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The pitfalls of proteomics experiments without the
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The elucidation of the entire genomic sequence of various organisms, from viruses to complex
metazoans, most recently man, is undoubtedly the greatest triumph of molecular biology since the
discovery of the DNA double helix. Over the past two decades, the focus of molecular biology has
gradually moved from genomes to proteomes, the intention being to discover the functions of the
genes themselves. The postgenomic era stimulated the development of new techniques (e.g. 2-DE
and MS) and bioinformatics tools to identify the functions, reactions, interactions and location of
the gene products in tissues and/or cells of living organisms. Both 2-DE and MS have been very
successfully employed to identify proteins involved in biological phenomena (e.g. immunity, can-
cer, host–parasite interactions, etc.), although recently, several papers have emphasised the pitfalls
of 2-DE experiments, especially in relation to experimental design, poor statistical treatment and
the high rate of ‘false positive’ results with regard to protein identification. In the light of these
perceived problems, we review the advantages and misuses of bioinformatics tools – from realisa-
tion of 2-DE gels to the identification of candidate protein spots – and suggest some useful avenues
to improve the quality of 2-DE experiments. In addition, we present key steps which, in our view,
need to be to taken into consideration during such analyses. Lastly, we present novel biological
entities named ‘interactomes’, and the bioinformatics tools developed to analyse the large protein–
protein interaction networks they form, along with several new perspectives of the field.
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1 Introduction

Determination of the complete genome sequence of an
organism has captured the imagination of researchers be-
cause the information so gained is expected to reveal, rea-

sonably or unreasonably, the ‘key of life’, and in an applied
sense the understanding of functional genomics may of
course have considerable value, for example, in research on
human diseases. The term ‘genomics’ was originally used in
1920 by Winkler to describe the complete set of chromo-
somes and their associated genes [1]. Three periods can be
distinguished with regard to the collective understanding of
the DNA molecule and its functionality, which may be
loosely termed ‘pregenomic’, ‘genomic’ and ‘postgenomic’.
Aside from primates and insect disease vectors such as
mosquitoes, organisms that are now the focus of national or
international genomic sequencing efforts include microbes,
plants, herbivorous insects (e.g. aphids), nematodes, amphi-
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bians and fishes (see http://www.tigr.org/; http://www.
ebl.ac.uk/genomes/; http://www.hgsc.bcm.tmc.edu/projects/
aphid/) [2, 3]. Since the beginning of the postgenomic era,
the focus of molecular biology gradually moved from genes
and genomes to proteins and proteomes and their function-
ality. Now that several complete genome sequences have
been determined, the biggest task in the postgenomic era
will be to identify the functions, reactions, interactions and
the location of the gene products in tissues and/or the cells of
living organisms.

Bioinformatics is an essential part of proteomics re-
search and requires special practical as well as analytical
skills for the correct interpretation of results [4–8]. Since the
1990s and following the large scale, worldwide study of pro-
teins in living cells and concomitant attempts to understand
the function and regulation of genes, proteomics has become
a huge scientific field. Recently, several papers have empha-
sised the pitfalls of proteomics studies, more especially in
relation to 2-DE experimental design, the misuse of statis-
tical tools available with 2-DE softwares, the high rate of
‘false positives’ for protein identification, and the dangers of
cross-species protein misidentification, i.e. apparent homol-
ogies [8–14]. Thus, in an attempt to clarify the present state
of this area and its associated technologies and problems, we
review several bioinformatics tools especially developed for
2-DE experiments, from the analysis of 2-DE gels per se to
protein identification. We summarise the advantages and the
misuses of bioinformatics tools. We also discuss the robust-
ness of traditional experimental designs in 2-DE studies,
along with present statistical approaches to aid researchers
in finding and identifying protein spots which show signifi-
cant differential expression linked to biological phenomena.
Lastly, we present novel biological entities which have
emerged from the postgenomic era, namely the ‘inter-
actomes’, i.e. protein–protein interactions within cells and
tissues, and the bioinformatics tools developed to analyse the
large interaction networks they form, along with several new
perspectives of the field.

2 Bioinformatics tools developed for
analysis of 2-DE

2.1 Brief history on the creation and use of computer

softwares

O’Farrell [15] was the first to develop 2-DE in the mid-1970s
to separate complex mixtures of proteins. Since the develop-
ment of this technique, numerous studies have been per-
formed to enable the extraction of the proteins of any organ-
ism, whilst in addition, other studies have attempted to
improve the IEF (i.e. using IPG strips) and the basic staining
methods involved (e.g. Coomassie Blue (CB) and silver ni-
trate (SN) staining) and to develop new ones such as SYPRO
Ruby and Lysine tagging (DIGE) [16–22]. During the period
encompassing the mid-1970s to the end of the 1990s, 2-DE

was used, for example, to construct proteome maps for many
species [23], to study the expression of the proteome during
the biological development of an organism [24, 25], to reveal
the proteome response of an organism to different kinds of
treatments or stress [26], and to compare proteome maps
between a range of species and/or between populations of
the same species [27–34]. By the close of the century, 2-DE
databases were created on the Internet for researchers inter-
ested in observing the proteome maps of a particular organ-
ism at the tissue level and for specific conditions of extrac-
tion and separation of proteins (see www.expasy.ch/ch2d/
2dindex.html).

Initially during 2-DE studies, protein spot analysis was
performed manually and qualitatively, and without the aid of
dedicated computer softwares. The presence or absence of
spots was converted into a binary matrix so that clustering
and correspondence analyses could be performed [35, 36].
Furthermore, the qualitative analysis performed was tradi-
tionally summarised in a table giving the number of com-
mon protein spots between treatments as well as the specific
ones per treatment. Because 2-DE is an imperfect technique
– due to the distortion of protein patterns caused by poly-
merisation and running procedure of gels [37, 38] – the need
soon became apparent to develop suitable computer soft-
wares to both align and compare gels. The first softwares
were designed on the basis of those used by astronomers for
nocturnal mapping of stars, one such software being named
‘Tycho’ in honour of the famous astronomer Tycho Brahe
(1546–1601) [39]. At the end of the 20th century, other pio-
neering softwares like Kepler from Large Scale Biology Cor-
poration (Rockville, USA) and MELANIE from the Swiss
Institute of Bioinformatics were developed [40]. Over the past
decade, an important number of commercial softwares in-
volving more powerful algorithms and statistical tools than
the previous generations of such programs were designed to
help researchers deal with the sheer quantity of data pro-
duced. Table 1 summarises the commercial softwares pres-
ently available and homemade systems for proteomics
researchers [41–46]. A series of articles published elsewhere
[8, 46–51] compare and contrast the softwares developed for
2-DE analyses.

