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Road fragment edges enhance wildfire
incidence and intensity, while suppressing
global burned area

Simon P. K. Bowring 1,2 , Wei Li 3, Florent Mouillot4, Thais M. Rosan 5 &
Philippe Ciais 1

Landscape fragmentation is statistically correlated with both increases and
decreases in wildfire burned area (BA). These different directions-of-impact
are not mechanistically understood. Here, road density, a land fragmentation
proxy, is implemented in a CMIP6 coupled land-fire model, to represent
fragmentation edge effects on fire-relevant environmental variables. Frag-
mentation causedmodelled BA changes of over ±10% in 16%of [0.5°] grid-cells.
On average, more fragmentation decreased net BA globally (−1.5%), as esti-
mated empirically. However, in recently-deforested tropical areas, fragmen-
tation drove observationally-consistent BA increases of over 20%. Globally,
fragmentation-driven fire BA decreased with increasing population density,
but was a hump-shaped function of it in forests. In some areas, fragmentation-
driven decreases in BA occurred alongside higher-intensity fires, suggesting
the decoupling of fire severity traits. This mechanistic model provides a
starting point for quantifying policy-relevant fragmentation-fire impacts,
whose results suggest future forest degradationmay shift fragmentation from
net global fire inhibitor to net fire driver.

Human land use change (LUC) affects a third of the terrestrial surface1,
and the resulting alteration of land continuity-known as
fragmentation2 -can result in biodiversity loss3,4, habitat degradation5,
changes to the surface energy balance6–10 and biogeochemical
cycling11, leading to around one-third of global carbon (C)
emissions12,13. LUC is forecast to increase substantially by 2100, with
expansions in agricultural and settlement areas across all future
climate-SSP scenarios of +12–83%14 and +54–111%15, respectively, over a
2015 baseline. Fire is a key component of earth systembiogeochemical
and ecological dynamics16–19, however human-driven perturbations to
global atmospheric and hydrologic circulations may alter existing fire
regimes, changes that are expected to increase the future frequency
and severity of fire events16,20–24, the global area prone to frequent fire

(+~30%)25, and their attendant economic costs26, hampering the ability
of biological -and implicitly social -systems to respond to broad -scale
environmental change27,28.

Fire and LUC interact at differing space-time scales via weather
and vegetation29 through fuel structure and landscape fragmentation,
“the division of habitat into smaller and more isolated fragments”30.
Human land fragmentation has existed for at least 10,000 years b.p.31,
encompassing a spectrum of forms, rationales, and cultural
specificities32. The increasing yet spatially varying extent of fragmen-
tation may have wide-ranging consequences for the fire regimes that
present and future human activity embeds in its surrounding envir-
onment, which may differ substantially across ecosystems and time-
scales. However, the underlying processes linking fragmentation and
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fire, and whether it drives or inhibits fire activity, remains largely
unknown.16,20–26,33–36 This uncertainty hampers the capacity of eco-
nomic and infrastructural policy to consider its implications28 for fire
hazard, andhobbles understanding and forecasting offirebehaviour29.
Context-specific studies have demonstrated both negative and posi-
tive interactions of fragmentation with fire probability21,33–36, with
meta-analyses suggesting on average that fragmentation tends to
decrease landscape-scale burned area in grassland savannahs37,38, and
increase it in forest ecosystems33,38,39. However, these are limited in
scope, scale, and number24, and do not directly determine the drivers
of these associative relationships.

The ‘fragments’ that make up fragmentation can be considered as
isolated vegetation patches, each with an interior and an ‘edge’. The
edge of a fragment is subject to a diverse range of environmental
impacts through their contact with the edge’s sparsely vegetated
space, affecting plant and animal ecology40–46, microclimate9,47–52, and
plant physiology7,53. A fragment’s edge limit represents thepointwhere
the fragment’s interior vegetation is at a minimum, whereas the edge
area represents the area between the fragment limit and interior that is
subject to a gradient of ‘edge effects’ (SI Text S3 for context). Frag-
ments may influence fire probability and behaviour through edge
effects, which might include soil and fuel drying (increasing ignition
probability and fire intensity near fragment edges), wind infiltration
(increasing spread rate near edges), and ignition risks associated with
the combination of fragment edges and the presence of human
populations (Methods).

Real-world fragmentation today is predominantly driven by large-
scale investment in LUC and access infrastructure (i.e., roads)1,54–56 -the
latter the direct cause of many of the LUC effects described by the
above studies30,57,58. Recent statistical evidencedemonstrates that RD is
the strongest predictor for the lower annual burned area at a global
scale59, suggesting a fire-inhibiting effect in some places. Direct mea-
surement of fire-fragmentation impacts is difficult because it is an
exercise in the counterfactual, asking: what would fire outcomes be if
fragmentation was/wasn’t here given that it isn’t/is here? Addressing
this under controlled unfragmented plot-scale conditions is possible,

but may require removing key processes. Land surface modelling is a
powerful tool in this context for handling the integration of
fragmentation-fire feedback and experimentation with worlds where
fragmentationdoes anddoesn’t affectfire. This enables the isolationof
these effects in a way that is impractical to achieve at in situ scales and
conditions.

Bridging these issues, this study is built around conceptualising
and developing the process-based links between the edge effects of
land fragmentation on observed land surface and human ignition
variables that can conceivably affect fire probability and behaviour.
These were implemented in a global land surface model, ORCHIDEE-
MICT-SPITFIRE60–62, a commonly-used and fire-representing63,64 ter-
restrial branch of the [CMIP6] IPSL earth system model (Fig. S1b; see
Methods and SI Text S11 for detail).

Modelling global fragmentation effects requires a global land
fragmentation dataset. To our knowledge, current fragmentation
datasets only cover forest biomes65, whereas most of the world’s fires
occur in grassland savannahs. Here, fragmentation extent is proxied
through road density (RD) (SI Text S1). This is the only global-scale
satellite-derived data available that might capture fragmentation
extent across biomes, and simplify analysis because roads are a fixed
infrastructural feature in the medium term. Roads are used to define
the edges of fragments because LUC and subsequent fragment gen-
eration require overland access and represent a form of fragment
boundary. Roads act, on the one hand, as a physical barrier to indivi-
dual fire size and spread59,66,67, while on the other, exposing vegetation
to increased human contact, edge effects, and potential fire68–71.

For modelling purposes, fragments can be simplified to a single
shape and size in a grid cell, given that grid cell’s RD (see SI Text S5).
Doing so enables a ‘bottom-up’ representation of fragmentation’s
impact on the state of environmental variables that affect fire prob-
ability and behaviour–the aforementioned ‘edge effects’ (Figs. 1 and
S1, S2). The radii of our synthetic circular fragments provide the
average Euclidean distance from patch edge to interior, also known
as the Average Edge Distance (AED, Fig. 2a). AED is input as a map to
the ORCHIDEE model (Fig. 2a) and defines the relationships between

Fig. 1 | The conceptual implementation of road fragmentation in ORCHIDEE-
SPITFIRE. a Fragments are conceived of as circles whereby edge effects on fuel
moisture, wind infiltration, and human ignition (v1-3) are defined by the ‘edge
depth’ through which there is a gradient from fragment edge to interior. This is
shown in the transect at the bottom, where each gradient decreases /increases
towards the fragment interior, and values for the edge depth are shown.bThe ratio
of the total ‘edge area’ (blue shading) versus the ‘non-edge area’ (green) is defined
by the edge depth and the surface area of the individual patch, which depends on
fragmentation extent and so the number of patches per grid cell. This surface area

also limits the maximum size of any individual non-extreme fire. Note that grid cell
surface area varies with latitude, affecting AED (see Eq. 1, Methods). c (top) Frag-
mentation extent is proxied by road length to generate average circular patch area
and radius (‘average edge distance’), determining the size and number of fragment
patches in a grid cell. (bottom) The result of these conceptual implementations
alters a given variable (var1-3) in direct proportion to the edge area entailed by a–c.
See Figs. S1 and S2 for greater detail on how these implementations affect the
sequence of processes represented in the model.
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land surface variables and fire phenomena (Fig. 1a–c, Methods,
Table 1, Fig. S1b).

