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Abstract

Background
Understanding how weather and landscape shape the fine-scale distribution and diversity of
malaria vectors is crucial for efficient and locally tailored vector control. This study examines
the meteorological and landscape determinants of (i) the spatiotemporal distribution (pres-
ence and abundance) of the major malaria vectors in the rural region of Korhogo (northern
Côte d’Ivoire) and (ii) the differences in vector probability of presence, abundance, and
diversity observed between that area and another rural West African region located 300 km
away in Diébougou, Burkina Faso.

Methods
Wemonitored Anopheles human-biting activity in 28 villages of the Korhogo health district
for 18 months (2016 to 2018), and extracted fine-scale environmental variables (meteoro-
logical and landscape) from high-resolution satellite imagery. We used a state-of-the-art sta-
tistical modeling framework to associate these data and identify environmental
determinants of the presence and abundance of malaria vectors in the area. We then com-
pared the results of this analysis with those of a similar, previously published study con-
ducted in the Diébougou area.

Results
The spatiotemporal distribution of malaria vectors in the Korhogo area was highly hetero-
geneous and appeared to be strongly determined and constrained by meteorological con-
ditions. Rice paddies, temporary sites filled by rainfall, rivers and riparian forests appeared
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to be the larval habitats of Anophelesmosquitoes. As in Diébougou, meteorological condi-
tions (temperatures, rainfall) appeared to significantly affect all developmental stages of
the mosquitoes. Additionally, ligneous savannas were associated with lower abundance of
malaria vectors. Anopheles species diversity was lower in Korhogo compared to Diébou-
gou, while biting rates were much higher. Our results suggest that these differences may
be due to the more anthropized nature of the Korhogo region in comparison to Diébougou
(less forested areas, more agricultural land), supporting the hypothesis of higher malaria
vector densities and lower mosquito diversity in more anthropized landscapes in rural
West Africa.

Conclusion
This study offers valuable insights into the landscape and meteorological determinants of
the spatiotemporal distribution of malaria vectors in the Korhogo region and, more broadly,
in rural west-Africa. The results emphasize the adverse effects of the ongoing landscape
anthropization process in the sub-region, including deforestation and agricultural develop-
ment, on malaria vector control.

Introduction
Malaria remains a major public health burden globally, with over 240 million cases in 2022 (1).
Despite a major decrease in malaria cases in the last two decades, the progress has stalled since
2015 [1], even re-increasing in certain areas (e.g. + 10% between 2015 and 2022 in the West
African sub-region [1]). Involved in such worrying trends are, among others, the widespread
of resistance to insecticides used in public health and agriculture among malaria vectors
(Anophelesmosquitoes), population growth, and environmental changes [2–6]. To reinvigo-
rate progress, shifting from a global approach of prevention and curation where interventions
are deployed regardless of the context, to a local approach where interventions are tailored to
the local settings, is a key feature encouraged by the whole malaria community [5]. In particu-
lar, for vector control (VC), it is crucial to acquire a good knowledge of entomological situa-
tion at operational scale so as to better target the places and times of interventions using
complementary tools to those widely used, e.g the Long-Lasting Insecticidal Nets (LLIN).
Towards this aim, it is important to understand how the environment shapes the presence,
abundance and diversity of the vectors at a local scale in the present, and how environmental
alterations, such as climate or Land Use Land Cover (LULC) changes, may impact them in the
future [4, 7, 8].

Among the environmental determinants of malaria transmission, weather and landscape
play a critical role. Because they impact the bio-ecology of mosquitoes, these environmental
features shape the diversity, presence, abundance, and spatiotemporal distribution of malaria
vectors, and in-fine the risk of transmission of the disease [4, 8–10]. In this context, the identi-
fication of meteorological and landscape determinants of spatiotemporal heterogeneity in
malaria vector abundance within a given spatial and temporal framework is an increasingly
common research topic, supported in particular by the proliferation of high-resolution envi-
ronmental satellite data [11–15]. These studies are useful for understanding the local bionom-
ics of malaria vectors, predicting and mapping the spatiotemporal distribution of the
anopheles mosquitoes in the area, and deploying locally tailored vector control tools. On a
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different note, to assess the potential impact of climate or LULC changes on the diversity or
abundance of mosquitoes, it is common to compare such indicators between areas that have
different environmental conditions [16–18]. In this study, we propose to use both approaches
to better understand the landscape and meteorological determinants, and the impact of their
middle and long-term change, in the presence, abundance and diversity of Anophelesmosqui-
toes in rural west Africa.

In a previous study [19], we investigated the environmental factors affecting the presence
and abundance of the main malaria vectors at the scale of a west-African health district, in the
Diébougou area, located southwestern Burkina Faso (BF). We used data on the spatiotemporal
distribution and abundance of Anophelesmosquitoes collected in this area between 2016 and
2018 as part of a research project, together with landscape and meteorological data extracted
from high-resolution Earth observation data, into a state-of-the-art statistical modeling frame-
work. As part of the same project, Anopheles collections were carried out simultaneously 300
km away, in the Korhogo area, northern Côte d’Ivoire (incidence rate in 2022: 288 cases per
thousand, mortality rate: 93 per 100 thousand [1]), using similar protocols. The goal of the
present study was to replicate the modeling work in the Korhogo area with the aim to assess
the meteorological and landscape conditions that affected the presence and abundance of the
main malaria vectors in this area and to compare the results with what we previously found in
Diébougou. From a methodological perspective, we discuss the added-value of consistent ento-
mological surveillance data, used in conjunction with high resolution satellite data and power-
ful statistical modeling tools, to improve our understanding of the impact of climate and
LULC changes on the diversity, abundance, and distribution of malaria vectors.

Material andmethods
Study area
The Korhogo area is located in the north of Côte d’Ivoire (CI), in the Sudanian bioclimatic
region [20]. The climate is characterized by a dry season from October to April (including a
’cold’ period from December to February and a ’hot’ period fromMarch to April) and a
rainy season fromMay to September. Average annual cumulated rainfall varies from 1 200 to
1 400 mm and daily temperatures vary from 21˚C to 35˚C. During the period covered by our
study (from 2016-09-30 to 2018-03-24, i.e. 1.5 years), cumulated rainfall was 1 693 mm, with
high variations between the dry and the rainy season (S1 Fig); average daily diurnal Land
Surface Temperature (LST) was 35.1˚C (SD = 3.9) and average daily nocturnal LST was
19.7˚C (SD = 2.5). The landscape is mainly a mixture of agricultural lands (51% of the total
surface of the study area) and natural vegetation (30%) (S1 Fig) [21]. Agricultural land is
composed of croplands (including fallows) (24% of the total surface of the study area),
cashew and mango plantations (18%), and rice paddies (9%). Natural vegetation is mainly
composed of woodlands (17% of the total surface of the study area), savannas (9%) and ripar-
ian forests (4%). The region is dotted with villages of a few hundred people each, and has a
high density of hydraulic small dams (see Fig 1) that allow for year-round agriculture.
Regarding vector control, the primary VC tool is the LLIN, distributed universally by the
government every 3–4 years since 2010 [22]. The last distribution before the beginning of the
REACT project was in 2014. During the project, LLINs were distributed in the study villages
in June 2017. As part of the REACT project, complementary VC tools were implemented in
some of the villages in the middle of the project—namely indoor residual spraying of insecti-
cide, intensive Information Education and Communication to the populations, and larval
control.
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Fig 1. Map of the study area. The map includes the villages of the study, the land cover derived from very high spatial
resolution satellite image acquired on 2017-10-11, and the theoretical stream network derived from a digital elevation
model (see Methods section).

