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Abstract Elicitation of defense reactions in tobacco by cryptog-
ein, triggered a production of active oxygen species (AOS) via
the NADPH oxidase, NtrbohD, and an accumulation of b1din,
a defense induced b-type subunit of 20S proteasome. The protea-
some inhibitor, MG132, stimulated this AOS production. Tobac-
co cells transformed with sense constructs of b1din showed an
inhibition of the AOS production following elicitin treatment,
whereas the antisense transformed cells showed a strongly en-
hanced AOS production. In cells transformed with sense con-
struct of b1din, the NtrbohD transcripts failed to be induced
by cryptogein as observed in control and antisense transformed
cells. Conversely, in tobacco cells transformed with antisense
constructs for NtrbohD, b1din transcripts remained at a low level
after elicitation. These results constitute the first demonstration
of proteasome comprising b1din acting as a negative regulator of
NtrbohD and contributes to the regulation of AOS generation
during plant defense reactions.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Plants are exposed to a great number of pathogenic micro-

organisms, although only a relatively small proportion of them

are able to cause diseases. Indeed, plants defend themselves

against pathogens by triggering a wide range of mechanisms

including the hypersensitive response (HR), which leads to cell

death lesions at the infection sites, thus limiting pathogen

growth to a restricted area of the plant [1,2]. HR plays a central

role in acquisition of the systemic resistance that protects plants

against attacks by virulent pathogens, since pathogens that do

not trigger HR can establish compatible interactions with the

host, resulting in plant disease [3–5]. The development of this

HR involves the recognition by the plant of a signal which then

triggers a great amount of cellular responses [6]. This detection
Abbreviations: AOS, active oxygen species; din, defense induced; BY-2,
Bright Yellow line 2; HR, hypersensitive response; SAR, systemic
acquired resistance; S, sense; AS, antisense; NF, nuclear factor
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of pathogens, which constitutes a critical step for activation of

plant defense reactions, can be mediated by elicitors, including

oligosaccharides, lipids or proteins, secreted or generated by

various pathogens [7]. For example, elicitins, a family of pro-

teinaceous elicitors synthesized by Phytophthora species [8] in-

duce a hypersensitive-like response and a systemic acquired

resistance (SAR) in tobacco [9], (for review see [10]), after bind-

ing of the elicitor to a high affinity site on the plasma membrane

[11]. Although most of the responses induced by such elicitors

have been extensively described in various models of plant–

pathogen interaction, their molecular basis and fine regulation

is often still under investigation. Moreover, cross-talk between

these different cellular events are poorly understood and the

need exists for new signal transduction elements to help to

put together the pieces of the puzzle.

The HR, rapidly induced after recognition of the microor-

ganism, is characterized by intense and rapid production of ac-

tive oxygen species (AOS). Because the generation of these

AOS is believed to contribute to several disease resistance strat-

egies (direct antimicrobial activity, cross-linking of cell wall

proteins, induction of defence related genes, cell death, etc.),

the mechanism and the regulation of their biosynthesis have

been extensively studied (for reviews see [12–15]). We recently

demonstrated that NtrbohD an enzyme similar to gp91phox,

the NADPH oxidase of mammalian neutrophils, was responsi-

ble for the production of AOS in tobacco cells treated with the

fungal elicitin cryptogein [16]. However, if some characteristic

features are conserved between these plant and animal oxi-

dases, the similarity of their regulation remains questionable

and very little is actually known about the precise mechanisms

of regulation of this plant oxidase. Indeed AOS production in

plants undergoing an incompatible interaction has been proven

to depend on very early and general phenomena such as cal-

cium influx or protein phosphorylations [17], but numerous

molecular elements of the signal transduction pathway leading

from the crucial step of pathogen recognition to AOS produc-

tion are still missing.

We previously showed a transcriptional activation of various

genes, rapidly following elicitation of defense reactions in to-

bacco by elicitins [18,19]. Amongst these activated genes, we

studied particularly b1din, a gene encoding a b subunit of

proteasome [20,21]. In eukaryotes, the 26S proteasome is a

multicatalytic complex comprising the 20S core particle and

19S regulatory particles, that recognize proteins targeted for
blished by Elsevier B.V. All rights reserved.
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degradation, especially polyubiquitin targeted proteins [22,23].