As fragmentation increases and AED decreases: (1) Individual fire
size is restricted by patch size unless threshold conditions for crown
fire spread and fuel limitation in forests and grasslands72, respectively,
are surpassed (Methods)64 (2) Vegetation is more exposed to human
contact and hence ignitions-potential through machinery, smoking,
trash burning, etc.73,74 (Methods). (3) Fuel moisture and threshold fuel
ignition moisture at the patch edge decreases due to edge drying47–51,
increasing fire occurrence and propagation potential; (4) Wind infil-
tration and hence speed at patch edges increases in forests only72 due
to decreased surface roughness75,76

Simulated fragmentation-fire impacts are benchmarked to
observational data through comparison with remotely sensed statis-
tical relationships of road fragmentation with respect to burned area,
which is the primary unit of account in global-scale fire ecology stu-
dies. Any correlation between the two is the emergent result of mod-
elled relationships at grid-average edge scale, not of model parameter
‘tuning’ towards observations (see Methods, SI Text S1, S2, S5). Our
model implementation results in first-order reproduction of observed
fragmentation impacts onburned area (Results), enabling examination
of emergent fragmentation impacts on other fire behaviour attributes,
such as fire intensity -ameasure of the combustion rate of fuel per unit
land surface area. Fire intensity may change because of fragmentation
due to changes in the average state of fuel and rate of spread char-
acteristics, such as wind speed, which are dynamically calculated by
ORCHIDEE. Intensity also benchmarks the area-specific vegetation
carbon emissions of fires, which is calculated in ORCHIDEE, and which
represents net global emissions of ~1 billion tons CO2-C yr−1 77

(equivalent to ~10% of annual anthropogenic emissions). Here, we
substitute area and vegetation-specific fire CO2 emissions (gC m−2 d−1)
for ‘fire radiative power’ (MW), a commonly-used intensity metric, as
they are conceptually equivalent78 (SI Text S8) andORCHIDEEdoes not
resolve the latter.

Global-scale ORCHIDEE fire simulations were conducted at 0.5°
grid-resolution over 2000-2013 with all fragmentation functions acti-
vated, in addition to a ‘control’ (‘CTRL’) simulation, with fragmentation
deactivated (Methods). A separate suite of ten sensitivity simulations,
in which fragmentation was varied globally for all grid cells at
decreasing two-fold increments of AED of 10,000m, 5000m… ~39m
(AEDF2), were performed to study the incremental effects of
fragmentation-doubling on the burned area at global and biome scale.
These simulations were run from 2001-2003, straddling weak or neu-
tral El Niño/La Niña years. The context and definitions used in this
study are summarised in SI Text S3, and study aims, rationale, and
hypotheses are provided in SI Text S4. We stress that this study does
not seek to account for land use (fragment patch interior) impacts of
fragmentation (e.g., deforestation, plantation), but the impact of
fragment edges in isolation.

Results
Simulated global-scale fragmentation-induced fire impacts
Fragmentation caused both decreases and increases in simulated time-
averaged burned area (BAFrag–BACTRL =ΔBAFrag) depending upon the
region considered. The sumof gross (ΔBA�

Frag:) decreases amounted to
−30MHa yr−1, while gross increases (ΔBA+

Frag:) were +25.6MHa yr−1,
equivalent to −3.25–6.5% and +2.25–5.5% of satellite-observed annual
burned area79 (2001–2019), respectively (Fig. 2c, d)80,81. Burned area

Fig. 2 | Land surface model input, fire-relevant output, and the relationship
between them. a Log-scale global map of grid cell mean ‘average edge distance’
(AED, m), as used as model input in this study and interpretable as the average
Euclidian distance from an average patch edge to its interior and calculated as
described (Methods, Fig. S1) to remove the urban proportion of road area.
b Regression of logit link-transformedmonthlymean BA against the square root of
RD (mkm−2). Dashed black line: Observation-based regression model between BA
and road density from ref. (Haas et al.59). Grey line: all simulated grid cells. Blue line
and circles: only the simulated grids where fragmentation explicitly decreases
mean fire size, plotted against the original road density data used in Haas et al. Red

line and circles: only the simulated grids where fragmentation explicitly decreases
mean fire size, plotted against road density where urban road length is removed.
For detail on how explicit size size limitation is filtered here, see Figure Generation
in Methods. c, d Gross fractional increase (c) and decrease (d) in simulated mean
annual burned area [fðΔBAFrag:Þ, where (f) refers to ‘fractional’] versus a control
simulation without fragmentation (log-scale). Grid cells where the absolute change
in area burned <0.2% of a grid cell (~5 km2 yr−1) weremasked out. Aggregate annual
increases and decreases in BA (Ha yr−1) due to fragmentation are included inmillion
hectares (Mha). This is discussed in detail in SI Text S10.
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changed by >±10% in 17%, and by >±25% in 7%, of burned grid cells,
respectively. Areas with high levels of both fragmentation (Fig. 2a) and
population density, simulated the largest proportionate burned area
decreases in response to fragmentation (Fig. 2c, d), such as in north-
west Europe, California, and northeast-USA. Conversely, burned area
and vegetation combustion (Fig. S6) increases were simulated in areas
with moderate fragmentation and population densities (Fig. S5a–c),
e.g., Indonesia, eastern Brazil, the north Mediterranean, and parts of
Africa (e.g. the Eastern Congo Basin). Interestingly, in Mediterranean
areas already prone to summer fire activity, e.g., Greece, the Balkans,
southern Italy, northern Algeria, and western Turkey, fragmentation
causes substantial increases in simulatedfire activity,whichwe suggest
is the result of exacerbated human ignition potential, and enhanced
propagation from fuel desiccation and powerful wind fields in these
regions.

We evaluated the simulated statistical relationship between
burned area and RD (solid lines, Fig. 2b) against the observationally
derived relationship from ref. 59 (dashed black line, Fig. 2b), who
found that RD was the greatest predictor for lower annual burned area
values at global scale. This linear regression comparison shows the
simulated relationship replicates the observed slopes and intercept.
However, the R2 coefficient is low when (i) considering all grid cells
(black line, Spearman’s rho (ρ) = −0.07, R2 = 0.05, p < 0.001), but it is
improved in (ii) grid cells where road-fragmentation activelydecreases
individual fire sizes (see Methods for model code-based filtering of
attribution)64, as shownby the regression statistics for the red and blue
regression lines in Fig. 2b.

We attribute this low R2 to intrinsic differences between models
and observations: (1) ORCHIDEE simulates large numbers of small fires
that can aggregate to low levels of annual burned area (bottom-left
grey dots in Fig. 2b). Where realistic, these small fires generally aren’t
detected by existing satellite (e.g. MODIS) retrieval/processing
mechanisms82. (2) Urban roadswere not removed in ref. 59, potentially
reflecting non-fragmentation related factors that co-correlate with RD
(e.g. fire suppression, large fire-retardant surface areas like concrete).
(3) Comparing histograms of observed fire patch and fragment patch
sizes (Fig. S4a–c) shows that in general, fragment patches are much
larger than observed maximum, minimum and mean fire patch sizes
(other colours), meaning fire sizes physically-limited by the size of
fragments can only occur in a small minority of grid cells. Counts of

small fragment patches are about two orders of magnitude lower than
counts of small fire (areas A vs. B, Fig. S4c), and fragmentation are only
likely to constrain large fires (>1500Ha). Twenty percent of terrestrial
grid cells have no meaningful level of fragmentation, implying that
fragmentation will have no meaningful fire impact in these grid cells.
This exposes the limits of fragmentation as a physical constraint to fire
size, although there may be other nonphysical constraints that we
exclude.

Simulated regional-scale fragmentation-fire impacts
General patterns in simulated regional ΔBAFrag are discernible in
Fig. 2c, d, but robust evaluation requires an observational dataset that
removes and adds fragmentation while holding population density,
vegetation, and climate constant–which is implausible. It is difficult to
validate model outputs with observations in places where modelled
fragmentation decreases burned area, due to a lack of long-term
burned area and/or any historical RD (or fragmentation) data. Further,
in one of the world’s most fragmented landscapes, north-western
Europe (Fig. 2a), fragmentation largely decreases simulated fire activ-
ity (Fig. 2c), but we cannot validate against this given much of Eur-
opean fragmentation predates the satellite era. However, we can
compare observed andmodelled fire activity in areas over which large-
scale increases in fragmentation have occurred during the period for
which satellite fire observations exist (post-2000).