2.2 Advantages of softwares

Since 2-DE is a powerful separation technique allowing
simultaneous resolution of thousands of proteins contained
in the proteome of an organism [38, 52], all the associated
2-DE softwares are required to ensure fast and reliable gel
comparison [8, 45, 46]. As such, these softwares are now
capable of multiple gel analysis, including filtering of 2-DE
images, automatic spot detection, normalisation of the vol-
ume of each protein spot, and differential and statistical
analysis [8, 45, 46].

Such softwares are proving helpful as bioinformatics
tools which allow the differential expression of a given pro-
teome (cell, tissue or fluid of an organism) between different
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treatments and/or between populations, the aim usually
being to find and characterise proteins linked to particular
biological phenomena. They thus permit alignment and
comparison of 2-DE gels in experiments designed to detect
the qualitative and/or quantitative difference between repli-
cates of the same group of samples and between different
classes of gels. In 2-DE software outputs, a group represents
the same protein spot as displayed in several gel runs, whilst
a class of gels represents a number of gels having a common
biological meaning or characteristic(s).

2.3 Misuses of softwares

There are various criteria which proteomics researchers
need to take into consideration when preparing a 2-DE
experiment. These include: (i) the choice of the biological
compartment (cell/tissue/fluid); (ii) the method of extrac-
tion of proteins; (iii) parameters for the separation of the
protein; and (iv), staining methods. Traditionally, colloidal
Coomassie blue (CCB) was the most widely used dye;
however, it is less sensitive than SN for protein detection
(for a review, see [18]).

The choice of the staining method is an important step in
any 2-DE experiment [18, 22]. For instance, SN displays
excellent sensitivity as a stain and reveals a greater and often
more important number of protein spots on a 2-DE gel than
CCB for the same amount of soluble protein of an organism
used. Consequently, many researchers have used SN stain-
ing in 2-DE experiments as their method of choice to reveal
the maximum number of protein spots. However, some
studies have reported that the advantage of using SN for
higher detection sensitivity compared with CCB is counter-
balanced by inferior sequence coverage with MS; thus abun-
dant proteins can be expected to yield roughly 11–34%
sequence coverage with SN dye, whilst CCB will typically
achieve values of 30–67% [8, 53]. Which ever stain is used,
2-DE softwares are thereafter employed to analyse the differ-
ential expression between groups and classes of gels. In the
case of SN staining, such softwares can be inappropriately
used since the linear dynamic range of SN is very weak [18,
22] and indeed, this stain is only truly suitable for the quali-
tative analysis of results [8, 22]. In addition, use of SN stain-
ing in 2-DE experiments may result in a copious number of
‘false negatives’ for the candidate spots if the quantitative
analysis tools provided with the 2-DE softwares are used.
Because of this, for any given 2-DE experiment, the implica-
tions of choice concerning the staining method need to be
assessed before any differential analysis with 2-DE softwares
is performed. For example, for quantitative analysis many
recent fluorescent staining methods have a robust linear dy-
namic range and are designed to detect the quantitative dif-
ferential expression between spots in a 2-DE experiment [18,
22]. As such, the detection of protein with abundances as low
as 300 copies per cell has been reported [54]. Fluorescent
staining methods can be divided into two groups: covalently
bound (e.g. Alexa-dyes™ and CyDyes™) and noncovalently

bound (e.g. SYPRO Ruby™ and Deep Purple™). Both groups
of fluorescent dyes are linear over at least three orders of
magnitude with sensitivity as good as with silver staining
[55–57]. Because of this, the use of fluorescent dyes has
drastically increased the sensitivity and reproducibility of
protein quantification in 2-DE experiments (for more details,
see [8, 18, 22]).

Whilst softwares for 2-DE provide for automatic detec-
tion of protein spots, normalisation of the volume of each
protein spot detected, and differential analysis of protein
spots between treatments, some studies reveal that manual
intervention is necessary to correct the step of detection of
protein spots (i.e. deletion of false protein spots and correc-
tion of the shape of protein spots) as well as the pairing step
of protein spots within a same class (category) of gels and
between different classes (categories) of gels [8]. Such inter-
vention is thus essential to prevent a number of false posi-
tives for the candidate protein spots.

As an example of this, in one of our recent studies we
exposed a hairworm species, Paragordius tricuspidatus
(Dufour) (Nematomorpha, Chordodidae), to four treatments
(control plus three biological treatments) [58]. The gels were
stained with SN. We then compared the number of protein
spots obtained for each category following an automatic
analysis (Image Master 2D Platinum Software Version 5.0)
with those detected using a semiautomatic analysis (i.e.
manual intervention to verify the steps of detection of pro-
tein spots and of pairing of protein spots between treat-
ments). Table 2 reveals there to be a significant difference in
the total number of protein spots (specific 1 common pro-
tein spots) observed between the two types of analyses

Table 2. Number of protein spots detected by automatic and
semiautomatic analyses

Pattern of
protein
spots

Treatment where
protein spots occurred

Number of protein spots

Control Treatments Automatic
analysis

Semiautomatic
analysis

1 2 3

Common X X X X 170 358

Specific X X X 1 10
X 65 14

X X 30 21
X X 22 6

X 169 24
X X X 30 5

X X 20 10
X X 43 7

X 181 18
X X X 92 36

X X 12 3
X X 48 14

X 140 17
X X X 48 10

Total of gel (common 1 specific) 1071 553
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(w2
14 = 873.49, p ,0.0001). As suggested by other authors,

manual intervention is still necessary for the differential
analysis using these softwares [8, 45, 59–62].

Astonishingly, 2-DE commercial softwares offer the Stu-
dent’s t-test (i.e. a univariate statistical test) as an approach to
detect significant alteration in protein expression in data
obtained between two treatments (i.e. it is used to determine
whether there is a significant difference between the average
volumes of the same protein spot made under two different
conditions (i.e. control and treatment) [63, 64]). Both meas-
urements are made on each unit in a sample, and the test is
based on the paired differences between these two average
volumes. The null hypothesis is that there is no difference
between the mean (m) values (i.e. H0: m1 = m2), and with the
null hypothesis being tested against the alternative hypothe-
sis (i.e. H1: m1 ? m2).