https://doi.org/10.1371/journal.pone.0312132.g001
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Entomological data
As part of the REACT project conducted concurrently in the rural health districts of Diébou-
gou (BF) and Korhogo (CI), Anopheles human-biting activity was monitored [23]. A total of
28 villages covering an area of 70 by 40 km were chosen for the Korhogo area (Fig 1) based on
the following criteria: each village had 200–500 residents, it was accessible during the wet sea-
son, and there was a minimum of 2 km between the villages. The names and geographic coor-
dinates of the villages (both in the CI and BF area) are available at [23]. Eight rounds of
mosquito collection were conducted in each village between October 2016 and March 2018.
The periods of the surveys span some of the typical climatic conditions of this tropical area (2
surveys in the “dry-cold” season, 3 in the “dry-hot” season, 3 at each extremum of the rainy
season; S1 Fig). During each survey, mosquitoes were collected one night, from 17:00 to 09:00,
both indoors and outdoors, at four sites per village using the Human Landing Catch (HLC)
sampling method. To conduct the HLC, community agreement were received before the
beginning of the study, and written informed consent were obtained from all the mosquito col-
lectors and supervisors. Mosquito collectors and supervisors were recruited from the begin-
ning of the study (first HLC session: 2016-09-21) to its end (last HLC session: 2018-04-03).
During the collections, all the mosquitoes were placed in individual hemolysis tubes plugged
with cotton, stored in hourly bags. Malaria vectors were further identified using morphological
keys [24]. Then, all individuals belonging to the Funestus Group and a sub-sample of the indi-
viduals belonging to the Gambiae Complex (due to the very large number of individuals col-
lected) were identified to species using molecular analyses [25, 26]. The sub-sampling strategy
was as following: for the first four survey, one individual of the Gambiae Complex randomly
selected per hour per collection site (indoors/outdoors) in six randomly selected villages (over
28) was selected and proceeded for molecular identification. For the remaining four surveys, a
random sub-sample representing 25% of the individuals belonging to the Gambiae Complex
was proceeded for molecular identification. Collection design for this study has been exten-
sively described in [27], and the data are available in the Global Biodiversity Information Facil-
ity (GBIF) [28].

Landscape and meteorological data
Landscape variables were extracted from a very high spatial resolution (1.5-meter) LULC map
of the study area containing 16 classes, that was produced ad-hoc. The raster map and the
detailed methodology used to generate it are available at [21]. From this map, we merged
under-represented and/or similar classes: “dense forest” and “open forest” were merged into a
single class of non-riparian forests named “woodland”, and “cashew plantation” and “mango
plantation” were merged into a single class named “plantation”. We calculated the percentage
of landscape occupied by each land cover class in four spatial buffer areas around each collec-
tion site (250 m, 500 m, 1 km, and 2 km buffer radii).

We generated the theoretical stream network in the study area using a Digital Elevation
Model [29] from which we computed two variables: the length of streams in each buffer zone
and the shortest distance from each collection point to the stream network. We calculated the
Clark and Evans aggregation index [30] (clustering of the households in each village) and the
distance from each collection point to the edge of the village that are proxys of the attractive-
ness and penetrability of the villages for malaria vectors.

Meteorological variables (temperatures and rainfall) were extracted from satellite imagery.
The Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature
(LST) Terra and Aqua products were used to calculate the daily diurnal and nighttime temper-
atures [31, 32], and rainfall estimates were extracted from the Global Precipitation
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Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG) Final products
[33]. These meteorological data were gathered up to 42 days (6 weeks) before each entomologi-
cal survey, so as to cover largely the whole duration of the anopheles life cycle in the field [34].
They were then aggregated pixel-by-pixel on a weekly scale, averaged in a 2-km radius buffer
zone around each HLC collection point, and finally cumulated (rainfall) or averaged (tempera-
ture) for all possible time lags between 0 and 6 weeks preceding the collection dates.

More details on the methods used to generate the landscape and meteorological variables
can be found in [19].

Statistical analyses
We used a hurdle-like methodology to model the malaria vectors’ biting rates: we modeled
separately the probability of human-vector contact and the positive counts of human-vector
contact—respectively called « presence » and « abundance » models in the rest of this article.
In the presence models, the response variable was the presence/absence of vectors (binarized
as 1/0) collected during 1792 nights of HLC (28 villages *8 entomological surveys * 4 collection
points * 2 locations), while in the abundance models, the response variable was the number of
bites per human on the positive catch sessions only—i.e. the sessions with at least one bite. In
addition, we modeled the biting rates separately for each vector species, as they might exhibit
different ecological preferences. Since two main vector species were found (see section
Results), four response variables were hence built in total (presence and absence of both An.
gambiae s.s. and An. funestus).

For each of the response variables, we used a two-stage statistical approach (a bivariate and
a multivariate analysis, described below), each potentially providing complementary informa-
tion on Anopheles bioecology.

Bivariate analysis. We calculated the Spearman correlation coefficient between the
response variable and each environmental variable taken at the different buffer zones (for the
landscape variables) and time lags (for the meteorological variables); with the aim of identify-
ing the distances (around the capture point) and the periods (prior to capture), respectively,
for/in which our environmental variables had the greatest effect on biting rates. For the meteo-
rological variables, we generated Cross Correlation Maps (CCM) [35] to study the influence of
environmental conditions during multiple time intervals (instead of single time points) prior
to the collection event.

