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A B S T R A C T

In arid environments, prospecting cultivable land is challenging due to harsh climatic conditions and vast, hard- 
to-access areas. However, the soil is often bare, with little vegetation cover, making it easy to observe from 
above. Hence, remote sensing can drastically reduce costs to explore these areas. For the past few years, deep 
learning has extended remote sensing analysis, first with Convolutional Neural Networks (CNNs), then with 
Vision Transformers (ViTs). The main drawback of deep learning methods is their reliance on large calibration 
datasets, as data collection is a cumbersome and costly task, particularly in drylands. However, recent studies 
demonstrate that ViTs can be trained in a self-supervised manner to take advantage of large amounts of unla
belled data to pre-train models. These backbone models can then be finetuned to learn a supervised regression 
model with few labelled data.

In our study, we trained ViTs in a self-supervised way with a 9500 km2 satellite image of dry-lands in Saudi 
Arabia with a spatial resolution of 1.5 m per pixel. The resulting models were used to extract features describing 
the bare soil and predict soil attributes (pH H2O, pH KCl, Si composition). Using only RGB data, we can accu
rately predict these soil properties and achieve, for instance, an RMSE of 0.40 ± 0.03 when predicting alkaline 
soil pH. We also assess the effectiveness of adding additional covariates, such as elevation. The pretrained models 
can as well be used as visual features extractors. These features can be used to automatically generate a clustered 
map of an area or as input of random forests models, providing a versatile way to generate maps with limited 
labelled data and input variables.

1. Introduction

Digital soil mapping is a crucial task in environmental sciences, since 
it serves as a basis for the understanding of soil properties and their 
spatial distribution. However, gathering data involves extensive field
work, and it can be challenging to collect samples across large and 
remote areas, such as deserts and arid lands.

Addressing this challenge, remote sensing data has been proved over 
the years to be a reliable way to monitor vast geographical areas. 
Furthermore, Multi spectral Optical Imagery serves as a reliable, cost 
effective way to map land cover due to the high spatial and temporal 

resolution of recent sensors such as Sentinel or Pleiades. Satellite data 
have therefore been used for digital soil mapping for a variety of tasks 
such as soil organic carbon prediction, soil water content measurement 
or soil/vegetation relationship analysis (e.g. Boettinger et al., 2008; 
Huisman et al., 2003; Peng et al., 2015; Maynard and Levi, 2017).

However, the analysis of such data can be complex and resource- 
intensive task, which has led to the use of machine learning for large- 
scale applications. Methods such as random forests, although yield the 
best results on tabular data, such as surveys or measurements tables 
(Grinsztajn et al., 2022), lack the ability to extract spatial patterns, 
unlike more recent models such as Convolutional Neural Networks 
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(CNN) and more recently, Vision Transformers (ViTs).
Consequently, using automated image analysis algorithms allows 

researchers to process larger datasets and study broader areas. Deep 
learning models have demonstrated remarkable capabilities in extract
ing meaningful information from images on almost all state of the art 
datasets for image analysis for nearly a decade (LeCun et al., 2015; 
Krizhevsky et al., 2017). This has been translated as well for remote 
sensing imagery for a variety of input data and tasks (Yuan et al., 2020). 
Nevertheless, deep learning methods typically demand large amounts of 
high quality labelled data to train effectively, which is prohibited in 
cases where ground truth data is difficult to obtain, such as soil mapping 
of arid areas.

Indeed, deep learning has been used for digital soil mapping, for 
instance using CNN and LSTM models (Wadoux, 2019; Padarian et al., 
2019; Li et al., 2022; Zhang et al., 2022). However, these studies 
employed supervised learning methods, which depend on relatively 
large datasets or extensive covariate measurements. Unfortunately, 
large soil datasets and comprehensive covariate measure ments are often 
unavailable in many real-world applications.

