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ABSTRACT
The intestinal microbiota is increasingly recognized as a crucial player in the development and 
maintenance of various chronic conditions, including obesity and associated metabolic diseases. 
While most research focuses on the fecal microbiota due to its easier accessibility, the small 
intestine, as a major site for nutrient sensing and absorption, warrants further investigation to 
determine its microbiota composition and functions. Here, we conducted a clinical research project 
in 30 age- and sex-matched participants with (n = 15) and without (n = 15) obesity. Duodenojejunal 
fluid was obtained by aspiration during endoscopy. Phenotyping included clinical variables related 
to metabolic status, lifestyle, and psychosocial factors using validated questionnaires. We per-
formed metagenomic analyses of the oral, duodenojejunal, and fecal microbiome, alongside 
metabolomic data from duodenojejunal fluid and feces, integrating these data with clinical and 
lifestyle information. Our results highlight significant associations between duodenojejunal micro-
biota composition and usual dietary intake, as well as clinical phenotypes, with larger effect sizes 
than the associations between these variables and fecal microbiota. Notably, we found that the 
duodenojejunal microbiota of patients with obesity exhibited higher diversity and showed distinct 
differences in the abundance of several duodenojejunal microbiota species compared with indi-
viduals without obesity. Our findings support the relevance of studying the role of the small 
intestinal microbiota in the pathogenesis of nutrition-related diseases.
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Introduction

Obesity is a cornerstone of non-communicable dis-
eases and has become a critical global health issue. 
Indeed, recent estimates indicate that 1 billion peo-
ple worldwide are living with obesity.1 Obesity 
accounts for 2 to 8% of the total health-related 
costs across different countries, due to its numer-
ous complications, including cardiovascular 

diseases, type 2 diabetes, and cancers. The growing 
burden of these conditions underscores the urgent 
need for preventive actions and the development of 
new therapeutic approaches to mitigate the impact 
of obesity on global health. The composition of the 
gut microbiota varies between individuals and 
interacts with the host to exert positive or negative 
effects on metabolism. Through these effects, the 
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gut microbiome plays a role in the regulation of 
body weight, blood glucose, blood lipids, and the 
development and/or progression of the aforemen-
tioned cardiometabolic diseases.2 Yet, previous 
research has primarily focused on the fecal micro-
biome, which is representative of the distal colonic 
microbiota. While these studies have provided 
valuable insights into the compositional and func-
tional changes associated with obesity,3 the fecal 
microbiota represents only a fraction of the gastro-
intestinal tract microbiome.

The microbiota of the proximal small intestine is 
thus crucial to study, as this segment of the digestive 
tract has critical functions in food digestion, nutrient 
sensing, absorption, enterohormone production, 
and metabolic homeostasis.4,5 Indeed, alterations in 
these functions of the proximal small intestinal 
epithelium have been described in obesity and meta-
bolic diseases and are thought to contribute to the 
development of these pathologies.6 Conversely, fatty 
acid malabsorption in the upper small intestine, 
together with duodenal inflammation, is 
a cornerstone of childhood stunting.7,8 It has been 
observed that the size of the mucosa is increased in 
people with obesity,9 an observation that has been 
recapitulated in rodents fed a high-fat diet in several 
studies.10 The barrier function of the small intestine 
has also been shown to be altered in people with 
obesity and associated cardiometabolic disease.11 In 
addition, the mucus layer in mice is disrupted by 
a Western diet not only in the colon but also in the 
small intestine.12 Obesity is also associated with 
a reduced stimulation of postprandial insulin secre-
tion by gut hormones,13 which is linked to reduced 
sensing of the nutrients and to epithelial insulin 
resistance in the jejunum.9,14

While nutrients overload is a major driver of the 
metabolic alterations observed in cardiometabolic 
diseases, evidence points toward a role for the 
intestinal microbiota as a mediator between the 
diet and the host metabolism. Indeed, germ-free 
animals fed the same diet but colonized with the 
microbiota from healthy or diseased individuals 
exhibit different degrees of obesity and develop-
ment of metabolic alterations.15,16 Studies in 
rodents fed a high-fat diet have shown that altera-
tions in small intestine microbiota are concomitant 
to the alteration of epithelial functions within the 
same gut segment. However, few of them have 

demonstrated the causal role of the microbiota 
alterations in these pathophysiological processes. 
Notably, Bauer et al. elegantly demonstrated that 
ACSL3-fatty acids sensing is abolished by a high-fat 
diet and can be restored by increasing the abun-
dance of Lactobacillus gasseri in the small intestine 
lumen, which subsequently reduces whole-body 
gluconeogenesis.17 Similarly, the altered jejunal 
microbiota derived from animals fed a high-fat 
diet has been shown to enhance triglyceride and 
cholesterol absorption in mice fed a low-fat diet.18 

Conversely, Vonaesch and colleagues showed that 
Streptococci isolated from the duodenal fluid of 
children with enteropathy are able to reduce fatty 
acids absorption by mICcl2 murine fetal intestinal 
epithelial cell line.7 The small intestine microbiota 
is not only able to modulate the absorption of fatty 
acids but also of cholesterol. Indeed, increased or 
decreased intestinal cholesterol absorption in the 
upper small intestine is transmissible from humans 
to mice by fecal microbiota transfer.19 Nonetheless, 
it should be noted that most of these studies were 
conducted on rodent models that are copropha-
gous. Coprophagy exposes the small intestine 
epithelium to fecal microbes and fecal metabolites. 
Consequently, knowledge about the role of the 
small intestine microbiota, particularly in its prox-
imal parts, drawn from rodent models cannot be 
fully translated to human physiopathology. This 
underscores the need for focused research on the 
human duodenal and jejunal microbiome, as it may 
provide insights into the role of this microbiota in 
nutrient absorption and metabolic regulation in 
humans.

Distinct physicochemical conditions exist in 
each segment of the GIT, shaping the microbial 
ecosystems in each region.20 Recently, major efforts 
based on metagenomic sequencing have been made 
to describe the composition of the upper small 
intestine microbiota under physiological 
conditions,21 showing that the upper small intes-
tine microbiota is dominated by the genera 
Neisseria, Lactobacillus, Haemophilus, 
Streptococcus, Veillonella, and Actinomyces.22 

While studies on rodents have demonstrated the 
causal influence of the microbiome residing in the 
proximal small intestine on metabolic regulation, 
clinical investigations of this microbiome in 
human obesity, remain limited and conflicting.5 

2 E. STEINBACH ET AL.



In particular, Nardelli and colleagues constituted 
a population of 16 lean participants and 19 patients 
with obesity and observed, using 16S rRNA gene 
profiling, that obesity is associated with a decrease 
in the abundance of the Firmicutes phylum and an 
increase in the abundance of the Proteobacteria 
phylum in the duodenum.23 This observation has 
not been confirmed in a recent larger cohort, where 
obesity status was not associated with a decrease of 
the Firmicutes phylum but with an increase in 
alpha diversity and of the abundance of several 
Lactobacillus species.24 There is thus a pressing 
need for further research to elucidate the intricate 
interplay between the upper small intestine micro-
biota and metabolic health in humans,4,5 as well as 
to better understand the effect of lifestyle on the 
host-microbiota dialogue.