The 20S proteasome is a barrel-shaped structure of two outer

rings formed by seven a subunits (a1–a7) and two inner rings

of seven b subunits (b1–b7) enclosing cavities with the active

sites for processive protein degradation [23]. In mammals, pro-

teasomes were shown to be not only involved in degradation of

misfolded proteins [24], in cell cycle progression, cell death and

development [25] but also in specific cleavage of propeptides to

activate the peptides (for example transcription factors), or

allowing the antigene presentation during immune reactions

(for a review, see [26]).

In plants, 20S proteasome has been shown to be involved in

cell cycle progression [27], in differentiation of tracheary ele-

ments [28], in senescence, in early stages of seedling develop-

ment [29] and in elicitation of defense responses [30,31].

We also previously showed that only one b subunit, b1 (tcI7)
and two a subunits (a3 and a6) were upregulated by cryptog-

ein in tobacco cells and plants [32]. Expression of these induced

subunits, renamed b1din, a3din and a6din (din for defense in-

duced), probably included in newly reassembled proteasomes

called ‘‘plant defense proteasomes ‘‘ was also shown to be

tightly correlated with the establishment of SAR in various

experimental models [33]. We also observed that inhibition

of the oxidative burst, strongly and rapidly induced in the

hypersensitive reaction, is correlated with the inhibition of

induction of b1din, a3din and a6din [33]. The aim of this work

was to investigate the link between induction of the 20S pro-

teasome subunit b1din and the ‘‘oxidative burst’’ occuring in

the first steps of elicitation of defense reactions leading to

the SAR and thus to the plant protection.
2. Materials and methods

2.1. Materials and treatments
Tobacco BY-2 cells (Nicotiana tabacum cv Bright Yellow-2) were

grown and maintained as previously described [16]. Gp3, an antisense
line for NtrbohD unable to produce AOS after treatment with cryptog-
ein [16] was also used. BY-2 wild-type or transformed cells were har-
vested at various times after treatment, quickly frozen in liquid
nitrogen and stored at �80 �C. Three separate experiments were car-
ried out.
Cryptogein was purified from Phytophthora cryptogea as previously

described [34]. The proteasome inhibitor MG132 (Z-Leu-Leu-Leu-al)
was dissolved in DMSO and stored at �20 �C.

2.2. Antisense gene construction and cell transformation
An XbaI/SstI PCR fragment of 700 bp from the b1tcI7 cDNA

(b1din) was inserted in sense, into pBI 121(Clontech) downstream
from a 35S CAMV promoter deleted from the GUS sequence by XbaI
and SstI. An XbaI/SstI fragment truncated in the 5 0-coding region was
inserted in antisense. The resulting plasmids, introduced by triparental
mating [35] into a disarmed strain of Agrobacterium tumefasciens,
C58C1 (pMP90) [36] were used to transform BY-2 tobacco cells. A
3-day-old BY-2 culture (2 ml) was co-cultivated with 50 ll of each
Agrobacterium culture (A600 0.3) on Petri dishes in the dark for 2–3
days at 26 �C. Cells were washed and plated onto agar-MS medium
containing 100 mg l�1 kanamycin and 500 mg l�1 cefotaxime. Trans-
formed microcalli were propagated during 4–5 subcultures with the
selection agent and then diluted weekly without.
2.3. RNA analyses
RNA extractions were performed using the ‘‘Plant RNeasy minikit’’

(Qiagen, France). Northern blots were carried out according to stan-
dard protocols using 15 lg of total RNA per lane. Hybridizations were
carried out with 32P labeled probes (rediprime, Amersham, France):
NtPB1 (b1din) (Accession No.: Y09505) corresponding to the b1tcI7
20S proteasome subunit [21], NtPB2(b2) (Accession No.: AJ291736),
and NtPB5 (b5) (Accession No.: AJ291741) [32]. A fragment of
0.86 kb corresponding to a part of the 3 0 encoding and non-translated
region of NtrbohD (Accession No.: AJ309008) [16] was also used as a
probe.
Three independent hybridizations were carried out at 42 �C. Filters

were washed under stringent conditions and analyzed with a Phos-
phorImager (Molecular Dynamics, France), using Imagequant for
quantification.