When using this test, two major assumptions are that the
dataset for each treatment follows a normal distribution and
that there are more than three replicates per treatment. Test-
ing of normal distribution of 2-DE data has only been men-
tioned in a handful of proteomics papers. As a matter of fact,
two types of distributions need to be evaluated: the distribu-
tions of spot volumes of individual spots across replicate gels
as well as the distribution of the relative spot volume var-
iances in the replicate gels [8]. Recently, the normality of 2-
DE data produced by DIGE and the DeCyder™ software
package was evaluated [13]. It was found that: (i) approxima-
tively 95% of spot volume distribution was normal; (ii) var-
iance distribution was non-normal; (iii) log-transformation
of data generally used for DIGE data leads to inflated var-
iance at low signal levels; and (iv), arsinh transformation of
data is better to normalise DIGE data [13]. Since DIGE data
exhibit similar characteristics to microarray datasets, some
statistical methods (i.e. normalisation of data and adjusting
of the p-values) developed for microarray analysis were
adapted for the DIGE [65].

Because the bioinformatics analysis is traditionally time
consuming in 2-DE experiments, only a few replicates (i.e. 3
to �7) tend to be made. As a consequence, the individual
variability of protein spots accounted for in this statistical
test is poorly estimated with so few replications. For any
researcher interested in using the Student’s t-test available
on 2-DE softwares, we suggest a minimum of five replicates
per treatment [8, 63, 66] and the following steps: (i) testing
the normal distribution of protein spot volumes of individ-
ual spots across replicate gels of an identical treatment
using the Shapiro–Wilk’s test [67]; (ii) in the case of data
showing a non-normal distribution, use of an arsinh trans-
formation of the ‘difference gel electrophoresis’ (DIGE) data
or log transforming it [61, 68, 69]; and (iii) a p-level of at
least 0.01 to reduce the number of false candidate protein
spots observed.

In the case of data showing a non-normal distribution
after transformation, two nonparametric tests can be
applied, viz. the Wilcoxon–Mann–Whitney and Kolmogorov–
Smirnov tests. The Wilcoxon–Mann–Whitney test is one of

the most powerful of such tests for comparing two popula-
tions. It is used to test the null hypothesis that both popula-
tions have identical distribution functions versus the alter-
native hypothesis that the two distribution functions differ
only with respect to location (median), if at all (for more
details see [63, 64]). For a single sample of data, the Kolmo-
gorov–Smirnov test is used to test whether the data sample is
consistent with a specified distribution function: when there
are two data samples, it is used to test whether these two
samples may reasonably be assumed to come from the same
distribution (for more details see [63, 64]).

Furthermore, 2-DE commercial softwares offer One-Way
ANOVA as an approach to detect significant alteration in
protein expression in data obtained between two or more
treatments. This approach thus allows comparison of several
groups of observations, all of which are independent but
possibly with a different mean for each group. A test of great
importance is whether all the means are equal [63, 64]. The
null hypothesis here is that there is no difference between
the mean (m) values (i.e. H0: m1 = m2 = m3 = mk, where k is the
number of treatments), and with the null hypothesis being
tested against the alternative hypothesis (i.e. H1:
m1 ? m2 ? m3 ? mk).

When using this test, two major assumptions are that
(i) the dataset for each treatment follows a normal distribu-
tion and (ii) there are more than three replicates per treat-
ment. In contrast, with the Student’s t-test, only a few repli-
cates (i.e. 3 � 7) tend to be made since the bioinformatics
analysis is time consuming. For any researcher interested in
using the One-Way ANOVA available on many 2-DE soft-
wares, we suggest a minimum of five replicates per treatment
and the same steps as suggested above for the Student’s
t-test, namely: (i) testing the normal distribution data;
(ii) transformation of data if it is necessary to do so; and (iii) a
p-level of at least 0.01 to reduce the number of false candidate
protein spots observed.

Few 2-DE softwares (such as DeCyder from Amersham
Biosciences) offer Two-Way ANOVA as an approach to detect
significant alteration in protein expression in data obtained
between multiple (2 plus) treatments when studying the
effects of two factors separately (their main effects) as well as
together (their interaction effect). The Two-Way ANOVA is
an extension to the One-Way test [63, 64] and has two inde-
pendent variables (hence the name) called factors. The idea
is that there are two factors (variables) which affect the de-
pendent variable (i.e. volumes of protein spots detected).
Each factor will have two or more levels within it, and the
degrees of freedom for each factor is one less than the num-
ber of levels. There are three sets of hypotheses with Two-
Way ANOVA. The null hypotheses for each of the sets are:
(i) the population means of the first factor are equal; (ii) the
population means of the second factor are equal; (iii) there is
no interaction between the two factors. Five major assump-
tions to respect when using the test are: (i) the dataset for
each treatment follows a normal distribution; (ii) the treat-
ments must be independent; (iii) the variance of the treat-
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ments must be equal; (iv) the treatment groups must have
the same sample size; and (v) more than three replicates per
treatment are used [63, 64].

Overall, an inappropriate utilisation of the Student’s
t-test, One-Way and Two-Way ANOVA may result in an
important numbers of false positives [8, 58], which is effec-
tively the case in more than 60% of recent proteomics studies
[58]. Moreover, assuming a 5% level of error (i.e. p = 0.05) for
1000 protein spots means that there are potentially some 50
(i.e. 0.0561000) false positives, which is unacceptable. Mul-
tiple testing correction methods, such as the Bonferroni cor-
rection [64] and false discovery rate (FDR) [70], adjusts the
Student’s t-test or ANOVA values for each protein spot to
keep the overall error rate as low as possible. In the Bonfer-
roni correction, the unadjusted p-values are multiplied by the
total number of tests performed. The FDR is a less stringent
correction method but more practical approach than the
Bonferonni correction. The FDR is defined as V/R for R .0
(where V denotes the number of falsely rejected hypotheses
and R indicates the total number of rejected hypotheses) and
FDR = 0 if R = 0. Since V is unobserved, a sequential p-values
procedure has been developed to control the expected value
of the FDR (i.e. E(FDR)) under the assumption that the test
statistics are independent [70]. The resulting process controls
E(FDR) at the fixed level a for any joint distribution of the
p-values.

