 
before and after fires, as well as a RF image classification technique 
implemented in the GEE platform. The output of the product includes 
information presented at three confidence levels, indicating the reli-
ability of the detected BA. To evaluate the performance of VIIRS-BA, 
comparisons were made with global BA products such as FireCCI51, 
FireCCIS310, and MCD64A1, as well as a regional product called Fire-
CCISFD20. The accuracy of VIIRS-BA was also validated using an in-
dependent reference dataset of BA (BARD). This allowed for a 
comprehensive assessment of the reliability and effectiveness of the 
VIIRS-BA product in detecting and mapping BA.

This research emphasises the significance of improved detection 
capabilities in BA mapping. The VIIRS-BA product identified 5.1 million 

km2 of BA in SSA for the year 2019, significantly exceeding the BA 
detected by other global moderate spatial resolution products and 
closely aligning with the fine resolution FireCCISFD20 product, with 
only a 7.3% difference. The comparison of different BA products high-
lights the underestimation of global biomass burning in previous esti-
mations. Factors contributing to this discrepancy include variations in 
resolution of reflectance products input, with higher spatial resolution 
products exhibiting enhanced sensitivity to smaller fires. The reduction 
of OE in FireCCISFD20 and VIIRS-BA, achieved through the use of higher 
spatial surface reflectance data, improves overall performance. The 
differences in BA detection were less pronounced in biomes with 
persistent biomass burning, such as “Tropical Savannas” and 
“Temperate Grasslands,” suggesting that the VIIRS-BA product is 
particularly effective in these regions. Despite some commission prob-
lems in VIIRS-BA due to its lower spatial resolution, it offers advantages 
in terms of longer data availability and faster processing time. Inte-
grating VIIRS-SR and VIIRS-AF data enhances environmental assess-
ments, fire monitoring, and land use policies. Future directions involve 
improving the overall accuracy and reliability of the VIIRS-BA product. 
The upcoming BA products and integrating additional active fire data 
from NOAA to further enhance accuracy (reduce CE) and enable more 
precise information on biomass burning patterns and their 
consequences.
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Appendix 

A1. Experiment to test the influence of spatial resolution on burned area (BA) accuracy and scars detection capabilities

Introduction
New research indicates that small fires are frequently overlooked in estimating burned areas (BA), potentially leading to bias (Randerson et al., 

2012; Roteta et al., 2019; Ramo et al., 2021). The pronounced heterogeneity of Africa’s land use/land cover (LULC) makes precise BA classification 
difficult (Linderman et al., 2005; Adole et al., 2018).

We assessed the impact of spatial resolution on BA products using the dataset outlined in Section 2.2 of the main document. We wanted to find the 
250 m, 375 m, or 500 m spatial resolutions that best match the BA patterns seen in high-resolution Sentinel-2 (S2) data from the Burned Area 
Reference Database (BARD). These resolutions should also be able to capture the different burn scar patterns that are common in African mosaic 
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burning regimes (Laris, 2005).
We selected seven validation sites covering the Northern African hemisphere (NHAF) from the BARD dataset (Stroppiana et al., 2022), as depicted 

in Fig. A.1. Section 2.4.2 of the main document provides BARD details. Accuracy was evaluated using Congalton’s (2001) error matrix methodology, 
and metrics such as omission and commission error (OE, CE), Dice coefficient (DC), Jaccard Index (JI), and Relative Bias (RelB) were calculated.

To assess heterogeneity levels, we used fire patch size distribution as a fragmentation metric. Boschetti et al. (2004) identified this landscape metric 
as influencing the accuracy of moderate-to low-resolution maps. Pixel-level information obtained at the three spatial resolutions mentioned (250 m, 
375 m, and 500 m) derived fire patch identification.

Fig. A.1. Study area for the test representing the Northern African hemisphere (NHAF) according to the GFED regionalization (Van Der Werf et al., 2017) and the 
seven validation areas. These areas were based on a window size of 100 × 100 km, located at the center of the Sentinel-2 tile. The biome is Tropical Savannas. 1: 
29PLP; 2: 29PLM; 3: 34PDU; 4:34NCP; 5: 35PRN; 6: 35PQM; 7: 36PYU.

Accuracy assessment
For all confidence levels, the 250 m spatial resolution demonstrates the highest accuracy except for CE, although the difference compared to 375 m 

and 500 m is not very significant (Table A.1). Given the inverse relationship between OE and CE, we expected this slightly higher CE.