2.4. AOS production
Experiments were performed as described previously [16].
3. Results

3.1. Effect of the proteasome inhibitor, MG132, on AOS

production in BY-2 wild-type tobacco cells

Inhibitors of proteasome are useful tools for elucidating the

role of proteasome in various molecular mechanisms. MG132

was known as an efficient proteasome inhibitor in animal cells

[24], in yeasts [37] and in plants [27]. Wild type BY-2 cells were

treated with cryptogein (50 nM) or with the proteasome inhib-

itor MG132 (20 lM) or with cryptogein (50 nM) and MG132

(20 lM) together. MG132 alone had no effect on AOS produc-

tion whereas in the presence of 50 nM cryptogein, MG132 in-

duced a stimulation of the AOS production triggered by the

elicitor (Fig. 1). Insert in Fig. 1 shows that this stimulation of

AOS production (summed during 2 h) in wild-type BY-2 cells

treated with cryptogein (50 nM) was dose-dependent, with a

maximum of stimulation reached at 25 lM of MG132. The

NADPH oxidase NtrbohD being responsible for the AOS pro-

duction observed following cryptogein treatment [16], the in-

crease of AOS production triggered by cryptogein in presence

of MG132 suggests the possible involvement of proteasome

in the down regulation of the NADPH oxidase NtrbohD. As

cryptogein or hydrogen peroxide have been previously shown

to induce the expression of b1din, a b1 subunit of proteasome

[21], it was interesting to further investigate the involvement

of b1din comprising proteasomes in the regulation of NtrbohD,

by using tobacco cells transformed with sense and antisense

constructs for b1din.
3.2. Expression of b1din subunit of proteasome in sense and

antisense transformed tobacco cells

Expression of b1din in BY-2 tobacco cell lines transformed

with either the antisense construct of b1din cDNA (AS cells),

the sense construct (S cells), or the empty vector (pBI cells)

was investigated by Northern-blot (Fig. 2A). The analysis of

the transformed cell lines showed that the expression of the

b1din 20S proteasome subunit was significantly decreased in

all the antisense lines and increased in all the sense lines com-

pared to wild-type cells and cells transformed with the empty

vector (Fig. 2B). All the selected lines were further used but

AS15(8) and S(8)6 which were the most affected in b1din expres-
sion, were considered as the most representative of antisense

and sense transformation, respectively. RT-PCR analysis of

the lines confirmed these results (not shown). The expression

of two other b subunits (b2 and b5) was also monitored as a

control. Fig. 2 shows that the level of expression of b2 and b5
remained unchanged in all the selected lines. As an additional

control, three peptidasic activities associated with the 20S pro-

teasome, chymotrypsin-like, trypsin-like and peptidylglutamyl-



Fig. 1. Effect of the proteasome inhibitor MG132 on AOS production from wild-type BY-2 tobacco cells. AOS production was measured in tobacco
cells without treatment (control) ¤, treated with cryptogein (50 nM) (dotted line) j, with MG132 (20 lM) m, or with cryptogein and MG132
together �. The insert shows the dose-dependent stimulation of AOS production by MG132: AOS production was measured every 10 min and values
are summed to give the total AOS production during 2 h. Results are expressed in % of stimulation of AOS production obtained from tobacco cells
treated with cryptogein and MG132 related to AOS production in tobacco cells treated only with cryptogein. Experiments were performed in
triplicate and results are expressed as mean values.
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peptide hydrolase (PGPH) were measured in the selected trans-

genic tobacco lines (not shown). Chymotrypsin-like activity

was unchanged in all cell lines but trypsin-like activity was
Fig. 2. Characterization of b1din sense and antisense cell lines. RNA
expression of b1din, b2 and b5 20S proteasome subunits in tobacco
cells transformed with the sense (S) and antisense (AS) constructs of
b1din. PBI was the cell line transformed with the empty binary vector
and WT the wild-type BY-2 cells. Fifteen micrograms of total RNA
extracted from the transgenic tobacco cells were subjected to RNA
analysis. (A) Autoradiograms were obtained using 32P labeled b1 din,
b2 and b5 cDNA probes with rRNA as standards. (B) b1din expression
was quantified using Imagequant (Phosphorimager) and expressed as
arbitrary density units.
significantly decreased in antisense cells and increased in sense

cells while PGPH activity increased in the antisense transgenic

lines and decreased in the sense line, the antisense line AS15(8)

and the sense line S8(6) being also the most representative.