Nonetheless, the state of the art in image analysis has recently shifted 
to Self-Supervised Learning methods (SSL), a method that offers a 
promising solution to this labelling conundrum. In self-supervised 
learning, the model starts by learning properties of the dataset in an 
unsupervised way via pretext tasks, such as the reconstruction of masked 
data (Bao et al., 2021; He et al., 2022) or self-distillation (Caron et al., 
2021). By solving these pretext tasks, the model learns to capture 
essential features and patterns in the data. When a SSL pre-trained 
model is fine-tuned for a target task, it is already able to produce rich 
descriptors of the dataset’s features. SSL demands for more unlabelled 
data but on the other hand, finetuning is less prone to overfitting and less 
data-hungry (Ericsson et al., 2021).

In this study, we explore the synergy between remote sensing optical 
data and SSL techniques for digital soil mapping. Our case study is 
located in the region of AlUla in the Medina Province of Saudi Arabia. 
This region is characterised by desert and arid landscapes, making the 
ground visible from above. Our underlying hypotheses are that an expert 
knowing these landscapes could infer soil properties from high resolu
tion satellite data, and that a well trained deep learning model could 
replicate this knowledge. We train a Vision Transformer model 
(Dosovitskiy et al., 2020) in a SSL manner on satellite images and 
measure its ability to predict soil properties measured on the ground. To 
quantify the usefulness of the proposed method, we compare our results 

to more conventional machine learning, namely random forests.

2. Material and methods

2.1. Ground truth soil data

The foundation of our study is the ground truth soil data obtained 
from the SoFunLand (SFL) Project. This project maintains a compre
hensive soil monitoring network based on a 1 km regular grid across the 
AlUla region, covering 1,069 km2. The SFL network consists of 663 
monitoring sites, each located at the center of a 1 x 1 km cell Fig. 1. 
These sites provide detailed soil profile, soil physico-chemical proper
ties, as well as information on site environment, location, vegetation, 
and land management. The soil samples analysis follow the method used 
by Maurice et al. (2023). The samples in the present study were collected 
in 2019. They are composites of 5 samples collected from a depth of 
30–40 cm across a 1 x 1 m plot. Our dataset includes pH measurements 
obtained using both H2O and KCl, as well as X-ray fluorescence spec
trometry of elemental concentration (Si percentage) to demonstrate the 
versatility of our method.

2.2. Remote sensing data

Our remote sensing data comprise RGB Spot 6 images. The original 
multispectral Spot images were pan-sharpened on 1 m resolution 
panchromatic images. The final dataset is then of very high spatial 
resolution (1.5 m) but containing only the RGB bands. The images were 
captured during the soil sampling campaign and cover the entire kilo
metre grid.

We also used a Digital Elevation Model (DEM) at 1 m resolution (map 
of the DEM available in Appendix C) to evaluate the impact of the 
addition of input variables. To be fed into the neural network, the DEM 
was resampled at 1.5 m resolution like the RGB data.

2.3. Self-supervised learning

We used a ViT base deep learning model (Dosovitskiy et al., 2020) 
(see Table 1). This model is pre-trained using the DINO method (Caron 
et al., 2021) (see Appendix A for an overview of the method). SSL pre- 
training was done starting from the model trained on the ImageNet1K 
(Russakovsky et al., 2015) dataset provided by Caron et al. (2021). This 
starting model hasbeen therefore trained on natural images present in 

Fig. 1. Sampling sites of the kilometre grid with Spot 6 satellite image 
as background.

Table 1 
Layer details of the Vision Transformer used. Aside from the regression head, the 
architecture follows Caron et al. (2021). The projection and transformer blocks 
are commonly referred to as”backbone”.