In the present study, we investigated the prox-
imal small intestine microbiome and the associated 
metabolome in thoroughly characterized partici-
pants with (n = 15, OB) or without (n = 15, NOB) 
obesity matched for age and sex in a population 
named JeMiMe (Jejunal microbiota in metabolic 
diseases). We compared the duodenojejunal fluid 
(DJF) microbiome obtained by aspiration during 
endoscopy at the Treitz Angle with the oral and 
fecal microbiome. Additionally, we conducted sta-
tistical analyses to explore potential associations 
between these microbiomes, the duodenojejunal 
metabolome, and participants’ lifestyles and clini-
cal phenotypes.

Material and methods

JeMiMe population

The study, conducted at Hôpital-Privé des 
Peupliers, Ramsay-Santé, Paris, France, is an obser-
vational study. Prior to inclusion, informed written 
consent was obtained from participants. The study 
adhered to the Helsinki Declaration and obtained 
an agreement from the ethics committee (IRB) 
“Comité de protection des personnes Ile de 
France VIII” (CPP Ile de France 8; approval num-
ber: 210648). The « Institut National de la Santé Et 
de la Recherche Médicale (INSERM) » is promoter 
of this clinical study.

The studied population comprised 30 partici-
pants categorized into two groups: the Non-Obese 

Group (NOB; n = 15): composed of individuals 
without obesity or known metabolic disorders for 
which endoscopy was scheduled due to minor epi-
gastralgia that did not necessitate medication; the 
Obesity Group (OB; n = 15): composed of candi-
dates for bariatric surgery for which gastroscopy 
was a prerequisite procedure.

The study employed specific inclusion and 
exclusion criteria to select eligible participants, 
these criteria are listed on the Clinical Trial.gov 
website (NCT05186389). Notably, patients with 
prior use of prebiotics, probiotics, and antibiotics 
within the 3 months before their inclusion in the 
study were excluded.

Clinical and lifestyle data

Clinical and lifestyle data were managed and/or 
collected using REDCap electronic data capture 
tools hosted at Sorbonne Université.25,26 In addi-
tion to a general medical questionnaire, various 
standardized questionnaires were used to evaluate 
dietary intakes (previously validated food fre-
quency questionnaire27 (FFQ)), alcohol consump-
tion (Alcohol Use Disorders Identification Test), 
nicotine dependence (Fagerström Questionnaire), 
perceived stress (Perceived Stress Scale-10), anxiety 
(Hospital Anxiety Depression Scale, only anxiety- 
items), depression (Beck Depression Inventory), 
circadian rhythm (Horne and Ostberg 
Questionnaire), and eating behavior (Dutch 
Eating Behavior Questionnaire (DEBQ)).28–33

Anthropometric measurements and body com-
position were measured (MC-780 MA P, Tanita, 
Amsterdam, the Netherlands). To avoid redun-
dancy, the results only display a subset of body 
composition and corpulence variables (fat mass 
%, visceral fat rating, and BMI).

Except for stools, samples were collected at over-
night fasted state before the endoscopy, early in the 
morning. Participants had been fasting overnight 
for at least 12 hours.

Circulating markers related to glucose metabo-
lism (fasting glycemia, insulin, Hba1c), lipid profile 
(total cholesterol, LDL, HDL, and triglycerides), 
liver function (aspartate transaminase – ASAT, 
alanine transaminase – ALAT, gamma-glutamyl 
transferase (GGT), and alkaline phosphatase), and 
thyroid function (ultra-sensitive measurement of 
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thyroid-stimulating hormone) were measured 
using biochemical assays as part of routine medical 
care (Alinity-Abbott; Cerballiance, Paris).

Quantification of circulating levels of Amylin, 
C-Peptide, Ghrelin, gastric-inhibitory- 
polypeptide, Glucagon-like Peptide-1, Glucagon, 
Interleukin-6 (IL-6), Insulin, Leptin, Monocyte- 
chemoattractant protein-1 (MCP-1), Pancreatic 
Polypeptide, Peptide-YY, Secretin, and tumor 
necrosis factor-alpha (TNFα) was performed on 
serum treated with dipeptidyl peptidase-4 inhibi-
tors and protease inhibitors using a multiplex 
immunoassay kit (MILLIPLEX® Human 
Metabolic Hormone Panel V3, Millipore).

Quantification of inflammatory cytokines IL-6/8, 
C-reactive protein, serum-amyloid A, MCP-1, and 
TNFα were measured on serum using a multiplex 
immunoassay kit (Meso-Scale Discovery’s ultra- 
sensitive assay). Subsequently, a cumulative score 
of low-grade inflammation (Z-score) was calculated 
following the previously described methodology.34

Quantitative determination of human High 
Molecular Weight Adiponectin (Human HMW 
Adiponectin/Acrp30 Immunoassay), human 
Growth Differentiation Factor-15, and human 
Fibroblast growth factor-21 were also performed 
on serum (QuantikineTM, ELISA). Tryptophan 
metabolites were quantified through liquid chroma-
tography coupled with high-resolution mass spec-
trometry from serum, as previously described.35

Stools sampling

Total fresh stools were collected in a hermetic con-
tainer at the patient’s home during the two weeks 
preceding the endoscopy. When the sample was 
collected, participants placed an anaerocult 
(bioMérieux, Paris, France) on the stools and her-
metically closed the box. The sample was trans-
ported and aliquoted on ice in an anaerobic hood 
within two hours for different analyses and stored 
at −80°C.

Saliva sampling

Participants were asked not to brush their teeth in 
the morning before saliva sampling, and they had 
been fasting for at least 8 hours. Saliva was collected 
by spitting into a 50 mL tube. After collection, 

saliva was transported to the laboratory on ice 
within two hours and aliquoted and stored 
at −80°C.

Duodenojejunal fluid sampling

After saliva sampling, participants thoroughly 
brushed their mouth and teeth to prevent duode-
nojejunal fluid contamination from the oral 
cavity.36 Then, endoscopy was performed. The 
endoscope was thoroughly washed 3 times in the 
stomach with sterile saline then DJF was aspirated 
at the Treitz Angle and collected in a sterile tube. 
DJF was immediately aliquoted and placed within 
five minutes after sampling on dry ice, then stored 
at −80°C.

Metabolome analysis

Untargeted metabolomics was performed using 
Ultrahigh Performance Liquid Chromatography- 
Tandem Mass Spectroscopy on duodenojejunal 
fluid and stool (Metabolon®, Durham, North 
Carolina, United States).

Metagenomic analysis

Bacterial DNA extraction from saliva, DJF, and 
homogenized feces was performed using 
NucleoMag DNA Microbiome kit (Macherey- 
Nagel, Vertrieb GmbH & Co.Kg). Two cycles of 
chemical- and mechanical-lysis were performed 
(Precellys®, Bertin Technologies, Montigny-le- 
Bretonneux, France). We used an automated robot 
for DNA extraction and purification using paramag-
netic beads (Auto-Pure96, Nucleic Acid Purification 
System Hangzhou Allsheng Instruments CO., Ltd. 
Hangzhou, Zhejiang, China). Purity ratio and DNA 
quantity were controlled (NanoDrop and Qubit, 
ThermoFisher).

