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Abstract 

Background Wildfires play a significant and complex role in ecosystems, influencing various aspects of their func‑
tioning and structure. These natural disturbances can positively and negatively impact ecosystems, shaping land‑
scapes, nutrient cycles, biodiversity, and ecological processes. This study focuses on assessing and integrating the dif‑
ferent factors that affect the ecological vulnerability to wildfires at the European scale. Our methodology follows three 
steps. Firstly, ecological values based on biological distinctiveness and conservation status were estimated to under‑
stand pre‑fire conditions better. Secondly, we obtain vegetation’s coping capacity (or resistance) to the impacts of fire, 
considering the functional traits of plants and fire characteristics through a fire extreme scenario. Finally, post‑fire 
recovery time was calculated by considering the species‑specific recovery time, recovery starting time, growth 
recovery rate, and the environmental constraints affecting the optimal vegetation response. These three variables 
were combined using a dynamic model that assumed the change of value due to wildfires integrated through‑
out the recovery time.

Results Our results indicate that the tundra biome emerges as the most ecologically vulnerable to fire, primarily 
due to its high ecological values and long recovery time, which outweigh its moderate coping capacity. Following 
closely, the temperate conifer forests also exhibit high vulnerability driven by their high recovery time, despite mod‑
erate ecological and coping capacity values. The boreal forests rank next, with moderate vulnerability due to their 
long recovery time and moderate coping capacity. The Mediterranean region, although having moderate ecologi‑
cal values and recovery time, shows a notable vulnerability influenced by lower coping capacity. The temperate 
broadleaf and mixed forests demonstrate relatively lower vulnerability owing to their balanced ecological values, 
moderate recovery time, and substantial coping capacity. Lastly, the temperate grasslands, savannas, and shrublands 
are the least vulnerable, benefiting from lower ecological values and the fastest recovery time, alongside moderate 
coping capacity, which collectively reduce their overall fire vulnerability.

Furthermore, we found that coping capacity is the factor that most influenced ecological vulnerability to wildfires.

Conclusions The study identifies key zones for European or national policies on fire prevention and post‑wildfire 
regeneration. It offers insights into effective forest management and conservation policies, applicable to current con‑
ditions. Additionally, the methods can predict future ecological vulnerability to wildfires based on climatic and socio‑
economic trends.
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Resumen 

Antecedentes Los fuegos de vegetación juegan un rol significativo y complejo en los ecosistemas, influenciando 
varios aspectos de sus estructuras y funcionamiento. Estos disturbios naturales pueden impactar de manera posi‑
tiva o negativa a los ecosistemas, modelando paisajes, ciclos de nutrientes, biodiversidad, y procesos ecológicos. 
Este estudio se enfoca a determinar e integrar los diferentes factores que afectan la vulnerabilidad a los incendios 
a escala europea. Nuestra metodología siguió tres etapas. En primer lugar, los valores ecológicos basados en distin‑
tivos biológicos y estatus de conservación fueron estimados para entender mejor las condiciones previas al fuego. 
Segundo, obtuvimos la capacidad de ajuste (o resistencia) de la vegetación a los impactos del fuego, considerando 
las características funcionales de las plantas y las características de los fuegos en un escenario de fuegos extremos. 
Finalmente, el tiempo de recuperación post fuego fue calculado considerando la recuperación específica de cada 
especie, el tiempo de inicio de la recuperación, la tasa de recuperación del crecimiento y de los condicionantes ambi‑
entales que afectan la respuesta óptima de la vegetación. Estas tres variables fueron combinadas usando un modelo 
dinámico que supuso el cambio de valor debido al fuego, integrado a través del tiempo de recuperación.

Resultados Nuestros resultados indicaron que el bioma de la Tundra emerge como el más ecológicamente vulner‑
able al fuego, debido fundamentalmente a sus valores ecológicos y altos tiempos de recuperación, lo que supera su 
moderada capacidad de afrontar loe efectos de ese disturbio. A este ecosistema le siguen los bosques templados de 
coníferas, que también exhiben una alta vulnerabilidad debido a sus extensos tiempos de recuperación y su mod‑
erada capacidad de ajuste al fuego. Los bosques boreales se ubican en tercer lugar, con una moderada vulnerabilidad 
debido también a sus largos períodos de recuperación y moderada capacidad de ajuste a este disturbio. La región 
Mediterránea, aunque presenta valores ecológicos y tiempos de recuperación moderados, muestra una notable 
vulnerabilidad debido a su muy baja capacidad de adaptación. Los bosques deciduos y mixtos demostraron una vul‑
nerabilidad relativamente más reducida debido fundamentalmente a sus valores ecológicos más balanceados y a una 
sustancial capacidad de adaptación. Por último, los pastizales templados, las sabanas y los arbustales, resultaron los 
menos vulnerables, que se benefician por su bajo valor ecológico y la más alta capacidad de recuperación además de 
su moderada capacidad de ajuste, lo que colectivamente reducen su vulnerabilidad total al fuego. Además, encontra‑
mos que la capacidad de ajuste es el factor que más influencia la vulnerabilidad ecológica a los fuegos de vegetación.

Conclusiones Este estudio identifica zonas clave para políticas a nivel nacional o europeo sobre prevención de 
incendios y en la regeneración post fuego. Ofrece perspectivas para el manejo efectivo de bosques y políticas de 
conservación aplicables a las condiciones actuales. Adicionalmente, los métodos pueden predecir la vulnerabilidad 
ecológica a fuegos de vegetación basados en tendencias climáticas y socio‑económicas.

Background
Wildfires play a significant and complex role in ecosys-
tems, influencing various aspects of their functioning 
and structure. These natural disturbances can positively 
and negatively impact ecosystems, shaping landscapes, 
nutrient cycles, biodiversity, and ecological processes 
(Arrogante-Funes et al. 2024; Bond et al. 2005; Bowman 
et al. 2009; Guyette et al. 2002; Midgley & Bond 2015).

Ecosystems vary in their ability to withstand and 
recover from wildfires based on factors such as vegeta-
tion composition, fire history, and ecological processes. 
Some ecosystems have adapted to periodic fires (Naveh 
1975) and even depend on them for functioning (Midg-
ley & Bond 2015). For example, certain plant species 
have developed fire-adapted traits (Pausas et al. 2008), 
such as thick bark or serotine cones that require fire 
to open and release seeds (Baeza & Roy 2008). These 
fire-related traits allow plants to avoid, resist, or tol-
erate fire (individual, community or landscape level) 

(Archibald et al. 2019), strengthening ecosystem resist-
ance or enhancing recovery.

However, many other ecosystems are less adapted to 
wildfires, mainly when they exceed historical conditions 
(i.e., more extreme or frequent fires) for which plants 
have not developed appropriate traits (Cochrane & Laur-
ance 2002). For example, intense and large wildfires can 
cause significant damage to ecosystems, leading to habi-
tat changes through landscape fragmentation (Driscoll 
et al. 2021) and changes in vegetation composition (Alca-
sena et al. 2016; Flannigan et al. 2009). The worst impacts 
of degradation induced by fire in the medium and long 
term include permanently disrupting natural processes, 
reducing biodiversity and impairing ecosystem functions 
(MMA 2006; Vallejo et  al. 2009). In addition, the loss 
of vegetation cover after fire increases surface erosion 
because the bare soil is exposed to raindrop impact and 
surface runoff, especially in the first months after burning 
(Giovannini et  al. 2001; Inbar et  al. 1998) and promotes 
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the alteration of the nutrient pool (Vallejo et  al. 2009). 
After a wildfire, the recovery process can be complex, 
depending on vegetation traits and environmental condi-
tions, and it may take years or even decades for the eco-
system to recover its pre-fire state.

Several frameworks have been developed to study 
vulnerability to natural hazards. A vulnerability frame-
work refers to a structured approach or model used to 
understand and assess the potential losses and resilience 
of communities and systems to the impact of natural 
hazards such as wildfires (UNISDIR, 2009; Williams & 
Kapustka 2000). The United Nations Office for Disaster 
Risk Reduction (UNDRR) promotes the implementa-
tion of the Sendai Framework for Disaster Risk Reduc-
tion (accessed: May 2023, https:// www. undrr. org/ publi 
cation/ sendai- frame work- disas ter- risk- reduc tion- 2015- 
2030), which serves as a comprehensive framework for 
understanding and addressing vulnerability and build-
ing resilience to disasters. Within the Sendai Frame-
work, three elements are considered in natural hazards 
assessment: danger (probability that the event occurs), 
exposure to population, and vulnerability (capacity to 
experience damage caused by that hazard). Vulnerabil-
ity assessment implies understanding and reducing the 
potential losses caused by a particular hazard. Assess-
ing vulnerability is crucial for minimizing human and 
material damage from hazards. Often, preparedness 
efforts focus on reducing vulnerability by enhancing 
resistance or shortening recovery times for potentially 
affected communities. In the context of wildfires, vulner-
ability assessment involves estimating the various socio-
economic and ecological factors that fires could impact, 
which implies considering the values at stake, the resist-
ance of the system to the effects of fire (commonly 
termed coping capacity), and its regeneration ability 
(frequently measured in recovery time to recuperate the 
pre-fire values) (Chuvieco et al. 2023).

Different methodologies have appeared in the last two 
decades for assessing ecological vulnerability to wildfires, 
particularly the components of ecological values and 
resilience. Bisson et al. (2008) presented an index of plant 
community resilience to fire but did not contemplate 
water availability. Arianoutsou et al. (2011) evaluated the 
post-fire resilience of the Pinus halepensis in Cape Soun-
ion National Park, Greece, using GIS and multi-criteria 
analysis. De la Riva et al. (2008), Alloza et al. (2006), and 
Duguy et al. (2012) produced a qualitative index of eco-
logical vulnerability to wildfires in Mediterranean zones. 
Rodrigues et  al. (2014) developed quantitative criteria 
for assessing ecological vulnerability in mainland Spain 
through recovery time based on land cover, NDVI trends, 
post-fire regeneration mechanisms (seeder or resprouter) 
of the dominant plant species, and local modifiers of 

resilience such as climatic and soil factors. Rivière et al. 
(2023) evaluated the ecological vulnerability of South-
Eastern France through a multi-criteria method based 
on the presence of forest covers and fuel load, fire inter-
val and forest management tools. Although at the local 
scale Lecina-diaz et  al. (2021) incorporate the factor 
coping capacity through tree bark thickness in the inte-
gral approach of vulnerability, the coping capacity of the 
ecosystem has not yet been well characterized in most 
studies. At the European scale, the European Forest Fire 
Information System (EFFIS) provides a map of ecological 
vulnerability to wildfires, considering only ecological val-
ues, which are understood as locations within the Natura 
2000 network (San-Miguel-Ayanz et al. 2018).

The wildfire vulnerability assessment can be greatly 
benefited by using geographic information technologies, 
as they can provide a comprehensive characterization 
of vulnerable areas (Aretano et al. 2015; Chuvieco et al. 
2023), helping to develop effective strategies for reducing 
potential damages in a certain territory.