This period coincides with the ‘boom’ years of globalisation83,84, in
which lowered regulatory power and multinational corporate
demand85 incentivised large-scale supply of cheap commodities for
global markets86. Large swathes of the global South1, most notably the
forests of Indonesia and Brazil87,88, were given over to clearing, logging
and plantation/mining establishment89,90 that have been associated
with systematic increases in fire activity30,91–93. This provides a ‘before-
after’ comparison of fire behaviour with fragmentation. We thus focus
the grid cell-specific validation of simulation results on the tropics (SI
Text S9), which also happen to be amongst the biomes most prone to
future fire-mediated systematic change45,94 (along with boreal
systems27,28–see Discussion for boreal fragmentation-fire intensity
impacts), recognising the potential validation bias this presents.

Figure 3a plots fðΔBAFragÞ in northern S. America, overlaid with
data from ref. 95 that identified where the running mean of burned
area and a fragmentation proxy experienced significant [+/−] trends

Table 1 | Fragmentation-fire model parameters, description, and their rationale

Variable Value Description Rationale

aUAF 2.68*104 Urban area RL removal regression coefficient (RL/
Urban Area Fraction).

High RL urban areas are unlikely to have significant BA removed to isolate
the 'fragmentation' versus 'urban' effect.

nPat forest 1 Parameter multiplier allows individual forest fire
size to exceed patch size by this factor, otherwise
limited by it.

No data to suggest that this size can or cannot be exceeded given patch
size unless the crown fire

nPat grass 1.25 Parameter multiplier allows individual grass fire
size to exceed patch size by this factor, otherwise
limited by it.

Value over unity based on the assumption that some proportion of frag-
mented grasslandsmay allow spread beyond patch due to the proportion
of fine fuel

FSTTREE conditional, empiri-
cally derived

Tree fire spread threshold, flame height, tree
height, and canopy width dependent 'crown fire'
condition

Allows fire to spread beyond patch size when fuel dryness, and wind
speed and allows flame height to exceed canopy

FSTGRASS conditional, empirical Grass fire spread threshold, based on areal fuel
density

Allows fire to spread beyond patch size when fuel density exceeds
threshold.

EDWind 16m Edge depth through which wind infiltration is
altered by fragment edge

Assumes that wind comes from a single direction in a given patch, the
effective edge depth is approximated to 4m for a given fire.

EDMoisture 20m Edge depth through which fuel moisture affected
by fragment edge

Empirically derived (Methods), assumes linear gradient of drying, and fuel
drying itself is scaled quadratically downward with fuel type to reflect
radial thickness of model fuel classes.

EDHumig 1m Average depth through which human activities
affect ignition probability

This is assumed because although effects may be deeper, the time-
averaged edge depth along fragment edges is likely small.

Key components of the fragmentation module, their value, description, and rationale. See Methods for a detailed description and calibration of each parameter.
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Fig. 3 | Biome-specificity of fragmentation-fire impacts and the influence of
human populations on them. a Simulated fractional changes in burned area due
to fragmentation in northern S. America (fðΔBAFrag:Þ, colour-bar), overlaid with BA
and fragmentation-proxy trend data from Rosan et al.95, which were aggregated
for Brazil’s Amazonian (circular points) and Cerrado regions (triangles), as com-
parison. Note that the latter data only covers these regions, not Brazil’s national
borders nor the entire Amazon. Where both BA and fragmentation increased
(+BA/+frag) over 2003–2018, points are coloured red and [(+BA/-frag) = orange;
(−BA/+frag) = light blue; (−BA/ = frag)=dark blue]. Note the comparison is not

entirely commensurate (see text). Simulated gross BA changes due to fragmen-
tation over the Figure region are shown inset. b Binned frequency density scatter
of fractional mean changes in burned area per grid cell due to fragmentation
relative to the Control (fðΔBAFrag:Þ, y axis) where this was >±1%, against the loga-
rithm of population density (x axis) of that grid cell, plotted globally across five
biome types. A generalised additive model (GAM, black line) is included for
interpretation. Asterisk(*) mark the PopD level at which f ðΔBAFrag:Þ is maximum in
tropical and temperate biomes (~0.5 and ~50 individuals km−2, respectively).
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over 2003–2018. That study suggested Amazon rainforest-interior
burned area rose with fragmentation, but either fell or was
unresponsive to fragmentation increases in the cerrado. Model out-
put replicates a similar dynamic, whereby large ΔBA+

Frag: values
follow the ‘Trans-Amazonian highway’96 into the Amazon rainforest
interior (Figs. 3a, S5c), while the cerrado region sees burned area
decreases.

Figure 3a’s model-data comparison is not entirely commensurate
as ref. 95 identify temporal trends in fragmentation and total burned
area to approximate if and where they are correlated, whereas our
fragmentation input is static. Thus, in cerrado areas that are subject to
large climate-driven interannual variations in drought and fire extent,
aggregate burned area trends may overwhelm fragmentation burned
area effects. The inverse may prevail in the wet Amazon, where frag-
mentation can dominate fire causation34,39. Large simulated ΔBA+

Frag: in
the deep interior Amazon where ref. 95 find no significant trends (no
data points) reflect large fractional increases in simulated fire over a
low baseline -fires not detectable by MODIS sensors.

A similar comparison was performed for Indonesia and Malaysia
(Figs. S7 and S5b), where deforestation and fragmentation have been
rampant in recent decades. Comparing grid cells where simulated and
observed burned area increased between 2000–2019 over a
1982–1999 baseline97,98 and identifying where model and observation
agreed, these were overlaid with markers identifying where significant
deforestation99 and plantation inception100 occurred since 2000
(Figs. S7, S8, S9, S5b). In highly-fragmented Borneo/Kalimantan and
Sumatra, model-data agreement was found for 58% of grid cells that
experienced an observed increased of burned area, of which 67% were
areas of known significant deforestation and/or plantation establish-
ment. This broadly agrees with ref. 101, which found that human
activity had amplified (but may not dominate) drought-related fires
there. Model-data disagreement was more pronounced in fire-
susceptible drained peatland regions102–105, an expected result given
ORCHIDEE does not represent tropical peat or soil burning (itself a
loosemodel validation). Simulated average grossΔBA+

Frag: values in the
Amazon and Indonesia are equivalent to ~27% and 24% of observed
average annual burned area81, respectively, suggesting fragmentation
is a powerful driver of fire activity in these two regions. Road frag-
mentationmay thus describe the linkage between initial deforestation
and dry season severity106 to promote fires that would otherwise not
have spread107,108.

Fragmentation’s relationship with population density, carbon
emissions and intensity, and regional-scale fire vulnerability
We look at how simulated biome-specific response of fire to frag-
mentation as population density (PopD) levels change, to provide
broad insight into fire regime evolution with increasing human land-
scape encroachment. The relationship of simulated fragmentation-
derived fractional burned area fðΔBAFrag:Þ changes with population
density for each global biome, as well as the corresponding general-
ised additive model (GAM) trend for each is shown in Fig. 3b. Tropical
forest exhibits a clear hump-shaped increase in simulated fragmenta-
tion burned area at low-to-moderate population levels, reaching a
maximumat ~0.5 individuals km−2 (asterisk, Fig. 3b)) before decreasing
toward zero, and is the only biome where a fragmentation-related
increase in burned area is more important than a decrease. In tempe-
rate forests, fragmentation decreases burned area at low and high
population density and increases it at moderate levels (max = 50
individuals km−2). Boreal forests appear relatively unaffected by
changes in population, although this may be because they generally
hold low population densities109. Temperate grassland fragmentation
slightly increased burned area at low PopD levels, and decreased dra-
matically at high levels.