Multivariate analysis. Beginning with all the environmental variables created, we first
selected a subset of variables to include in the multivariate model using the following variable
selection algorithm: we excluded variables that were poorly correlated with the response vari-
able (correlation coefficients< 0.1 or p-values> 0.2) (except for variables related to the pres-
ence of water which were all retained). Then, for each of the remaining meteorological (or
landscape) variable, we retained the variable with the time lag interval (or buffer radius) show-
ing the higher absolute correlation coefficient value. We further excluded collinear variables
(i.e. Pearson correlation coefficient > 0.7) based on empirical knowledge. We included two
adjustment variables in the models: the vector control tool(s) used and the place of collection
(indoors or outdoors). These variables may influence the presence and abundance of the spe-
cies but will not be discussed in this study, since we focus here on environmental determi-
nants. Selected variables were used to train a multivariate Random Forest (RF) model [36]
(binary classification and regression RF for the presence and abundance models, respectively)
following the same method as previously described [19]. The predictive power of each model
was assessed by spatial leave-one-village-out cross-validation, measuring the ability of the
models to predict biting rates on out-of-sample, unseen nights of HLC. Precision—recall (PR)
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plots were generated for the presence models, and precision—recall area under the curve
(PR-AUC) was calculated and compared to a baseline PR curve. Sensitivity and specificity
were also calculated. For abundance models, visual evaluation through (i) distribution of mean
absolute errors and (ii) observed versus predicted values for each out-of-sample village was
preferred due to expected low performance metrics given the overdispersion of the response
variables and the type of model used (i.e. non-parametric model) [37].

To interpret the strengths and shapes of associations learned by the RF models, we gener-
ated Variable Importance Plots (VIP) [37] to estimate the environmental variables that were
the most influential in determining the behavior of the response variable and Partial Depen-
dence Plots (PDP) [38] to estimate the functional relationship between each environmental
variable and the response variable.

More details on the statistical framework used in this study can be found in [19].

Comparison with the Diébougou area
As mentioned in the Introduction and in the Entomological data sections, the human biting
activity of Anophelesmosquitoes was monitored as part of a research project (the REACT proj-
ect) carried out simultaneously in the rural health districts of Korhogo (CI) and Diébougou
(BF). Results from the Diébougou area, obtained from data and analyses following the same
methods that those presented here, were published previously in [19].

With the aim of discussing similarities and differences between the results obtained in the
Diébougou area of Burkina Faso [19] and those of this replication work in the Korhogo area of
Côte d’Ivoire, we used key indicators to summarize the landscapes, the meteorological
regimes, and their association with the spatiotemporal distribution of vectors. The selected
indicators were the % area occupied by each land cover class (in the whole area and in the 2
km buffer around the collection points), cumulated rainfall, nocturnal (minimum) and diurnal
(maximum) weekly temperature as well as Anopheles richness, diversity (Shannon’s index)
and average measured biting rates. A set of results from the bivariate and multivariate analyses
was extracted (correlation coefficients and time lag showing the higher correlation coefficient
from the CCMs, most important variables from the VIP in the multivariate models).

Ethics approval and consent to participate
Ethical clearance for the study was granted by the National ethics committee (No. 063/MSHP/
CNER-kp) in Côte d’Ivoire and by the Institutional Ethics Committee of the Institut de
Recherche en Sciences de la Santé (No. A06/2016/CEIRES) in Bukina Faso. We received com-
munity agreement before the beginning of the study, and we obtained written informed con-
sent from all the mosquito collectors and supervisors. Yellow fever vaccines were administered
to all the field staff. Collectors were treated free of charge when they were diagnosed with
malaria during the study period according toWHO recommendations. They were also free to
withdraw from the study at any time without any consequences.

Results
Specific composition and spatiotemporal distribution of Anopheles biting
rates
A total of 1792 human-nights of collections was conducted in the Korhogo area (28 villages * 8
surveys * 4 points * 2 locations). A total of 57 716 anopheles were collected (representing over
90% of all mosquitoes collected), of which 56 267 (97.5%) and 714 (1.2%) belonged to the
Gambiae Complex and the Funestus Group, respectively. Over the 3922 An. gambiae s.l.
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individuals (7% of the total) selected for molecular identification, 3726 (95%) were An. gam-
biae s.s. and 196 (5%) were An. coluzzii. Consequently, throughout the remainder of the manu-
script, we will consider An. gambiae s.l. as An. gambiae s.s.

An. gambiae s.s. and An. funestus were present (i.e. at least one individual captured) respec-
tively in 64% and 6% of the human-nights of collections. The distribution of positive human
biting rates (i.e. human-nights with at least one bite) was highly left-skewed (for An. gambiae s.
s.: median (med) = 18 bites/human/night, standard deviation (sd) = 65, maximum (max) =
505; for An. funestus: med = 2, sd = 12, max = 84). Additional details on Anopheles bionomics,
Plasmodium falciparum sporozoite infection, and insecticide resistance mechanisms for this
set of mosquitoes are provided in other publications [39, 40].

Fig 2 shows the spatiotemporal distributions of the biting rates of the main Anopheles spe-
cies. The map shows that An. gambiae s.s. was more abundant during or at the end of the rainy
season (September, October) than in the dry season, when it was nevertheless present. Spa-
tially, we note i) a certain level of heterogeneity in the distribution, and ii) that the species was
present in almost all villages in all entomological surveys (except the 7th). The spatiotemporal
distribution of An. funestus was very unbalanced: the overwhelming majority of individuals
(93%) were collected during the first entomological survey, and almost half of the individuals
(42%) were collected in a single village.

Bivariate analysis
Fig 3 shows the landscape variables that were significantly correlated (Spearman correlation
coefficient (cc)> 0.1 and p-value< 0.2) with the presence or abundance of the studied vector
species. The presence and abundance of An. funestus were correlated with more landscape var-
iables than that of An. gambiae s.s., and the highest correlation coefficients with the landscape
variables were found for An. funestus.

The presence of An. funestus was positively correlated with the length of the rivers and with
the % of surface area occupied by rice paddies areas, in the 2-km radius buffer zone. It was also
correlated with the % of surface occupied by riparian forests and woodland (i.e. non-riparian
forest areas) in all buffer zones. The abundance of the species was positively correlated with
the length of the streams and the percentage (%) of surface occupied by rice paddies areas,
marshlands, riparian forests, and (non-riparian) forest areas, in various buffer zone sizes
according to land cover class. The abundance of An. funestus was negatively correlated with
the % of surface occupied by croplands in the 2-km radius buffer zone, and with the distance
to the nearest stream (i.e. abundance was higher when the collection point was closer to the
hydrographic network).

Fig 2. Map of the biting rates of the two main vector species for each village and entomological survey.Unit:
average number of bites/human/ night. Blue dots indicate absence of bites in the village for the considered survey.
Background layer: OpenStreetMaps.

https://doi.org/10.1371/journal.pone.0312132.g002
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The presence of An. gambiae s.s. was positively correlated with the % of surface occupied by
permanent water, marshlands, and crop areas in the 1-km radius buffer zone. The presence
and abundance of the species were also correlated with the % of surface occupied by rice pad-
dies areas, in all the buffer zones for presence and in the 1-km and 2-km radius buffer zones
for abundance. The presence and abundance of An. gambiae s.s. were negatively correlated
with the % of surface occupied by riparian forests, in the 1-km and 2-km radius buffer zones
for presence and in the 2-km radius buffer zone for abundance. The abundance of the species
was negatively correlated with the % of surface occupied by forested areas in the 2-km radius
buffer zone, and with the distance to the edge of the village (i.e. abundance was higher in
dwellings located near the edge of the village than in those close to the center of the village).
The presence of An. gambiae s.s. was negatively correlated with the % of surface occupied by
ligneous savannas in all buffer zones with radius> 250 m.