The methodologies utilized in prior attempts to esti-
mate ecological vulnerability to wildfires have exhibited 
limitations in comprehensively considering regeneration 
time, coping capacity, and the holistic characterization 
of ecological values. Typically, the assessment of eco-
logical value focuses only on biodiversity, neglecting the 
conservation status, which plays a pivotal role in altering 
the intrinsic vulnerability of a location to fire (Arrogante-
Funes et  al. 2022; Dinerstein et  al. 1995; Ricketts et  al., 
1999a). Moreover, the absence of a simulated fire scenario 
spanning the entire study area constrains the capacity to 
discern the total potential losses, constituting a funda-
mental point of origin for vulnerability assessment as it 
marks the initiation of the recovery process (UNISDIR, 
2009; Williams & Kapustka 2000). Additionally, scant 
attention has been paid to existing studies on the inher-
ent nature of species in terms of functional traits. These 
intrinsic characteristics significantly influence their abil-
ity to rebound from disturbances (Chuvieco et al. 2014a, 
b, 2023). As a result, key factors such as resistance or 
recovery time lack the requisite detailed characterization, 
impeding the establishment of a standardized process for 
different regions, thereby hindering the comparison of 
areas with varying levels of resilience to fire.

This study develops a method to assess the ecologi-
cal vulnerability to wildfires at the European scale by 
characterizing its main components: ecological values, 
potential losses, and ecosystems’ resistance and recov-
ery (resilience). Our methodology presents a new holis-
tic approach to estimating ecological vulnerability to 
fires based on three components: (a) computation of eco-
logical values that could be potentially affected by fire by 
considering biological distinctiveness and conservation 

https://www.undrr.org/publication/sendai-framework-disaster-risk-reduction-2015-2030
https://www.undrr.org/publication/sendai-framework-disaster-risk-reduction-2015-2030
https://www.undrr.org/publication/sendai-framework-disaster-risk-reduction-2015-2030


Page 4 of 31Arrogante‑Funes et al. Fire Ecology           (2024) 20:98 

status of these ecological values; (b) estimation of the 
coping capacity of the vegetation communities to the 
effects of fires, by assessing the functional traits of the 
plants that characterize the resistance to fire through a 
fire extreme scenario; and (c) calculation of the post-fire 
recovery time of vegetation by considering factors that 
allow plants to regrowth after fires, mainly those func-
tional traits associated to regrowth and the local modi-
fiers of those traits. These are integrated by estimating 
the total damages produced by the fires during the life 
cycle of their impacts. Our methodology uses biologi-
cal knowledge, statistical pre-processed techniques, and 
heuristic methods, aiming to cover the complex inter-
actions between wildfires, ecological values, vegetation 
composition, forest management, soil, climatic, topog-
raphy factors, and vegetation functional traits. The com-
bination of ecological diversity, fire-prone landscapes, 
human–environment interactions, climate variability, 
transboundary collaboration, historical records of wild-
fires, common policy frameworks, and socioeconomic 
implications make Europe an exceptional territory for 
studying vulnerability to wildfires and can provide valu-
able to develop fire management strategies in other 
regions facing similar challenges  (Chuvieco et  al. 2010, 
2014a, b).

Materials and methods
The study area covered the continental European terri-
tory and adjacent islands, excluding Cyprus (Fig.  A1). 
Only terrestrial ecosystems were considered, as wild-
fires do not directly affect water bodies. Unburnable 
covers and croplands were removed from the analy-
sis, as we were interested on wildland fires. The spatial 
resolution of this work was 1 km × 1 km, and the units 
per variable were discretized between 0 and 1000 to 
facilitate the integration with other variables gener-
ated within the FirEUrisk project (last accessed: Janu-
ary 2024, https:// fireu risk. eu/), in which this research is 
integrated.

Framework
The general scheme and integration methodology of our 
approach to assessing ecological vulnerability is pre-
sented in Fig.  1. Ecological potential losses (EPL) were 
estimated considering the pre-fire ecological values, 
mediated by the ecological resilience (ER), which implies 
the capacity of the system to resist (coping capacity, CC). 
These losses after fire are integrated throughout time, 
considering the estimated time in which they will not 
be available (which depends on recovery time, RT). The 
different acronyms and terms used in the manuscript 
are included in Table 5. We termed potential losses and 
not actual losses, because this analysis is done before the 

fire occurs, assuming a certain fire scenario. In our case, 
this scenario was computed from the 95% worst propa-
gation conditions for those days when a fire larger than 
2000 ha occurred in Europe, thus indicating extreme fire 
conditions.

In the next paragraphs, we will review how the three 
main components of the ecological vulnerability were 
derived, first indicating the dimensions considered for 
estimating the ecological values, then the copying capac-
ity and finally the regeneration time.

Figure  1 illustrates the dynamic process of ecologi-
cal vulnerability assessment in the context of wildfire 
events. Initiated from the baseline ecological value, the 
occurrence of a wildfire leads to a reduction in this value, 
resulting in ecological losses within the affected area. 
However, amidst this devastation, the coping capacity of 
the vegetation plays a crucial role in determining what 
remains viable. Subsequently, a recovery phase ensues, 
marked by the activation of functional traits influenced 
by climatic and topographic factors as well as forest man-
agement practices. This process aims to restore the pre-
fire values, mitigating the ecological impacts sustained 
during the wildfire event. This comprehensive vulner-
ability assessment, as described in earlier studies (Chu-
vieco et  al. 2014a, b), quantifies these potential losses 
and acknowledges their persistence until the landscape 
returns to its pre-fire conditions.

Ecological values assessment
The methodology used for ecological values assessment 
(EVA) is based on characterizing the ecosystems’ bio-
logical distinctiveness (BD) and conservation status (CS) 
(Fig. 2) based on the methodology scheme proposed by 
Dinerstein et  al. (1995) and Ricketts et  al. (1999a) and 
previously used in the ecological vulnerability to wild-
fire at global scale by Arrogante-Funes et al. (2022). We 
stated that ecosystems hosting high taxonomic richness 
(Brun et al. 2019) or rare plant communities or habitats 
of endangered species highly contribute to their value 
through their enhanced functioning (Basile 2022; Leitão 
et  al. 2016; Tang et  al. 2023). The destruction or degra-
dation of these valued ecological components, notably 
by fires, can have long-term implications for ecosystem 
health and conservation (Sritharan et al. 2022).

Biological distinctiveness (BD) refers to a particular 
biological group’s uniqueness and distinct characteristics, 
emphasizing specific attributes at different ecological lev-
els, from individuals to communities, thus characterizing 
structural biodiversity from the point of view of its excep-
tionality and in terms of ecosystem health (Ricketts et al., 
1999a). The ecosystem’s conservation status (CS) refers 
to its current condition and the threat it faces regarding 
degradation, loss or endangerment. Assessing the CS of 

https://fireurisk.eu/
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an ecosystem involves evaluating various aspects, includ-
ing the state of its biodiversity and the presence of threats 
(Ricketts et al., 1999a).

Biological distinctiveness
Biodiversity, represented by biological distinctiveness, 
is essential for assessing the health of an ecosystem by 
reflecting the variability of life forms in a specific region 
(Dinerstein et  al. 1995). Taxonomic richness favors the 
emergence of contrasted functional traits, thus maintain-
ing vital ecosystem functions. Biological distinctiveness, 

in preserving this functional diversity, ensures the con-
tinuity and effectiveness of crucial processes (Ricketts 
et  al., 1999a). Beyond any direct benefit, each life form 
possesses a unique intrinsic value, contributing uniquely 
to the richness and complexity of our planet’s biologi-
cal fabric. Consequently, considering biological distinc-
tiveness when evaluating ecosystem ecological values 
becomes crucial (Dinerstein et al. 1995).

We built an integrated BD index based on previous 
studies by combining species richness, forest produc-
tivity, species abundance, and key biodiversity areas 

Fig. 1 Components of the ecological vulnerability to wildfires and integration approach
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(Arrogante-Funes et al. 2022; Dinerstein et al. 1995; Rick-
etts et al., 1999a). The characterization of species richness 
is essential for understanding the biological diversity of an 
ecosystem, providing insights into the relative importance 
of each species and their contribution to the structure and 
function of the ecosystem (Ricketts et  al., 1999a). Thus, 
species richness was estimated through potential habitat 
data for each species of mammals (278), birds (711), rep-
tiles (156), amphibians (96), and vascular plants (20.000). 
Habitat maps were downloaded from the IUCN reposi-
tory (https:// www. iucnr edlist. org/ resou rces/ spati al- data-% 
20dow nload last accessed: December 2023). For each spe-
cies, a value of 1 was assigned to polygons where the pres-
ence of that species was confirmed and 0 otherwise. These 
binary data by species were transformed into rasters with a 
spatial resolution of 1 km. Then, all species’ presences were 
added at the pixel level to obtain the species richness for 
Europe.

Characterizing vegetation density of habitat is crucial 
when estimating biological distinctiveness as it provides 
a more comprehensive understanding of the ecosystem’s 
varied interactions, structures, and functions (Dinerstein 
et al. 1995). Utilizing biomass to indicate this abundance 
offers an effective approach, considering primary pro-
duction and habitat structure. This strategy is particularly 
suitable when integrated with maps that assess individual 
species based on censuses, allowing for a more holistic 
approach in biodiversity assessment. For the density of 
habitat, a forest biomass density map at 100 m resolution 
for 2020 was used as a proxy (https:// data. jrc. ec. europa. 
eu/ datas et/ d1fdf 7aa- df33- 49af- b7d5- 40d22 6ec0d a3—last 

accessed: December 2023). This map comprises harmo-
nized reference statistics regarding forest area in terms 
of biomass density (gC/m2) at national and subnational 
scales. The spatial resolution was initially set at 100 m but 
transformed to 1 km using a weighted average approach. 
This adjustment involved aggregating data and assign-
ing greater importance to information nearer the center 
of each 1 km pixel. Such alterations in spatial resolution 
are common in spatial data processing, aiming to bal-
ance the trade-off between data precision and computa-
tional efficiency (Martínez-Gordón et al. 2021). The shift 
to coarser resolution facilitates analyses over larger areas 
while preserving essential spatial patterns.

Crowther et  al. (2019) emphasize the significance of 
forest productivity through biogeochemistry in influenc-
ing the decomposition and turnover of soil organic mat-
ter and the fluxes with the health of the biodiversity and 
the ecosystem. Forest productivity, as a proxy from plant 
traits (Polley et  al. 2022), was calculated by Moreno-
Martínez et  al. (2018) at 1 km spatial resolution based 
on biogeochemistry continuous data about specific leaf 
area (SLA)  (mm2  mg−1), leaf dry matter content (LDMC) 
(g  g−1), leaf nitrogen content (LNC) (mg  g−1), and leaf 
phosphorus content (LPC) (mg  g−1). Ren et  al. (2022) 
synthesized the positive relationship between carbon 
assimilation, SLA, and P/C leaf contents. Thus, the pre-
vious databases were used as a proxy for carbon, nitro-
gen, and phosphorus cycle productivity. The processing 
sequence of this database utilizes machine learning 
methodologies in conjunction with optical remote sens-
ing data (MODIS/Landsat) and climate data to address 

Fig. 2 Components of the estimation of ecological values

https://www.iucnredlist.org/resources/spatial-data-%20download
https://www.iucnredlist.org/resources/spatial-data-%20download
https://data.jrc.ec.europa.eu/dataset/d1fdf7aa-df33-49af-b7d5-40d226ec0da3—last
https://data.jrc.ec.europa.eu/dataset/d1fdf7aa-df33-49af-b7d5-40d226ec0da3—last
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gaps and scale up in-situ measured leaf traits. Thus, the 
previous databases were used as a proxy for carbon, 
nitrogen, and phosphorus cycle productivity. After nor-
malizing each variable, forest productivity was integrated 
as a sum at the pixel level of the carbon, nitrogen and 
phosphorus cycle production values.