One of the central goals of integrating a fire model with a land
surfacemodel is to quantify the effects of fire on the terrestrial carbon
(C) cycle. Globally, the impact of fragmentation on simulated fire
C-emissions is similar to that of simulated burned area, with a net
reduction of ~−1% (−0.02 PgC yr−1) of global emissions. Conversely,
fragmentation’s impact on the fire emissions of specific biomes
(Fig. S6) suggests that it tends to increase them in tropical, temperate,
and boreal forests, despite a net-negative impact at the global scale
(see Fig. 2c, d; SI Text S10). This is highlighted in Fig. 4a, which shows
substantial areas of forested biomes where simulated area-specific fire
C-emissions -a proxy for fire intensity-increase due to fragmentation
even where it causes burned area decreases (SI Text S8). This is par-
ticularly true of boreal (per ref. 71) and to a lesser extent, tropical
forests. This model result implies that fragmentation can reduce
burned area while increasing the intensity of the fires that do burn, as
suggested by ref. 109 regarding human impacts on fire activity in
boreal Russia, and is also of relevance to observed increases in global
fire intensity over the last 20 yrs110. Understanding high-intensity fires
is important because they are (a) harder to extinguish, (b) consume
more fuel and, as such cause more immediate damage to terrestrial

Fig. 4 | Emergent modulation of fire properties by fragmentation. a Time-
averaged map showing where fragmentation relative to the control simulation
without fragmentation leads to coupled (increasing or decreasing in the same
direction) changes in burned area (ΔBAFrag, Ha yr−1) and fire carbon emissions
intensity (ΔECO2Frag, gC m−2 yr−1), shown in light colours, or decoupled changes
(one increasing, the other decreasing), in dark colours. Blue depicts areas where
ΔBAFrag is negative, and red where it is positive. bGlobal spatial sensitivity of fire to
hypothetical fragmentation levels: AEDF2 simulation ensemble-averaged spatial

distribution of fragmentation-doubling effects on fire burned area (unitless colour
scale). All grid cells show amean decrease in BAover the 9 simulations, but because
of the differential direction of change between simulations, we show in dark col-
ours those grid cells where the average AEDF2 impact is least likely to decrease BA
(highest fire susceptibility due to fragmentation) and in light colours where it is
most likely to decrease BA (see Methods for further description of Figure
construction).
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ecosystems, (c) are of importance to understanding the potential
carbon cycle impacts of fragmentation-induced fire behaviour,

To understand how different regions respond to fragmentation
independent of contemporary RD distributions, ten global sensitivity
simulations were run where the AED of all grid cells was set to equal 9
factor-of-two values (F2) of AED from 10,000m to 39m (AEDF2, see
Methods). We compared the fractional change in burned area of grid
cells between each sequential level of fragmentation fðΔBAΔF2Þ as a
measure of biome-scale fire sensitivity to fragmentation. Burned area
declined everywhere as fragmentation increased when averaged over
all AEDF2 levels (Fig. S11), however burned area decreases were lowest
in tropical and boreal forest regions of the world (Fig. 4b, S11). We
aggregated these burned area changes to a biome-scale average for
each simulation. Fragmentation doubling caused simulated biome-
specific burned area decreases fðΔBAΔF2Þ of −7.5% (Tropical forest);
−15% (Temperate forest); −19% (Boreal forest); −30% (C3 grasslands);
−22% (C4 grasslands). On average, burned area decreased mono-
tonically for almost all biomes with two-fold increases in fragmenta-
tion level (Figs. S11 and S12). Simulated burned area begins to decrease
at different AED levels for different biomes (Fig. S11), implying differ-
ential biome-average fire sensitivities to land fragmentation. For
example, to reach the same fractional decrease in burned area (−5%)
due to fragmentation, an average tropical forest grid cell requires an
additional road length (RL) of 2.5 kmkm−2 (~6000 kmgrid−1), high-
lighting the higher resistance of the tropical biome to fragmentation-
associated burned area reductions (Fig. S11).

Discussion
This study has hypothesised (SI Text S4) that simple treatment of four
model processes by globally averaged parameters and by a proxy for
fragmentation would be sufficient to broadly reproduce its
statistically-observed burned area effects. In rejecting the null, this
study provides tentative model-based inference of fragmentation
theory, by identifying and quantifying the central drivers of the
fragmentation-fire link. While our fragmentation representation relies
on empirical and mathematical/probabilistic constraints to test these
hypotheses, and outputs appear to correspond well to available
empirical data, the conceptual and hypothetical nature of its con-
struction means that there is substantial uncertainty inherent to
parameterisations used (SI Text S5), the vegetation and biome-
specificity of fragmentation effects and the completeness of relevant
process representations. As a result, caution should be taken in their
interpretation, particularly with respect to policy. We suggest that the
absolute changes in model outputs here are to be treated as highly
uncertain, while the relative changes, at least in sign if not necessarily
precise value, are reasonable by global modelling standards (see SI
Text S6 for further discussion).

Our universal modelling approach may neglect culture-specific
interactions with fragmentation and fire that result in managed fire
ecology outcomes31,111,112. However, roads are both result and instru-
ment of financial capital, a known driver of cultural homogenisation113:
While cultural diversity is correlated with biodiversity114, the strongest
negative predictor of culture globally is RD115. Places where road
fragmentation and its impacts are high are thus those least likely to
host the forms of local cultural attunement that are best suited to their
environment, and are likely of limited relevance to this study (see SI
Text S7).

Model representation could be improved by discriminating
between road-types, although the empirical impact of these on edge
effects is currently unknown. The extent of fragmentation estimated
here is likely substantially underestimated in some places due to (a)
input RD low bias; (b) omission of other fragmentation sources in the
AED proxy (SI Text S1). This may bause underestimation of fragmen-
tation fire effects, particularly in tropical forests where bias may be
particularly high. Because the AED input map is static, year-by-year

interpretation of output is problematic, and provides impetus for the
production of higher resolution and better-identified gridded RL
timeseriesmaps. In some areas fragmentationmay result in significant
decreases in standing vegetation biomass, relative to historical ‘equi-
libria’, thereby reducing fuel load, potential area-specific fire intensity,
and so spread potential. Thus, the dampening effect of fragmentation
on burned areamay in someplaces havemore to dowith biomass/fuel
diminishment than the patch area-determined fire breaks represented
here. In this vein, we caution there being no direct equivalence
between the observed and modelled finding that fragmentation
reduces aggregate fire activity, and socio-ecosystem-level manage-
ment considerations. Taken to its extreme, the aimof reducing fire risk
in this way could justify wiping out most vegetation in an area.

This study’s parsimonious representation of land fragmentation
based on RD enables a simplified first estimate of its impact on fire
probability and behaviour in a land surface model. This reproduced
observed relationships between land fragmentation and fire prob-
ability at global and regional scales. Fragmentation has globally sig-
nificant impacts on burned area, and may be a major driver of fire
activity at regional scale. While reproducing the observed decreasing
relationship of burned area with RD, our analysis highlights that this
physical fragment constraint remains largely limited to dampening
larger fires (Fig. S4). Broadly, our results mirror what is known only
anecdotally, while providing explanatory quantification and future
projection potential for such relationships at global scale. This allows:
(1) Identifying how and which edge effects may increase fire behaviour
in specific locations/biomes, facilitating remediating action; (2)
Dynamic forecasting of how projected changes in fragmentation/RD
may impact fire behaviour in the future; (3) A first step towards policy
assessment of fire risk and social welfare when considering
fragmentation-relevant policy directives. The methodology applied
here also provides a route for large-scale modelling of other frag-
mentation or linear-feature effects in earth, ecological30,34,57,116 and
epidemiological sciences107,117.

Climate warming, population density, and LUC-driven fragmen-
tation will increase in the future, with socioeconomic effects of the
greatest magnitude forecast in the tropics118. Fragmentation largely
increases tropical fire activity, meaning it may become a major driver
of burned area there in the future. This suggests fragmentation could
eventually ‘tip’ towards a global net-positive burned area phenomenon
with future tropical forest degradation and fire activity, in a potential
feedback loop. Ultimately, fragmentation-suppression of wildfire
could still cause extreme fires as a direct result119. This may place a
greater burden on countries in these regions to balance economic
policy with the environmental and welfare consequences of fire risk
those policies may entail. With a higher degree of spatial, process, and
variable resolution, future iterations of this model format may be
useful for assessing the potential fire risks underlying such policy,
particularly in ecosystemsvulnerable tofire activity and shorteningfire
regimes.