2.4 Suggestion of experimental design for 2-DE

Since the original introduction of proteomics approaches,
the poor experimental design of 2-DE experiments has ten-
ded to be all too commonplace due to the apparent technical
difficulties, the high cost of data acquisition as well as the
time needed for data analysis [14, 66]. Some recent papers
emphasise that a significant number of studies involving
2-DE were done with a nonrigorous experimental design,
more especially in relation to the number of replicated gels
per treatment and the inappropriate application of statistical
tests available in 2-DE software packages [8, 14, 45, 62, 66].
Like many other proteomics researchers, we performed few
replicates per treatment in our earlier 2-DE experiments. Is it
reasonable to continue in this way? One major goal of 2-DE
experiments is to find protein spots for use as biomarkers
which show significant differential expression between dif-
ferent treatments, to understand biological phenomenon,
and also to study the proteome variability between popula-
tions [14, 38, 45, 52, 71–73]. A new attitude is essential to
improve the reliability of proteomics data, both in terms of
recording of the protein spots per se as well as differential
analysis of these.

Clearly during any given proteomics study, experimental
design should be improved when and wherever possible,
especially regarding the number of replicates per treatment,
in order to reduce the number of false positive protein spots
detected. In addition, whilst the currently available proteom-
ics techniques and bioinformatics tools are powerful means

by which to generate high quality data, both in terms of
quality and quantity, nevertheless as outlined above, the
inappropriate use of statistical tests and involving false
assumptions could lead to poor analysis of the data collected
and worse still, to a false understanding of the biological
process(es) investigated. The rigorous application of statis-
tics and with due cognisance to the assumptions being
made, will to some extent increase the work done during
such 2-DE experiments, but on the other hand and most
importantly, it will improve the reliability of the results
achieved.

Some researchers outline the different steps essential for
proteomics study of such biological phenomena as host–
parasite interactions [71–76], biological development [77],
toxicology [78, 79] and the response of an organism’s genome
to environmental stress [2]. Figure 1 outlines some key steps
that need to be taken into consideration for the realisation of
a 2-DE experiment (i.e. from the number of replications per
treatment to the appropriate statistical analysis according to
the choice of staining method).

3 Protein identification and bioinformatics

3.1 Protein identification and imperative need of

softwares

In any given proteomics study, a key step during the research
is the identification of proteins linked to the biological phe-
nomenon under investigation, whatever this may be exactly
[5, 52, 80–82]. This imperative has stimulated the develop-
ment of many new instruments [83–90] and techniques [90,
91], especially protein databases [92] and bioinformatics tools
[7, 93, 94].

Edman’s method was one of the first techniques to be
developed for the identification of proteins [95, 96]. However,
this method is actually considered too slow and expensive for
2-DE studies. Furthermore, proteins are frequently N-term-
inally blocked. By the 1990s, the pitfalls associated with this
method stimulated the development of new techniques. The
quality of 2-DE experiments was improved with the con-
comitant development of MS instrumentation techniques
[83–86].

MALDI-TOF-MS is presently the most popular instru-
ment used for protein identification, i.e. via determination of
peptide molecular weight [97]. Thus many protein databases
and bioinformatics tools have been developed for analysis of
the PMF data collected (see Table 3). Over the years, several
studies have stressed the pitfalls of PMF for protein identifi-
cation [14, 98], and with such awareness has come the drive
to develop new more powerful techniques and softwares in
order to improve such identification. Table 3 summarises the
free softwares available on the Internet for protein identifi-
cation according to the instrument types used to reveal a
property or a combination of properties which are unique to
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Figure 1. Key steps in the design of a 2-DE experiment staining methods: CCB, colloidal Coomassie blue; SN, silver nitrate; SR, SYPRO
Ruby; DP, Deep purple.

the candidate proteins in question and which can be subse-
quently employed to search databases for sequence mat-
ch(es).

3.2 Advantages of softwares

2-DE experiments generate a large quantity of potentially
important data, data that may require many weeks to analyse
and interpret. Since the 1990s, a number of important bioin-
formatics tools were developed to aid protein identification [4,
5, 7, 45, 71, 72, 99–103]. These softwares permit comparison
and/or matching of the observed data (i.e. candidate protein
spots) with theoretical data from protein databases. A high
throughput in search databases with high efficiency and at low
cost are two of the major advantages of the current softwares
available for protein identification on the Internet (see Table 3).

The new generation of these softwares takes into account
many criteria during searches of the currently available pro-
tein databases. For protein identification with PMF and MS/
MS data, it is possible to specify some spot properties (i.e. pI,
MW and taxon of the organism under study), the protease
used (i.e. trypsine or others), the number of missed cleav-
ages, the mass spectrometer type and its accuracy, the mass
type, the possible amino acid modifications, and more inter-

estingly, the p-value threshold to identify a positive match
between observed and theoretical protein data [45, 99, 103].
Following the identification of a candidate protein spot,
many softwares such as Aldente (http://www.expasy.ch/
tools/aldente/), Phenyx (http://www.phenyx-ms.com/) and
MASCOT (http://www.matrixscience.com/) allow access to
an impressive number of crossreferences via different data-
bases, i.e. InterPro (http://www.ebi.ac.uk/interpro/, PAN-
THER (http://www.pantherdb.org/), PFAM (http://www.
sanger.ac.uk/Software/Pfam/), PRINTS (http://umber.sbs.
man.ac.uk/dbbrowser/PRINTS/), etc.) as well as to different
softwares, allowing, for instance, the modelling of the quat-
ernary structure of the identified protein by using the
Swiss-Model (http://swissmodel.expasy.org//SWISS-MODEL.
html). However, the various softwares available for protein
identification do not offer the same advantages. It is not the
aim of this review to compare available softwares, but Table 3
can hopefully aid researchers in their choice.