These results show that proteasomes comprising b1din instead

the constitutive b1 subunit have modified peptidasic activities

and consequently could have specific target(s).

3.3. AOS production in the b1din transgenic cell lines treated

with cryptogein, a proteinaceous elicitor of plant defense

reactions

To further address whether b1din induction is associated

with the regulation of AOS production, the production of

H2O2 following cryptogein treatment was investigated in the

sense and antisense transgenic cell lines. Upon elicitation with

50 nM cryptogein, BY-2 type cells and pBI (empty vector)

transformed cells used as controls exhibited a transitory pro-

duction of H2O2 consistent with previous results whereas this

AOS production was very strongly decreased in all sense trans-

formed lines (Fig. 3A). On the opposite, AOS production in

antisense transformed cell lines was always higher than in

wild-type and pBI cells (Fig. 3B). In particular, no hydrogen

peroxide was detected in the sense S8(6) line while the highest

production of hydrogen peroxide was observed in the antisense

line AS15(8). These results, in addition to those obtained with

MG132 on wild-type cells (Fig. 1), suggest that NtrbohD,

responsible for AOS production following elicitation with

cryptogein, could be downregulated by b1din comprising pro-

teasome, since the level of AOS production is inversely corre-

lated to the level of b1din mRNA in wild-type and transformed

tobacco cells.

3.4. Expression of b1din and NtrbohD genes in elicited tobacco

cells transformed with sense and antisense constructs of

b1din
According to the results obtained above, wild-type, b1din

sense S8(6) and b1din antisense AS15(8) tobacco cell lines
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were used to analyze expression of tobacco proteasome

b1din subunit and NADPH oxidase NtrbohD, following

treatment with cryptogein. S8(6) and AS15(8) were choosed

as the most representative of sense and antisense trans-

formed lines, respectively. Fig. 4 shows the accumulation

of b1din mRNAs in BY-2 wild-type tobacco cells within

30 min following elicitation with cryptogein (consistent with

previous results, [33]). Whilst b1din mRNA was constitu-

tively and strongly expressed in b1din sense transformed

cells, none was detected in the b1din antisense cells. In the

same cells, NtrbohD mRNA strongly accumulated after elic-

itation in BY-2 wild-type cells and in antisense b1din trans-

formed cells, whereas only a slight accumulation was

observed in sense b1din transformed cells. These results sug-

gest that expression of the oxidase NtrbohD is negatively

affected at the transcriptional level in the tobacco cells over-

expressing the b1din subunit of 20S proteasome following

elicitation.
3.5. Expression of b1din and NtrbohD genes in elicited tobacco

cells transformed with antisense constructs of NtrbohD

Since expression of b1din was shown to be dependent on

production of AOS, following elicitation of defense reactions

with crytogein, we used Gp3, a tobacco cell line transformed

with an antisense construct of NtrbohD, unable to produce

AOS and where both NtrbohD mRNA and protein re-

mained undetected even after elicitation [16], to investigate

RNA expression of b1din during elicitation with cryptogein.

When used as a negative control, the probe NtrbohD con-

firmed the absence of the corresponding mRNA (Fig. 5).

In addition, levels of b1din mRNA remained low, even after

elicitation showing that in the absence of NtrbohD, the

expression level of b1din was not increased. This confirms

the tight link between induction of the oxidase NtrbohD,

the main producer of active AOS during elicitation

and the induction of b1din, a b1 subunit of 20S proteasome

involved in plant defense reactions.



Fig. 5. Northern-blot analysis of b1din and NtrbohD expression in the gp3 tobacco cell line transformed with an antisense construct of NtrbohD,
treated (CRY) or untreated (Control) with cryptogein. Total RNA (15 lg) was analyzed and probed with 32P labeled restriction fragments
corresponding to b1din or NtrbohD encoding regions. rRNA is shown as a control.