Key biodiversity areas are characterized by exceptional 
biodiversity value stemming from their remarkable eco-
logical integrity, globally significant ecosystems, and sub-
stantial populations of animals, fungi, and plants. They 
hold significant value for conserving biodiversity, and 
their identification and protection play a crucial role in 
combating global biodiversity loss. Key biodiversity areas 
were obtained from the database of Potapov et al. (2008) 
and can be viewed as biodiversity hotspots. The vector 
data layers were converted into raster binary data, assign-
ing a value of 1 where a key biodiversity area was present 
and 0 where it was not.

Conservation status
An ecosystem’s conservation status (CS) refers to its 
current condition and the threat it faces regarding deg-
radation, loss, or endangerment (Ricketts et  al., 1999a). 
It is crucial in assessing its ecological value (Dinerstein 
et al. 1995). Firstly, a well-preserved ecosystem tends to 
be healthier and more resilient, enabling it to withstand 
disturbances and environmental changes (Ricketts et al., 
1999a). The preservation of biodiversity in these ecosys-
tems contributes to stability and resilience, promoting 
essential services and facilitating adaptation to changing 
conditions (Pausas et al. 2003). Healthy ecosystems offer 
a broader and more effective range of services.

Furthermore, establishing protected natural areas, 
driven by esthetic, recreational, and biological appeal, 
contributes to ecosystem conservation. In summary, an 
ecosystem’s conservation status is essential for evaluating 
and appreciating its ecological value and significance for 
both nature and society (Ricketts et al., 1999a).

For the assessment of the CS, we estimated five indi-
cators following previous studies (Arrogante-Funes et al. 
2022; Dinerstein et  al. 1995; Ricketts et  al. 1999): pres-
ence of exceptional forests, places of special conserva-
tion, human pressures, loss of forest, and unique habitat 
preservation.

Exceptional forests were computed from an ecological 
point of view. Old-growth forests are important, albeit 
more structural than functional, in conserving most ter-
restrial diversity and enormously regulating the global 
climate (de Assis Barros et  al. 2022). The intact forest 
landscapes cartography (Potapov et  al. 2008) charts the 
location and extent of the forests and terrestrial ecosys-
tems that remain unaltered by humans, with a minimum 
mapping unit of 500  km2.

Places of special conservation, mainly in national parks 
and reserves, play an essential role in conservation. We 
extracted the European territory from the World Data-
base on Protected Areas (WDPA), which was generated 
as part of a project developed by the United Nations 
Environment Programme (UNEP) and by the IUCN, 
administered by the World Conservation Monitoring 
Centre (WCMC) and UNEP (https:// data- gis. unep- 
wcmc. org- last access: December 2023). In this study, we 
only considered the terrestrial protected areas classi-
fied under IUCN categories I–IV as for these categories, 
there are reliable data verified on the ground, and they 
are managed similarly, thus enabling us to assume that 
they all have the same biodiversity conservation values. 
The vector data layer was converted to raster binary data 
by assigning 1 where a WDPA was located and 0 where it 
was not.

The human pressure indicator was collected from UNEP 
(https:// wesr. unep. org/ index. php/ artic le/ biodi versi ty- and- 
nature- loss—last accessed: January 2023). It was estimated 
through landscape fragmentation mapping based on the 
degree of fragmentation as a percentage through human 
infrastructures, roads, and railways. Human pressure var-
ies between 0, the lowest to un-fragmented or homogene-
ous areas, to 1000, corresponding to highly degraded or 
heterogeneous landscapes.

The loss of forest indicator was obtained from global 
forest extent and change from the dataset of Hansen et al. 
(2013). This database compiles pixels based on Landsat 
satellite images that have experienced vegetation loss 
(2000–2013) due to various disturbances. For this study, 
we classify pixels within the database period that exhibit 
changes in vegetation cover as indicative of poor conser-
vation status.

Finally, unique habitat preservation (Howard et  al. 
2020) was characterized based on potential habitat data 
for each species belonging to the category of “critically 
endangered,” “endangered,” and “vulnerable” of mam-
mals, birds, reptiles, amphibians, and vascular plants. 
The dataset was downloaded from the IUCN repository 
(https:// www. iucnr edlist. org/ resou rces/ spati al- data-% 
20dow nload —last accessed: December 2023). And we 
replicated the same process of species richness to obtain 
the final product of unique habitat preservation.

Integration of EVA: principal components analysis
Principal component analysis (PCA) is a multivariate 
method that aims to reduce the complexity of a dataset 
by identifying the most important variables or “princi-
pal components” that explain the variation in the data 
(Andersen et  al. 2009). Principal component analysis 
(PCA) represents a pivotal analytical tool employed 
by scientists to elucidate intricate relationships within 

https://data-gis.unep-wcmc.org-last
https://data-gis.unep-wcmc.org-last
https://wesr.unep.org/index.php/article/biodiversity-and-nature-loss—last
https://wesr.unep.org/index.php/article/biodiversity-and-nature-loss—last
https://www.iucnredlist.org/resources/spatial-data-%20download—last
https://www.iucnredlist.org/resources/spatial-data-%20download—last
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ecosystems, thereby enhancing the comprehension of 
ecological values (Janžekovič & Novak 2012). The first 
principal component represents the direction with the 
greatest variation among samples.

The first principal components are particularly impor-
tant because they capture the largest amount of vari-
ability among the data. This means that they effectively 
summarize the essential information with fewer dimen-
sions. The synergy effect between the variables is a key 
aspect here; by reducing the dimensionality, PCA helps 
to highlight the underlying structure and relationships 
within the data that may not be immediately apparent 
(Janžekovič & Novak 2012).

To assess variable reliability in PCA, Bartlett’s test of sphe-
ricity, Kaiser–Meyer–Olkin (KMO), and omega hierarchical 
asymptotic statistics were computed (Appendix 2).

The previously described indicators (from BD and CS) 
were introduced in the PCA model, taking the positive 
direction for values close to 1000 and negative for those 
close to 0. Species richness, forest productivity, density of 
habitat, key biodiversity areas, exceptional forest, unique 
habitat preservation, and places of special conservation 
conserve the original direction. In contrast, the human 
pressure and loss of forest indicators inverse the direc-
tion, taking values close to 1000 where human pressure 
and loss of forest values were low. Regarding the previ-
ous explanation, we selected the first PCA because it rep-
resents the synergies between conservation status and 
biological distinctiveness. For example, zones with fewer 
roads and railways and a loss of forest cover conserve bet-
ter ecological values.

Assessing ecological resilience
The methodology for estimating the ecosystem’s fire 
response comprises copying capacity and recovery time 

(Fig.  3) for vegetation. An ecosystem’s copying capacity 
(CC) to wildfire refers to the ability to withstand or resist 
wildfire events and limit their impact. It encompasses the 
ecological characteristics and adaptations that enable an 
ecosystem to minimize damage and maintain its struc-
ture and functionality in the face of fire. Since plant CC 
depends on both its physiological characteristics and fire 
conditions, we estimated CC considering a particular fire 
scenario assuming extreme conditions.

On the other hand, ecosystem recovery time (RT) 
after a wildfire refers to the length required to regain 
pre-fire conditions. The recovery process involves 
restoring vegetation, forest management tools, eco-
logical processes, and biodiversity affected by the fire. 
In this study, we estimate some relative indicators of 
the RT based on functional traits of the vegetation and 
local modifiers: species-specific recovery time, recov-
ery starting time, growth recovery rate, and the envi-
ronmental constraints.

Fire scenario simulations
Studying ecological resilience to fire entails integrating 
fire scenarios to understand better the potential impact 
of fire one ecological vulnerability (UNISDIR, 2009; Wil-
liams & Kapustka 2000). Through these simulations, the 
impact of various conditions on ecosystems, including 
vegetation, fauna, and soil, can be thoroughly analyzed. 
This understanding is crucial for assessing ecosystem 
resilience and devising effective fire management strate-
gies. Exposure to these simulations provides insights into 
how components like vegetation, soil, and fauna respond 
and adapt (UNISDIR, 2009; Williams & Kapustka 2000), 
while also pinpointing weaknesses in environmental 
resistance and identifying vulnerable areas susceptible to 
significant damage during real wildfires.

Fig. 3 Components of the estimation of ecological resilience
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Within the FirEUrisk project, in which this research 
was developed, a fire simulation scenario was created 
by considering meteorological conditions of days in 
which at least 1 fire larger than 2000 hectares occurred 
in Europe within the time series 2001–2019. From 
those days, the 95th percentile of the worst weather 
conditions at noon (12 h) was computed. Weather 
parameters for the selected days were computed using 
ERA5-Land global re-analysis data. A topography-
based transfer function was applied to the 1 km-reso-
lution hourly ERA5-Land reanalysis data for variables 
such as temperature, dew point temperature, relative 
humidity, wind, and daily precipitation (https:// cds. 
clima te. coper nicus. eu/ cdsapp# !/ datas et/ reana lysis- 
era5- land? tab= overv iew, accessed: January 2023).

These weather conditions were input into the Behave 
program, along with fuels and topography (see Chu-
vieco et al. 2023), to estimate the fire line intensity (FI), 
which was selected as the main parameter to repre-
sent potential fire behavior conditions for the extreme 
scenario. The original value in kW/m was normal-
ized to 0/1 using threshold values for fire suppres-
sion proposed by Rothermel (Rothermel 1983 [Table 
IV-18421]). Normalized values increased linearly from 
0 to 0.5 for FI values between 0 and 346 kW/m (100 
BTU/feet/s), implying fires that can be attacked by 
fire brigades with manual tools, from 0.5 to 0.75 for FI 
between 346 and 1731 kW/m (500 BTU/feet/s), where 
machines and aircraft can be used, and from 0.75 to 
1 for values ranging from that threshold to the maxi-
mum FI. (Chuvieco et al. 2023).

Coping capacity
CC was assessed through Fire Line Intensity and vegeta-
tion resistance to wildfires for the tree species present in 
a 1-km pixel based on the tree potential habitat maps 
(69 tree species) and the 7 non-forest land cover types 
(Table 6, Appendix 1).

Resistance of the vegetation to wildfires (RVW) was 
derived from a resistance index FTrvwi varying between 0 
(non-resistant) and 1 (fully resistant), based on three cri-
teria used in Stevens et  al. (2020): (i) bark thickness (BT 
in cm), which protects the cambium and other living tis-
sues against high temperatures from ground fires; (ii) tree 
height (THMAX in m); and (iii) basal crown height (BCH 
in m) as the capacities of trees to escape crown torch-
ing. These functional traits (FT) for each species are syn-
thesized in Table 6  (Appendix 1). Each trait was rescaled 
between 0 (no resistance) and 1 (the most resistant), and 
the mean value of the three rescaled traits provided the 
aggregated final FTrvw for each species i. The criteria for 
selecting the tree species around Europe were based on the 

general and specific plants related to the biomes (Diner-
stein et al. 2017) (Table 6, Fig. 9 from Appendix 1).