3.3 Misuse of softwares

In proteomics studies, the classic criteria used to confirm
protein identification are the MOWSE (molecular weight
search) score, p-value, % coverage, and the Dppm (difference
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Table 3. List of free protein identification sofwares available on the Internet (June 2006)

Method
of identi-
fication

Software
name

Parameters available for
the search on protein
databases

Protein databases
available

Web link

PMF

Aldente pI, MW, taxon, digestion,
modifications (variable and/or
fixed), missed cleavages,
thresholds of spectrometer,
peptide scoring

Swiss-Prot, TrEMBL http://www.expasy.org/tools/
aldente/

MASCOT MW, taxon, digestion, modifi-
cations (variable and/or fixed),
missed cleavages, thresholds
of spectrometer, peptide
scoring

MSDB, NCBI, Swiss-Prot,
Random

http://www.matrixscience.com/

MS-Fit pI, MW, taxon, digestion, modifi-
cations (variable and/or fixed),
missed cleavages, thresholds
of spectrometer, peptide
scoring

Genpept, Ludwignr, NCBI,
Owl, Swiss-Prot,
EST_mouse, EST_human,
EST_others

http://prospector.ucsf.edu/
ucsfhtml4.0/msfit.htm

PepMAPPER pI, Mw, taxon, digestion, modifi-
cations (variable and/or fixed),
missed cleavages, thresholds
of spectrometer, peptide
scoring

Swiss-Prot, PDB http://wolf.bms.umist.ac.uk/
mapper/

PeptideSearch MW, taxon, digestion, modifi-
cations (variable and/or fixed),
missed cleavages, thresholds
of spectrometer, peptide
scoring

NRDB http://www.narrador.embl-
heidelberg.de/GroupPages/
Homepage.html

ProFound MW, taxon, digestion, modifi-
cations (variable and/or fixed),
missed cleavages, thresholds
of spectrometer, peptide
scoring

NCBI http://prowl.rockefeller.edu/
profound_bin/WebProFound.exe

MS/MS

Popitam Taxon, digestion, modifications
(variable and/or fixed), missed
cleavages, thresholds of spec-
trometer, type of spectrometer,
peptide scoring

Swiss-Prot, TrEMBL http://www.expasy.org/tools/
popitam/

Phenyx Taxon, digestion, modifications
(variable and/or fixed), missed
cleavages, thresholds of spec-
trometer, type of spectrometer,
peptide scoring

Swiss-Prot, TrEMBL,
MSDB, NCBI, EST_mouse,
EST_HUMAN, EST_RAT

http://www.phenyx-ms.com/

MASCOT Taxon, digestion, modifications
(variable and/or fixed), missed
cleavages, thresholds of spec-
trometer, type of spectrometer,
peptide scoring

MSDB, NCBI, Swiss-Prot,
Random, EST_mouse,
EST_human, EST_others

http://www.matrixscience.com/

OMSSA Taxon, digestion, modifications
(variable and/or fixed), missed
cleavages, thresholds of spec-
trometer, type of spectrometer,
peptide scoring

NCBI http://pubchem.ncbi.nlm.nih.
gov/omssa/
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Table 3. Continued

Method
of identi-
fication

Software
name

Parameters available for
the search on protein
databases

Protein databases
available

Web link

PepFrag Taxon, digestion, modifications
(variable and/or fixed), missed
cleavages, thresholds of spec-
trometer, type of spectrometer,
peptide scoring

NCBI, dbEST http://prowl.rockefeller.edu/

MS-Tag MW, taxon, digestion, modifica-
tions (variable and/or fixed),
missed cleavages, thresholds
of spectrometer, type of spec-
trometer, peptide scoring

Genpept, Ludwignr, NCBI,
Owl, Swiss-Prot,
EST_mouse, EST_human,
EST_others

http://prospector.ucsf.edu/
ucsfhtml4.0/mstagfd.htm

SearchXLinks Digestion, modifications
(variable and/or fixed),
missed cleavages, thresholds
of spectrometer, peptide
scoring

MSDB, NCBI, Swiss-Prot,
Random

http://www.searchxlinks.de/

PeptideSearch MW, taxon, digestion, modifi-
cations (variable and/or fixed),
missed cleavages, thresholds
of spectrometer, peptide
scoring

NRDB http://www.narrador.embl-
heidelberg.de/GroupPages/
Homepage.html

Sequence
tags

FASTS/FASTF Number of peptides, score
table, filter, descriptions,
alignments

UniProt, UniRef100, Uni-
Ref90, UniRef50, UniParc,
Swiss-Prot, EuroPatents,
JapanPatents, USPTO
Patents

http://fasta.bioch.virginia.edu/

MS-Seq pI, MW, taxon, digestion, modifi-
cations (variable and/or fixed),
AA composition, Instrument

Genpept, Ludwignr, NCBI,
Owl, Swiss-Prot,
EST_mouse, EST_human,
EST_others

http://prospector.ucsf.edu/
ucsfhtml4.0/msseq.htm

MS-BLAST Number of peptides, score table,
filter, descriptions, alignments,
other advanced options

NRDB95, sp_NRDB,
Swiss-Prot, hs_swiss,
PDB, ENSEMBLE PEP

http://dove.embl-heidelberg.de/
Blast2/msblast.html

Amino acid sequence
(microsequences)

MS-Pattern pI, MW, taxon, digestion, modi-
fications (variable and/or fixed)

Genpept, Ludwignr, NCBI,
Owl, Swiss-Prot,
EST_mouse, EST_human,
EST_others

http://prospector.ucsf.edu/
ucsfhtml4.0/mspattern.htm

PeptideSearch MW, taxon NRDB http://www.narrador.embl-
heidelberg.de/GroupPages/
Homepage.html

Amino acid
composition

AACompIdent pI, MW, AA composition,
calibration protein

Swiss-Prot, TrEMBL http://us.expasy.org/tools/aacomp/
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Table 3. Continued

Method
of identi-
fication

Software
name

Parameters available for
the search on protein
databases

Protein databases
available

Web link

pI and MW and/or
sequence tags

TagIdent pI, MW, taxon Swiss-Prot, TrEMBL http://www.expasy.org/tools/tagi-
dent.html

pI, MW, PMF,
sequence tags,
amino acid
composition

MultiIdent pI, MW, taxon, AA composition,
PMF (digestion, modifications,
thresholds of spectrometer

Swiss-Prot, TrEMBL http://www.expasy.org/tools/
multiident/

in mass between experimental and theoretical peptides). The
question may then be posed, ‘is it enough to prevent a mis-
match and to link, without error, a protein spot on a gel to a
known protein in a database(s)’? Unfortunately, many recent
studies and some workshops clearly underline the risk of
false positive identifications, more especially for the PMF but
also for the MS/MS [14, 45, 52, 94, 98]. Thus, although the
MOWSE score and the p-value obtained with classic criteria
constitute a useful guide in protein identification, they can
never be a substitute for the careful interpretive analysis
necessary to detect a false from a true positive result [14, 45,
98]. Some reasons for failing to match MS data especially for
the MS/MS or the LC-MS/MS when searching a protein
database are as follows: (i) the peptide sequence is not in
databases; (ii) an unsuspected PTM; (iii) the peptide is a
result of nonspecific cleavage; and (iv) the product-ion data is
of poor quality [104].