DNA was physically sheared to approximately 
250–550 bp then purified (QIAquick 
Purification kit, Qiagen, Hilden, Germany). 
Library preparation for sequencing was per-
formed using the Invitrogen ColibriTM PS 
DNA Library Prep Kit for IlluminaTM 
(ThermoFisher Scientific, Waltham, 
Massachusetts, United States). PCR amplifica-
tion of the purified adaptor-ligated DNA library 
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was performed, followed by a third purification 
of the amplified DNA library using reagents 
included in the Colibri kit. One fecal sample 
was excluded due to library preparation failure. 
Sequencing was performed with NextSeq 2000 
(P2 300 cycles: 2 × 150 bp). 5.89 M (±2.45 M), 
4.95 (±1.06 M), and 5.07 (±1.39 M) read pairs 
per sample were generated for fecal, DJF, and 
saliva samples, respectively (Supplemental 
Table S1).

Metagenomic analyses were performed using 
the bioBakery tools.37 Read-level quality control 
was performed using KneadData with default set-
tings, including quality filtering with 
Trimmomatic 
(SLIDINGWINDOW:4:20 minLEN:75) and 
removal of human contaminant sequences with 
bowtie2 in very-sensitive mode vs. hg37dec_v0.1 
assembly reference. 5.04 M (±2.34 M), 1.29 M 
(±1.108 M), and 2.14 M (±1.13 M) high-quality 
human-decontaminated read pairs per sample 
were retained for fecal, DJF, and saliva samples, 
respectively (Supplemental Table S1). Taxonomic 
profiling was performed using MetaPhlAn4- 
catalog38 vs 
mpa_vJan21_CHOCOPhlAnSGB_202103 refer-
ence database (21 978 species-level genome bins 
(SGB) derived from a reference gene catalog of 
5.1 million taxonomic markers). To correct for 
variations in sequencing depth, Metaphlan4 nor-
malized marker gene abundances (reads per kilo-
base, RPK) were divided by metagenome size 
(quality-filtered non-human read pairs) before 
robust average calculation of SGB (0.2 default 
quantile value).

Integration of metagenomic profiles from Shalon 
et al. study

Raw fastq files from the study of Shalon et al.21 

corresponding to saliva (n = 29 samples), small 
intestine device 1 (n = 53 samples) and stools (n =  
58 samples) were downloaded from the ENA pro-
ject PRJNA822660. Sequence files were processed 
with the same bioinformatic workflow as the pre-
sent study samples for quality control, host con-
taminant removal, and generation of quantitative 
metagenomic profiles with Metaphlan4.

Statistical and ecological analyses

Statistical analyses were performed with R (version 
4.2.2) (https://www.R-project.org/). For clinical 
and anthropometric data, the normality of the 
data distribution was evaluated by a Shapiro– 
Wilk test, followed by either a Student t-test or 
a Wilcoxon rank-sum test depending on the dis-
tribution of the data.

Vegan v2.6.4 R package was used for ecological 
analyses of metagenomic profiles. Alpha diversity 
(Metaphlan4 gene marker richness, SGB-based 
richness and Shannon diversity) was determined 
from a random sampling of 350K read pairs per 
sample with seqtk to account for variations in 
sequencing depth across samples. Species-level 
genome bins profiles derived from normalized 
marker gene abundances (RPK + corrected by 
metagenome size) were used for Principal 
Coordinate Analyses (PCoA) based on Bray- 
Curtis (quantitative profiles) and Jaccard (binary 
presence/absence data) distances computed with 
vegdist and cmdscale vegan functions. 
Permutational multivariate analyses of variance 
(PERMANOVA) with adonis2 function were used 
to evaluate the impact of different clinical covari-
ates on microbiome and metabolome composition 
based on Bray-Curtis and Euclidean distances, 
respectively. P-values of PERMANOVA tests were 
False Discovery Rate (FDR) corrected with 
Benjamini–Hochberg method by block of clinical/ 
nutritional variables tested. Associations between 
metagenomic gene richness (Metaphlan4 marker 
genes) and clinical/nutritional variables were eval-
uated with Spearman correlations (for numerical 
variables) and Wilcoxon rank-sum test (for dis-
crete variables at two levels). P-values were FDR 
corrected with Benjamini–Hochberg method by 
block of clinical/nutritional variables tested and 
effect sizes (spearman rho’s for numerical vari-
ables, Cliff ’s Delta for discrete variables at two 
levels) were retained for visualization.

Non-parametric Kruskal–Wallis tests followed 
by post-hoc pairwise Dunn tests were used to iden-
tify taxonomic (species-level Metaphlan4 relative 
abundance profiles followed with centered log- 
ratio (CLR) transformation to account for compo-
sitionality of the data) and metabolomic features 
associated with different ecosystems. Only the 
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features present in > 20% of the samples were 
retained for analyses. P-values derived from 
Kruskal–Wallis tests were corrected for multiple 
testing using the Benjamini – Hochberg method 
(Padj), only Padj < 0.05 were reported as signifi-
cant. Over the same data, Wilcoxon rank-sum 
tests were used to identify taxonomic and metabo-
lomic features associated to clinical study group. 
P-values were corrected for multiple testing using 
the Benjamini – Hochberg method. Cliff ’s delta 
was used as an indicator of the effect size of feature 
change across pairwise comparisons. Linear regres-
sion analyses were used to evaluate the association 
of taxonomic and metabolomic markers with clin-
ical covariates unadjusted and adjusted by alcohol 
intake. In order to reinforce the normality of meta-
genomic variables, quantile normal transformation 
was applied as previously described.39,40

Results

Microbiome patterns across three ecosystems of the 
human digestive tract

Metagenomic profiles of oral (salivary), duodenojeju-
nal, and fecal samples from all participants were ana-
lyzed by Illumina sequencing, which showed that the 
duodenojejunal microbiota exhibited a lower alpha 
diversity than the oral microbiota and the fecal micro-
biota, as evidenced by a significantly lower number of 
marker genes and species genome bins and 
a significantly lower Shannon index in the duodeno-
jejunal fluid (Figure 1(a)). Principal coordinate analy-
sis (PCoA) of the samples based on Bray-Curtis 
distances derived from the coverage of species gen-
omes bins highlighted significant segregation of stool 
samples from oral and duodenojejunal samples 
(Figure 1(b)). Notably, the duodenojejunal microbiota 
was highly similar to the oral microbiota (Figure 1(b)). 
This similarity was confirmed by analyzing the dis-
tribution of the Bray-Curtis distances between ecosys-
tems, with dissimilarities between duodenojejunal 
microbiota and oral microbiota being significantly 
lower than the dissimilarities of both ecosystems com-
pared to fecal samples (p < 0.05, Figure 1(c)). Similar 
analyses on intra-ecosystems’ dissimilarities showed 
similar levels of compositional variation in the stools 
and DJF, with oral microbiome showing a lower 
degree of compositional variation between samples 

(p < 0.05, Figure 1(c)). The major compositional dif-
ferences between the fecal microbiome and the micro-
biome of the duodenojejunal fluid (DJF) and saliva 
were further confirmed by univariate statistical ana-
lyses (Cliff’s Delta) at the species level, as 56 species 
were significantly altered between the oral and duo-
denojejunal microbiota. In contrast, 169 species were 
significantly altered between the fecal and oral micro-
biota, and 182 species were significantly altered 
between the fecal and DFJ microbiota (Figure 1(d), 
supplemental Table S2). Finally, the prevalence ana-
lysis of the species altered between the ecosystems 
showed the presence of aerobic species belonging to 
the Streptococcaceae, Veillonellaceae, and 
Prevotellaceae families in the oral microbiota and the 
duodenojejunal microbiota, while strict anaerobes 
belonging to the Lachnospiraceae and 
Ruminococcaceae families were prevalent in the fecal 
samples (Supplementary Figure S1).