Module Layer (type) Output Dimension Param #

Input ​ [224,224,3] ​
Projection Conv2d [768, 14, 14] 590,592
and embedding PatchEmbed [196, 768] 0
Transformer Linear [197, 768] 590,592
Block Dropout [197, 768] 0
(×12) Attention [197, 768] 0
​ LayerNorm [197, 768] 1,536
​ Linear [197, 3072] 2,362,368
​ GELU [197, 3072] 0
​ Dropout [197, 3072] 0
​ Linear [197, 768] 2,360,064
​ Dropout [197, 768] 0
​ LayerNorm [197, 768] 1,536
​ Linear [197, 2304] 1,771,776
Layer Normalisation LayerNorm [197, 768] 1,536
and Linear [512] 393,728
Regression Head ReLU [512] 0
​ Linear [512] 262,656
​ ReLU [512] 0
​ Linear [1] 513
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the ImageNet dataset, for instance pictures of cats, dogs, people or cars. 
To adapt the model to a new domain (satellite images over the desert), it 
is pre-trained on tiled satellite images, with each tile sized at 224 × 224 
pixels (therefore corresponding to 336 × 336 m on the ground). This 
sampling size was chosen because it is the standard input size of a base 
ViT (Dosovitskiy et al., 2020). Then, input images are used at native 
resolution, without any resampling within a tile (aside from data 
augmentation, see Appendix B). This 336 x 336 m area seemed to be a 
suitable scale to study the soil properties of a given point. Indeed, this 
scale is able to convey local information but also features the sur
rounding of the sampling point (see Fig. 3). The entire image is sampled 
along a grid, except for zones around ground truth data with a buffer of 
448 pixels around the ground truth point (i.e. 672 m). This sampling 
reduced the risk of bias with the model already learning features around 
ground truth sampling points. Then, the model was first fine-tuned 
without labels using the DINO method (see Fig. 2). Subsequently, we 
fine-tuned the model in a supervised way using tiles where ground truth 
data is available. As our purpose here is not to evaluate the accuracy of 
the map produced but rather the robustness and extrapolation capacity 
of the method, we chose to conduct the cross-validation using spatially 
defined folds, even if this can lead to over-pessimistic results (Wadoux 
et al., 2021). The supervised training is then performed with a 6-fold 
cross- validation strategy (see Fig. 4), with the folds being defined by 
applying a K-means to the geographical coordinates of the points.

As described in Table 1, our model is then constituted of two main 
parts: The “backbone” that was pre-trained and outputs descriptors of 
the tiles in a feature space, and a regression “head”, finetuned on a 
downstream task, in our case the prediction of soil properties. Our 
regression head is composed of three fully connected layers with an 
intermediate dimension of 512 and ReLus that were added on top of the 
pre-trained backbone. In the case of the ViT base architecture, the 
feature space after the backbone is of 768 dimensions (see Fig. 2 and 
Table 1). During supervised training, backbone weights were frozen and 
only the regression head was trained. The loss criterion used was the 

Mean Square Error (MSE).
As described in Table 1, the backbone part of the model (projection 

and transformer blocks) constituted a total of 85,646,592 parameters. 
These parameters were only trained during the unsupervised phase of 
the training. During the last supervised phase, only the 656,897 pa
rameters of the regression head were learned.

When training on RGB + DEM data, the weights corresponding to the 
DEM channel were initialized by cloning the weights corresponding to 
the R channel, thus making the projection head able to take (224,224,4) 
dimension input, with DEM as the fourth channel. Detailed training 
hyper-parameters can be found in the appendix (see Supplementary 
Materials B).

2.4. Comparison with other machine learning methods

To evaluate our method, we compare it to random forests trained 
using the same method as Dumont et al. (2024) but using spatial cross- 
validation rather than random folds and only RGB and DEM as cova
riates. Following this method, the random forest takes only the value of 
the pixel on the point as input. During the fit, we tested a range of hyper- 
parameters and selected the best models (see Appendix B).

We also compared with random forests fitted using the descriptors 
produced by the ViT pre-trained backbone in place of the deep learning 
regression head.

To asses the impact on SSL pre-training, we also trained the model in 
a simple transfert learning modality using the starting ImageNet 
weights.