The % coverage (i.e. the proportion of a theoretical pro-
tein which is covered by MS data of a protein spot) can be
used as a parameter by the protein identification softwares
such as Aldente (http://www.expasy.org/tools/aldente/) to
determine the scoring to find the best match. In most soft-
wares, the % coverage is given mainly as a criterion to help
proteomics researchers to find the best theoretical protein
matching with the observed MS data.

What is a good coverage? According to many proteomics
researchers, more than 20% coverage is likely to be signifi-
cant [45, 80, 103]. Even so, this criterion is not enough to
avoid the risk of false positive identifications. For an organ-
ism with a complete genome sequence available in the data-
bases, there is still a high probability of obtaining false posi-
tive matches with theoretical proteins with a MW�40 kDa
when a search is done for PMF data for a protein spot of 30–
40 kDa without restriction in terms of pI and MW criteria
[14, 98, 105]. This potential pitfall can be explained in part by
the mass redundancy (i.e. the fact that peptides with the
same amino acid sequence but with different alignments can

have the same mass) [45, 52, 89]. Another factor to explain
this pitfall is the higher number of theoretical peptides for a
protein with a MW greater than 40 kDa. In this case, the
probability of an observed peptide matching a theoretical
peptide in a database(s) increases with the MW of the mole-
cule concerned.

The risk of misuse of the % coverage for protein identi-
fication is very important for an organism with incomplete
genome sequences in databases since the search is limited to
the nearest species with partial or complete genome
sequences. The main hypothesis of cross-species identifica-
tion is that orthologous proteins share a similar function,
and a similar structure and amino acid composition result-
ing in a sharing of many peptide masses [6, 45, 80, 106]. As
some studies emphasise, at least 70% of sequence identity
between proteins is necessary for a conservation of the pep-
tides involved [45, 107]. Thus cross-species identification
needs to be done with due care and attention [72, 73, 107,
108].

What is the maximum % coverage for a protein match
with PMF data? For tryptic digests, the range of experimental
mass values is 800–3000 Da. To obtain 100% coverage for a
theoretical protein in the databases, the peptide mass values
should therefore be in the range of 800–3000 Da, because of
its estimation by MS measurement [45, 52, 71, 72, 83]. In
general, the theoretical proteins in databases have many
peptide mass values higher than 3000 Da and lower than
800 Da. For instance, % coverage of many proteins, whatever
the species studied, will never exceed 40% with very good
PMF data for protein with a MW range of 30–50 kDa. The
NADH dehydrogenase subunit 5 (Fragment) of the butterfly,
Parnassius ruckbeili ruckbeili (Deckert) (TrEMBL accession
number: Q76JY5) has an important number of theoretical
peptides with mass values�3000 Da. Concerning the pI and
MW, both criteria will be relatively close to theoretical values
for species with complete genome sequences in databases,
and as far as cross-species identification is concerned, and in
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order to avoid false positive identification, a molecular mass
variation of 630% and a pI variation of 62.0 are generally
used [6, 45, 80, 81, 91, 103, 108].

The risk of obtaining false positive identifications is not
limited to MS techniques. For instance, it is also true for the
Edman method followed by BLASTP searching. Figure 2
gives an example with a protozoan species, Leishmania major
Friedlin. The complete genome sequences of this protozoan
are available in the NCBI database. The complete sequence

of a L. major protein is presented in Fig. 2A. Three BLASTP
were done for this protein: (i) for the complete protein
sequences available (Fig. 2B); (ii) for all available protozoan
genomes (Fig. 2C); and (iii) for all taxa available in the data-
bases (Fig. 2D). Interestingly and importantly, the BLASTP
for the genome of L. major did not provide good protein
identification. The second BLASTP on protozoan genomes
recognised that it is a protein from the NUDIX family, and
only with the third BLASTP for all taxa that the protein was

Figure 2. (A) Complete protein
sequence of nudix hydrolase-
like protein of Leishmania major
(AN in NCBI (gi)68130023)
emb)CAJ09331.1))). Results of
BLASTP for gi)68130023)emb
)CAJ09331.1) with L. major gen-
ome (B), protozoan genome (C)
and all taxa (D).
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duly recognised. This example further illustrates that con-
siderable attention and interpretive skills are necessary
whatever the techniques and bioinformatics tools used for
protein identification.

Some pitfalls for BLASTP were revealed in previous
studies [109, 110], but in the case of L. major proteins as
described above, this is the first example of a pitfall in rela-
tion to a species with a completely sequenced genome. Thus,
to avoid this pitfall, we suggest making the protein identifi-
cation in three steps when using the taxon field of the
BLASTP software, viz.: (i) at the species level, identification
of the protein and its family; (ii) at the family or order level,
confirmation of the protein family of the candidate protein;
and (iii), confirmation of the identification of the candidate
protein without restriction in the taxon field (i.e. all organ-
isms).

3.4 Recommendations for identifying candidate

proteins obtained by 2-DE

Several methods are routinely used to identify proteins from
2-DE experiments. These methods rely on comparisons with
sequence databases derived from genomic programmes,
cDNA studies, protein sequencing, ESTs or genomic
sequence tags (GSTs). MS is a core approach in proteomics.

One MS approach, the PMF with limited exceptions, cannot
be applied to short stretches of sequences such as ESTs. But
the MS/MS or LC-MS/MS approaches can be used in synergy
with ESTs databases to identify proteins of species with
unsequenced genomes [104, 111] and rapid characterisation
of a protein mixture [112].

As protein identification is without doubt a key step in
2-DE experiments, it is important to use certain ‘tricks of the
trade’ to reduce the possibility of obtaining and mis-
interpreting false positive results. Figure 3 summarises
some key steps in the process of protein identification for
species with complete and incomplete genome sequences in
databases. In addition to these key steps, proteomics
researchers should use as many properties of the candidate
protein as possible (pI, MW, etc.) to increase the probability
of obtaining a match in terms of the ‘best’ theoretical protein
data available [6, 45, 83, 95].