Pairwise comparisons of microbiome and meta-
bolome dissimilarities showed a strong significant 
positive correlation in stools (Spearman Rho = 0.5, 
p-value <2.2e-16), whereas no significant correlation 
was observed in the duodenojejunal fluid (Spearman 
Rho = 1.1e-03, p-value = 0.98), suggesting that the 
microbiota is a strong contributor to the luminal 
metabolome in the distal colon but not in the prox-
imal small intestine (Supplemental Figure S2a). 
Stratified analyses on subjects without obesity and 
with obesity showed that the positive correlation at 
fecal level is reproduced with the same strength in 
both groups (Spearman Rho = 0.51, p-value = 4.9e- 
07 in controls; Spearman Rho = 0.56, p-value = 5.5e- 
10 in the group with obesity; Supplemental Figure 
S2b). In contrast, we observed positive association 
between duodenojejunal microbiota and metabo-
lome composition in control participants 
(Spearman Rho = 0.3, p-value = 1.7e-03) but not in 
the context of obesity (Spearman Rho = 0.14, 
p-value = 0.14, Supplemental Figure S2b), suggest-
ing potential altered interactions between microbial 
and metabolome composition in the duodenojejunal 
ecosystem in obesity.

Recently, Shalon et al. reported that the small 
intestine microbiota shares more compositional 
similarity with stools than with saliva.21 This 
result, derived from the analysis of digestive 
contents obtained from ingestible devices and 
later recovered stools, differs significantly from 
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our observations, that are derived from the ana-
lysis of duodenojejunal aspirates obtained dur-
ing endoscopy. Sampling by aspiration presents 
a risk of contamination with saliva, which we 
mitigated as much as possible by repeated 

thorough rinsing of the endoscope with sterile 
saline in the stomach before reaching the sam-
pling site, i.e., the transition between the duo-
denum and the jejunum (Treitz angle). We 
retrieved the metagenomic sequences from the 

a b c

d

Figure 1. Microbiome patterns across three ecosystems of the digestive tract. (a) Metagenomic richness across the three ecosystems. 
Boxplots of the metagenomic richness at the marker gene level (left panel), the species genome bin level (center panel), and Shannon 
diversity computed from the species genome bins abundances (right panel; y-axis) of each ecosystem (x-axis): saliva (blue), 
duodenojejunal fluid (DFJ, green), and stool (brown). P-values result from Wilcoxon tests. Legend: ***p < 0.001; ****p < 0.0001. (b) 
Principal Coordinate Analysis of the samples from the three ecosystems based on Bray-Curtis distance derived from SGB abundance: 
saliva (in blue), duodenojejunal fluid (in green), and stool (in brown). Samples from the same patient are connected with a dotted line. 
(c) Comparison of Bray-Curtis distances between samples from different ecosystems (left panel) and within the same ecosystem (right 
panel). ***p < 0.001; ****p < 0.0001; ns = p > .0.5; Wilcoxon rank-sum test. (d) Volcano plots of SGB abundances between microbial 
ecosystems. Univariate tests between each pair of ecosystems were performed on clr-transformed SGB abundances (Kruskal–Wallist 
test followed by pairwise Dunn’s comparison between ecosystems). X-axis represents the Cliff’s delta effect sizes (>0 indicates higher 
abundance in the reference ecosystem of the comparison and <0 indicates a higher abundance in the compared ecosystem; saliva, 
DJF, and saliva respectively). Y-axis represents the -log-transformed FDR values. Dashed line indicates FDR = 0.05. Detailed results 
available in Supplemental Table 2.
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Shalon et al. study, corresponding to the ecolo-
gical niches in our study (n = 29 saliva samples, 
n = 53 samples of the small intestine device 1, n  
= 58 fecal samples) from ENA repository and 
subjected them to the same bioinformatic pipe-
line as the samples from the present study and 
compared the microbiome composition.

First, we computed a principal coordinates 
analysis based on the Bray-Curtis distances 
between the samples from Shalon and 
colleagues21 samples and the samples from our 
study. Saliva samples from both studies clus-
tered together, as did stool samples from both 
studies (Figure 2(a), Supplemental Figure S3), 
highlighting the similarities between the popu-
lations and metagenomic sequencing pipelines 
of the two studies. The duodenojejunal fluid 
samples collected by aspiration clustered closely 
with saliva samples from both studies. In con-
trast, samples of proximal small intestine 
lumen content collected by the ingestible device 
1 (designed to open and collect fluid in the 
duodenum) clustered with the stools. All the 

small intestine samples from the ingestible 
device 1 showed higher similarity to stools 
from both studies than to the duodenojejunal 
fluids collected by aspiration (Figure 2(a), 
Supplemental Figure S3). Quantitatively, this 
translated into a greater dissimilarity between 
ingestible device 1 samples and all saliva sam-
ples than between duodenojejunal fluid samples 
collected by aspiration and saliva samples (FDR 
< 0.05, Figure 2(b)). Similar conclusions were 
drawn using the Jaccard distances (based on 
the presence and absence of SGB, 
Supplemental Figure S3b). These observations 
reflect a greater abundance of families consid-
ered typical of fecal microbiota, such as 
Ruminococcaceae and Lachnospiraceae, in the 
samples from the ingestible device 1 than in 
aspirates. Concurrently, there was a lower 
abundance of Streptococcaceae and 
Actinomycetaceae in these samples 
(Supplemental Figure S3c).

We then sought to investigate the association 
between the microbiota composition of the 

Figure 2. Integrated compositional landscape of human gut ecosystems from JeMiMe and Shalon et al. studies. (a) Principal 
Coordinates Analyses (PCoA) from Bray-Curtis distances derived from Metaphlan4 abundance profiles (Species-level Genome Bins; 
SGB) of 229 samples (n = 89 JeMiMe samples; n = 140 Shalon et-al samples). (b) Boxplots representing the dissimilarities (Bray-Curtis 
distance) between JeMiMe samples of different ecosystems (Saliva, Duodenojejunal fluid, Stools; facets in plots) vs. samples from 
different ecosystems/devices from the Shalon et al. cohort (x-axis). Bottom panels connect pairs of devices/ecosystems of the Shalon 
et al. study for which the distances vs. the corresponding JeMiMe samples are significantly different (FDR < 0.05; post-hoc Dunn’s test).
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three digestive ecosystems, the metabolic phe-
notype, and the lifestyle, including dietary 
information, of the participants.