The final calculation of the RVW was on the following 
model:

where n is the number of species on pixel p, and i is 
the species, TPHM is the tree potential habitat maps 
(extracted from https:// www. iucnr edlist. org/ resou rces/ 
spati al- data-% 20dow nload —last accessed: December 
2023), and FTrvw is the functional trait related to the 
resistance of species i.

For non-forested pixels, we set CC = 0 for grasslands, 
croplands, heathlands, and shrublands; none of the spe-
cies in these land covers experience fire-resistant traits.

Pixel level CC was finally calculated as in Eq. 2

Finally, the CC result was normalized between 0 and 
1000, where 0 represents areas with the least fire resist-
ance, and 1000 represents the most resistant ones.

Recovery time
RT comprises the species-specific recovery time (RTi), 
recovery starting time (RST), growth recovery rate (GR), 
and the environmental constraints (EC) affecting the 
optimal vegetation response, locally modified by climate, 
soil erosion, forest management, and topography (Seidl 
et al. 2011).

Firstly, for characterizing the RT (in years) of the 69 
tree species and the 7 non-forested land cover types, we 
used each species’ yearly growth rate (GR, m.year-1) and 
maximum tree height (THMAX, m) to derive the relative 
growth rate RGR (%HMAX.year-1) and the time needed 
for a species to reach its maximum height (RT in years) 
as 1/RGR (Table 6, Appendix 1). Information from obser-
vations (Schelhaas et  al. 2018 among others) and forest 
growth models were used (Schworer et  al. 2014; Morin 
et  al. 2021; Rohner et  al. 2018), assuming the starting 
point was a seedling (when data were missing in forest 
growth models or observations). BMAX and RG were 
derived from the tree species with the same taxa or the 
closest characteristics of tree height and wood density.

However, post-fire regeneration is more complex than 
a simple seed regeneration. We relied on the specific post-
fire regeneration strategies from (Archibald et  al. 2019) to 
define the species-specific regeneration starting time (RSTi), 
a modifier, potentially anticipating or delaying the regenera-
tion starting time (Table 6, Appendix 1). We collected infor-
mation on tree species vegetative (resprouting) or seedling 

(1)

RVW =
1

n

i=1 TPHMi
×

n

i=1
TPHMi × FTrvwi

(2)CC = RVW × (1− FI)

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview
https://www.iucnredlist.org/resources/spatial-data-%20download—last
https://www.iucnredlist.org/resources/spatial-data-%20download—last
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emergence (serotiny, seed dispersal) response strategies. 
We attributed an RST value of − 25 years for fire-tolerant 
species regenerating from trunk buds and − 10 years for 
fire-tolerant species resprouting from belowground mate-
rial (Table  6, Appendix 1). For species regenerating from 
the seed bank surviving the fire identified according to their 
level of serotiny and their facility to regenerate from the 
surviving seed bank found in the literature, we attributed 
an RST value of 0. Finally, for species without resprout-
ing ability nor post-fire germination from the seed bank, 
regeneration relies only on seed dispersal from unburned 
areas (Liu 2021). We then accounted for colonization delays 
under inefficient dispersal strategy and time for the seed 
to be dispersed from neighboring unaffected ecosystems. 
Dispersal efficiency was related to seed mass and disper-
sal strategies and maximum distances (Vargas et  al. 2023) 
(Table  6, Appendix 1). We attributed a dispersal index DI 
(in years) varying from 0 to 20 years according to their dis-
persal distance TDMAX. DI was calculated from dispersal 
distance rescaled rTDMAX between 0 (not dispersed) and 1 
(long dispersal), so that DI = (1-rTDMAX)*20 and DI varies 
between 0 for long distance dispersal and 20 years delay for 
short distance dispersal. For species carrying multiple strat-
egies, we kept the lowest RST between the strategies.

Recovery time (RT, in years) was then calculated at the 
pixel level, as the mean value (over species in presence), 
of the cumulated species-specific regeneration starting 
time RST (in years) and species-specific recovery time 
(RTi in years) from biomass growth (Eq. 6).

where n is the number of species on pixel p, i is the spe-
cies, and TPHM is the tree potential habitat map.

Adjustment of species‑specific recovery time (ARTi) 
and recovery starting time (ARST) based on environmental 
constraints (EC)
As defined by RTi and RST, optimal post-fire dynamics 
can be locally modified by environmental or manage-
ment constraints (Nolan et  al. 2021). We used climatic 
(rainfall, temperature and solar radiation), topo-edaphic 
(soil erosion, topography), and management conditions 
as the main local adjustment modifiers (adjustment of 

(3)RT = 1/

n∑

i=1

TPHMi×

n∑

i=1

TPHMi x (RSTi×ARSTm+(ARSTt+ARSTc)+RTi×ARTic)

(4)

RT = 1/

n∑

i=1

TPHMi ×

n∑

i=1

TPHMi x (RSTi + RTi)

species-specific recovery time (ARTi) and recovery start-
ing point (ARST)) as used in process-based forest models 
(Rohner et al. 2018) (Seidl et al. 2011).

The climatic, constraint on RST (ARSTc) was derived 
from the yearly mean annual precipitation (MAP) and 
potential evapotranspiration (PET) based on a 20-year 
time series from the 4-km resolution Terraclimate 
Observatory (Abatzoglou et al. 2018). We considered that 
these variables drive soil moisture and the subsequent 
seed germination (Chamorro et al. 2017), allowing plants 
to develop root systems after a wildfire for efficient water 
and nutrient uptake (Bakker et al. 1996). ARSTc was cal-
culated as the PET/MAP ratio (varying from 0.2 for wet 
areas to 5 for dry areas) to modify the regeneration time 
RST so that dry areas (PET > MAP) experience longer 
regeneration time (up to a 5-year delay) and wet areas 
(PET < MAPP) do not experience any regeneration delay.

We then considered post-fire soil erosion as an inte-
grated topographic adjustment modifier for regeneration 
(ARSTt) that can reduce the seed bank, soil quality, and 
the subsequent regeneration capacity of the vegetation 
(Seidl et al. 2011). We used the soil erosion map (in t.ha-
1) for Europe (https:// data. jrc. ec. europa. eu/ datas et -last 
accessed: December 2023), developed using the revised 
universal soil loss equation (RUSLE) with a spatial reso-
lution of 1 km. The values were then transformed into a 
categorical variable, 1 to lower values and 4 to highest 
values according to the criterion for soil erosion due to 
water, proposed by the Food and Agriculture Organiza-
tion of the United Nations (FAO) (FAO/UNEP/UNESCO, 

1979): 1 to values between 0 and 20, 2 to values between 
20 and 50, 3 to values between 50 and 200, and 4 to val-
ues over to 200, which is also applicable to fire erosion 
processes (Chuvieco et al. 2014a, b). We used these val-
ues as the potential delay in regeneration time (in years) 
due to topography (ARSTt).

Finally, humans might play a significant role in post-fire 
forest recovery by stimulating regeneration through tree 
plantations. We used the European forest management 
(FM) map from Hengeveld et al. (2012) (ranging from 1 
for non-managed forests to 6 for highly managed forests), 
to derive the modifier (ARSTm = (6-FM)/5) for the regen-
eration time RST so that RST is not delayed (ARSTm = 0) 
when management was high (value = 6). Species RST 
was > 0, and kept as its initial value when management 
was low (value = 1).

A climate-driven adjusted recovery time (ARTic) was 
derived from mean annual temperature MAT, and the 

https://data.jrc.ec.europa.eu/dataset
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monthly precipitation amount (MAP/12) (Abatzoglou 
et  al. 2018) below soil available water capacity (AWC) 
as in Eq.  7 in a multiplicative combination as used in 
forest growth models (Schworer et al. 2014; Morin et al. 
2021; Rohner et  al. 2018). We set a minimum growth 
rate adjusted at 40% of the optimal for each climate 
control thus reaching a minimum of growth at 16%, 
when combined and reaching the observed 2 mm to 10 
mm variation in tree growth observed at the European 
territory scale (Schelhaas et al. 2018). We obtained the 
climatic adjustment for recovery ARTic as in Eq. 5.

We then modified Eq. 6 with management (ARSTm), 
topographic (ARSTt), and climatic (ARSTc, ARTic) 
modifiers applied to recovery starting time (RST) or 
species-specific recovery time (RTi), as in Eq. 6.

where n is the number of species on pixel p, and i is the 
species.

Integration of the ecological vulnerability to wildfires 
at the European scale
In this study, vulnerability assessment involved examin-
ing potential damages from an ecological perspective. 
In earlier projects (Chuvieco et al. 2014a, b), to deter-
mine potential losses caused by fires, we calculated the 
reduction in value (marginal loss) that occurs when an 
area is burned. These losses persist in the landscape 
until pre-fire conditions are restored, and the reduc-
tion of values was considered throughout the estimated 
recovery time.

Recognizing the greater importance of present val-
ues over future ones, as future benefits may be per-
ceived as more uncertain, we estimated the equivalent 
present value of marginal losses using a discount rate. 
A common value of 2% was chosen for the discount 
rate, aligning with the valuation literature (Azqueta 
2007). A hyperbolic factor was introduced in the mar-
ginal loss equation to prevent long-term effects from 
becoming negligible. This factor ensures that the pen-
alty applied to the future diminishes asymptotically to 
zero, achieved by incorporating the Neperian logarithm 
instead of the absolute number of years for recovery 
(Azqueta 2007).

(5)
ARtic = (0.4 + 0.6× (MAT + 9)/29)× (0.4 + 0.6×min (MAP/12,AWC)∗0.002))

(6)RT = 1/

n∑

i=1

TPHMi×

n∑

i=1

TPHMi x(RSTi×ARSTm+(ARSTt+ARSTc)+RTi×ARTic)

The three factors—EVA, CC, and RT—were integrated 
into ecological vulnerability to wildfires (EVW) using 
Eq. 7. This follows the interactions shown in Fig. 1, which 
we will describe below.

where r is a discount rate of 2%; the EVW was normal-
ized from 0 to 1000, with 0 indicating low vulnerability 
and 1000 indicating high vulnerability.

The first part of Eq.  9 represents the interaction 

between EVA and CC and simulates the potential loss 
of ecological values when an extreme fire occurs. Thus, 
this part of the equation represents the starting point of 
recovery or the condition in which an ecosystem would 
be left after the fire (post-fire ecological values).

Ecosystems with high EVA but low CC may suffer sig-
nificant losses in habitat destruction, species loss, and 
disruption of ecological processes. Conversely, an ecosys-
tem with high CC may be better equipped to withstand 
wildfires, reducing potential ecological losses (Chuvieco 
et al. 2023).

The next part of Eq.  9 represents the fluctuation of 
recovery rates over time, as many authors reflect in post-
fire regeneration trajectories through RT and r (Chu et al. 
2016; Röder et al. 2008; Viana-Soto et al. 2017). Thus, this 
part of the equation simulates the recovery of ecosystems 
after a disturbance. While a logistic curve can represent 
the fluctuation of RT over time, the area under the curve 
can be used as one of many quantitative measures to assess 
the recovery dynamics or patterns of an ecosystem follow-
ing a disturbance such as wildfires (Decò et al. 2013).