Fig. 4. Northern-blot analysis of b1din and NtrbohD expression in wild-type (WT), sense (S) and antisense (AS) transgenic tobacco cells treated
(CRY) or untreated (C0) with cryptogein. Total RNA (15 lg) was analyzed and probed with 32P labeled restriction fragments corresponding to b1din
or NtrbohD encoding regions; rRNA is shown as a control.
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4. Discussion

The rapid and intense production of AOS is believed to

contribute to several disease resistance strategies and thus,

the mechanism and regulation of their biosynthesis have

been extensively studied (for reviews see [15,38]). We previ-

ously demonstrated that NtrbohD, an enzyme similar to

gp91phox, the NADPH oxidase of mammalian neutrophils,

was responsible for the production of AOS in tobacco cells

treated with the fungal elicitor cryptogein [16]. However, if

some characteristic features are conserved between these

plant and animal oxidases, the similarity of their regulation

remains questionable as the sites in neutrophil gp91phox

known to interact with p47phox and p67phox (regulators

of gp91phox) are not conserved in NtrbohD. To date, no di-

rect evidence for sequences presenting significant homology

with p47phox and p67phox exists in the entire Arabidopsis

genome database and, in tobacco, only a small G protein,

Ntrac5, was shown to act as a negative regulator of

NtrbohD [39]. So, the particular way of regulation of this

plant oxidase remains to be elucidated. Since we previously
cloned b1din, a gene encoding a b1 subunit of proteasome,

induced rapidly after elicitation of plant defense reactions

and also induced by hydrogen peroxide [21,33], it was inter-

esting to explore the possibility that proteasome, especially

proteasome comprising the b1din subunit could be involved

in the regulation of NtrbohD.

Firstly, we have shown in this work that inhibition of the

proteasome with MG132, leads to an increased production

of AOS following elicitation of tobacco cells with cryptogein,

suggesting that proteasome could indeed be involved in the

regulation of AOS production. Many processes in plant

growth and development (for review see [40]), but also re-

sponses to biotic and abiotic stresses could be proteolysis-

dependent. Over 5% of the Arabidopsis thaliana genome en-

codes for components of the ubiquitin–proteasome system

[41] although it is only in recent years that the importance of

regulated proteolysis, and more specifically the ubiquitin–pro-

teasome system in the control of plant development [42] and

defense [43] has been recognized. Recently, analysis of the Ara-

bidopsis 26S proteasome revealed the presence of multiple iso-

forms of each subunit [44]. The authors demonstrate that each



Fig. 6. Loop of regulation presenting the role of b1din as a negative
regulator of NtrbohD during elicitation of plant defense reactions. (1)
Binding of cryptogein to its plasmalemma receptor, (2) signaling
pathway leading to transcriptional activation of NtrbohD, (3) AOS
production, (4) signaling pathway leading to activation of b1din, (5)
signaling pathway leading to transcriptional inactivation of NtrbohD
demonstrated in this work (in thick arrows), (6) possible direct specific
proteolysis of NtrbohD by b1din comprising proteasomes.
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isoform assembles into the mature particle. The incorporation of

paralogous subunits raises the interesting possibility that plants

synthesize multiple 26S proteasome types with unique proper-

ties and/or target specificities. The tight link previously ob-

served between production of AOS and induction of b1din
after elicitation of defense reactions leads to speculate that

the NADPHoxidase, NtrbohD, could be a target for protea-

somes modified by integration of b1din subunits. Therefore,

further investigation on the involvement of ‘‘b1din comprising

proteasomes’’ in the regulation of NtrbohD, was carried out

using transgenic tobacco cells transformed with sense or anti-

sense constructs for b1din. These experiments confirmed this

hypothesis since overexpression of b1din lead to a strong de-

crease of AOS production following cryptogein treatment.