Fig 4 shows the meteorological variables that were significantly correlated (spearman corre-
lation coefficient (cc)> 0.1 and p-value< 0.2) with the presence and abundance of the vector
species (in the form of cross-correlation maps).

The presence and abundance of An. funestus were positively correlated with cumulated
rainfall preceding the date of collection, at almost all time lags. The presence and abundance of
the species were negatively correlated with daytime temperatures, again at almost all time lags
preceding collection. The correlations between the presence or abundance of An. funestus and
the nocturnal temperatures preceding the date of collection were weak or non-significant.

Fig 3. Plot showing the Spearman correlation between the vectors’ biting rates and the landscape variables.
Landscape variables were extracted within four spatial buffer zones around the sampling locations (250 m radius, 500 m,
1 km, 2 km), and the Spearman correlation coefficient between these variables and biting rates was computed for each
primary vector species. The analysis was divided into the presence/absence of bites (left) and the abundance of bites (i.e.,
positive counts only) (right). Landscape variables depict the percentage of surface occupied by each land cover class in
each buffer zone. Only correlations with coefficient> 0.1 and p-values< 0.2 are displayed. Stars indicate the range of
the p-value: *** p-value2 [0, 0.001[; ** p-value2 [0.001, 0.01[; * p-value2 [0.01, 0.05[; absence of stars: p-value 2 [0.05,
0.2[.

https://doi.org/10.1371/journal.pone.0312132.g003
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The presence and abundance of An. gambiae s.s. were positively and strongly correlated
with the cumulative rainfall preceding collection, at all time lags. The time interval showing
the maximum correlation coefficient with cumulative rainfall was between 1 and 6 weeks
before the date of collection for presence, and between 2 and 6 weeks before the date of collec-
tion for abundance. The presence of An. gambiae s.s. was also positively correlated with the
nocturnal temperatures preceding the date of collection at all time lags, with the highest corre-
lation coefficient observed for interval between 5 and 6 weeks before the date of collection.
The presence and abundance of An. gambiae s.s. was negatively correlated with the diurnal
temperatures preceding the date of collection, at all time lags. The maximum correlation coef-
ficient between diurnal temperatures and the presence/abundance of the species was found
between 0 and 2–3 weeks before the date of collection.

The correlation coefficients between the presence/abundance of species and the meteoro-
logical variables were higher for An. gambiae s.s. than for An. funestus.

Multivariate analysis
The Precision-Recall area under the curve (PR-AUC) of the presence models were 0.52 (base-
line = 0.09) and 0.91 (baseline = 0.64) for An. funestus and An. gambiae s.s. respectively. The
specificity and sensitivity of the models at the optimal probability thresholds were respectively
53% and 98% for An. funestus and 88% and 61% for An. gambiae s.s. These results suggest
good predictive power for the presence models. Both species’ spatiotemporal trends were accu-
rately predicted by the abundance models, despite the fact that high counts were frequently
understimated. Model evaluation plots are presented in Fig 5 (presence models) and Fig 6
(abundance models).

Figs 7 and 8 show the model interpretation plots (variable importance plot and partial
dependence plots) for An. gambiae s.s. and An. funestus, respectively.

Fig 4. Cross-correlation maps (CCMs) showing the Spearman correlation between the vectors’ biting rates and
the meteorological variables. To construct these CCMs, meteorological variables were gathered on a weekly scale up
to 6 weeks before the collection dates, and the Spearman correlation coefficient between these variables and biting rates
was computed for each main vector species. The analysis was separated into the presence/absence of bites (left) and the
abundance of bites (i.e. positive counts only) (right). In each CCM, time lags are expressed in week(s) preceding the
date of collection. The red-bordered square highlights the time lag interval exhibiting the highest correlation
coefficient (absolute value) with the specific meteorological variable. The associated time lag interval and correlation
coefficient are presented in the top-left corner of the CCMs. Black-bordered squares denote correlations close to the
highest observed correlation (i.e., less than a 10% difference). Gray-filled squares indicate non-significant or low
correlation (i.e., p-value> 0.2 or coefficient< 0.1).

https://doi.org/10.1371/journal.pone.0312132.g004
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The most important predictors of both the presence and abundance of An. gambiae s.s.
were the three meteorological variables recorded during the weeks preceding collection (Fig
7): in order, cumulative rainfall between 1–2 and 6 weeks before collection (positive relation-
ship), diurnal temperatures between 0 and 2–3 weeks before collection (negative relationship),
and nocturnal temperatures (between 5 and 6 weeks and between 0 and 1 week before collec-
tion for the presence and abundance models, respectively) (positive relationship). It should be
noted (i) that for the presence model, the three most important predictors were equally impor-
tant, and (ii) that the importance of rainfall was particularly high in the abundance model, far
outweighing the importance of all other variables.

The most important predictors of the presence of An. funestus were the three meteorologi-
cal variable recorded during the weeks preceding collection (Fig 8): cumulative rainfall (posi-
tive relationship), diurnal temperatures (negative relationship), and nocturnal temperatures
(negative relationship). The most important variables in the abundance model for this species
were: the % of surface occupied by riparian forests (postive relationship), the total length of
hydrographic stream in the 2-km radius buffer zone around the collection points (postive rela-
tionship), and diurnal temperatures (postive relationship).

Fig 5. Model evaluation plots for the presence models. A1 and A2 depict precision-recall curves corresponding to the
presence models of An. funestus and An. gambiae s.s. Precision-recall curves illustrate the precision and recall of the models
across various probability thresholds for the ’presence’ class. Precision signifies the accuracy of presence identifications, while
recall indicates the proportion of actual presence observations correctly identified. The dashed horizontal line represents the
baseline (random or no-skill) classifier, and a precision-recall curve above this line indicates a classifier performing better than
no-skill. The area between the precision-recall curve and the baseline line signifies the classifier’s effectiveness, with a larger
area indicating superior performance. Plots B1 and B2 showcase observed versus predicted presence probabilities for each out-
of-sample village. The y-axis reflects the sum across the eight sampling points per village per survey (four points per village at
two positions, interior and exterior). Overall, A1 and A2 reveal that the models demonstrated strong predictive capabilities, as
their precision-recall curves surpass the baseline. Additionally, B1 and B2 demonstrate that the models accurately predicted
the spatiotemporal trends of presence/absence of mosquito bites, with lines of predicted presence probabilities closely aligning
with those of observed probabilities.

https://doi.org/10.1371/journal.pone.0312132.g005
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Comparison with the Diébougou area in Burkina Faso
Table 1 presents a set of selected indicators characterizing the landscape, meteorological
regime, and entomological conditions in the Diébougou (BF) and the Korhogo (CI) area, as
well as the impacts of the environmental (landscape + meteorological) conditions on the spa-
tiotemporal distribution of vectors (i.e. main outputs of the bivariate and multivariate statisti-
cal analyses).