Methods
Model description
ORCHIDEE-MICT-SPITFIRE integrates dynamic vegetation/fuel with
climate, ignitions, and fire physics73,120,121 and is a participant in the
Global Fire Model Intercomparison Project (FireMIP122–124). ORCHIDEE-
MICT is a global-scale, grid-resolutionmodel generally employed at 0.5
to 2 degrees, with boreal and permafrost-specific adaptations for high
latitude biomes that affect soil, vegetation, hydrological, and thermal
processes specific to those latitudes. These process representations
areparticularly important in the context of this study for themodelling
of future fire-vegetation-hydrological interactions. The model is car-
bon based, in that it ultimately denominates earth system dynamics
through their impacts on the C cycle, by which energy, soil, water, and
climate drive fluxes of C through the system via vegetation and
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associatedbiological and ecological processes. Thus, photosyntheticC
is fixed by 11 plant functional types (PFTs), doing so differentially as
each PFT is subject to specific primary production, senescence, and C
dynamics. The spatial distinction between PFTs can either be forced
through an input vegetation map, defining the fractions of each grid
cell covered by each PFT, or through the dynamic global vegetation
model in ORCHIDEE, which predicts PFT type and allocation according
to the biophysical suitability of each PFT to primarily climatic input
variables. FixedC is then allocated to foliage, fruit, roots, above/below-
ground sapwood, heartwood, and C reserves, that upon death or
senescence are shunted to two reactivity-differentiated litter pools.
ORCHIDEE-MICT is hard-coded with an adaptation of the SPITFIRE fire
module63,73,125,126, which divides the aboveground vegetation compo-
nents described above and apportions them to potential fuel type
categories differentiated by their potential time to oxidation. Fire
ignitions are controlled by a positive linear function of lightning flash
density and are an increasing then decreasing function of human
population density, with maximum human ignitions occurring at 20
individuals per square kilometre and declining thereafter. Vegetation
flammability is determined by fuel and climatic conditions (Nesterov
Index and Fire Danger Index). The area burned in an individual fire
event is determined by the rate of fire spread and fire duration, as
influenced by vegetation flammability. Fire CO2 emissions depend on
vegetation biomass, fire intensity and duration. See Supplement for
further model description of ORCHIDEE-SPITFIRE.

Fragmentation representation
Global-scale representation of fragmentation-fire interactions must
first overcome three problems. First, fragments occupy awide range of
morphologies that cannot be represented explicitly at the sub-grid
scales required by existing model resolutions. Second, although the
lack of an extant fragmentation metric might be overcome through a
proxy, this proxymustbe continuous andoperable at sub-grid scale (SI
Text S11). Third, the edge-interior characterisation of fragments
requires that gradients of properties related to fire susceptibility exist
between these two states, raising the problem of how to represent
such gradients given patch shape-size heterogeneity, for which pre-
dictive relationships with fire specifically do not exist.

Here, these are resolved through the use of roads as a fragmen-
tation proxy and the simplification of fragments to a single ‘aver-
age’ shape and size in a grid cell, given that the grid cell’s RD is such
that all patches in a grid can be reduced to an average ‘disk’ size. This
enables conversion of empirical data on fragment ‘edge effects’ -a
transect from fragment length to fragment interior whose length is
definedby a gradient in the stateof a variable (e.g., soil temperature) -as
a function of the patch radius.

In the literature on fragment edge effects, these effects are typi-
cally studied and reported in transects along a gradient of distance
from fragment edge to interior. Fragments can be of any shape or size,
meaning that at grid-scale, such sub-grid edge effects due to shape
heterogeneity are extremely difficult to resolve or represent. Because
global gridded RD data used here gives us the RL per grid, ourmethod
which uses this to calculate the average patch size based on an
assumed circular patch shape, and hence ‘Average Edge Distance’
(radius), provides an elegant solution to representing these empirical
edge effects: Any distance from the ‘edge’ (circle perimeter) to the
interior (anywhere along the radius) can be calculated for all patches
and applied to all fragmentation affected variables, thereby integrating
the observed edge effects in a consistent and universal way at
grid scale.

The average edge distance (AED) per grid (AEDG) given per-grid
RL sum (RLG) was solved analytically and is given by the following:

AEDG = ð2 � AreaG � f ðContÞÞ=
X

ðRLGÞ
� ð1Þ

WhereAreaG is the grid area inm2, and f (Cont) the fraction of eachgrid
cell area taken up by the continental landmass. The gridded RL dataset
inMeijer et al. (2018) gives a global RL estimate that is about 50% lower
than that estimated by theWorld Road Statistics database (~30million
km), and ~300% lower than the estimate provided by the CIA World
Factbook. Furthermore, a recent report127 showed that the Global
Roads Inventory Project (GRIP) database consistently and strongly
under-predicted the existence of small roads, leading to large low
biases against manually observed road data in the report’s two case
study sites in theCongo andCanada. Theprimary reasonhypothesised
for these mismatches, which are acknowledged in ref. 56 paper, is the
under-representation of unofficial and unpaved roads in their source
database. GRIP was shown to under-represent total manually mea-
sured RL in a grid cell by a factor of over 8 in one area (Fig. 19 of
ref. 127). For this reason, in Eq. 1, which generates the AEDmap used as
input to ORCHIDEE, wemake the assumption that the gridded RL data
underrepresent actual RL by a factor of 2, which implies a total global
RL roughly in between theWRS andCIAestimates. Further, as river and
stream length as well as large topographic discontinuities can
reasonably be expected to act as fire breaks in most circumstances,
and given that these are excluded from the input data, we take these to
be potentially integrated into the factorial AED map. We acknowledge
thatmultiplying RL uniformly by a single factormasks the likely spatial
distribution of bias inherent to the GRIP database; however, given that
the source bias has not been assessed or quantified, we retain this
spatial uniformity assumption for simplicity in this study.

In order to modulate the effects of fire by fragmentation, ORCH-
IDEE must first be fed a gridded input map containing the AED data.
This is derived from56, which gives global gridded RL inm km−2 at 5 arc-
minute (~8 km) resolution for a single timeperiod (~2017), downloaded
from (https://zenodo.org/record/6420961, accessed 20/11/2022),
converted to netcdf format and regridded to this study’s simulation
resolution of 0.5° (~50 km) using the conservative interpolation func-
tion in the Climate Data Operator (CDO) package128. The raw data were
provided in five classes of road type: highway, primary, secondary,
tertiary, and local. Although we can reasonably expect each of these
road classes to represent different scales of fragmentation, each con-
ferring differential effects in their relation with fire phenomena, the
paucity of empirical data on what these might be, coupled with the
range of impacts that may, as mentioned be contradictory, mean that
for the moment we take all road classes to be equal in effect, and as
such sum them to a single RL density variable. Eq. 1 is then applied to
the dataset to generate a global gridded map of the average circular
patch radius associated with each grid cell (AEDG).

Next, we assume that spatially extensivefires do not occur on land
that can be considered ‘urban’. This assumption is made on the basis
that urban areas are characterised by very low fuel densities (com-
pared to, say, a pine forest), large areas of concrete, asphalt and steel,
which do not burn easily, and high population densities that strongly
increase the probability of successful human fire suppression. Because
RD in urban areas is very high, this assumption should also require that
the urban proportion of RD in each grid cell is removed from the
original RL data, and a corresponding AED map generated. To do so,
we download the output data from [ref. 55] which gives the urban area
fraction (UAF) of grid cells at global 0.125° resolution, and projects this
variable globally to 2100 under the Shared Socioeconomic Pathways
(SSP) scenario suite: (https://dataverse.harvard.edu/dataverse/
geospatial_human_dimensions_data, accessed January 12, 2023). We
then plotted a simple linear regression between the 2018 UAF data and
theoriginal RL, giving a relationship between the fraction of urbanarea
in a grid cell and the RD of that grid cell (RL = ((2.68∗104)∗UAF) +292;
R2 = 0.43),where 2.68∗104 = is the regression coefficient (αUAF, Table 1).