Characteristics of the participants with and without 
obesity

There were no significant differences in age and sex 
ratio between the groups with and without obesity. 
As expected, considering the inclusion criteria for 
each group, the group with obesity (Ob group) had 
a significantly higher body mass index and body fat 
proportion (%) than the control group (Table 1). 
This was associated with significantly higher glyce-
mia, insulin levels, and insulin resistance index, 
although without reaching the thresholds defining 
type 2 diabetes.41 The elevated insulin levels in par-
ticipants with obesity but without type 2 diabetes 
resulted from higher insulin production, as evi-
denced by 2.5-fold higher levels of c-peptide in par-
ticipants with obesity than in the control group 
(Supplemental table 3). Additionally, the 

participants with obesity had a comparatively altered 
blood lipid profile, characterized by higher triglycer-
ide levels and lower proportions of HDL to LDL- 
cholesterol. This overall altered metabolic profile in 
the participants with obesity was further confirmed 
by metabolic hormone assay, which showed 
a moderate decrease in ghrelin and a dramatic 
increase in leptin levels (Supplementary Table 3). 
Although still within the normal range, C-reactive 
protein levels were also higher in the group with 
obesity than in the control group (Supplementary 
Table 4). This was associated with non-significant 
increases in pro-inflammatory cytokines and che-
mokines IL-6, TNFα, and MCP-1 circulating levels 
(Supplementary Table 4). However, combining 
inflammatory cytokine levels in a cumulative 
Z-score revealed a significantly increased low-grade 
inflammation in people with obesity (Table 1).34

The characterization of the participants also 
included multiple questionnaires to assess the 
patients’ lifestyle, digestive symptoms, sleep, 
psycho-emotional health, and eating behaviors 

Table 1. Characteristics of the study participants. Results are expressed as mean (SD) or 
median [min;max] for continuous data and n (%) for categorical data. p values result 
from the Student’s t-test or from Mann-Whitney-Wilcoxon depending on data distribu-
tions for each continuous variable and from the Chi-square test for categorical variable 
(sex).

Control Group Obesity Group p-value

Age (years) 29.4 [26.5;53.2] 29.6 [18.5;59.5] ns
Sex (male), n (%) 3 (20.0) 1 (6.6) ns

Adiposity markers
Weight (kg) 61.6 [46.4;88.7] 111 [84.7;132] ****
BMI (kg/m2) 21.5 [18.6;28.2] 39.4 [32.5;50.6] ****
Fat mass (%) 21.3 [14.5;37.0] 45.4 [36.5;53.6] ****
Visceral fat rating 3.0 [1.0;5.0] 12.0 [9.0;18.0] ****
BMR (Kcal/day) 1447 (237.8) 1894 (290.9) ****

Plasma Glucose homeostasis
Glycemia (mmol/L) 4.60 (0.34) 5.21 (0.46) ***
Insulinemia (mIU/L) 3.80 [1.80;10.2] 15.6 [6.90;41.8] ****
HOMA-IR 0.80 [0.30;2.10] 3.50 [1.50;9.10] ****
HbA1c (%) 5.06 (0.26) 5.58 (0.31) ****

Plasma lipid homeostasis
Total cholesterol (mmol/L) 4.48 (0.85) 4.80 (0.75) ns
Total triglycerides (mmol/L) 0.70 (0.29) 1.14 (0.27) ****
HDL cholesterol (mmol/L) 1.59 [0.97;2.25] 1.11 [0.86;1.60] ***
LDL cholesterol (mmol/L) 2.52 (0.66) 3.16 (0.70) *

Liver Enzymes
ASAT (IU/L) 27.7 (6.86) 23.9 (5.13) ns
ALAT (IU/L) 25.0 [11.0;64.0] 30.0 [15.0;101] ns
ASAT/ALAT ratio 1.06 (0,22) 0.82 (0,26) **
GGT (IU/L) 15.0 [9.00;35.0] 33.0 [15.0;106] ***

Inflammation
Z-score −3.03 (3.25) 3.02 (2.66) ****

Legend: BMI: Body Mass Index; BMR; calculated basal metabolic rate, HOMA-IR: homeostatic Model assess-
ment of insulin resistance. ASAT: aspartate transaminase; ALAT: alanine transaminase; GGT: gamma 
glutamyl-transpeptidase; ns P-value > 0.05; *P-value ≤ 0.05; **P-value ≤ 0.01; ***P-value ≤ 0.001; 
****P-value ≤ 0.0001.
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(Supplementary Table S5). The scores obtained 
did not differ significantly between groups.

Participants with obesity have a lower dietary 
quality

Diet is a major determinant of the composition of 
the fecal microbiota and is thought to have an even 
greater effect on the composition of the small intes-
tine microbiota.42 We therefore studied the dietary 
intake of the participants using food frequency ques-
tionnaires (FFQ) and found that participants with 
obesity consumed significantly more red meat, pro-
cessed meat and soft drinks, together with less 
legumes, vegetables, nuts, and oily fish (Table 2). 
The control participants, on their end, consumed 
significantly more coffee, beer, and wine. As 
a consequence, protein and lipid dietary intakes 
were similar in the two groups, while alcohol intake 
was higher in the participants without obesity and 
carbohydrates intake was higher in individuals with 
obesity. Taken together, these food consumption 
data resulted in a higher food quality,43 measured 
by aHEI or DASH indices, in the control partici-
pants than in the participants with obesity.

Obesity is associated with alterations in the small 
intestine microbiota and metabolome composition

We performed a beta-diversity analysis 
(PERMANOVA analyses on Bray-Curtis distances 

derived from SGB abundances) to compare the 
metagenome composition between participants 
with and without obesity and observed no cluster-
ing of the samples according to the obesity status in 
the oral ecosystem (Figure 3(a)). However, the 
duodenojejunal fluid metagenome clustered sepa-
rately, with a higher and more significant impact of 
obesity status (p = 0.01), indicating that the duode-
nojejunal ecosystem is significantly affected by 
obesity status. The impact of obesity on the fecal 
ecosystem approached, but did not reach, statistical 
significance.

Similarly, PERMANOVA analyses based on 
Euclidean distances computed from non-targeted 
metabolomic profiles also showed a statistically sig-
nificant effect of the obesity status in the duodeno-
jejunal fluid, but only a trend in the stools (p =  
0.047 and p = 0.064, respectively, Figure 3(b)). 
Consistently, PERMANOVA analyses with clinical, 
dietary, and lifestyle variables showed that body 
composition variables significantly explained the 
compositional variance of the duodenojejunal 
fluid microbiota, with a higher effect size than 
that observed for the oral and fecal microbiota 
(FDR < 0.05, Figure 3(c)). In particular, there was 
a statistically significant association between the 
duodenojejunal fluid microbiota composition and 
blood HDL-cholesterol level, which was not 
observed for oral or fecal microbiota. Similarly, 
significant associations were found between the 
duodenojejunal microbiota compositional variance 

Table 2. Dietary intakes of the study participants. Results are expressed as median 
[min;max]. p values result from the Mann-Whitney-Wilcoxon non-parametric test 
(W test).