The Diébougou area is located in the Sudanian bioclimatic region, as Korhogo. The season-
ality is characterized by the same dynamics (i.e. dry-cold, dry-hot, and rainy season). During
the study period (from 2016-09-30 to 2018-03-24), cumulated rainfall was 1112 mm (-34%
compared to Korhogo) (S3 Fig); average diurnal Land Surface Temperature (LST) was 37.9˚C
(sd = 4.9) (+2.8˚C compared to Korhogo) and average nocturnal LST was 19.4˚C (sd = 2.7)
(-0.3˚C compared to Korhogo). The landscape in the Diébougou study area was, as for Kor-
hogo, mainly a mixture of natural vegetation and agricultural lands [41], with some notable
differences (S4 Fig). Agricultural land accounted for 26% of the total surface area of the Dié-
bougou study area, proportionally half that of Korhogo. Rice paddies represented only 1% of
the total surface area in Diébougou (against 9% in Korhogo), and there was no tree plantations

Fig 6. Model evaluation plots for the abundance models. A1 and A2 present violin plots illustrating the distribution of
residuals in the abundance models for An. funestus and An. gambiae s.s., categorized by observed counts of mosquito bites.
The median values are denoted by black dots. B1 and B2 display observed versus predicted numbers of bites per village per
entomological survey. The y-axis reflects the total number of bites across the eight sampling points per village per survey (four
points per village at two positions, interior and exterior), presented on a logarithmic scale. The absence of a dot indicates the
absence of collected vectors. MAE (mean absolute error) is noted, and n denotes the number of observations. Overall, A1 and
A2 reveal that the models effectively predicted small to medium observed counts of bites, as evidenced by lowMAEs and small
residuals, which constitute the majority of observations (high n). Larger counts (>50 bites) tended to be underestimated by the
models. B1 and B2 affirm these findings and further demonstrate the accurate prediction of general trends in biting rates over
time, with the lines representing predicted abundance closely tracking those of observed abundance.

https://doi.org/10.1371/journal.pone.0312132.g006
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in the Diébougou study area (17% of the study area in Korhogo). Conversely, the natural vege-
tation accounted for 71% of the total surface, proportionally more than twice that of Korhogo.
It was composed of savannas (52% of the total surface), grasslands (7%), marshlands (5%),
riparian forests (4%), and woodlands (3%). Contrary to Korhogo, the Diébougou area had
very few hydraulic dams.

Fig 7. Interpretation plots of the random forest models for the presence and abundance of An. gambiae s.s. Biting
rates were categorized into the presence/absence of bites and the abundance of bites (i.e., positive counts only), leading
to the creation of two models: presence (top) and abundance (bottom). In each model, the top-left corner plot serves as
the variable importance plot. The remaining plots consist of partial dependence plots (PDPs) for each variable
incorporated into the models (one plot per variable). The y-axis in the PDPs signifies, in the presence models, the
probability of at least one individual biting a human during a night, and in the abundance models, the log-transformed
number of bites received by one human in one night, conditioned on their presence. The dashed lines within the plots
represent the partial dependence function ± one standard deviation, providing an indication of variability estimates.
The x-axis values cover the range available in the data for the respective variable, and the rugs above the x-axis depict
the actual values present in the data for that variable. Noteworthy abbreviations include LST for land surface
temperature and between for between.

https://doi.org/10.1371/journal.pone.0312132.g007
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Vector control strategies implemented in the Diébougou area were similar to those of Kor-
hogo. The primary vector control tool is the LLIN. The last distribution before the beginning
of the REACT project was in 2016 [42]. As part of the REACT project, complementary VC
tools were implemented as well in some villages.

In the Diébougou area, three main Anopeheles species were collected: An. gambiae s.s., An.
coluzzii, An. funestus [27]. The specific composition was more balanced than in the Korhogo

Fig 8. Interpretation plots of the random forest models for the presence and abundance of An. funestus. Biting
rates were categorized into the presence/absence of bites and the abundance of bites (i.e., positive counts only), leading
to the creation of two models: presence (top) and abundance (bottom). In each model, the top-left corner plot serves as
the variable importance plot. The remaining plots consist of partial dependence plots (PDPs) for each variable
incorporated into the models (one plot per variable). The y-axis in the PDPs signifies, in the presence models, the
probability of at least one individual biting a human during a night, and in the abundance models, the log-transformed
number of bites received by one human in one night, conditioned on their presence. The dashed lines within the plots
represent the partial dependence function ± one standard deviation, providing an indication of variability estimates.
The x-axis values cover the range available in the data for the respective variable, and the rugs above the x-axis depict
the actual values present in the data for that variable. Noteworthy abbreviations include LST for land surface
temperature and between for between.

https://doi.org/10.1371/journal.pone.0312132.g008
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Table 1. Quantitative characterization of the landscape, meteorological, and entomological conditions in the Dié-
bougou (BF) and the Korhogo (CI) area, and of the impacts of environmental conditions on the spatiotemporal
distribution of vectors in each area.