The RL data were split into categories of urban fraction, whereby
each grid cell was allocated to one of twelve UAF bins, corresponding
to [0–1, 1–5, 5–10, 10–20, 20–30…90–100 percent] and the equation
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was used to estimate the implied RD at the numericalmidpoint of each
bin. Thus, on the basis of the RL/UAF regression, a RL per unit UAFwas
allocated to each of the UAF-based classes, multiplied by the actual
UAF of each grid cell given its UAF, and the resulting ‘excess’ RL sub-
tracted from the original RL data, to give an ‘effective’ RD and AED
value. The resulting AED ‘fragmentation’map can be compared to the
original, and shows that in removing the impact of urban area roads on
the representation of fragmentation, the world’s most fragmented
landscapes are no longer found in north-west Europe but in the north-
eastern United States and, e.g., Bangladesh. This is likely indicative of
extensive non-urban infrastructural sprawl in the former, and a
symptom of uniformly high population density and low to medium
intensity and highly extensive agricultural land use in the latter,
meaning that roads criss-cross large parts of the country (see Fig. 1a).
We chose to use UAF bins and calculate the RD at their midpoint
instead of direct application of the regression equation because the
latter's scatter is substantial, with binningmore closely approximating
the statistical value envelope.

Description of fire-fragmentation dynamics
Fire size. In ORCHIDEE, total burned area per timestep is given by the
product of average individual fire size in a given grid cell, and fire
number. Because it has been shown in an anecdotal number of
studies38 that for forests, fragmentation leads to decreases in fire size,
and at the same time, ref. 59 showed that the single strongest negative
determinant of burned area at global scale is RD, we first approach
fragmentation representation by decreasing the potential size of an
individual fire as fragmentation increases. This is done first by
assuming that the maximum individual fire size is a multiple (nPat) of a
grid cel’'s AED-determined mean patch area. This is because frag-
mentation may delimit the boundaries of fire spread in many circum-
stances, the circular AED-derived patch area is itself only an average,
and large variations in patch size will be the reality, with some patches
much larger than others. In addition, it lends a lower degree of
restriction of fragmentation on fire size, allowing for the real-world
possibility that fires can spread beyond the borders of the original
vegetated patch. nPat allows for future refinement of model repre-
sentation when empirical relations between sub-grid-scale fragment
size distribution and propensity for spread become known. In the
absence of such data, we set nPat f orestð Þ =1 and nPat ðgrassÞ =1.25
(Table 1). We reason this because the observed individual fire size
distribution is highly skewed towards smallfireswhen compared to the
fragment sizes defined by AED (see Fig. 2d), and because statistical
treatment of observations suggests road fragmentation is a strong
determinant of lower aggregate burned area59. Without any empirical
data to work with, we assume that maximum fire size is limited to the
fragment size unless the conditions for extreme fire aremet. Thus, the
relation between fragment size and maximum fire size is equal to, or
given amultiplier value of, 1.0.We slightly increased grassland fire size
limitation by AED by 25% above above this value (1.25) due to the
relative easefine fuels in grasslands tomore easily ignite andbe carried
over road barriers by wind (see SI Text S5 on Assumptions).

Fire spread thresholds. To introduce added realism and further
reduce the restrictiveness of the fragmentation representation, the
AED-denominated limit on individual fire size is only applied when
separate conditions are met for forests and grasslands. For forests, if
the simulated fire intensity and flame height exceed canopy base
height, which is the pre-existing condition for canopy scorch in the
original version of SPITFIRE63, and the condition for crown fire spread
in an upcoming version (Bowring et al., in prep.) then no size limitation
is imposed:

FSTTREE = True:IF: : SH>ðHTREE � ðHTREE � CLTREEÞÞ ð2Þ

Where FSTTREE is the fire spread threshold (Table 1), SH is themeanfire
scorch height, HTREE the mean tree height, CLTREE the mean crown
length. This is done to account for the possibility that high-intensity
forest fires can’t ‘jump’ over roads through crown spread, particularly
if meteorological conditions for doing so are favourable. When this
condition is met, fire spread and fire size are calculated as in the
original SPITFIRE formulation. Second, over grasslands, ref. 72 found
that a critical threshold limiting fire spread (FSTGRASS), and hence fire
patch size, exists in grasslands, which results from grassland fuel
connectivity as given by area-specific fuel mass (tons Ha−1). They
showed that if this 2.4 tons Ha−1 grass wet mass threshold is reached,
even fuel at 100% moisture was able to burn. Thus, individual fire size
limitation due to fragmentation on ORCHIDEE grasslands applies only
to instances where the simulated grass fuel mass is below this biomass
threshold, and are otherwise allowed to spread freely, as in the original
SPITFIRE formulation:

fGrassWW = ΣðF1hr + F10hr + F100hr + F1000hr + FLiveÞ � ð1=0:45Þ ð3Þ

FSTGRASS = True � IF � fGrassWW>2:5tHa
�1 ð4Þ

Where fGrassWW is the summed weight of grass and grass fuel, Fnhr
refers to the different ‘hour’ fuel classes inORCHIDEE, FLive is live grass
and (1/0.45) is the conversion of dry biomass to wet weight. Note that
this ensures that the fragmentation model is able to account for the
likely increases in extreme fire weather projected by future scenarios
of climatic change. In a hot and dry season, a combination of fuel
availability, low fuel moisture and high heat will enable an ignited fire
to reach fire-high reaction intensities, allowing high fuel consumption
and flame heights to exceed those of the canopy and permit crownfire
spread between forested patches. Likewise, fuel-limited grassland fires
will, in dry seasons preceded by high pre-fire-season grass growth
rates, spread when the medium of connectivity (fuel) is sufficient.
Conversely, if there is insufficient fuel (i.e., prolonged drought), fire
will not be able to spread between patches. Please see SI text S5 for
further discussion of these parameterisations and their assumptions.

Human ignitions. Because the characterisation of fragmentation
applied here is definitionally anthropogenic, it follows logically that an
increment increase in RL in a given area exposes that length to human
contact. Human contact, in turn, increases the risk of human ignitions,
either through intentional (e.g., arson) or unintentional action (e.g.,
discarded cigarette butts, machinery, power lines, sunlit beer bottles,
etc). In ORCHIDEE, human ignitions are controlled as a non-linear
increasing then decreasing function of human population density
(Fig. S3b), to reflect the fact that ignitions are more probable, and
suppression less likely, when population density is low but not extre-
mely sparse, such that the number of human ignitions (IGH , Ha

−1 d−1) is
given by:

IGH =PopD � kðPopDÞ � aðNdÞ=10000 ð5Þ

kðPopDÞ=30 � e�0:5�pðPopDÞ ð6Þ

Where PopD is population density and aðNdÞ an observationally-
estimated parameter representing ignitions per person per day, set at
0.0163,73.

Here, we assume that an increase in fragmentation causes an
increase in the probability of ignitions in direct proportion to the ratio
of edge area: patch area, assuming conservatively that the human
interaction with an edge can be characterised by a 1m edge depth
(EDHumig., i.e. a 1m increment into the radius of the assumed circle).
This 1m edge depth assumption is equivalent to the depth from the
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patch edge (i.e., road) which is potentially subject to increased fire
ignitions due to human contact (potentially resulting in fires through
arson, cigarettes, machinery, etc). The 1 m edge is assumed and low
because although human effects on ignition may occur deeper into a
patch, the time-averaged edge depth that they do so along the length
of fragment edges is likely small, so we hold this parameter at unity.

This transforms the perimeter from a length to an area, allowing
us to probabilistically modulate the ignition function directly by the
area represented by the total fragmentation edge area present in the
grid. We then adjust the human fire ignition function (IGH) in
SPITFIRE73 by the product of the number of patches thatfit into a grid's
area (AreaG) and the cumulative fractional grid area of the ignition
surface asdefinedby the assumed 1m ignition edgedepth to arrive at a
fragmentation-affected ignition function (IGHFrag), as illustrated in
Fig. S1b:

IGHFrag = IGH + ðððAreaG=ðπ � AED2ÞÞ � ðð2π � AED � 1Þ=AreaGÞ=10,000Þ
ð7Þ

Thus, an AED of 20m yields a potentially increased ignition
surface amounting to ~10% of a grid cell’s area. This probability is
scaled to the ignitions person−1km−2d−1 as a constant (/10,000), and
results in significantly increased ignitions at low and high population
density when fragmentation is high, which decreases exponentially
as fragmentation decreases (AED increases). This is clearest at high
population densities, where the suppression effect of high popula-
tion is counteracted by fragmentation (Fig. S1b). Please see SI Text S5
for further elaboration on the assumptions inherent to this
parameterisation.