Protein sequence databases are growing at a near-expo-
nential rate. Whilst this is generating massive amounts of
information for some model species as Drosophila and
humans, the majority of species remain more or less mole-
cularly undefined. The magnitude of this is illustrated in the
Swiss-Prot database, where 38% of all sequences derive from
just ten organisms [91]. Can the data from species with
completed genome sequences be used for the identification

Figure 3. Key steps to take into consideration in the process of protein identification.
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of proteins from other species with uncompleted genome
sequences? An answer to this question is that the search for
cross-species identification should be limited to the nearest
taxon to the species studied and the interpretation should be
conservative. This is because some examples are known
where similar proteins have very different functions in dif-
ferent species [113], whilst by way of contrast, very different
proteins have similar functions [114]. Cross-species identifi-
cation requires a careful usage of bioinformatics tools along
with very careful interpretation of the methods employed for
peptide/protein identification [45, 80, 91, 103, 115].

A theoretical study of 65 cross-species comparisons in-
volving 21 different types of protein has revealed some clear
findings in relation to the attributes of these proteins in
cross-species protein conservation [72]. The pI was found to
be poorly conserved with some proteins showing as much as
pI 62 difference across species boundaries. On comparison,
the intact mass of proteins was well conserved, with a mean
absolute difference of 1.9%. Peptide masses were not well
conserved across species boundaries, with few or no peptides
being conserved when sequence identity between two pro-
teins was lower than 70% [45, 72]. However, amino acid
composition of proteins was well conserved across species
boundaries, with many proteins failing to show large com-
positional differences between species until sequence iden-
tity was�60%. The poor conservation of peptide mass data
is expected, as a single amino acid substitution in any pep-
tide can drastically change its mass. The MultiIdent tool
(http://www.expasy.org/tools/multiident/) from Expasy is
one of the best softwares for cross-species identification since
it can accept many attributes of proteins: (i) pI; (ii) mass;
(iii) composition; (iii) peptide masses (PMF data); (iv) se-
quence tags; and (v) choice of the taxon (i.e. species, genus,
family or kingdom levels).

3.5 Data representation

Researchers often use mathematical clustering methods to
reveal interesting patterns in large datasets, such as those
produced by proteome analysis following protein identifica-
tion. Users then need interactive visualisation tools to facil-
itate pattern extraction, identifying for instance proteins with
similar profiles and thus possibly with similar functions
[116]. Many softwares are available on the Internet for gra-
phic visualisation as THEA (http://thea.unice.fr/summary-
en.html) and TreeDyn (http://www.treedyn.org/).

THEA is an integrated information processing system
which facilitates convenient handling of data. It allows for
the automatic annotation of data produced from various
published classification systems, with selected biological
information derived from a database, for manual searching
and browsing through these annotations, and for automatic
generation of meaningful generalisations according to sta-
tistical criteria [117]. Furthermore, this particular system
allows for the graphic presentation of ontologies and the
display of hierarchical clustering results. TreeDyn is a tool

based on data visualisation methods and dynamic graphics
for the annotation of multiple phylogenetic or classification
trees.

4 Bioinformatics and interactome

4.1 What is the interactome?

In the last few years, the deciphering of gene/protein func-
tion at a large scale to allow for a better understanding of cell
functioning and organism development has stimulated the
design of new analytical approaches, following both advances
in methodology and current thinking. In this respect, bioin-
formatics methods have evolved ‘in tune’ with the way biolo-
gists have perceived gene/protein function [118, 119]. This is
exemplified by the fact that the development of new compu-
tational methods, by allowing the decoding of the cellular,
physiological and developmental function of gene/proteins at
a large scale, has not only widened the field of investigation,
but also more importantly, has brought about a novel, com-
prehensive and integrated understanding of gene/protein
function and their interactions. This integrated view is
nowadays more than ever an important part of the holistic
concept of cell and organism functioning as currently por-
trayed by ‘systems biology’ (http://en.wikipedia.org/wiki/
Systems_biology). Interestingly here also, the need for new
bioinformatics tools is coming into prominence for identify-
ing and analysing the phenomena and associated properties
emerging from complex biological systems.

The last few years have witnessed the birth of new bio-
logical entities named interactomes. They correspond in an
‘ideal world’ to the complete set of protein–protein interac-
tions existing between all the proteins of an organism. In
reality they are far from complete since an unknown number
of interactions are yet to be discovered. Current interactomes
are only a part of the whole set of possible interactions
occurring within an organism or between organisms. They
are generally assembled from: (i) the results of large-scale
two hybrid screens (LS-Y2H) (around 6000, 4000, 23 000 and
5500 interactions for yeast [120, 121], the nematode, Cae-
norhabditis elegans (Maupas) [122], Drosophila spp. [123, 124]
and humans [125, 126], respectively); and (ii) the interactions
identified by low-scale experiments described in the litera-
ture that may be eventually compiled in specialised data-
bases (e.g. INTACT [127], MINT [128], HPRD [129], BIND
[130]). Consequently, they do not reflect temporal influences
because interactions are gathered from different cell types,
tissues, development stages and types of experiment.

4.2 Bioinformatics methods developed in order to

functionally investigate the interactome

Interactomes form large intricate networks leading to a
renewed vision of cell biology as an integrated system. How-
ever, extracting and revealing the functional information
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they contain depends on our ability to analyse them in detail.
For this, bioinformatics methods which partition the inter-
action network into functional modules have been proposed.
These modules usually correspond to group of proteins
involved in the same pathway, the same protein complex or
the same cellular process.

Since interaction networks are represented by complex
graphs in which nodes correspond to proteins and edges to
the interactions, a number of these network analysis meth-
ods have been grounded on principles that derive from graph
theory. Noticeably, a functional module or a class of protein
that is functionally related and based on network analysis can
be deduced from: (i) a search for graph regions particularly
densely populated by interactions [131, 132]; (ii) the similar-
ity between the shortest paths in the graph [133]; (iii) the
progressive disconnection of the graph using a calculation of
edge ‘betweenness’ [134, 135]; and (iv) the sharing of inter-
actors [100, 136] or a combination thereof [102]. Some of
these methods use the functional annotations of the protein
(such as Gene Ontology annotations) to annotate the func-
tional modules they predict. Based on the characteristics of a
protein of unknown function to some of these annotated
modules or classes, a putative function for such proteins can
be proposed (Fig. 4 and [100]).