Control Group Obesity Group p-value

Repartition of macronutrients and alcohol on total caloric intake
Alcohol (%) 4.46 [2.53;5.38] 0.11 [0.01;0.98] ***
Carbohydrates (%) 39.9 [36.1;43.0] 44.3 [41.6;46.8] *
Proteins (%) 17.2 [16.5;19.3] 17.6 [15.0;19.8] ns
Lipids (%) 37.2 [34.9;41.4] 38.1 [35.0;41.5] ns

Food groups (Daily intake)
Coffee (mL) 180 [90.0;225] 0.00 [0.00;38.7] ***
Beer (mL) 35.0 [8.75;108] 0.00 [0.00;0.00] ***
Wine (mL) 51.6 [34.2;73.2] 0.00 [0.00;8.40] ***
Red meat (g) 17.0 [3.69;27.6] 48.9 [39.2;56.0] **
Nuts (g) 3.24 [0.81;9.94] 0.00 [0.00;1.62] **
Pulses (g) 21.4 [16.1;65.9] 10.7 [0.00;21.4] **
Sweetened beverages (mL) 0.00 [0.00;21.0] 71.0 [0.00;176] **
Processed meat (g) 3.89 [0.00;6.29] 19.1 [7.13;41.6] *
Vegetables (g) 271 [243;424] 202 [135;276] *
Oily fish (g) 8.83 [4.41;18.0] 4.41 [3.31;5.52] ns

Diet quality scores
aHEI % 52.4 [43.5;62.8] 31.0 [20.9;37.4] ***
DASH % 58.5 [51.0;64.8] 48.4 [41.8;56.3] **

Legend: aHEI (Alternate Healthy Eating Index) and the DASH (dietary approaches to stop hypertension) 
scores. Ns P-value >0.05; * P-value ≤0.05; ** P-value ≤0.01; *** P-value ≤0.001; **** P-value ≤0.0001.
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and body composition of the participants (visceral 
and overall fat mass and body mass index), while 
the associations with the oral and fecal microbiota 
were weaker or absent. Among other sociodemo-
graphic and dietary-related variables, we observed 
a significant impact of delivery mode (FDR = 0.02) 
and being breastfed during infancy (FDR = 0.04) 
on the DJF microbiome composition (Figure 3 
(c)). Similarly, the associations between the duode-
nojejunal fluid metabolome and body composition 
were statistically stronger than those with the fecal 
metabolome. Taken together, these results suggest 
a possibly stronger association between the host 
metabolic profile and the duodenojejunal micro-
biota than with the oral or fecal microbiota.

We also observed significant associations between 
the intake of several FFQ-derived dietary items and 
metagenome compositional variance in the three 
ecosystems (Figure 3(c)). The strength of these asso-
ciations was comparable in duodenojejunal fluid 
and stools, but weaker in the oral microbiota. 

A higher number of dietary intake variables had 
a significant association with DJF metagenome and 
metabolome (n = 2, 10 and 2 for Saliva, DJF, and 
Stool, respectively; Figure 3(c) and Supplemental 
Figure S4). Notably, the duodenojejunal microbiota 
composition was associated with consumption of 
various food items such as alcohol/wine, processed 
meat, pastries, and dairy products.

We observed relationships between dietary qual-
ity (as measured by the aHEI index) and duodeno-
jejunal metabolome. A strong association of the 
duodenojejunal metabolome with dietary quality 
and beer consumption was also observed.

Further analysis of the differences in micro-
biomes characteristics in participants either lean 
or with obesity showed that obesity was associated 
with an increase in the gene richness exclusively in 
the duodenojejunal microbiota (Figure 4(a)). Other 
markers of microbial diversity like the number of 
species genome bins (SGB) and the Shannon index 
were also increased in the duodenojejunal 

Figure 3. Oral, duodenojejunal microbiome and metabolome structure in obesity and their association with lifestyle and clinical 
phenotype. (a) Principal Coordinates Analyses (PCoA) from Bray-Curtis distances derived from Metaphlan4 abundance profiles 
(Species-level Genome Bins; SGB) in saliva, duodenojejunal fluid, and stools and (b) Principal component analyses (PCA) based on 
the Euclidean distances derived from the metabolome in the duodenojejunal fluid and stools of control (blue) and with obesity (red) 
participants. R2 and p-values of PERMANOVA test to evaluate the impact of obesity status on microbiome composition are shown on 
top of each panel. (c) Proportion of compositional variance explained by different clinical or environmental variables. The 
Permutational Multivariate Analysis of Variance using the Adonis function was computed from the Bray-Curtis dissimilarity matrix 
for metagenomic data and the Euclidean distances for metabolome data. Legend: *: p < 0.05 and #: FDR < 0.1.
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microbiota of subjects with obesity although with-
out reaching statistical significance (Figure 4(a)). 
The α-diversity in the other ecosystems was similar 
in both groups.

Comparing the groups with or without obesity 
within each ecosystem, we found that the relative 
abundance of the Neisseriaceae family was lower 
in the duodenojejunal microbiota of the group 
with obesity (Figure 4(b)). At the species level, 19 

species were significantly more abundant in the 
duodenojejunal microbiota of the participants 
with obesity (Cliff ’s delta effect size obese vs. 
control > 0; p < 0.05, Supplemental Table 6), 
while only three species were more abundant in 
the control group (Cliff ’s delta effect size obese 
vs. control < 0; p < 0.05, Figure 4(c)). Notably, 
none of the species’ abundances differed signifi-
cantly in participants with and without obesity in 

Figure 4. Alterations of the oral, duodenojejunal microbiome and metabolome composition in obesity and their association with 
lifestyle and clinical phenotype. (a) Metagenomic richness at the marker gene level (left panel), the species genome bin level (center), 
and the Shannon index (right panel; y-axis) in each ecosystem (x-axis), stratified per group (control group: blue; with obesity group: 
red). P-values result from between-group comparisons using the Wilcoxon test. Legend: *p < 0.05. (b) Relative abundance (%, y-axis) 
of bacterial families per ecosystem. The different Phyla are listed in bold and color-coded, and bacterial families are colored in different 
shades within each Phyla. Each column represents a participant. P-values result from between-group comparisons using the Wilcoxon 
test. (c) and (d) Volcano plots representing the Cliff’s Delta effect size analysis between bacterial species and metabolites and the 
participant’s group within each ecosystem. Log-transformed p values and FDR are represented on the y-axis, and associations with the 
cohort group on the x-axis (>0: higher abundance in obese group; <0: higher abundance in the control group). Each dot represents 
a bacterial species or a metabolite and is color-coded with regard to the level of significance of the association (green: not significant – 
ns; blue: p < 0.05; red: FDR < 0.1). (e) Associations between Actinomyces sp S6-Spd3 and Neisseria subflava relative abundances and 
clinical and lifestyle variables in the whole cohort of 30 participants derived from linear regression analysis (red: negative association; 
blue: positive association). Effect sizes are represented as Z-scores. * p < 0.05 and #: FDR < 0.1.
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saliva after correction for multiple comparisons, 
while two species still differed significantly 
between participants with and without obesity 
in the duodenojejunal fluid (Supplementary 
table 6). In the duodenojejunal microbiota, 
Actinomyces sp S6-Spd3 species was more abun-
dant in participants with obesity, while Neisseria 
subflava species was more abundant in the con-
trol group. These two taxa were also detected in 
the oral microbiota of the study participants. 
Notably, Actinomyces sp S6 Spd3 abundance was 
similar in the saliva of both groups of partici-
pants. Neisseria subflava relative abundance was 
reduced both in the saliva and duodenojejunal 
fluid of participants with obesity although the 
magnitude of the effect was larger in duodenoje-
junal fluid (p < 0.05 and FDR > 0.1, Cliff ’s delta 
effect size obese vs. control = −0.44 vs. −0.77 in 
saliva and DJF, respectively, Supplemental 
Table 6). In stools, Ruminococcus lactaris species 
was significantly more abundant in the control 
group, with effect sizes similar to those of 
Neisseria subflava in duodenojejunal fluid. 
Consistent with the proportion of the composi-
tional variance analysis (Figure 3(c)), a greater 
number of species were altered at nominal 
p-value level by the obesity status in the duode-
nojejunal fluid (22 out of 311 detected species, 
i.e. 6.6%) than in the stools (19 of detected 863 
species, i.e. 2.2%).