As b1din sense and antisense transformations were shown to

be associated with modifications of two of the three main pept-

idasic activities of proteasome (PGPH and trypsin-like), a spe-

cific proteolysis of NtrbohD by b1din comprising proteasomes

may explain the transient activity of these plant NADPHoxi-

dase in AOS production occuring after elicitation. Further-

more, NtrbohD, induced by cryptogein is located in

plasmamembrane [16] and performing a two-hybrid system

using the N-terminal part of NtrbohD, the same authors found

specific partners of this plant oxidase amongst which ubiquitin

(Accession No. AJ309010, personal communication). This

could significate that NtrbohD was ubiquitinated for proteol-

ysis by proteasome, may be preferentially by b1din comprising

proteasomes, but this specific proteolysis remains to be demon-

strated.

The most obvious results obtained in this work concerned

the negative regulation of NtrbohD at the transcriptional level.

We showed that overexpression of b1din was correlated with

transcriptional inactivation of NtrbohD and that knock-out

of NtrbohD was correlated with transcriptional inactivation

of b1din. The decreased AOS production could then result in

an inactivation of b1din expression.

Taken together, these results suggest that proteasomes

comprising the b1din subunit could directly or indirectly

negatively regulate induction of NtrbohD, the intrinsic plas-

ma membrane oxidase responsible for the AOS production

following elicitation of defense reactions in tobacco by a

loop of regulation presented in Fig. 6. As previously shown

[10,11,16,45], the first event involves binding of cryptogein

to its receptor (step 1), triggering a cascade of transduction

pathways (step 2) leading to activation of AOS production

via the induction of the NADPHoxidase, NtrbohD (step

3), NtrbohD remaining undetectable in WT tobacco cells be-

fore treatment with cryptogein. In this work, we confirm

that cryptogein via AOS production induces b1din (step 4)

[21,32,33], and we demonstrated that b1din negatively regu-

lates expression of NtrbohD at the transcriptional level (step

5) and so reduces AOS production. Inactivation of NtrbohD

could also arise from a specific direct proteolysis by the pro-

teaome as mentioned above (step 6). In this model, step 5

and step 6 could contribute complementarily to the regula-

tion of NtrbohD and so to the limitation of AOS produc-

tion and b1din induction by feedback. So, the present

results demonstrate for the first time that b1din proteasome

regulates the expression of NtrbohD, homologue to the

flavocytochrome of the neutrophil NADPH oxidase respon-

sible for the AOS production following elicitation of defense

reactions.
Elucidation of the fine mechanisms underlying this regula-

tion is likely to require the study of the ‘‘transcription factors

hypothesis’’. Indeed, roles in transcription for proteasome

mediated proteolysis have been already identified. In animals,

an overlap between the transcriptional activation domain and

sequences targeting for ubiquitin–proteasome mediated degra-

dation was found for several transcription factors such as fos,

jun, p53, b catenin and myb [46]. Further investigations are in

progress in order to identify transcription factors involved in

this pathway. Such a change in transcriptional activity may

be achieved trough the oxidation of components of signalling

pathways that activate transcription factors or by modifying

a redox-sensitive transcription factor directly (for review see

[38,47]). Concerning direct activation of signal transduction

pathways by redox-sensitive transcription factors, Mou et al.

[48] reported the redox regulation of NPR1 (non-expressor

of PR1), an essential regulator of plant SAR. During a SAR

response, NPR1 initially present in the cytosol as an oligomer

is reduced to a monomeric form that accumulates in the nu-

cleus and activates gene expression. Potential H2O2 responsive

elements were identified by microarray analysis of H2O2-in-

duced gene expression in Arabidopsis [49]. Other components

of the signalling cascades that mediate responses to AOS re-

main to be discovered such as NF-jB homologs, since a NF-

jB box has previously been localized in the promoter of

b1din [21].

Nevertheless, this work provides new insights into the reg-

ulation of AOS production occurring during HR and for the

first time, assigns a precise role to the proteasome during

early signal transduction processes associated with plant

defense responses. This loop of regulation is probably a part

of a multiple components system finely regulating AOS pro-

duction in order to activate genes and limit cell death. Exten-

sive studies are required to better understand the implication

of the ubiquitin–proteasome mediated proteolysis in plant

defense reactions. Future research should concentrate on
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the identifying upstream signal or upstream signaling compo-

nents involved in this regulation process.
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