Sensitivity analyses
The sensitivity analysis known as “one-at-a-time” is used 
to assess the individual impact of each factor in the eco-
logical vulnerability integration equation to wildfires 
(Saltelli et al. 2000). Since the equation involves the inter-
action of four factors: ecological value assessment (EVA), 
coping capacity (CC), recovery time (RT), and a discount 
rate (r), this type of analysis allows for the independent 
modification of each of these factors while keeping the 
others constant, observing how it affects the final result 
of ecological vulnerability.

(7)EVW = (EVA× (1− (CC/1000)))×
1− (1+ r)−lnRT

r
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The main purpose is to understand the relative sen-
sitivity of each factor and its contribution to ecologi-
cal vulnerability. By making changes one at a time, 
researchers can identify which factors significantly 
impact the overall result (Arrogante-Funes et al. 2022; 
Maes et  al. 2023). This analysis helps researchers and 
scientists better understand the dynamics of the equa-
tion and prioritize areas of focus or improvement 
based on the relative influence of each factor.

With this purpose, the weight of the four factors was 
individually modified, ranging from − 50 to 50% of 
each factor’s value on the EVW equation.

Results
Ecological values
Figure 4 includes the EVA results based on the PCA’s first 
axis. Table 1 provides a statistical summary of the results 
by biome.

This first principal component kept 0.79 of overall var-
iability (Table 7, Appendix 1). The results of PCA statis-
tical analyses are for KMO 0.83, Bartlett analyses p value 
0, and omega hierarchical asymptotic 0.71. The results 
indicate that the data is suitable for conducting a princi-
pal component analysis. Significant relationships among 
the variables are evident based on the Bartlett test, and 

Fig. 4 Map of ecological value assessment (EVA) in Europe, scaled from 1 (low value) to 1000 (maximum value). Areas assigned to 0 were 
not assessed, indicating urban areas



Page 13 of 31Arrogante‑Funes et al. Fire Ecology           (2024) 20:98  

the scale utilized in the analysis demonstrates good reli-
ability, as indicated by the omega value. The value of spe-
cies richness (0.59), unique habitat preservation (0.52), 
places of special conservation (0.46), density of habitat 
(0.39), and key biodiversity areas reach the highest con-
tribution to the ecological value assessment (Table  7, 
Appendix 1). Based on the PC1 axis, our EVA index 
identifies concomitantly biologically rich ecosystems 
with high biomass and recognized investment by nations 
to conserve them.

As shown in Fig. 4, the tundra had the highest ecologi-
cal values. Half of the EVA values are above 844, with a 
mean of 820.50 (Table  1); 10% of the values exceed 
968.45.

The next biome that stands out for its high yet mod-
erate EVA is the temperate grasslands biome found in 
the Danube Delta in Romania (Fig.  4). Half of the eco-
logical values are above 794.7. However, the mean value 
of 467.57 suggests the presence of many pixels with 
low EVA values (Table  1). Note that this biome is very 
scarcely distributed solely in this specific region of the 
Danube Delta.

Based on the development of the EVA, both regions 
host a unique biodiversity reflected by exceptional spe-
cies and key biodiversity areas factors as well as good 
ecological health of the ecosystems represented through 
the conservation status indicator.

The others presented lower values than these two high 
EVA regions (Table  1). Still, the boreal and Mediterra-
nean regions stand out spatially (Fig.  4), being the for-
mer slightly higher than those of the latter (Table 1). In 
both regions, we find ecological values centered around 
400 for Mediterranean areas and approximately 500 for 
boreal regions.

Furthermore, in Mediterranean regions, the range of 
EVA values is the most extensive compared to the six 
biomes, peaking at 983.8 (Table  1). This variation high-
lights significant differences in geographical distribu-
tion attributed to landscapes typically affected by human 
activity. This influence is accurately reflected in the 

human pressure indicator, where even the more natural 
areas exhibit unique species conditions, as indicated by 
preserving unique habitats and key biodiversity areas. 
For example, the high EVA values in the Penibetic and 
Sierra Morena mountains in mainland Spain contrast 
with the low EVA values in the agroforestry landscapes of 
northern Italy (Fig. 4). Regarding the boreal forests, these 
zones suggest they contain many of Europe’s general spe-
cies but do not present higher ratios of the exceptionality 
diversity variable.

The results for the temperate broadleaf forests, coni-
fer forests, and mixed forests generally experience lower 
EVA than the rest of Europe, as shown in the spatial dis-
tribution for the EVA (Fig. 4) and the statistics (Table 1). 
Despite this generality, we find areas with high ecological 
values in the Caledon forests of Ireland, the Alps, and the 
Danube Valley (Fig. 4).

Coping capacity and recovery time
The results obtained from applying the methodology for 
CC and RT are shown in Figs. 5 and 6 respectively, with 
their synthesis tables by biome (Tables 2 and 3). Notably, 
these results of CC stem from the interaction between 
the fire resistance functional traits for trees (while 
shrublands and grasslands have been considered simi-
larly responding to fire) and a scenario of extreme fire in 
Europe.

As observed in the provided Table 2 and Fig. 5, the CC 
values were predominantly low to moderate across the 
different biomes in the EU. For instance, the Mediterra-
nean region, which covers 19% of the EU area, exhibited 
a mean CC value of 180.73 on a 0–1000 scale, indicat-
ing a moderate resistance to extreme fire scenarios. The 
median CC value for this biome was 80.75, suggesting 
that many areas have lower fire resistance, but with sig-
nificant variability as shown by a high standard deviation 
(193.95) and a 90th percentile (PCT90) value of 442.61. 
This indicates that about 10% of the Mediterranean 
region has high fire resistance, likely due to the presence 
of fire-resistant tree species.

Table 1 Summary zonal statistics of the EVA per European biome

Biome % Area Min Max Mean Std Median PCT90

Mediterranean region 19 0.10 983.90 340.42 276.60 379.74 722.66

Temperate conifer forests 5 27.20 973.32 303.06 362.48 50.59 821.67

Temperate broadleaf and mixed forests 56 25.50 994.38 153.97 255.88 51.60 795.73

Tundra 5 66.93 999.69 820.50 291.84 844 968.45

Temperate grasslands, savannas, and shrublands 1 37.64 925.76 467.57 372.46 794.70 799.29

Boreal forests 14 59.52 988.01 479.97 286.74 488.02 844.05
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In contrast, the temperate conifer forests, covering 
5% of the EU area, showed a higher mean CC value 
of 251.5 and a median of 216.6, with a notable PCT90 
value of 611.46 (Table  2). This suggests that these 
forests generally exhibit higher fire resistance, with 
a substantial portion of the area having strong resist-
ance due to the predominance of fire-resistant conifer 
species.

The temperate broadleaf and mixed forests, the most 
extensive biome covering 56% of the EU area, presented a 
mean CC value of 185.34 and a very low median of 21.44, 
indicating that while some areas have high fire resistance, 

a large part of this biome has very low resistance, as 
reflected by the high standard deviation (231.3) and a 
PCT90 value of 508.6 (Table 2).

The tundra biome, which covers 5% of the EU area, 
showed low fire resistance with a mean CC value of 
84.63 and a median of 21.29 (Table 2). The PCT90 value 
of 264.31 suggests that only a small portion of the tun-
dra has moderately higher fire resistance, likely due to 
the sparse and low vegetation.

The temperate grasslands, savannas, and shrublands, 
covering 1% of the EU area, had the lowest mean CC 
value of 51.25 and a low median of 21.43 (Table  2). 

Fig. 5 Map of the ecosystems’ coping capacity to fire over Europe (0 non‑resistance, 1000 high resistance)
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Fig. 6 Map of recovery time (in years after fire) over Europe

Table 2 Summary zonal statistics of the CC

Biome % Area EU Min Max Mean Std Median PCT90

Mediterranean region 19 0 999 180.73 193.95 80.75 442.61

Temperate conifer forests 5 0 999 251.5 250.24 216.6 611.46

Temperate broadleaf and mixed forests 56 0 1000 185.34 231.3 21.44 508.6

Tundra 5 0 1000 84.63 163.62 21.29 264.31

Temperate grasslands, savannas, and shrublands 1 0 999 51.25 119.51 21.43 64.31

Boreal forests 14 0 1000 411.99 290.75 590.96 639.05
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The low PCT90 value of 64.31 reflects the very low fire 
resistance across this biome, consistent with the pre-
dominance of grasslands and shrublands for which we 
set the lowest resistance values.

The boreal forests, covering 14% of the EU area, dem-
onstrated the highest fire resistance with a mean CC 
value of 411.99 and a median of 590.96 (Table  2). The 
PCT90 value of 639.05 indicates that a significant portion 
of this biome has very high fire resistance, due to the less 
presence of croplands in this biome since the croplands 
obtain 0 value in our approach.

In our methodology, we have focused on functional 
traits associated with trees, taking advantage of the avail-
able data on their habitat distribution. This approach 
is reflected in the spatial distribution of these values 
(Fig. 5): forested areas exhibit higher CC values, while, in 
contrast, grass or shrubland areas show lower CC values 
that we set to 0. Nevertheless, contrasted values within 
forests reflects the variety of resistance traits found 
across EU tree species.

The analysis shows that forested biomes, particularly 
boreal forests and temperate conifer forests, exhibit 
higher fire resistance due to the presence of fire-resist-
ant tree species. Conversely, biomes such as temperate 
grasslands, savannas, and shrublands and tundra exhibit 
the lowest fire resistance, reflecting their sparse and 
non-resistant vegetation. The Mediterranean region and 
temperate broadleaf and mixed Forests show moderate 
resistance but with significant variability, highlighting the 
diversity of vegetation and its impact on fire resistance 
within these biomes.

As we can observe in Table  3 and Fig.  6, vegetation 
recovery time (RT) after a fire varies significantly across 
different biomes in the EU. This RT is influenced by sev-
eral factors, including soil erosion, temperature, precipi-
tation, human management practices, slope, and terrain 
aspect, as well as the functional traits of different species, 
such as resprouters and seeders. Grass and shrub species 

generally recover faster than trees, as reflected in the fol-
lowing observations.

RT was estimated through years of tree recovery based 
on functional traits and local modifiers that facilitate or 
hinder recovery (Fig. 6, Table 3). A fixed value of 2 years 
was set for grasslands and 10 years for shrublands.

The Mediterranean region exhibits a moderate 
recovery time. The mean RT value in years is 27.2, 
indicating that vegetation recovery is neither fast nor 
slow on average (Table  3). The median RT of 13.64 
suggests that a significant portion of the area recov-
ers relatively quickly, but the high standard deviation 
(32.97) and PCT90 value (70.68) highlight consider-
able variability, with some areas taking much longer to 
recover, indicating spatial differences between higher 
and lower values (Fig. 6).

In contrast, temperate conifer forests show a relatively 
longer recovery time. The mean RT value of 62.61 and a 
high median of 50.24 indicate that these forests generally 
take longer to recover than the other biomes, likely due 
to the dominance of tree species with longer recovery 
periods. The high PCT90 value of 130.79 further empha-
sizes the extended recovery time for a significant portion 
of this biome.

Temperate broadleaf and mixed forests, which cov-
ers the largest area, has a mean RT value of 32.04 and 
a very low median of 22.47. This suggests that while 
many areas recover quickly (likely due to the presence 
of resprouting species and shrubs), significant portions 
take much longer, as indicated by the high standard 
deviation and PCT90 value, as in the Mediterranean 
region.