To determine whether changes in the duodeno-
jejunal microbiota in obesity are associated with 
changes in the metabolome, we performed similar 
univariate analyses (Cliff ’s delta analysis) of the 
duodenojejunal and fecal metabolomes, which 
showed that several lipids, and in particular sphin-
golipids, were enriched in the duodenojejunal fluid 
of the participants with obesity (Figure 4(d), 
Supplemental Table S7). Similar to the previous 
observation made on the microbiome composition 
and coherently with the higher proportion of meta-
bolome variance explained by anthropometric data 
in the duodenojejunal fluid (Figure 3(c)), a higher 
absolute number and fraction of metabolites had 
significantly different levels between the partici-
pants with and without obesity in the duodenoje-
junal fluid than in the stools. Indeed, 16.1% (142 
out of the 822 metabolites detected) of the meta-
bolites were altered at nominal p-value level in the 

duodenojejunal fluid, versus only 10.0% (102 out of 
1,019 metabolites detected) in the stool.

Linear regression analyses on quantile-normal 
transformed clr abundances of Actinomyces sp S6- 
Spd3 in the duodenojejunal fluid showed that this 
bacterium was positively associated with BMI, 
body fat percentage, visceral fat rating, along with 
higher circulating levels of leptin, γ-glutamyl 
Transferase, and Serum-Amyloid A (FDR < 0.1, 
Figure 4(e)). The relative abundance of this species 
in the duodenojejunal fluid also displayed 
a negative association with the circulating levels 
of gastric-inhibitory-polypeptide. Conversely, the 
relative abundance of N. subflava in the duodeno-
jejunal fluid showed negative association with cor-
pulence and body composition variables and 
circulating markers such as glycemia, HbA1c, tri-
glycerides, and inflammatory markers (also com-
bined in the Z-score). Additionally, it showed 
positive associations with circulating levels of 
active ghrelin, HDL-cholesterol, adiponectin, and 
the ASAT/ALAT ratio, as well as lifestyle factors 
such as wine consumption (FDR < 0.1, Figure 4(e)). 
Further adjusted association analysis highlighted 
the association of N. subflava‘s relative abundance 
with BMI even after accounting for alcohol con-
sumption (Supplemental Figure S5), suggesting 
a relationship between N. subflava and leanness 
while taking into account potential confounding 
factors.

Discussion

The intestinal microbiota is recognized as an 
important player in the metabolic regulation of 
the host. Most studies on this topic are based on 
the analysis of fecal microbiota, which is only 
representative of the microbiota of a small part of 
the digestive tract. This is obviously due to the 
differences in the ease with which stool and small 
intestine content samples can be collected. Yet, the 
paucity of studies focusing on the small intestinal 
microbiota hinders our understanding of how the 
microbiota regulates host metabolism, particularly 
because the small intestine is central in host meta-
bolism compared to the more distal parts of the 
digestive tract. Here, we investigated the relation-
ship between the composition of the oral, duode-
nojejunal and fecal microbiota, the duodenojejunal 
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and fecal metabolomes, lifestyle, and anthropo-
metric and clinical variables in 30 participants, 
who were either lean or with obesity.

As expected, the oral and duodenojejunal micro-
biomes differed significantly from fecal microbiota. 
A large part of the species we detected with meta-
genomic sequencing were previously identified as 
members of the proximal small intestine micro-
biota previously found using 16S rRNA gene 
sequencing.22,44 Moreover, we report a high simi-
larity between the oral and duodenojejunal micro-
biomes, which supports several previous studies, 
also based on 16S rRNA gene sequencing.36,45 

This is in contrast to a recent metagenomic analysis 
across the entire digestive tract,21 which reported 
that the small intestine microbiota, collected using 
ingestible capsules, is more akin to the fecal 
microbiome.4 These discrepancies may be attribu-
ted to several factors, in particular differences in 
sampling location and variations in collection tech-
niques between studies. All studies reporting a high 
similarity between the oral and proximal small 
intestine microbiomes are based on endoscopic 
aspiration, which carries a significant risk of sam-
ple contamination by saliva. Nonetheless, it should 
be noted that the total daily flow of saliva in adults 
is comprised between 1 and 1.5 liters.46 As saliva 
represents a significant proportion of the content 
of the proximal small intestine, a high degree of 
compositional similarity between oral and duode-
nojejunal ecosystems would be expected and 
should not be significantly affected by minimal 
contamination of duodenojejunal samples by saliva 
during sampling. Another factor that may explain 
discrepancies between studies using different sam-
pling methods is variation in sampling site. 
Endoscopic sampling inherently limits the collec-
tion of small intestine fluid to the very proximal 
part of the digestive tract, that is to say the duode-
num and the duodenum-jejunum junction at the 
Treitz angle. Here, we sampled duodenojejunal 
fluid precisely at the Treitz angle, whereas Shalon 
and colleagues used capsules that may have col-
lected luminal fluid at a more variable and possibly 
slightly more distal location, which may also 
explain the discrepant results. Another factor influ-
encing the compositional results depending on the 
sampling method is the length of the time period 
between the sampling and the freezing of the 

samples. In our study, the duodenojejunal fluid 
was snap frozen with dry ice within minutes of 
sampling, whereas the luminal fluid in the ingesti-
ble devices underwent an incubation period at 
body temperature of approximately 7 to 66 hours 
(approximately one hour less than the transit time) 
between the opening of the ingestible devices and 
their recollection after defecation. We cannot 
exclude that the duodenal or jejunal content 
enclosed in an ingestible device without preserva-
tive medium undergoes compositional changes 
during this incubation period at body temperature. 
Finally, another significant difference between the 
studies is the sampling in the postprandial state 
using ingestible devices, whereas endoscopic 
aspiration obligatory requires a fasting state. The 
amount of microbes present in the food items as 
well as the transient multiplication of endogenous 
microbes due to the abundance of nutrients is likely 
to influence the composition of the proximal small 
intestine microbiome in the post-prandial state, 
whereas during fasting the comparatively higher 
concentration of digestive fluids secreted by the 
host, such as saliva, bile, intestinal mucus, and 
pancreatic secretion, will modulate the microbiota, 
although it is not yet known exactly how and to 
what extent. Ultimately, the two sampling methods 
provide different but complementary results.