Diébougou (BF) Korhogho (CI)
Meteorological regime
Cumulated rainfall over the study period 1112 mm 1693 mm
Average diurnal LST (SD) over the study period 37.9˚C (4.9) 35.1˚C (3.9)
Average nocturnal LST (SD) over the study period 19.4˚C (2.7) 19.7˚C (2.5)
Landscape
% natural vegetation 71% 30%
% agricultural lands 26% 51%
% rice paddies 1% 9%
% plantations 0% 17%
% savannah 52% 9%
% woodland 3% 18%
Entomological conditions
Anopheles species richness 10 7
Anopheles species diversity (Shannon index) 1.23 0.33
Average human biting rate (bites/human/night) 1.98 32.21
Associations between presence / abundance of vectors and environmental variables: time lag with higher cc in
bivariate analysis)
Rainfall with presence of An. gambiae s.s. 2 to 6 weeks (0.33) 1 to 6 weeks (0.52)
Rainfall with abundance of An. gambiae s.s. 2 to 6 weeks (0.34) 2 to 6 weeks (0.7)
Diurnal LST with presence of An. gambiae s.s 0 to 2 weeks (-0.37) 0 to 2 weeks (-0.49)
Diurnal LST with abundance of An. gambiae s.s 0 to 2 weeks (-0.26) 0 to 3 weeks (-0.64)
Nocturnal LST with presence of An. gambiae s.s. 4 to 6 weeks (0.39) 5 to 6 weeks (0.35)
Nocturnal LST with abundance of An. gambiae 3 to 6 weeks (0.34) 0 to 1 weeks (0.31)
Rainfall with presence of An. funestus 1 to 3 weeks (-0.18) 0 to 1 week (0.33)
Rainfall with abundance of An. funestus 2 to 3 weeks (-0.14) 4 to 5 weeks (0.23)
Diurnal LST with abundance of An. funestus 3 to 6 weeks (-0.22) 0 to 1 weeks (-0.19)
Diurnal LST with abundance of An. funestus 4 to 6 weeks (-0.24) 2 to 4 weeks (-0.28)
Nocturnal LST with presence of An. funestus 0 to 3 weeks (-0.18) 5 to 6 weeks (0.08)
Nocturnal LST with abundance of An. funestus 1 to 3 weeks (-0.19) ns
Associations between presence / abundance of vectors and environmental variables: most important variables
in multivariate analysis (ordered by importance)
Presence model for An. gambiae s.s. Nocturnal LST

Diurnal LST
Rainfall

Rainfall
Diurnal LST
Nocturnal LST

Abundance model for An. gambiae s.s. Rainfall
Diurnal LST Marshlands

Rainfall
Diurnal LST
Nocturnal LST

Presence model for An. funestus Grassland
Marshlands
Ligneous Savannah

Rainfall
Diurnal LST
Nocturnal LST

Abundance model for An. funestus Marshlands
Grassland
Ligneous Savannah

Riparian forest
Hydrographic stream
Diurnal LST

These indicators were extracted from the landscape, meteorological and entomological data described in the
Methods section, and the bivariate and multivariate statistical models described in the Methods section as well.
LST = land surface temperature, cc = correlation coefficient, pp = percentage point. Time lags are displayed only if p-
values<0.2 and cc>0.1, either ns is displayed.

https://doi.org/10.1371/journal.pone.0312132.t001
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PLOSONE | https://doi.org/10.1371/journal.pone.0312132 October 21, 2024 15 / 25

https://doi.org/10.1371/journal.pone.0312132.t001
https://doi.org/10.1371/journal.pone.0312132


area (20% An. gambiae s.s., 44% An. coluzzii, 24% An. funestus). The Anopheles species richness
was higher than in Korhogo (10, against 7 in Korhogo) as well as the diversity (Shannon
index = 1.23, against 0.33 in Korhogo). The average human biting rate was much lower (1.98
bites/human/night in Diébougou vs. 32.21 bites/human/night in Korhogo). The distribution
of the vector species in space and time was highly heterogeneous, as in Korhogo (S5 Fig and
Fig 1 in [19]). However in Diébougou, An. funestus was present in a higher ratio of villages
and entomological surveys. The seasonal dynamics of An. gambiae s.s. were similar to those of
the Korhogo area but, unlike the Korhogo area, the species was completely absent from most
of the villages during the dry season.

In the bivariate analysis, the absolute values of the correlation coefficients between the pres-
ence/abundance of Anopheles species and the landscape variables were overall lower in the
Korhogo area than in the Diébougou (BF) area (see Fig 3 in [19]). Conversely, the absolute val-
ues of the correlation coefficients between the presence/abundance of the species and the
meteorological variables were generally higher in the Korhogo area than in the Diébougou
area, particularly for An. gambiae s.s. (see Fig 4 in [19]). Notably, the CCMs of An. gambiae s.s.
in the Korhogo and Diébougou areas were, one by one, very similar: while the absolute values
of the correlation coefficients were generally slightly higher in the Korhogo area, the time lags
with the highest correlation correlation coefficients were almost identical for 5 of the 6 CCMs.

The presence and abundance models had high predictive power in the Diébougou area, as
for the Korhogo area (see Additional files 4 and 5 in [19]). Overall, the most important predic-
tors of the presence and abundance of An. gambiae s.s. in the Diébougou area were, as for Kor-
hogo, the meteorological variable recorded during the weeks preceding collection (see Fig 7 in
[19]). The secondary predictors were also close to those of Korhogo (e.g. marshlands, riparian
forests, ligneous savannas)–although rice paddies were not present. In contrast to Korhogo,
the most important predictors of the presence of An. funestus in Diébougou were landscape
variables (marshlands, grasslands, savannas) (see Fig 6 in [19]).

Discussion
The overarching aim of this study was to investigate (i) the landscape and meteorological
determinants of the spatiotemporal distribution of the major malaria vectors in the rural Kor-
hogo region (Côte d’Ivoire), and (ii) the differences with another rural West African region,
the Diébougou (Burkina Faso) area.

Landscape and meteorological determinants of the presence and
abundance of malaria vectors in the Korhogo area
In the Korhogo rural area in Côte d’Ivoire, rainfall was the most important predictor of both
the presence and abundance of An. gambiae s.s; directly followed by land surface temperature-
related variables. The cross-correlations maps (CCM) of An. gambiae s.s. showed that the pres-
ence and abundance of the species were significantly correlated with the three meteorological
variables at all time lags preceding collection. Similar observations were made in the Diébou-
gou area in Burkina Faso [19]. These findings suggest that in the Korhogo area, as in Diébou-
gou and also more widely in Africa [43], i) An. gambiae s.s. was dependent on temporary
breeding sites filled by rainfall and ii) its life traits (development and survival at both larval and
adult stages) were strongly impacted by temperatures, as more detailed in [19]. Moreover,
some CCMs showed a maximum correlation with meteorological variables recorded at time
periods anterior to the mean lifetime of collected mosquitoes (i.e. more than 3 weeks before
collection). This suggests, as discussed in [19], that vector abundance and presence may have
been influenced by the effect of weather on life traits of the parent generations (further
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impacting the collected generation through mechanical effects on population dynamics), or by
preparing different biotic and abiotic conditions that affected the survival and development of
the observed generation.

Our studies have revealed important similarities in the shapes of the CCMs of An. gambiae
s.s. in the two study areas. Indeed, the An gambiae s.s. populations in Korhogo and Diébougou
shared common time lag for the effect of weather on their dynamic. This finding suggests that
population dynamics of An. gambiae s.s. in relation to the meteorological factors are highly
comparable in these two areas, and by extrapolation, possibly in the entire sub-region where
meteorological regimen are similar.