The tundra biome exhibits a generally fast recovery 
time with a mean RT of 21.45 and a low median of 14.33. 
However, the variability is high, as indicated by the stand-
ard deviation of 25.63 and PCT90 value of 46.61, reflect-
ing some areas with significantly longer recovery times 
due to harsher conditions and limited vegetation types.

Table 3 Summary zonal statistics of the RT

Biome % Area EU Min Max Mean Std Median PCT90

Mediterranean region 19 1 280.9 27.2 32.97 13.64 70.68

Temperate conifer forests 6 1 281 62.61 47.6 50.24 130.79

Temperate broadleaf and mixed forests 56 1 280.69 32.04 34.71 22.47 80.25

Tundra 5 1 280.89 21.45 25.63 14.33 46.61

Temperate grasslands, savannas, and shrublands 1 1 172.61 6.09 14.6 1.26 15.82

Boreal forests 14 1 280.89 29.66 18.2 28.64 51.25
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As in the previous case, temperate grasslands, savan-
nas, and shrublands show the fastest recovery time with 
a mean RT of 6.09 and a median of 1.26. The low PCT90 
value of 15.82 indicates that the majority of this biome 
recovers very quickly, likely due to the dominance of fast-
recovering grass and shrub species.

Finally, boreal forests show the longest recovery times, 
with a high mean (29.66) and median (28.64). The high 
variability (Std: 18.2) and PCT90 value (51.25) indicate 
that recovery times are generally long, likely due to the 
slow growth rates of boreal tree species and harsh cli-
matic conditions.

The biomes, from shortest to longest recovery time, are 
as follows. Temperate grasslands, savannas, and shrub-
lands exhibit the fastest recovery times due to the rapid 
regrowth of grasses and shrubs. Next, the tundra also 
recovers quickly, reflecting the resilience of its hardy 
vegetation. Following this, the Mediterranean region 
shows moderate recovery times with significant variabil-
ity, indicating a mix of fast-recovering shrublands and 
slower-recovering forested areas. Subsequently, temper-
ate broadleaf and mixed forests have moderate recov-
ery times, with a substantial portion recovering quickly 
due to the presence of resprouting species. In contrast, 
temperate conifer forests exhibit longer recovery times, 
reflecting the slow regrowth of coniferous trees. Finally, 
boreal forests have the longest recovery times, likely due 
to slow-growing tree species and harsh environmental 
conditions.

Integrated ecological vulnerability to wildfire
Based on the EVA, CC, and RT analyses, the ecological 
vulnerability to wildfires (EVW) across evaluated Euro-
pean lands shows moderate outcomes. Considering an 
extreme fire scenario around 500 mean value of EVW, 
the results reveal higher median values than the mean, 
indicating generally lower vulnerability (Table  4). The 
standard deviation surpassing the mean and median 
underscores distinct spatial distributions across regions, 
distinguishing between grasslands and wooded areas, 
among others (Fig. 7), and for RT, we computed the EVW 

map (Fig. 7) and a summary of zonal statistics based on 
Europe’s different biomes.

Despite this pattern, we can find areas with the high-
est EVW values in the Scandinavian Peninsula (Fig. 7). 
Table  4 illustrates that the tundra biome emerges as 
the most vulnerable to wildfires based on its high mean 
EVW, reflecting substantial susceptibility primarily 
due to climate-related factors and vegetation charac-
teristics. The considerable standard deviation (188.67) 
indicates variability in vulnerability levels across tundra 
regions. The median (399.86) and PCT90 (547.4) values 
highlight areas within the tundra biome with elevated 
vulnerability.

The next more vulnerable biome was temperate coni-
fer forests exhibit significant vulnerability to wildfires, 
characterized by a relatively high mean EVW (157.51) 
and substantial standard deviation (211.08). This vul-
nerability is influenced by the prevalence of fire-prone 
coniferous species and climatic conditions conducive to 
fire spread, particularly in northern Europe and moun-
tainous regions (Fig.  7). Furthermore, the elevated 
PCT90 (527.6) value indicates localized areas with 
heightened vulnerability.

Boreal forests show moderate vulnerability to wild-
fires, with a mean EVW (145.66) influenced by slow-
growing tree species and environmental conditions 
prone to fire outbreaks. The standard deviation sug-
gests varying susceptibility across boreal landscapes 
(162.58), with the PCT90 (426.68) value highlighting 
regions of elevated vulnerability, particularly in North 
Scandinavia.

The next biome, but with lower EVW compared to 
boreal forests, was the Mediterranean region, display-
ing moderate vulnerability to wildfires, characterized by 
a mean EVW (of 81.91) influenced by diverse landscape 
types from fire-prone shrublands to more fire-resilient 
forests (Fig.  7). The variability in vulnerability levels 
across the region it was also indicated by the standard 
deviation (141.88). The PCT90 value highlights areas 
with heightened vulnerability, such as the Alps, stand out 
in the Iberian sclerophyllous and semi-deciduous forests, 

Table 4 Zonal statistics of the EVW values per biome in Europe

Biome % Area EU Min Max Mean Std Median PCT90

Mediterranean region 19 0 893.05 81.91 141.881313 24.57 339.39

Temperate conifer forests 6 0.02 956.23 157.51 211.079439 31.13 527.60

Temperate broadleaf and mixed forests 56 0 882.55 65.39 125.325281 21.10 217.97

Tundra 5 0.02 1000 339.56 188.673707 399.86 547.40

Temperate grasslands, savannas, and shrublands 1 0 714.90 55.07 102.944104 11.81 150.67

Boreal forests 14 0 870.67 145.66 162.581745 40.19 426.68
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such as the Penibetic mountain range, or the case of tem-
perate conifers.

The last two less vulnerable biomes were temperate 
broadleaf and mixed forests and temperate grasslands, 
savannas, and shrublands. The first shows a mean EVW 
(65.39) influenced by a mix of deciduous and evergreen 
species. The standard deviation (125.33) indicates vari-
ability in vulnerability levels across temperate Europe, as 
we can observe in France and Germany (Fig. 7), with the 
median (21.1) and PCT90 (217.97) values highlighting 

regions with elevated vulnerability due to forest composi-
tion and climatic factors.

The last biome, temperate grasslands, savannas, and 
shrublands, exhibits the lowest vulnerability to wild-
fires among the assessed biomes, characterized by a 
relatively low mean EVW (55.07) and standard devia-
tion (102.94). The resilience of grasslands, savannas, and 
shrublands to fire is evident in the minimal variability in 
vulnerability levels across these landscapes. The median 
(11.81) and PCT90 (150.67) values reinforce the overall 

Fig. 7 Map of ecological vulnerability to wildfire (EVW) integrating coping capacity (CC), recovery time (RT), and ecological value assessment (EVA) 
over Europe (with 0 = low vulnerability, 1000 = high vulnerability)
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low susceptibility to wildfires in temperate grassland and 
shrubland ecosystems, as we can observe in the last lands 
of the Danube River (Fig. 7).

Sensitivity analyses
The sensitivity of the methodology to estimate the inte-
grated ecological vulnerability to wildfire (EVW) was 
assessed through induced changes in the factors involved 
in its estimation: ecological value assessment (EVA), 
coping capacity (CC), recovery time (RT), and rate of 
discount (r). Figure  8 shows the sensitivity of the EVW 
integration method to changes in these factors by recal-
culating the EVW while perturbing the parameters one 
by one from − 50 to + 50% of their baseline value. The 
results demonstrate that, after inducing different intensi-
ties of change in the parameters, the average EVW result 
barely varies. Thus, it was found that the EVW integra-
tion method showed good stability in the face of varia-
tions in its factors, as the percentage change was below 
0.3% (Fig.  8). The most significant impact on EVW was 
obtained by modifying coping capacity (CC), which 
establishes potential ecological losses based on the ini-
tial ecological value (EVA). A 50% decrease in coping 
capacity resulted in a 0.13% increase in EVW, while a 50% 
increase in coping capacity resulted in a 0.4% decrease in 

EVW. The complete figure for all results is in the Appen-
dix 1 (Fig. 10).

Discussion
Ecological values: first steps and toward further conceptual 
frameworks
We used the concept of ecological value assessment 
(EVA) as an integrated index of ecosystem function-
ing potentially affected by fires, informing about prior-
ity regions to be protected from or managed after fires. 
The concept of ecological value assessment is in fact still 
loosely defined, so that independent studies assembled 
contrasted information as reviewed in Amador-Cruz 
et al. (2021). Our framework is informed by the key infor-
mation list, adapted to fit the constraints of the Euro-
pean-scale study area and data availability (Perrone et al. 
2023).

Based on this raw information, we computed spe-
cies richness as the number of species. This first choice 
is a simple approach when current new indices based 
on functional richness (Legras et  al. 2018) or rarity-
weighted richness (Albuquerque & Beier 2015) could 
integrate species endemism or rarity and functional 
redundancies between species. To maintain consist-
ency in the information across both plants and animals, 

Fig. 8 OAAT sensitivity analyses result in changing weights of each variable by separating from − 50 to 50% over the EVW integration
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we utilized the number of species, with plants benefit-
ing from extensive documentation of their traits from 
the TRY database (Kattge et  al. 2020), while animals, 
which have been less thoroughly investigated, are also 
accounted for (Tobias et  al., 2022). Further improve-
ments using a functional biogeography framework 
(Violle et al. 2014) and refined species distribution will 
certainly improve this ecological value assessment.

Despite our assumptions guided by technical and con-
ceptual constraints, we could propose a first attempt to 
provide an ecological value assessment map for Europe. 
Our final map illustrates how the European continent 
encompasses diverse ecosystems and landscapes with 
contrasted ecological values. Particularly, as many studies 
reflect, the boreal forests of Scandinavia, the Carpathian 
Mountains, Atlantic coastal areas, the Danube River 
Basin, and the South Iberian Peninsula present higher 
EVA due to the presence of particular species, such as 
endemism, plus the general species supported in central 
Europe ecosystems, considered being rich biodiversity 
areas (Habel et al. 2013; Kayes et al. 2020; Mamos et al. 
2021; Manzano et al. 2019).

Our approach suggests the tundra has very high eco-
logical values compared to the rest of the biomes, in con-
trast to previous studies (Walker et al. 2001). The tundra 
landscapes in the northern part of the Scandinavian Pen-
insula showcase biodiversity that stands out for having 
exceptional species in good condition compared to other 
biomes with only widespread species (Hofgaard et  al. 
2012). Many studies highlight that fires can negatively 
impact the tundra’s high EVAs (Bret-Harte et  al. 2013; 
Mccarty et al. 2021).

Temperate broadleaf and mixed forests do not stand 
out with the highest ecological values compared to 
other biomes, reducing their intrinsic vulnerability. 
This goes against what was reported by Marín et  al. 
(2021) reporting a biodiversity hotspot in Central 
Europe but only assessing the entire European territory 
by quantifying biodiversity solely based on tree species. 
Although using simple indices, our study considers an 
extensive database of plant and animal taxa to charac-
terize each biome as recommended by previous eco-
logical value assessment frameworks (Dinerstein et  al. 
1995; Ricketts et al. 1999).

However, landscape variability also plays a sig-
nificant role, as spatial differences suggest that the 
observed low vulnerability is not uniform across 
the extensive territory of the biome. In those zones, 
our study coincides with the findings of Marín et  al. 
(2021). In some areas, such as the lands near the Dan-
ube Valley and the Carpathians, the highly biodiverse 

composition of the forest may influence local vulner-
ability, emphasizing the importance of studying vari-
ability at the regional level to fully comprehend the 
dynamics of ecological vulnerability by biome, as many 
authors highlighted about the frameworks of vulner-
ability (Blaikie et al. 1994).