Previous research has repeatedly shown that the 
diversity of the fecal microbiota is reduced in indi-
viduals with obesity.47,48 However, our study shows 
the opposite trend in the proximal small intestine 
microbiota, suggesting that increased richness is 
associated with obesity at this location. Other 
reports show an elevated bacterial count in the 
duodenal mucosa-associated microbiome of hyper-
glycemic compared to normoglycaemic individuals 
and in overweight versus lean individuals.24,49 

These observations suggest that the increased 
diversity of the small intestinal microbiota in indi-
viduals with metabolic disorders is a confirmed 
phenomenon and may be a marker of metabolic 
deterioration. The determinants of the richness of 
the small intestine microbiota remain largely 
unknown, but the influence of the diet, the 
immune system, and variations in the environment 
provided by the host to the microbes are strongly 
suspected to play significant roles. In a population 
of 51 patients with cirrhosis, Hussain and 
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colleagues reported that duodenal microbiota rich-
ness is increased by protein intake and decreased 
with coffee consumption,50 which is in contrast to 
our observation, as we did not observe a difference 
in protein consumption between lean and with 
obesity participants and a greater coffee consump-
tion in controlled lean participants. Our study 
demonstrates significant associations between the 
microbiome and obesity-related metrics (e.g., 
BMI, percent fat mass, and android fat); neverthe-
less, it is important to note that dietary habits and 
alcohol consumption, which were significantly dif-
ferent between the subjects’ groups with or without 
obesity, may influence the microbiome, as seen in 
many studies on fecal microbiota. These factors 
represent potential confounders that could contri-
bute to the observed associations, independently of 
obesity. In the present study, associations between 
clinical variables and duodenojejunal microbiota 
composition remained in large part statistically 
significant after statistical adjustment on alcohol 
intake. Future studies with controlled dietary 
intake or stratified analyses in larger populations 
are warranted to disentangle these effects and pro-
vide more precise insights into the role of the 
microbiome of each part of the digestive tract in 
obesity.

A limitation of dietary assessment in such stu-
dies is the reliance on a Food Frequency 
Questionnaire (FFQ), which, while useful for cap-
turing long-term dietary patterns, do not reflect 
short-term dietary variations that could influence 
microbiota composition, especially in the proximal 
small intestine. Future studies utilizing 24-hour 
dietary recalls or 3-day food records, especially 
the days preceding duodenojejunal fluid sampling, 
would provide more precise data on the relation-
ship between recent dietary intake and microbial 
community structure. Ultimately, intervention stu-
dies in humans and in animal models in order to 
decipher the factors determining the richness of the 
proximal small intestine microbiota.

Supporting the hypothesis that the host, inde-
pendently of the diet, directly regulates the small 
intestine microbiota composition and richness 
through a modulation of the environment pro-
vided to the microbes, Leite and colleagues showed 
that chronological age, and more importantly, 
aging process (exemplified by the number of age- 

related pathologies and systemic inflammation) 
decreases duodenal microbiome richness.51 An 
increased diversity of the small intestine micro-
biome in obesity could also, at least partially, result 
from decreased control of the endogenous 
microbes by the host immune system as studies 
performed in rodent models show that the deple-
tion of specific populations of immune cells 
(macrophages, B cells, T cells, and dendritic cells) 
systematically result in an increase in the duodenal 
microbiome diversity.52 As such, our team pre-
viously demonstrated major alterations of immune 
cell profiles in the proximal intestine in people with 
severe obesity.9 We hypothesize that the higher 
microbial diversity in the small intestine of indivi-
duals with obesity partially results from alterations 
in immune system fitness. However, this hypoth-
esis requires deeper exploration of the small intes-
tine barrier and mechanistic studies for validation. 
Notably, we found modifications in duodenojeju-
nal fluid metabolites, which are rarely explored at 
this location, and potential interactions of these 
molecules with immune cells could be of signifi-
cant interest for further investigation.

Notably, we observed a decreased relative abun-
dance of the species Neisseria subflava and an 
increase in the species Actinomyces sp S6-Spd3 in 
the duodenojejunal fluid of the patients with obesity, 
suggesting a link between the abundance of these 
species in the proximal small intestine, metabolic 
health, and lifestyle factors. Of note, after adjusting 
for potential confounders (including alcohol con-
sumption), the association analysis still demon-
strated a link between the relative abundance of 
N. subflava, Actinomyces sp S6-Spd3, and corpu-
lence traits. These two species belong to two genera, 
each comprising more than 30 species with names 
with Standing in Nomenclature, of which 
a significant proportion is classified as opportunistic 
pathogens. Species of both genera are known mem-
bers of the oral and fecal microbiota in humans.53,54 

In the present study, only one species of each genus 
was associated with metabolic health despite the 
detection of 16 Actinomyces and 7 Neisseria species 
in the samples, suggesting that the associations 
observed between these taxa and metabolism only 
concern these species and not the genera as a whole. 
To our knowledge, the abundance of these taxa in 
the proximal small intestine has not yet been 
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associated with obesity and metabolic diseases, and 
with dietary intake features. Nevertheless, it has 
been observed that the abundance in the stomach 
of Neisseria and Actinomyces genera is decreased by 
Helicobacter pylori infection.55 The role of 
Helicobacter pylori in obesity, either directly or 
mediated by bacteria whose abundance is affected 
by H. pylori colonization, is still debated as studies 
report a positive association between H. pylori pre-
valence and BMI, while others report negative 
associations.56,57 Of note, the systematic search for 
Helicobacter pylori showed that all the participants 
in this study did not carry H. pylori. It has also been 
shown that species belonging to the Actinomyces 
genus are enriched in the ileal content of patients 
with inflammatory bowel disease, suggesting 
a connection between Actinomyces and inflamma-
tion in the small intestine.58 Whether these two 
species are causally involved in the regulation of 
the host metabolism or affected by the diet or by 
the differences of environment provided to the 
microbes by the host depending on the obesity sta-
tus cannot be determined in the present study. To 
this end, experiments using preclinical models 
would be necessary.

An additional limitation of our study is the 
potentially low coverage of the microbial eco-
system in certain duodenojejunal samples, 
which is attributable to high levels of human 
DNA contamination (ranging from 0.25% to 
89.34% of quality-trimmed reads, compared to 
just 0.02% to 0.14% in fecal samples). 
Moreover, the use of a reference-based quanti-
tative metagenomics approach (MetaPhlAn4),38 

while highly comprehensive for known micro-
bial diversity, may fail to detect specific micro-
bial species unique to understudied ecosystems 
like the duodenojejunal microbiome. To 
uncover potentially hidden microbial diversity, 
future studies employing de novo metagenomic 
assembly with larger sample sizes and deeper 
sequencing will be necessary.

By leveraging the metagenome characteriza-
tion in three segments of the digestive system 
(mouth, proximal small intestine and stools) 
combined to an in-depth metabolic phenotyping 
of participants with and without obesity, we 
demonstrated that the duodenojejunal micro-
biota composition exhibits the most significant 

associations with the metabolic health and the 
diet of the participants, without excluding the 
contribution of lifestyle and dietary factors. This 
observation needs to be replicated in larger stu-
dies, as the small number of participants (30) in 
our study is a limitation. Nonetheless, this find-
ing strongly supports the hypothesis that the 
duodenojejunal microbiome may exert 
a stronger influence on host metabolic health 
than the oral and fecal microbiomes, in connec-
tion with the crucial functions of the small intes-
tine in host metabolism and its large interface 
with luminal content.

In conclusion, our study underscores the 
relevance of investigating the connections 
between the small intestinal microbiota, the 
diet and metabolic health in order to better 
understand human physiology. Developing pre-
ventive and therapeutic strategies based on the 
modulation of the proximal small intestine 
composition or activity will nonetheless require 
intervention studies in humans as well as pre-
clinical and in vitro experiments.
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