The % of surface occupied by rice paddies was the second and first most important land-
scape variable in the models of presence and abundance of An. gambiae s.s., respectively, sug-
gesting that rice paddies were probably important breeding sites for An. gambiae s.s larvae,
and enabled their year-round presence. This hypothesis was actually confirmed by a field
study carried out in the Korhogo area by the REACT project team with the aim of characteriz-
ing the larval habitats of Anopheles spp [44]. In this latter study, the authors identified that rice
paddies were the most frequent breeding sites for An. gambiae s.s., both during the rainy and
dry seasons. Several studies, in the Korhogo areas [45] and elsewhere in West Africa [46, 47]
had previously found that extension of irrigated rice cultivation was correlated to the density
of the main malaria vectors.

The % of surface occupied by ligneous savannas around the villages was the most important
landscape variable in the abundance model of An. gambiae s.s., with a negative correlation.
This finding agrees to observations made in southern Côte d’Ivoire [10], in Benin [48] and in
the Diébougou area [19]. It supports the hypothesis that the degree of openness of the sur-
rounding landscape affects the biting rates of An. gambiae s.s. in the villages. Closed landscapes
(in comparison to open landscape) may reduce the dispersal capacity of Anophelesmosquitoes
[49], resulting in longer gonotrophic cycle duration, in turn leading to decreased biting fre-
quencies [50]. Another plausible hypothesis is that closed landscapes may be less favorable to
larval breeding as a consequence of lower sunlight exposure [44, 51], lower temperature [50]
and possibly higher negative biotic interactions (competition, predation) [52, 53].

In the Korhogo area, unlike in Diébougou, the most important variables in the model of
presence of An. funestus were all meteorological (in particular rainfall and diurnal tempera-
ture). Thus, contrary to the observations made in the Diébougou area, landscape was not the
main driver of the spatiotemporal presence of An. funestus in the Korhogo area. On the other
hand, when An. funestus was present, landscape strongly impacted its abundance (two of the
three most important variables in the species abundance model were landscape-related), as in
Diébougou. In particular, the species seemed particularly dependent on rivers and riparian for-
ests. These landscape features therefore seemed to constitute preferential breeding sites for An.
funestus in the Korhogo area, confirming the literature [43, 54].

The multivariate models correctly predicted the presence and abundance of the two species,
as in Diébougou. This indicates that the main determinants of the presence and abundance of
both species were identified and incorporated into the models.

Differences in Anophelesmosquitoes diversity, presence and abundance
between the Diébougou and Korhogo areas: The effect of meteorological
conditions and landscape anthropization?
The Korhogo and Diébougou areas are « contextually » close: they are both rural areas in west
Africa, located in the same bioclimatic region, distant only 300 km as the crow flies, and imple-
menting similar VC strategies. Despite these similarities, we found notable differences in
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richness, diversity, and abundance of the malaria vectors. Anopheles species richness and, even
more so, diversity were lower in Korhogo than in Diébougou. In addition, the average propor-
tion of positive sessions (i.e. sessions with at least one mosquito collected) and the overall bit-
ing rates were much higher in the Korhogo area than in Diébougou. The present study,
combined with that of Diébougou [19], offers insights into the potential reasons for these
variations.

Our studies have demonstrated the significant impact of weather and landscape conditions
on the presence and abundance of Anophelesmosquitoes in our study areas. Differences in
both meteorological regimen and LULC in the two areas could explain these contrasts. The
higher rainfall in Korhogo than in Diébougou may result in more numerous or persistent tem-
porary breeding sites, the preferred habitat for larvae of several Anopheles species [43]. In
terms of landscape, permanent larval habitats (rice paddies, dams irrigating them) were more
abundant in Korhogo than in Diébougou. Furthermore, these habitats enabled the year-round
presence of Anopheles larvae [44]. In contrast, ’closed’ natural environments (especially ligne-
ous savannas)—which our models suggest reduce vector biting rates—were less common in
Korhogo than in Diébougou. Overall, as a result of these differences, adult vectors and biting
rates are likely to be higher.

The observed differences in Anopheles species richness and diversity could also be explained
by the differences in landscape composition between the two areas, particularly the variation
in natural vegetation cover. The Diébougou area, which is over 70% covered by natural vegeta-
tion (against 30% in the Korhogo area), has the potential to host a greater variety of mosquito
species due to their species-specific preferences for different types of habitats, blood and sugar
sources [43], that are more common in natural environments and particularly in woodland
areas [6]. Overall, as stressed out by [55], woodland has the highest levels of species diversity
on land, and almost all taxonomic groups are more likely to occur as woodland cover
increases. These disparities in landscape composition (surface of rice paddies, number of
dams, surface of savanna, etc.), which could explain the observed differences in malaria vectors
presence, abundance and diversity, also indicate a higher level of anthropization of the land in
the Korhogo area than in the Diébougou area. Our results hence support the hypothesis of
higher vectors’ densities and lower mosquito diversity in more anthropized landscapes, as sug-
gested by a recent meta-analysis of the link between landscape anthropization and mosquito
diversity and abundance at a global scale [6]. A recent study conducted in western Burkina
Faso has shown similar trends (i.e. fewer species in environments with high human impact,
such as urban areas and rice fields, than in environments with lower human impact such as
forested areas) [56].

The second, maybe less documented in the literature, is the removal of natural ‘closed’ nat-
ural environments (like ligneous savannas and forests), which seemed to act as protective bar-
riers in both areas, especially when located closely around the villages. As stated previously,
another recent study carried out in Côte d’Ivoire found a similar result [10]. A third process,
whose effect could unfortunately not directly be assessed here, is the creation of artificial dams
for agriculture. In this study, we could not directly assess their impact on mosquito presence
and abundance because few dams were located in the considered 2-km radius buffer area
around the collection points. However, these artificial infrastructures have already been identi-
fied as important breeding sites for anopheles mosquitoes in Africa in general [57–59] and in
the Korhogo [44] and Diébougou [19, 60] areas in particular.

Anthropization could consist of replacing elements of the landscape that reduce biting rates
(e.g. natural ligneous savannas) with elements that favour them (e.g. rice fields), thus cumulat-
ing the entomological impact. In practice, such processes are happening in West Africa: the
sub-region has lost—and is still losing—large extents of its natural land cover classes, replaced
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by a heavily human-influenced landscape dominated by agriculture [20]. For example, Côte
d’Ivoire lost 60% (-22,000 km2) of its forest in 38 years (1975 to 2013), while increasing agricul-
tural lands, in the same period, by 84% (+31,600 km2) (20). Burkina Faso shows similar trends,
with a 39% loss of savannas and 160% increase in rain-fed agricultural land over the same
period [20].