2.5. Evaluation metrics

To quantify the accuracy of the predictions, we use the Root Mean 
Square Error (RMSE) and R2 as the evaluation metrics, which can be 
used for our different target variables, pH H2O, pH KCl and Si 
composition.

3. Results

Tables 2 and 3 summarize RMSE and R2 obtained for our target 
variables with different methods.

3.1. Proposed method

Overall, SSL trained ViT on RGB data were able to predict both pH 
values with satisfying accuracy given the range of ground truth values 
([7.32–10.40], [7.02–9.65], [41–99] for pH H2O, pH KCl and Si 
respectively). As shown in Figs. 5 and 6, the models demonstrated the 
capacity to accurately map soil properties while adhering to overarching 
patterns, even in the presence of occasional outliers (most notably for 
Si). This handling of outliers was further discussed in section 4.4.

Fig. 2. Overview of the SSL training protocol. The backbone is first trained 
without label with the DINO method (1) before being trained in a supervised 
way to predict soil properties of sampling points with a geographically defined 
cross validation (2).

Fig. 3. Examples of 224 × 224 pixel tiles around ground sampling points.
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3.2. Usage of deep learning over random forests

Deep learning with SSL on RGB data outperformed random forests 
fitted using RGB or RGB and DEM. However, using random forests after 
extracting deep learning features seem to be able to better fit the data in 
some cases than deep learning alone or random forests alone. However, 

Fig. 4. Geographical separation of folds.

Table 2 
Mean RMSE values (± std. deviation) by fold for the studied target variables for 
different input covariates and prediction methods.

Method Covariates pH H2O pH KCl Si

RF RGB 0.56 ± 0.03 0.51 ± 0.06 7.89 ± 1.66
​ RGB + DEM 0.55 ± 0.07 0.47 ± 0.03 8.13 ± 1.95
ViT RGB 0.91 ± 0.13 1.52 ± 0.41 46.83 ± 5.00
​ RGB + DEM 1.05 ± 0.19 1.05 ± 0.19 27.17 ± 3.93
ViT (SSL) RGB 0.51 ± 0.03 0.40 ± 0.03 6.93 ± 1.03
​ RGB + DEM 0.59 ± 0.12 0.50 ± 0.10 22.11 ± 3.26
ViT (SSL) + RF RGB 0.57 ± 0.06 0.43 ± 0.03 7.92 ± 1.78
​ RGB + DEM 0.52 ± 0.02 0.59 ± 0.07 6.73 ± 1.39

Table 3 
R2 values for the studied target variables for different input covariates and 
prediction methods.

Method Covariates pH H2O pH KCl Si

RF RGB 0.01 − 0.12 0.08
​ RGB + DEM 0.03 0.03 0.03
ViT RGB − 1.76 − 10.43 − 31.18
​ RGB + DEM − 2.52 − 2.91 − 9.74
ViT (SSL) RGB 0.07 0.23 − 0.36
​ RGB + DEM − 0.10 − 0.10 − 5.93
ViT (SSL) + RF RGB − 0.05 0.18 0.05
​ RGB + DEM − 0.17 − 0.14 0.33

Fig. 5. Maps of model predictions for the three target variables.
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random forests seem to be more able to fit more consistently than deep 
learning models, most notably for Si, our most unbalanced target vari
able (with a majority of points within the same values and only some 
outliers). These differences are further explored in section 4.2 in the 
discussion.

3.3. Impact of SSL

Without SSL pre-training, deep learning models were unable to fit 
correctly given the low number of samples. For instance, the R2 scores 
achieved when fitting for Si clearly indicated overfitting of the model. 
Even using more balanced target variables such as pH H2O or pH KCl, 
deep learning regression head were not able to fit and predict reliably. 

This kind of behaviour is to be expected when performing supervised 
learning only given our number of samples that is very low regarding 
deep learning standards (Safonova et al., 2023).