Coping capacity, post‑fire recovery and ecological 
vulnerability to wildfires: beyond vegetation
Beside the geographical variety of EVAs contributing 
to EVW, contrasted vegetation responses during fires 
themselves (Midolo et  al. 2023) and after fire during 
regeneration (Nolè et al. 2022) could be integrated in our 
framework.

While some ecosystems, such as Mediterranean for-
ests, have developed adaptations that confer higher CC 
values over the forested areas (Kühn et al. 2021), others, 
like the tundra, exhibit lower CC due to the less efficient 
functional traits of their flora to cope with high tempera-
tures reached during combustion (Lashchinskiy et  al. 
2020).

The tundra landscapes of the Scandinavian Penin-
sula are highly ecologically vulnerable to fire due to the 
interaction between their rich ecological values, low 
resistance capacity, and medium regeneration times. A 
typically highly flammable organic horizon that spreads 
fires rapidly increases the likelihood of intense fires 
reaching these areas and reducing CC (Lashchinskiy et al. 
2020).

In general, the Mediterranean region also exhibits a 
notable values of ecological vulnerability to wildfires, 
attributed to its prominent ecological values, moder-
ate coping capacity, and recovery times. These regions 
showcase characteristics that reduce potential losses 
and recovery times based on their resistance and regen-
eration functional traits, making them among the most 
adapted ecosystems (Baeza & Roy 2008). However, the 
region displays high variability in the values of EVW due 
to its heterogeneous landscape, where general values may 
not fully represent this diversity, as also argued by Pausas 
and Vallejo (1999).

Specifically, certain zones in the Mediterranean, like 
Spanish or Italian sclerophyllous and semi-deciduous 
forests, exhibit lower RT values for forested areas com-
pared with other forested zones of Europe owing to the 
presence of resilient resprouter communities and higher 
water availability from ocean and sea climate conditions 
(Rodrigo et al. 2004; Rodrigues et al. 2014).

Like the Scot and Alp forests, the temperate conif-
erous biome in Europe shows a significant ecological 
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vulnerability to wildfires, as the literature over Pinus 
spp. suggested (Adámek et al. 2016). While they do not 
possess high ecological values throughout their extent, 
they exhibit a moderate coping capacity combined with 
extended regeneration times under an extreme fire sce-
nario, contrasting with previous studies (Adámek et al. 
2016; Engelmark & Hytteborn 1999). The conifers of 
these ecosystems do not have specific fire regeneration 
functional traits, making them less effective in extreme 
fire-prone environments (Aubin et  al. 2016). Broad-
leaved forests show moderate coping capacity and 
recovery time values, indicating a moderate ability to 
cope with and recover from fires, as previously stated 
(Maringer et al. 2016; Moris et al. 2017).

The boreal forest ecosystems that dominate the coun-
tries of Finland, Sweden, and Norway exhibit a more 
moderate ecological vulnerability to wildfires compared 
with the previous biomes. This is due to the biome’s 
outstanding ecological values, with extensive regenera-
tion times according to other authors (Héon et al. 2014; 
Weldon & Grandin 2019), but with high coping capacity 
due to the coarse bark-thickness of these species. While 
boreal forest species have developed some functional 
resistance traits to fire throughout their evolution as can-
opy height, the overall regeneration is not as pronounced 
as in more fire-prone ecosystems, which are more fire-
adapted (Kühn et al. 2021).

The temperate broadleaf and mixed forests biome in 
Europe demonstrates the lowest ecological vulnerabil-
ity to wildfires among the biomes studied that contains 
tree species due to its regular ecological values and its 
diverse tree species, including fire-resistant deciduous 
and evergreen trees, and resprouting species that recover 
quickly post-fire as Adie and Lawes (2023) illustrated 
too. According to Bauhus et  al. (2017), this resilience is 
enhanced by the favorable climatic conditions prevalent 
in temperate regions, such as moderate temperatures 
and adequate rainfall, which support rapid vegetation 
recovery.

Additionally, the biome’s mosaic of forested areas and 
grasslands as in the case of the Mediterranean region, 
with the latter recovering quickly due to rapid regrowth 
of grasses and herbaceous plants, further reduces over-
all vulnerability (Bauhus et al. 2017; Hamilton & Burton 
2023).

In Europe, temperate grasslands, savannas, and 
shrublands such as the temperate grasslands of the 
Danube Delta are among the ecosystems with the low-
est ecological vulnerability to wildfire. These ecosys-
tems exhibit diverse landscapes internally caused by 
an equilibrium between nature and humans, similar to 

what occurs in Mediterranean regions (Gastescu 1993). 
Thus, the limited area of this biome in the Danube 
Delta ecosystem in Romania shows a low EVW due to 
the short regeneration period despite assembling high 
EVA and very low CC.

European grasslands, in general, show no fire resist-
ance. Grasses are highly flammable and would be com-
pletely consumed in fire (aboveground), unlike tree 
structures, but grass structures experience shorter regen-
eration times than trees (Keeley et al. 2011). Hence, the 
grasslands may have the ability to regenerate quickly after 
a fire (Gang et al. 2019; Ruprecht et al. 2015).

We did not differentiate CC and RT between grass-
land and shrubland species. Still, expanding the informa-
tion in our database of species distribution for grasses or 
shrubs would be necessary. As proposed by Keeley et al. 
(2011), this would allow us to more accurately determine 
the ecological vulnerability of these areas, where tree 
cover does not represent all ecosystems.

In our framework, we limited CC and RT assessment 
to vegetation, whose response to fire is the most direct 
and which constitutes the main habitat for animal spe-
cies. We then hypothesized here that animal diversity 
was equally affected and equally recovered after fires 
as vegetation. This might not be fully true as animal 
recovery is slower than vegetation (Jacquet & Pro-
don 2009; Prodon & Diaz-Delgado 2021), and fire size 
affecting landscape fragmentation might significantly 
affect the recovery rate (Puig-Giron et al. 2022). Further 
improvements should assemble animal traits related to 
fire-affected habitat specificities, as well as landscape 
fragmentation indices.

Uncertainties
Our EVW framework relies on multiple data sources 
and assumptions, potentially sources of uncertainties. 
Our sensitivity analysis results revealed that CC and 
RT were both similarly relevant, as the extensive litera-
ture reflects (Yi & Jackson 2021), but with the CC fac-
tor standing out, a key factor to refine and pay attention 
to. We could show that Europe exhibits contrasted vul-
nerability to extreme fires throughout its territory. The 
following ranking of ecosystems most vulnerable to fire 
could be established: tundra, boreal forests, temperate 
coniferous forests, Mediterranean regions, temperate 
grasslands, and temperate deciduous and mixed for-
ests. Interestingly, in line with the study on the vulner-
ability of forest ecosystems to climate change in Europe 
by Lindner et  al. (2010), the most vulnerable regions 
coincide as the boreal and coniferous forests in the 
northern UK, while Mediterranean areas are identified 
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as moderately vulnerable, so that increasing fires with 
climate change might enhance these already identified 
vulnerable regions.

Our framework provides a static map of EVW, 
assuming constant species distribution maps and cli-
mate modifiers. Based on these climate effects, we 
could provide climate-responsive RT following obser-
vations. For example, the tundra undergoes a short 
growing season due to low temperatures, shorten-
ing the time for vegetation to recover and regenerate 
and contributing to a reduced regenerative capacity 
after a fire (Boucher et al. 2020; Bret-Harte et al. 2013; 
Strengbom et  al. 2001). Similarly, many areas in the 
Mediterranean region report higher RT values due 
to low water availability from insufficient rainfall and 
consequent soil degradation caused by drought epi-
sodes (Baeza et al. 2007; Bisson et al. 2008). Adequate 
water availability post-fire is crucial for the germina-
tion of most seeders (Moreno & Oechel 1992), as dry 
conditions can delay post-fire regeneration in seeding 
communities, as suggested by Rodrigo et  al. (2004). 
Despite being a region with most European fires and 
so considered good fire response, it does not emerge 
as the least vulnerable region based on the extreme fire 
scenario. In turn, as argued by Pausas et al. (2008), the 
extreme fire scenario with high temperatures and pro-
longed fire exposure results in a challenge to overcome 
even by fire-adapted vegetation of the Mediterranean. 
This can severely impact seed viability and soil quality 
and hinder plant species’ successful germination and 
regrowth (Moreira et  al. 2011). Furthermore, the loss 
of vegetation cover, soil degradation, and dry weather 
with limited water availability after fire can impede 
seed germination, making it challenging for new plants 
to establish themselves (Seidl et  al. 2011). Here, we 
used simple linear relationships between mean annual 
precipitation/temperature and CC or RT that could be 
further used in future climate change scenarios and 
forest species distribution (Mauri et al. 2022).

A more dynamic EVW approach, re-evaluating CC, 
RT, and EVA yearly, could consider potential cascading 
effects (Ibanez et al. 2022) when fire recurrence reaches 
short-term intervals below species maturity thresholds. 
Depending on the time since the last fire, non-linear 
responses could highly increase RT and the subsequent 
EVW.

Our methodological framework can finally be 
applied at a regional scale with fine-resolution data 
improving biodiversity information (Diví & Chytrý, 
2018), fire scenario (Chuvieco et al. 2023), plant func-
tional traits (Kattge et  al. 2020), biomass assessment 

(Vallet et  al. 2023), and topo-climates (Ackerly et  al. 
2020), for more local fire management strategies and 
stakeholder concerns or empirical knowledge (Rivière 
et al. 2023).

Applicability
Despite the disparity in spatial databases, inherent 
assumptions and the uncertainty of the integration meth-
ods inherent to these kinds of studies (Heuvelink 1998; 
Heuvelink et al. 1989), we have proposed a standardized 
methodology for assessing ecological vulnerability to 
wildfires across Europe, developing the current assess-
ment of wildfire vulnerability available at the European 
Forest Fire Information system San-Miguel-Ayanz et  al. 
(2018), relying on the Natura 2000 network alone. This 
latter initial approach lacks fire scenarios and fails to con-
sider the key component of ecosystem resilience.

Our achievement is a significant step for the scientific 
community in consolidating a standardized approach and 
holds significant importance for the EU stakeholders. A 
comprehensive framework allows for a holistic assess-
ment of vulnerability, considering multiple factors such 
as biodiversity richness and conservation status, vegeta-
tion resilience to fire, and bioclimatic conditions affect-
ing regeneration. This integrated approach facilitates 
a deeper understanding of how different ecosystems 
respond to wildfires and their potential for recovery, thus 
providing a scientific basis for informed decision-making. 
Standardized methodologies enable comparative evalua-
tions of vulnerability across different European regions, 
which is essential for identifying areas requiring prior-
itized attention and additional resources. This optimizes 
the allocation of funds and mitigation efforts.