Fuel wetness. Landscape fragmentation studies across many forested
biomes have found that soil temperature and moisture were sig-
nificantly higher and lower, respectively, at forest patch edge than in
the patch interior47–51, with subsequent impacts on fuel moisture and
fire ignition and spread probabilities. After a review of the literature of
edge-to-interior effects on soil moisture, which measure transects of
soil moisture from fragment edges to their interior at different depths
in the soil, we find that the distance from the edge at which the gra-
dient is effectively zero average at ~50m48,108, increasing to hundreds
of metres in deeper soils. For air temperature129, find it is at 20m in
Korean temperate forest130, at 15m in the Swiss Jura mountains131, at
<10m (depending on time-of-day) in a sharp tropical forest fragment
edges, around 50m at Brazilian Amazon transitional edges132, while48

show that it sits at ~5m to 75m in European deciduous forests,
depending on the vegetation density andmean annual temperature of
the fragment concerned. We did not find any data relating litter or
‘fuel’ temperatures to fragment edge-to-interior gradients. We repre-
sent this by simply using the relative areas of patch area and edge area
to define the proportion of a grid cell made subject to edge drying.
Thus,we calculate the ratio of the edge area to patch area (the edge-to-
patch ratio, EPR), and assuming conservatively that the ‘edge-to-
interior’ gradient through which temperature and soil effects are sig-
nificant can be defined as the 20m from the edge inwards (this is the
distance to which edge-interior soil moisture and temperature gra-
dient in the above studies falls to approximately zero). This is then the
area subject to increased drying and higher temperatures owing to
fragmentation:

EPR= ððπ � AED2Þ � ðπ � ðAED� 10Þ2ÞÞ=ðπ � AED2Þ ð8Þ

InORCHIDEE-SPITFIRE, each fuel class in each grid cell is allocated
a simulated fuel moisture content (WetFC). In addition, there is a
moisture threshold for each fuel class above which fuel consumption
by fire no longer occurs (ThreshFC1, 2

), where the subscripts refer to the
1 hr and 10 hr fuel classes subjected to edge drying. The 100hr fuel

class is not affected in this scheme, as we assume that the diameter of
100hr fuel is sufficiently high to preclude edge drying from affecting
its sensitivity to ignition. Here, both the calculated wetness and the
ignition threshold were used to proxy edge fuel drying, and are both
lowered by the product of the fractional edge-to interior moisture
gradient with EPR.

WetFC =WetFC � ðð0:25=2Þ �WetFC � EPRÞ ð9Þ

ThreshFC1, 2
=ThreshFC1, 2

� ðð0:25=2Þ � ThreshFC1, 2
� EPRÞ ð10Þ

Whereby 0.25 is the ~25% fractional soil moisture gradient differ-
ence between edge and interior found across the field studies cited
above. Effect sizes ranged from ~10–40%, with most data-aggregated
transects at 15–30% (see also ref. 133). Since we take the edge depth
(EDMoisture) to be 20m, and assume a linear moisture gradient from
0–20m, half of themaximumgradient is taken as the average decrease
in soil moisture owing to fragmentation over the length of the edge,
and total grid fuel wetness is then affected by the fractional area
occupied by this edge.

Wind speedand rateof spread. Increasing fragmentation results in an
increasing proportion of the landscape subject to a perimeter through
which wind can travel with relatively less interruption. In other words,
there is less of a barrier to wind at the patch edge local surface
roughness is lower, wind speeds are higher, and a larger proportion of
the landscape is subject to these higher winds as fragmentation
increases (e.g., ref. 9). We treat this in ORCHIDEE by reducing the pre-
existing model wind speed reduction factors at atmospheric versus
ground level by an analytically resolved factor derived from the
implicit amount of fragment edge derived from AED. Specifically, we
reduce the pre-existing reduction in windspeed due forest coverage in
ORCHIDEE by the grid-areal proportion given by a parameterised 16m
mean edge depth (EDWIND). We based our parameterisation onDavies‐
Colley et al.134 who showed for forests in New Zealand that differences
in the windspeed gradients between fragment edge and interior
approached zero somewhere between the 10m and 20m mark along
their transect (which include 0m, 5m, 10m, 20m, 40m, 80m mea-
surement loggers with respect to distance from fragment edge). For
the edge depth of wind infiltration, we settled on an ‘in between’ value
of 16m. Effective EDWIND is actually 4m, since at any time in any patch,
we assume the wind can only come from one of four idealised wind
directions so that at the grid-scale average, EDWIND is divided by 4 in
model implementation. We then reduce the fixed forest wind reduc-
tion factor (WRF =0:4) in SPITFIRE proportional to the areal coverage
of the fragment perimeter given by effective EDWIND.

f EDGE =Areapatch=Areaedge ð11Þ

WRF =WRF � EDWIND ð12Þ

Increases in windspeed due to fragmentation in turn affects the
fire ROS in areas that are considered substantially fragmented, leading
in principle to increased burned area within the patch area and (with
the increase in fuel combustibility as a function of dryness and Fire
Danger Index), potentially greater area-specific total combustion, fire
intensity, and C emissions, potentially decoupling burned area from
ECO2 (Fig. 1b). The fragmentation-wind relation was not applied to
grasslands, because, firstly, wind has been shown to not increase
grassland ROS and burned area72, and secondly, because the relative
exposure differential of grass height and ground height compared to
forest areaswas assessed tobeminimal. Please see SI text S5 for further
discussion of these parameterisations and their assumptions.
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Simulation protocol
The resultingmodelwas spunup for40 years to allow for vegetation to
reach a quasi-equilibrium biomass state. This was done by forcing the
modelwith the vegetation, climate and atmospheric CO2 of 1901–1910,
looped over that period of time, then looped again for 40 years over
1990–2000 forcing data, to bring the model to an equilibrium con-
sistent with the near-present day. Principal and ‘control’ simulations
were run over the period 2000–2013. Vegetationwas imposed and not
predicted using ORCHIDEE’s dynamic global vegetation model to
reduce uncertainties associated with its output. Climate forcing data
for all runs came from the CRU-NCEP v8 dataset135, and vegetation
imposed on the model from the ESA-LUH2 suite of projections with 13
plant functional types14.

A number of additional output variables were also implemented
to ease assessment of the effects of fragmentation on fire behaviour.
Thus, a ‘counterfactual’ burned area variable, giving the burned area
that would have been simulated without the fragmentation code, is
written to history along with fragmentation-affected burned area, to
enable tracking of fragmentation's effects. Likewise, differential
burned area between the fire size and human ignitions fragmentation
functions, assuming they are both activated, allows the user to track
the relative burned area if either only the human ignitions or fire
size -fragmentation flags were activated. This could not be done
across all fragmentation-fire adaptations because of a necessarily
large duplication of code and simulation runtime inefficiencies that
would result.

Sensitivity analysis
We created synthetic maps of factor-two levels of homogenous global
AED levels to assess the global change in burned area for each biome
type (tropical, temperate, boreal) resulting from a factor-2 change in
fragmentation level. AED (not RD, which would cause differential AED
because of grid area heterogeneity) was homogenised globally at
2-factor levels [of AEDf2 =39.0625, 78.125, 156.25, 312.5, 625, 1250,
2500, 5000, 10,000, 20,000 metres], permitting analysis of the
biome-scale effects of fragmentation on fire independent of historical
fragmentation trajectory, by calculating the global average change in
burned area for each homogenisedAEDbin and biome. Themodel was
run over a three-year period (2001-2003 inclusive) for each RDf2 leve.
This period was chosen because it incorporates amixture ofmoderate
El Niño and La Niña years, to limit its signal in simulated fire behaviour
to be averaged out in annualised postprocessing. We initially main-
tained the existing global population distribution for the simulated
years to gauge whether population density may cause a change in sign
of sensitivity, and hence warrant further factorial analysis. Sensitivity
was evaluated as the fractional change in burned area (Δf BAF2) per
grid cell due to a two-fold increase in fragmentation (halving of AED):

Δf BAF2 = ððBAAEDF2½1=2�
Þ � ðBAAEDF2½1�

ÞÞ=ðBAAEDF2½1�
Þ
GRID

ð13Þ

Where BAAED1=2
is the burned area at an AED of half the value of

BAAEDF2½1�
. For each of the ten sensitivity simulations, biomes were

assigned to each grid cell by identifying the PFT in each grid that
contributed the maximum amount of simulated fire CO2 emissions
within that grid cell. This was done to identify the actual vegetation
that burned in a grid cell, and hence the fire-relevant vegetation type,
as opposed to using the maximum value between vegetation fractions
of each PFT assigned to a grid cell, given that within a grid, certain
vegetation types may have a fractionally higher propensity to burning
than their areal coverage. At the global scale, the individual PFTs were
then aggregated into tropical, temperate, boreal, C3, and C4 grass-
land/savannah bins. BA in ORCHIDEE-SPITFIRE is not PFT-
disaggregated. However, CO2 emissions from burning are. This gives
a reasonable proxy of what vegetation is burning in a grid cell. Each
grid cell was assigned a PFT identity according to that PFT, which

produced the highest fire CO2 emissions over the course of each
sensitivity simulation; global biome-specific masks were then created
by aggregating boreal tropical and temperate forest types, andΔf BAF2

calculated for biome.