3.4. Addition of covariates

While the addition of covariates improved the performance of 
random forests, the performance of deep learning degraded by the 
addition of the DEM as a new channel in input. This can be explained by 
the large domain change required when fitting a new format of data 
(RGB + DEM input, i.e. four channels, rather than three with RGB) (see 
section 4.1 in discussion).

Fig. 6. Observed vs. Predicted and Residuals vs. Observed plots for the three target variables from top to bottom pH H2O, pH KCl and Si.
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4. Discussion

4.1. Versatility of the method and advantages of self-supervised learning

Self-supervised pre-training has been shown to ease domain changes 
(Bucci et al., 2021). In our case, during SSL pre-training, the model 
feature space should change from one describing accurately natural 
images, such as the ones that can be found in the ImageNet dataset, to a 
feature space describing more adequately desert scenes seen from above. 
To check this hypothesis, we performed a simple K-means clustering of 
the feature space of the model when fed the entire satellite image (K =
8). A map of this clustering shows that the ViT backbone seems to better 
group and identify landscapes after SSL pre-training (see Fig. 7).

An other experiment was to reduce the dimension of the feature 
space of a model and plot the result to have an intuition of which points 
that were clustered or spread out. UMAP (Uniform Manifold Approxi
mation and Projection) algorithm (McInnes et al., 2018) is often used 
because it is able to conserve the topology of the feature space. In Fig. 8, 
we reduced the 768 dimension feature space into 2 dimensions to be 
able to plot it, both for the backbone before and after SSL. SSL seems to 
spread out the points in the feature space, possibly making it easier for 
the model to discriminate and learn features during the supervised 
phase.

These experiments as well as our results show that the features 
produced by the SSL-pre-trained backbone are potentially more 
discriminant when describing the scenes we are focusing on and could 
potentially be relevant when interpreting model outputs (see Wadoux 
et al., 2020).

Furthermore, we achieved meaningful performances while avoiding 
overfitting despite using a small dataset compared to common deep 
learning practices (Safonova et al., 2023). Indeed, our dataset only has 
662 points associated with ground truth data, which is very small 
compared to classicaldeep learning datasets (for comparison, the classic 
MNIST dataset contains 70 K images and ImageNet 14 M images Deng, 
2012; Russakovsky et al., 2015). This can be achieved because the model 
has already learned relevant features during pretraining.

While in our case, the SSL backbone trained on RGB + DEM data was 
not able to overcome the backbone trained on RGB alone, recent studies 
in remote sensing show that SSL pre-trained backbone are a reliable way 
to produce quality features on a variety of domains other than RGB, such 
as multispectral or hyperspectral data (Jakubik et al., 2023; Cong et al., 
2023; Braham et al., 2022)

Such explorations of the feature space of the SSL pre-trained back
bone could be a way to easily cluster and map data with limited human 
input, thus helping expert planning.

4.2. Usage of random forests with deep learning features

In this study, we have fitted random forests using deep learning 

features produced by the SSL backbone. While providing less accurate 
results than fitting a deep learning head, the random forests were able to 
fit more consistently than deep learning heads. Indeed, while neural 
networks can be applied to a wide range of tasks and datasets, using 
them on constrained, unbalanced and small datasets increase the risk of 
overfitting. Our results then suggest that using a random forest as 
regression head rather than a deep learning head after the backbone 
could be a more reliable way to fit and predict data when faced with a 
limited number of samples.

During the last decade, deep learning and neural networks have 
mostly been treated as monolithic, with an input and an output, without 
considering the descriptors and features extracted by the model − except 
some notable exceptions like Mask RCNN (He et al., 2018) or U-Net 
(Ronneberger et al., 2015) that have been adapted with a variety of 
backbones. With SSL back bones now being able to provide quality and 
spatially aware descriptors (see for instance experiments conducted by 
Oquab et al. (2023)), the state of the art evolves again towards two step 
methods, separating feature extraction and target task. Indeed, it is 
common for SSL studies to assess the performances of their backbones by 
relying on simple classification methods such as linear or KNN classifers 
(see for instance Oquab et al. (2023) and Caron et al. (2021).