It is important to note that while landscape anthropization may pose significant threats to
the control of malaria vectors in rural West Africa, its impact on malaria transmission is less
straightforward—as it might come with positive side-effects. For example, higher vector abun-
dance associated with the development of irrigated crops may be associated with changes in
biting patterns or life history of the vectors, or may be offset by the socioeconomic and public
health improvements associated with agriculture [46]. In the Korhogo area, a study from 2003
showed that the extent of flooded surfaces associated to the extension of irrigated rice cultiva-
tion was strongly correlated to the density of the main malaria vector, but that there was no
clear correlation between malaria transmission and these flooded surfaces, most probably due
to the influence of intra-specific competition on the lifespan of the mosquito population [45].
Comparison of the malaria transmission indicators between our study areas or holistic statisti-
cal modeling of malaria incidence (including data related to the demographical, socio-eco-
nomical, entomological, environmental, human behavioral, etc. contexts) could enable to
better assess the interplay between vector abundance and malaria transmission risk.

Limitations and directions for future work
The identification of the determinants of the presence and abundance of malaria vectors in the
study area has several limitations, which have already been addressed and discussed in our pre-
vious work [19]. These limitations include: absence of ground-truth evaluation of the theoreti-
cal stream network dataset, absence of variables representing fine-scale potential important
drivers of mosquito presence, abundance or biting rates (e.g. alternative sources of blood meal,
domestic breeding sites, market gardening, water quality, etc.), absence of any study of interac-
tions between variables, absence of confirmation of the cause-effect relations (i.e. bio-ecologi-
cal processes) underlying the statistical correlations founds.

Our work paves the way for the development of operational tools to support the fight
against malaria transmission in the Korhogo area. As detailed in our previous study [19], the
knowledge and models generated in this study could support (i) conceptualization of tailored
vector control intervention plans and tools, (ii) decisions regarding the places and times where
recurrent (long-term) and (iii) occasional (short-term) interventions should be deployed.
Although Côte d’Ivoire has begun implementing stratification of vector control at the district
level in 2021 [61, 62], the heterogeneity in the spatial distribution of the malaria vectors in the
Korhogo health district (but also in other districts [10, 63]) suggests that even more spatially
stratified targeting of interventions, i.e. at the village level, would likely be beneficial. The VC
operational tools mentioned above could be developed for the Korhogo and the Diébougou
areas, but this study shows that they may also be applicable to much larger areas. Indeed, we
identified several similarities in the predictive models from both areas (e.g. cross-correlation
maps, relative importance of predictors, shape of relationships) that opens up interesting pros-
pects for the generalizability of these models. Concretely, we could envisage, using the whole
entomological dataset, to train a predictive model that could be used to predict the probability
of presence and the abundance of Anopheles at the village level in rural areas beyond our two
study areas (and further develop the related decision-making tools such as maps of predicted
biting rates or EWS). The scalability of the models could actually be tested by attempting to
predict the presence and abundance of Anopheles in the Diebougou area using the models
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trained in the Korhogo area, and vice versa. The exact spatial and temporal areas of applicabil-
ity of such models remains to be determined.

Lastly, our work is an example of how harmonized entomological surveillance data, used in
conjunction with high-resolution satellite data and powerful statistical modeling tools, can
improve our understanding of the potential impact of climate and LULC changes on malaria
vector density and, by extension, the role of environmental change in the stalling of malaria
reduction progress that has been observed for almost a decade. Although fine-scale landscape
and meteorological data covering the African continent are increasingly abundant and accessi-
ble, such research is limited by lack of consistent data on mosquitoes distribution in Sub-saha-
ran Africa [64]. It should be remembered that the WHO now recognizes vector surveillance as
a key feature of vector and malaria control [65] There is hence an urgent need for the imple-
mentation of mosquito surveillance systems that collect consistent, long-term, small-spatial-
scale entomological data, and the development of an associated centralized, Findable, Accessi-
ble, Interoperable, and Reusable (FAIR) database. Recent technological developments in elec-
tronics, artificial intelligence, computer science and telecommunications show great potential
for building surveillance systems with such features, for example by developing smart and con-
nected mosquito traps that can autonomously count and identify mosquitoes and transmit the
data wirelessly [66].

Supporting information
S1 Fig. Summary of the meteorological and landscape conditions in the Korhogo area dur-
ing the mosquito collection period. A) Average meteorological conditions in a 2 km radius
buffer zone around the collection points (weekly aggregation): Vertical red lines indicate the
dates of the entomological surveys. Ribbons indicate the mean ± one standard deviation (i.e.
spatial variability) considering all the sampling points for the date. Sources: for temperature:
MODIS Land Surface Temperature (https://doi.org/10.5067/MODIS/MOD11A1.006), for
rainfall: Global Precipitation Measurement (https://doi.org/10.5067/GPM/IMERGDF/DAY/
06). B) Landscape conditions: Percentage of surface occupied by each land cover class i) in the
whole study area (green bars) and ii) in a 2-km radius buffer areas around the collection points
(orange bars). In the latter, error bars indicate the mean ± one standard deviation (i.e. spatial
variability) considering all the sampling points. Source: https://doi.org/10.23708/MTF4S8.
(TIF)

S2 Fig. Contextual map of the study areas (Korhogo in Côte d’Ivoire and Diébougou in
Burkina Faso) and locations of the villages where entomological collections were per-
formed between 2016 and 2018.
(TIF)

S3 Fig. Comparison of the meteorological conditions in the areas of Korhogo and Diébou-
gou during the mosquito collection period. Average meteorological conditions in a 2 km
radius buffer zone around the collection points (weekly aggregation) for the Korhogo and Dié-
bougou areas. Vertical red lines indicate the dates of the entomological surveys (Korhogo area:
orange lines, Diébougou area: grey lines). Sources: for temperature: MODIS Land Surface
Temperature (https://doi.org/10.5067/MODIS/MOD11A1.006), for rainfall: Global Precipita-
tion Measurement (https://doi.org/10.5067/GPM/IMERGDF/DAY/06).
(TIF)

S4 Fig. Comparison of the landscape conditions in the areas of Korhogo and Diébougou
during the mosquito collection period. A) Percentage of surface occupied by each land cover
class in the whole study areas, for Korhogo area (orange bars) the Diébougou area (grey bar)
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B) Percentage of surface occupied by each land cover class in a 2-km radius buffer areas
around the collection points in the Korhogo area (left plot) and in the Diébougou area (right
plot). Sources: for Korhogo: https://doi.org/10.23708/MTF4S8, for Diébougou: https://doi.org/
10.23708/ARSJNB.
(TIF)

S5 Fig. Plots of the spatial and temporal distribution of the main malaria vectors species
observed in the areas of Korhogo and Diébougou.
(TIF)
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and bionomic précis. Parasites Vectors. 2010 Dec; 3(1). https://doi.org/10.1186/1756-3305-3-117
PMID: 21129198

44. Zogo B, Koffi AA, Alou LPA, Fournet F, Dahounto A, Dabiré RK, et al. Identification and characterization
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