The ability to map these ecologically vulnerable zones 
provides a valuable tool for society, legislation, and deci-
sion-making to solve the current concerns of UNESCO 
World Heritage (Durrant et al. 2023) and the specific bio-
diversity (Biodiversity Strategy for 2030) (https:// eur- lex. 
europa. eu/ legal- conte nt/ EN/ TXT/? uri= CELEX: 52020 
DC038 0—last accessed: December 2023) and forest (New 
EU Forest Strategy for 2030) (https:// eur- lex. europa. eu/ 
legal- conte nt/ EN/ ALL/? uri= CELEX: 52021 DC057 2—last 
accessed: December 2023) targets in risk reduction of 
the European Green Deal. Moreover, the assessment of 
ecological vulnerability enhances fire risk information 
systems, by extending the traditional concept of danger 
evaluation with new dimensions, reminding that risk 
assessment should include both aspects, the physical 
probability of the event and the potential damages that it 
may cause.

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0380—last
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0380—last
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0380—last
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:52021DC0572—last
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:52021DC0572—last
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Based on the vulnerability maps, the European Union 
can allocate funds specifically to countries and regions 
with higher vulnerability. This ensures that resources are 
used efficiently to reduce wildfire risk and enhance eco-
logical resilience. The data derived from these studies can 
guide the development of specific wildfire management 
policies, including forest management and ecosystem 
restoration practices.

Examples of effective measures include the selective 
clearing of vegetation to reduce available biomass, man-
aged grazing to control vegetation sustainably, and the 
planting of shrubs and trees to restore degraded areas 
with fire-resilient species (Jucker Riva et al. 2018). These 
measures promote ecological recovery and protect 
against erosion, contributing to the overall resilience of 
ecosystems. Additional conservation practices, such as 
the protection of specific species and the provision of 
forage, can further enhance ecosystem resilience (Jucker 
Riva et al. 2018).

Areas identified with higher vulnerability can benefit 
from more detailed studies using precise databases that 
allow for a fine-grained identification of priority areas. 
This facilitates more effective and targeted investments in 
mitigation measures.

Conclusions
This study aims to present a first methodological frame-
work for assessing ecological vulnerability to wildfires 
at European scale based on the concepts of ecological 
values, coping capacity, and recovery time after wild-
fires. The method is based on map algebra, which could 
ensure replicability on other regions and scales. Cop-
ing capacity was a prominent factor when estimating 
vulnerability. As a preliminary approximation, it can 
be further refined to address uncertainties in the model 
within specific areas.

In conclusion, the tundra biome emerges as the most 
ecologically vulnerable to fire, primarily due to its high 
ecological values and significant recovery time, com-
bined with a moderate coping capacity. Temperate coni-
fer forests also exhibit high vulnerability to wildfires 
driven by extensive recovery time, despite moderate 
ecological and coping capacity values. The boreal for-
ests rank next, with considerable vulnerability due to 
their long recovery time and moderate coping capacity. 
The Mediterranean region, although having moderate 
ecological values and recovery time, shows a notable 
vulnerability influenced by lower coping capacity. The 

temperate broadleaf and mixed forests demonstrate rel-
atively lower vulnerability owing to their balanced eco-
logical values, moderate recovery time, and substantial 
coping capacity. Lastly, the temperate grasslands, savan-
nas, and shrublands are the least vulnerable, benefiting 
from lower ecological values and the fastest recovery 
time, alongside moderate coping capacity, which collec-
tively reduce their overall fire vulnerability.

The proposed method contributes a step forward to a 
European-scale mapping of ecological vulnerability. This 
component of the full framework includes additional vul-
nerabilities such as those related to the socio-economic 
values (ecosystem services, human infrastructure, and 
houses) (Chuvieco et al. 2023).

In any case, we consider the proposed method suffi-
ciently strong to be valuable for the European Commu-
nity since it is valid for identifying ecological priority 
zones against wildfires, promoting successful regenera-
tion after wildfires, and promoting effective forest man-
agement practices and conservation policies.

Appendix 1

Table 5 List of terms through the manuscript with its acronyms

Terms Acronyms

Biological distinctiveness BD

Conservation status CS

Coping capacity CC

Discount rate r

Ecological potential losses EPL

Ecological resilience ER

Ecological values assessment EVA

Ecological vulnerability to wildfires EVW

Environmental constraints EC

Fireline intensity FLI

Principal component analyses PCA

Recovery time RT

Recovery starting time RST

Species‑specific recovery time RTi

Resistance of the vegetation to wildfires RVW

Tree potential habitat maps TPHM

Adjustment of recovery starting time ARST

Adjustment of species‑specific recovery time ARTi
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Fig. 9 The study area of Europe is classified into the biomes proposed by Dinerstein et al. (2017)
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Table 6 List of plant species used to characterize the CC and RT

Species Sub Land cover Resistance 
(FTrvw)

Regeneration starting 
time (years) RST

Maximum growth rate 
(GR) (m.year − 1)

Biomass max 
(BMAX) (MgDW.
ha)

Grass grass 1 0.00 0 0.10 5

Crop crop 2 0.01 0 1.00 5

Peat peat 3 0.01 0 0.10 50

Heath heath 4 0.02  − 2 0.20 50

Shrub shrub 5 0.02  − 2 0.20 50

Orchard orchard 6 0.08  − 10 0.09 300

Vineyard vineyard 7 0.03  − 2 0.10 60

Forest broadleaves 8 0.30 12 0.96 1

Forest needleleaves 9 0.13  − 10 0.21 1

Abies alba 9 0.17  − 10 0.21 391

Acer campestre 8 0.13  − 10 0.25 71

Acer opalus 8 0.32  − 10 0.22 71

Acer platanoides 8 0.23  − 10 0.24 69

Acer pseudoplatanus 8 0.16  − 10 0.24 201

Alnus glutinosa 8 0.09  − 10 0.50 85

Alnus incana 8 0.10  − 10 0.10 121

Arbutus unedo 5 0.23  − 10 0.31 50

Aria edulis 8 0.22  − 10 0.31 120

Betula pendula 8 0.10 12 0.09 89

Betula pubescens 8 0.13  − 10 0.51 89

Borkhausenia intermedia 8 0.16  − 10 0.51 89

Carpinus betulus 8 0.27  − 10 0.14 163

Carpinus orientalis 8 0.20  − 10 0.51 163

Castanea sativa 8 0.16  − 10 0.15 371

Celtis australis 8 0.12  − 10 0.11 163

Ceratonia siliqua 8 0.09  − 10 0.07 163

Cormus domestica 8 0.23 17 0.20 163

Corylus avellana 8 0.29  − 25 0.29 163

Cupressus sempervirens 9 0.41  − 10 0.72 163

Eucalyptus spp 10 0.33  − 10 0.26 300

Fagus sylvatica 8 0.24  − 10 0.33 385

Fraxinus angustifolia 8 0.13  − 10 0.10 126

Fraxinus excelsior 8 0.21  − 10 0.50 126

Fraxinus ornus 8 0.27 10 0.15 126

Juglans regia 8 0.27 15 0.34 200

Juniperus thurifera 5 0.05  − 10 0.10 50

Larix decidua 8 0.09 11 0.09 232

Laurus nobilis 8 0.15  − 10 0.12 50

Malus sylvestris 8 0.07  − 10 0.48 90

Olea europaea 11 0.42 10 0.94 400

Ostrya carpinifolia 8 0.52 0 0.23 100

Picea abies 9 0.28 1 0.17 272

Pinus brutia 9 0.40 0 0.49 542

Pinus cembra 9 0.50 3 0.60 542

Pinus halepensis 9 0.45 0 0.70 294

Pinus nigra 9 0.45 0 0.70 289

Pinus pinaster 9 0.48 11 0.31 559

Pinus pinea 9 0.07  − 10 0.36 559
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Species Sub Land cover Resistance 
(FTrvw)

Regeneration starting 
time (years) RST

Maximum growth rate 
(GR) (m.year − 1)

Biomass max 
(BMAX) (MgDW.
ha)

Pinus sylvestris 9 0.07  − 10 0.36 208

Pistacia lentiscus 5 0.14  − 10 0.47 50

Pistacia terebinthus 5 0.27  − 10 0.48 50

Populus alba 8 0.30  − 10 0.44 225

Populus nigra 8 0.16  − 10 0.23 225

Populus tremula 8 0.16 12 0.23 87

Prunus avium 8 0.92 9 2.16 90

Prunus padus 8 0.09 11 0.09 90

Pseudotsuga menziesii 8 0.36  − 10 0.25 266

Pyrus communis 8 0.09  − 10 0.30 90

Quercus cerris 8 0.31  − 10 0.17 400

Quercus coccifera 8 0.30  − 10 0.25 50

Quercus faginea 8 0.18  − 10 0.10 400

Quercus frainetto 8 0.35  − 10 0.63 400

Quercus ilex 8 0.24  − 10 0.30 443

Quercus petraea 8 0.16  − 10 0.17 409

Quercus pubescens 8 0.34  − 10 0.63 258

Quercus pyrenaica 8 0.43  − 25 0.11 400

Quercus robur 8 0.29  − 10 0.48 433

Quercus suber 8 0.18  − 10 0.25 450

Robinia pseudoacacia 8 0.12  − 10 0.19 400

Salix alba 8 0.22  − 10 0.20 123

Sorbus aucuparia 8 0.14  − 10 0.20 33

Taxus baccata 8 0.27  − 10 0.40 514

Tilia cordata 8 0.18  − 10 0.15 246

Tilia platyphyllos 8 0.38  − 10 0.38 243

Torminalis glaberrima 8 0.35  − 10 0.38 243

Ulmus glabra 8 0.32  − 10 0.38 202

Ulmus laevis 8 0.00 0 0.10 202

Ulmus minor 8 0.01 0 1.00 202

Table 7 Results of PCA based on ecological values assessment 
and its explanatory variables

Number of PCA Axis 1

Explicability 0.79

Eigenvectors 259.3

Input layer Ecological values 
assessment (EVA)

Species richness 0.59

Abundance of species 0.39

Forest productivity 0.35

Key biodiversity areas 0.38

Exceptional forests 0.29

Places of special conservation 0.46

Human pressures  − 0.32

Loss of forest  − 0.34

Unique habitat preservation 0.52
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Appendix 2
PCA methodology: extra

Bartlett’s test of sphericity evaluates redundancy 
between variables by comparing the observed correlation 
matrix with the identity matrix. The alternative hypoth-
esis suggests sufficient correlation for data reduction 
(Andersen et al. 2009). The test is represented by Eq. 8, 
where det(R) is the determinant of the correlation matrix, 
N is the number of observations, and p is the number of 
variables.

KMO is a statistical measure determining data suit-
ability for factor analysis; values below 0.5 indicate inade-
quate sampling (Andersen et al. 2009). Equation 9 defines 
the KMO test, where rjk is the correlation between the 

(8)Bartlett = −log(det(R)) ∗ (N − 1−
2p+ 5

6
)

variable in question and another, and pjk is the partial 
correlation.

Omega hierarchical asymptotic assesses the internal 
consistency reliability of data, indicating the overall con-
sistency of a measure. This test was chosen for its appropri-
ateness in this context (Andersen et al. 2009). The equation 
for omega hierarchical asymptotic is given in Eq. 10, repre-
senting the ratio between true score variance and the sum 
of variances and covariances of the data.

(9)KMO =

∑∑
j �=k

r2jk∑∑
j �=k

r2jk +
∑∑

j �=k
p2jk

(10)ω =

(
∑

�)
2
j

(
∑

�)
2
j + (

∑
σ)

2
ej

Fig. 10 Results of the sensitivity analyses OAAT 
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