Analysis
RD was recently estimated in a statistical generalised linear modelling
study to be a strong negative predictor for burned area globally59. We
evaluated the statistical relationship between burned area and RD that
emerges from our simulations to compare with the same regression
performed by ref. 59. We transform these two variables by taking the
square root of RD and applying the logit-link function to monthly
burned area. The latter requires reducing a variable (burned area) to a
probabilistic value, which in this casemeans a conversion to fraction of
grid cell area (p). The logit function is then given by:

Logit BAð Þ= Lnðp=1� pÞ ð14Þ

To estimate fragmentation-fire behaviour at biome scale, we
found the maximum PFT-type that burned the most in carbon terms
over the simulation period in each grid cell, by iteratively searching out
themaximum value of time-aggregated CO2 emissions per PFT in each
grid. This was done because burned area in SPITFIRE is not output in
PFT-specific fractions, while CO2 emissions are, and informs us of what
biome fire activity is most prevalent over time in each grid cell, such
that these grid cells are collectively used to characterise global biome
(PFT) -scale fire behaviour. All tropical, temperate and boreal PFTs
were bundled into single biome bins to simplify explanation and ana-
lysis. Fig. 4a was produced by assigning Boolean numeric values to
simulation average changes in burned area and ECO2, then combining
these to assign coupled/decoupled direction-of-change.

Data
UAF was obtained from ref. 54. Fire size data used in Fig. S4 is sourced
from FRYv2.0136, updated from FRYv1.0137 with single ignition point
polygons delineation from re. 138, based onpixel informationMCD64A1
and FireCCI51, as recently used in ref. 139. Long-term burned area data
for South-east Asia from97,98 was obtained from https://climate.esa.int/
es/odp/#/project/fire (accessed 05/06/2023), while deforestation and
pre-and post 2000 average tree plantation grid data were obtained
from refs. 99,100. Fragmentation and fire data for Brazil in Fig. 3a were
provided by ref. 95 and upscaled using CDO’s conservative remapping
function from 10 km to 0.5 degree grid resolution. All other datasets
above were interpolated bilinearly in CDO to 0.5 degree resolution.
Postprocessing was performed using NCL, Panoply, CDO and R, with R
maps created including the following packages: ncdf4, ggplot2, raster,
maptools, rgdal, rgeos, maps, ggpubr, sp, geosphere, rColorBrewer,
ggmap, lattice, dplyr, tidyr, plyr.

Figure generation
Figure 2c: Here, we briefly explain how we isolated grid cells where
fragmentation explicitly decreased fire size in simulations: In SPITFIRE
model code, we created diagnostic variables to analyse the effect of
the fragmentation representation on BA. In the case of individual fire
size restriction due to fragmentation (blue and red datapoints in
Fig. 2c), we created a ‘dummy variable’ -a version and value of a given
variable that is not what is finally output, but is temporarily saved to
allow for the calculation of another variable. This dummy variable
calculated daily burned area without fragmentation-limiting effects on
fire size. This required running most of the SPITFIRE model code and
saving this ‘dummy’ fire size value, and then looping the same code to
include the fire limiting fragmentation effects on BA, giving ‘actual’ fire
size values. Where actual < dummy fire size, the fire size limitation of
fragmentation as represented here has actually had a constraining
impact onfire size, and the difference is saved, as are the locations.The
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values in the red and blue scatters of Fig. 2c are thus those areas where
fire size is on average constrained by the patch size, but includes the
aggregate impact of fragmentation on BA (it can still cause either
increase or decreases in BA).

Figure 4b: Fig. 4b shows the inverse of the average effect of frag-
mentationonfireoutcomes, across a suite of sensitivity experiments in
which fragmentation is varied at fixed levels equally and globally. We
say ‘inverse’ because on the average, across these levels of fragmen-
tation in conjunction with contemporary human population density
levels and vegetation distributions, the impact of increasing frag-
mentation on fire is negative (a decrease in BA), almost everywhere in
the world. However, in the jump from one level of fragmentation to
another, depending on the fragmentation level, certain biomes and
grid cells will show an increase in fire activity. We average across this
suite of nine simulations to indicate that: where fragmentation caused
the smallest decrease in BA (hence the inverted scale) is therefore also
where fragmentation is likely to cause the greatest increase in suscept-
ibility to fire. By contrast, areas where decreases in BA due to frag-
mentation were, on average, very high are places that have the lowest
susceptibility to increased fire due to fragmentation. The scale on this
diagram is derived from a continuous fractional change in burned area
scale averaged over results of our sensitivity runs, but we have
removed the values and made the result qualitative to facilitate
representation and interpretation of the locations rather than the
precise quantities whereby fire susceptibility to fragmentation may be
highest. This was done to reflect how some areas and biomes aremore
or less fire-buffered by fragmentation than others, across a broad suite
of possible fragmentation levels.

Figures S7 and S10: To generate the burned area anomaly and
model-data agreement Figure for this portion of Southeast Asia, we
used a (highly uncertain) long-term burned area dataset, and data that
gives the onset (timing) of plantations and other concessions.We then
overlaid grid cells in the regionwhere the fraction of these concessions
had increased with grid cells in which observed burned area had
increased (the shading in the Figure refers to burned area anomaly
magnitude). We compared these grid cells to those in which modelled
burned area increases due to fragmentation, to see if there was a
correlation between locations. Generally, this correlation was high
(‘simulation-observation agreement’), although observed positive BA
anomalies occurred in more grid cells than that predicted by the
model. This model/data disagreement (dark blue in the figure)
occurred mostly in areas of Borneo/Kalimantan underlain pre-
dominantly by peat. As peat is not represented in this version of
ORCHIDEE, we are not able to represent the increases in fire activity
that have been widely linked to peat burning as a result of conces-
sionary clear-cutting. Although simple, this exercise nonetheless pro-
vides strong suggestive support for the idea that (a) fragmentation and
RD are directly correlated; (b) fragmentation is a strong driver of fire
activity in tropical biomes. The same approach was used to build
Figure S10.

Data availability
The, SPITFIRE module code with fragmentation-fire related additions
in bold, scripts for figure reconstruction, as well as post-processing
scripts, are available online through the Zenodo digital repository
(https://zenodo.org/records/13809911), which is managed by the Eur-
opean Organisation For Nuclear Research (CERN) and OpenAIRE.
Owing to file size limitations, we are unable to deposit primary data
(model output) online. These are archived on the Obelix cluster and
the repository managed by LSCE/IPSL/CNRS, which can be made
available upon request by contacting the corresponding author.

Code availability
The source code for this version of ORCHIDEE-MICT is available via
https://forge.ipsl.fr/orchidee/wiki/GroupActivities/CodeAvalaibility

Publication/ORCHIDEE_FireFrag which has the following DOI provided
by IPSL and is provided open access under the CeCILL license https://
doi.org/10.14768/277bd478-f12d-4b91-a7f3-9cd732dff5ef). Please follow
the online instructions for accessing the code. We suggest that inter-
ested parties contact the corresponding author for the latest code
versions containing bug fixes, improvements, or cleaner code. This
software is governed by a CeCILL licence under French law and abides
by the rules of the distribution of free software. You can use, modify
and/or redistribute the software under the terms of the CeCILL licence
as circulated byCEA, CNRS, and INRIA at the followingURL: http://www.
cecill.info (last accessed 29 August 2024).
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