Table A.1 
Confusion matrix showing the overall comparison of classification accuracy of VIIRS-BA at the different confidence and spatial resolution over the seven validations 
area. The areas are given in square kilometers (km2) while the error metrics are given in percentage (%). TP: true positive; FP: false positive; TN: true negative; FN: false 
negative; OA: overall accuracy; CE: commission error; OE: omission error; DC: Dice coefficient; JI: Jaccard index; RelB: Relative Bias. The values in bold represent the 
best metrics for each group: (1) Low confidence; (2) Moderate confidence; (3) High confidence.

Confidence Spatial resolution TP FP TN FN OA CE OE DC JI RelB

(km2) (%)

Low 250 21.4 25.7 16.1 7.7 52.9 61.5 26.5 56.2 39.1 53.6
375 20.9 25.5 16.3 8.2 52.5 61 28.2 55.4 38.3 54.2
500 20.6 25.3 16.5 8.5 52.4 60.5 29.2 55 37.9 54.5

Moderate 250 17.0 19.8 22.0 12.2 54.9 47.4 41.8 51.5 34.7 54.2
375 16.0 19.3 22.4 13.2 54.1 46.3 45.2 49.5 32.9 55.7
500 15.3 18.8 23.0 13.9 53.9 45 47.7 48.2 31.8 56.6

High 250 10.8 11.6 30.1 18.4 57.6 27.9 63.1 41.7 26.4 55.6
375 9.9 11.0 30.7 19.3 57.3 26.4 66.1 39.5 24.6 57
500 9.3 10.6 31.2 19.8 57.1 25.4 67.9 38.1 23.5 57.7

Fire patch size
The analysis of burned area (BA) patches in this study revealed insights into their size distribution and occurrence (Fig. A.2). These patches were 

identified every 2 weeks (15 days) and categorized into four size classes: >250 ha, 125–250 ha, 25–125 ha, and <25 ha.
Across all confidence levels, the distribution of patch size categories was quite similar, except for the 125–250 ha category, which had a ratio 

almost two times lower than the others. However, the VIIRS-BA at 250 m detected more burned occurrences than others, up to two to three times for 
the smallest category (<25 ha).

Based on this 15-day categorization, small fires (<125 ha) accounted for 40.9% (500 m) to 57.5% (250 m) of the total burned area in the NHAF 
region (Table A.2), consistent with findings from Ramo et al. (2021) in Africa. 
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Fig. A.2. Total burned areas according to the patch size occurrence distribution.

Table A.2 
Average patch size distribution (%) according to VIIRS-BA spatial resolution. Standard deviation is indicated in parentheses.

Spatial resolution Patch size

<25 ha 25–125 ha 125–250 ha >250 ha

250 m 28.1 (0.5) 29.4 (0.1) 15.1 (0.1) 27.4 (0.3)
375 m 15.3 (0.4) 31.3 (0.1) 12.7 (0.3) 40.7 (0.2)
500 m 18.0 (0.9) 22.9 (0.4) 10.8 (0.3) 48.4 (1.1)

Conclusion
Boschetti et al. (2004) investigated the impact of low spatial resolution on BA product accuracy, highlighting the difficulty of accurately classifying 

pixels in low-resolution datasets. They termed this phenomenon "low-resolution bias," which refers to inaccuracies arising from differences in spatial 
resolution between high and low spatial resolution datasets. Laris and Wardell (2006) further addressed this issue, noting that coarse spatial resolution 
data often struggle to detect small BA accurately, resulting in an underestimation of BA extent, especially in areas with fragmented burn patterns.

Our analysis revealed a notable occurrence of small BA patches (<25 ha), indicating a highly fragmented and heterogeneous study area. This 
fragmentation poses challenges for accurate BA detection, particularly with lower spatial resolutions (375 m, 500 m). Additionally, our findings align 
with those of Smith et al. (2003), who observed that classification accuracy tends to decrease as patch size decreases and LULC diversity increases.

Based on the accuracy assessment and patch size distribution results, we selected a spatial resolution of 250 m for our final VIIRS-BA product. This 
resolution offers a balance between detecting small BA patches and accurately capturing the heterogeneity of the landscape.
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A2. Variable importance

Fig. A.3. The ten most important features of the random forest in the Northern and Southern African hemispheres (NHAF and SHAF, respectively). The segment 
length indicates, in percentage, the importance of the 24 model runs, which correspond to each biweekly output for each region (NHAF and SHAF). Numbers 
correspond to the derivatives of the original index explained in Section 2.3.2 of the main document. These numbers correspond to: 1) pre-fire index; 2) post-fire 
index; 3) differenced normalized index; 4) relativised index.
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