Currently we are in the period in which specialised
methods are being developed to investigate these new bio-
logical entities, the so-called interactomes. But it is at the
same time clear that the field starts to move forward: thus
some of the previously cited methods have been imple-
mented as softwares, ‘plugins’ or servers for a free use as
bioinformatics tools by the 2-DE research community (for
instance, MCODE in Cytoscape [137]; Prodistin (see Fig. 4)
[138]) and start to be available as real bioinformatics tools as a
direct result of the work of users. Although beyond the remit
of this review, it is to be noted that the graphical representa-
tion of interactomes as very large graphs is also a real bioin-
formatics challenge successfully tackled by packages such as
BioLayout [139], Cytoscape [137], Osprey [140] and Visant
[141].

4.3 New prospects in interactome studies

4.3.1 Data integration

Interactomes are static structures which do not reflect tem-
poral changes. Recently, the combination of interaction data
with other data such as coexpression and phenotypic profiles
allow the introduction of a dynamic aspect to the study of
interactomes. From these new data, integration approaches
have deepened our understanding of interactome structure
by, for instance, (i) showing the existence of two types of
highly connected proteins in interactomes, with respect to
mRNA expressions [142]; and (ii) predicting ‘molecular
machines’ involved in the embryogenesis of the nematode,
C. elegans [143].

When evoking data integration, most of the works found
in the literature use correlation coefficients such as Pearson
or Bayesian network models. We suggest that graph theory-
based methods for analysing interactomes can also be
adapted to this problem by considering for example, graphs
with weighted edges. In such graphs, an edge would be sus-
tained by the existence of a detected physical interaction and
the weight of the edge could reflect any type of shared fea-
ture, e.g. coexpression, colocalisation and coannotation.
Interestingly, visualisation tools are also progressing in this
direction by providing correlation interfaces [144]. Therefore,
if one wishes to functionally analyse such weighted graphs,
there is a need to develop a new graph theory-based method
taking into account the novel dimension given to the inter-
actome by the integration of functional data.

Like mRNA expression data or localisation data can be
combined to protein–protein interactions to gain in biologi-
cal relevance, the same goal can be achieved by using the
results of interactome analysis in a reverse proteomics
approach to interpret raw MS data. This was recently illus-
trated by Hinsby et al. [145] in an effort to assign a function
to uncharacterised human nucleolar proteins. First, these
authors have investigated the nucleolar interactome using
one of the devoted tool previously cited [137]. This way, they
identified clusters composed of bona fide nucleolar proteins
mixed with others that have not been described previously
as nucleolar. Then, second, they revisit the results of a large-
scale nucleolus proteome MS study, by performing a tar-
geted search for these putative novel nucleolar proteins in
the MS data. Indeed, they were able to verify the presence of
11 of these proteins that were originally discarded due to
their low score in the conservative unbiased MS search.
Therefore, interactome and proteome analysis can be com-
plementary.

4.3.2 Host–pathogen interactomes

Although the deciphering of the interactomes of the main
model organisms is not yet complete, studies of the inter-
actomes of pathogens are increasing. The first pathogens to
be investigated in the past 5 years or so in terms of their
interactomes were the hepatitis C virus [146] and the bacte-
rium, Helicobacter pylori [147]. More recently still, the inter-
actomes of the herpes viruses [148] and the malaria parasite,
Plasmodium falciparum, [149] have been determined. This
makes one believe that in the near future, as initiated by Uetz
et al. [148], the docking of the interactomes of pathogens onto
those of their hosts will be possible. The analysis of ‘docked
interactomes’ is certainly a very promising and exciting
aspect of interactomics because of its obvious potential
impacts on human and animal health. But the fundamental
questions that the docked interactomes allow us to ask are at
least as exciting for people in other related fields, including
those working on host–parasite interactions of metazoans . . .
and as such, are urging upon us the need for bioinformatic
tools to investigate interactomes per se, let alone docked ones!
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Figure 4. (A) Flowchart of PRODISTIN. (a) A graph is constructed
from a list of binary protein–protein interactions. (b) A functional
distance based on the identity of the shared interactors is calcu-
lated among all proteins. (c) The obtained distance matrix is used
to build a classification tree, on which functional classes are
subsequently determined and analysed by evaluating (d) their
statistical robustness and (e) their biological relevance. (B) A
functional classification tree for 602 yeast proteins computed
with the PRODISTIN method. PRODISTIN classes have been
coloured according to their corresponding ‘Cellular Role’, on the
circular classification tree. Protein names have been omitted for
the sake of clarity. We have showed that the clustering of the
proteins reveals the biological process in which they are involved
(for further details, see [100]).

5 Conclusions

Since the 1990s, 2-DE and MS have been successfully
employed in a large number of studies to find and identify
proteins involved in biological phenomena, e.g. immunity,

response to environmental stresses, host–parasite interac-
tions, etc. Even so, many studies have, as outlined above,
revealed pitfalls in the approaches used. Probably, over the
last two decades, mismatches of proteins were performed in
a number of published proteomics studies. Thus, whatever
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the new technological advancements, more especially in
2-DE and in protein identification, it is apparent that prote-
omics researchers should attempt to improve their experi-
mental design as well as take greater cognisance of, and have
greater respect for, statistical approaches. This new attitude
will surely improve the reliability of the data deriving from
proteomics studies and will open the way for an enhanced
comprehension of many biological mechanisms. In the near
future, a greater amount of proteomics data will be available
for many organisms and will in turn open up new prospects
for interactome studies. By example, recently, the combina-
tion of the proteomics and interactome data on the human
nuclear proteome permitted to assign function to 49 pre-
viously uncharacterised human nucleolar proteins and to
reveal the first draft of the human ribosome biogenesis
pathway [145]. In relation to 2-DE experiments, a promising
research field is the study of the ‘interactome’ of organisms
along with the instantaneous and the temporal interactomes
resulting from the interaction of the proteomes between
organisms, more especially as far as we are concerned, host–
parasite interactions. Many new bioinformatics tools should
be developed as a result of these new prospects in inter-
actome studies. If so, the future in this area indeed appears
to be a bright one, with the possibility that many complex
protein–protein interactions that currently remain intract-
able will ultimately prove resolvable at several levels.
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