Then, in contexts with limited labelled data, a two step method com 
bining deep learning features and random forests (or other machine 
learning methods requiring high quality descriptors as input) appears to 
be viable.

This could then overcome the need for handcrafted descriptors of 
classical machine learning and the need for numerous laboratory 
measured data for supervised deep learning.

However, the features produced by a deep learning backbone can be 
noisy and this can for instance explain why we were not able to over
come deep learning heads when fitting random forests after a deep 
learning encoder. Simple manipulations of the features could be a way to 
overcome these difficulties,such as Principal Component Analysis (PCA) 
or UMAP to reduce the dimensionality of the features. Fig. 9 shows the 
result of a PCA on the features produced by an SSL pretrained ViT when 
fed RGB + DEM data. The model seems to be able to distinguish different 
zones, thus providing an unsupervised map of the area, integrating both 
RGB and DEM variables.

4.3. Use of remote sensing and visual data

An inherent limitation in employing remote sensing for digital soil 
mapping lies in its capacity to capture surface-level information exclu
sively (aside from radar data for instance (Huisman et al., 2003)). In the 
context of our present study, which focuses on arid landscapes charac
terised by predominantly exposed or sparsely covered soils, this limi
tation poses minimal concern. However, when considering soil mapping 
in regions with substantial vegetation cover or human-made structures, 
numerous factors can impact soil characteristics, many of which remain 

Fig. 7. Clustering of the model’s feature space before and after SSL.
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Fig. 8. UMAP projection of the ViT backbone feature space before and after SSL with color values corresponding to our three target variables.
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concealed from remote sensing observations (e.g. vegetation composi
tion or inter-species interactions which are not directly discernible 
through aerial or satellite imagery).

4.4. Handling of outliers

For each target variable, our model seems to correctly identify the 
global patterns in soil characteristics (see Fig. 3), meaning that overall 
acid or basic regions will be correctly identified as such. However, points 
with local characteristics differing from the surrounding region are often 
predicted with a larger error. This is for instance visible for points in the 
north-eastern part of the grid that are covered with crops which in
fluences pH and Si content at a local scale (see Figs. 3 and 3). In our case, 
sampling points around agricultural lands represent only 48 of the 662 
points, which was probably too few for the model to accurately learn 
their properties. In the case where it is impossible to provide more 
points, a perspective would be to change the balance of the dataset and 
give more weights to points with crops during supervised training. While 
these techniques are common in deep learning, it is important to ponder 
the use of class weighting as not to alter the relevance and generaliz
ability of the dataset for further usage (Johnson and Khoshgoftaar, 
2019). An other perspective would be to change the MSE loss used here 
during training for a loss with a different handling of outlier, such as a L1 
loss or Huber loss, for instance (Wang et al., 2020).

5. Conclusion

Our study shows that the use of SSL allows to leverage large amount 
of remote sensing data to predict soil features using few ground truth 
data compared to common deep learning practices. Then, with the use of 
SSL, the predictive abilities of the state of the art models such as ViTs 
and the availability of remote sensing data can be harnessed to map soil 
properties. Moreover, the study of the feature space of a SSL trained 
model opens new perspectives to efficiently create maps that summarize 
complex input remote sensing data. The automated spatial analysis can 
assist experts in designing optimal sampling strategies and streamlining 
fieldwork in challenging or large areas.

CRediT authorship contribution statement

Paul Tresson: Writing – review & editing, Writing – original draft, 
Visualization, Validation, Software, Methodology, Investigation, 

Conceptualization. Maxime Dumont: Writing – review & editing, 
Validation, Methodology, Data curation. Marc Jaeger: Writing – review 
& editing, Project administration, Funding acquisition. Fŕed́eric Borne: 
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