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Abstract

Genotypic drug resistance interpretation algorithms have been developed on

patients infected with HIV-1 subtype B to interpret complex patterns of muta-

tions. As non-B strains are characterised by the natural presence of several

resistance-related mutations, we examined to what extent this might result in

interalgorithm discordances in naive and treated patients. We compared the

prediction by three algorithms (ANRS, Stanford and Rega) of drug susceptibilities

to diverse HIV-1 strains from 272 naive and 156 treated patients. In naive patients,

higher levels of interalgorithm discordance were observed for predictions of

protease inhibitor (0.60–39%) than for predictions of reverse transcriptase

inhibitor susceptibility (0–4%). The main reason for discordant protease inhibitor

interpretation was the presence of resistance mutations that were natural protease

polymorphisms. In contrast, in the treated patients, more interalgorithm discor-

dances were observed for predictions of reverse transcriptase inhibitor (5–48%)

than protease inhibitor susceptibilities (10–31%). Discordances were related to

disagreement between the intermediate and susceptible scores, the intermediate

and resistant scores and the interpretations of complex mutation patterns, related

to cross-resistance and antagonistic interactions.

Introduction

International guidelines have recommended HIV drug resis-

tance testing for the selection of optimal antiretroviral (ARV)

therapy (Hirsch et al., 2003) and resistance testing is now

available as a routine tool for the care and management of

HIV disease (Shafer, 2002). Genotypic resistance tests are

more commonly used than phenotypic tests because of their

easier implementation, lower cost and shorter turnaround

time. However, genotypic mutation patterns, especially those

related to cross-resistance and antagonistic interactions,

require expert interpretation for a meaningful application in

a clinical context. Several rules-based algorithms have been

developed by correlating genotypic patterns with clinical

data and/or by combining genotypic with phenotypic data

and most of them are accessible through the web (Parkin

et al., 2002), but they can produce conflicting predictions of

the therapeutic response (De Luca et al., 2003; Sturmer et al.,

2003; Zazzi et al., 2004; Ravela et al., 2003).

Phylogenetic analyses revealed that HIV-1 can be divided

into three groups: M (Major), N (New) and O (Outlier).

Group M, which accounts for most infections worldwide, is

further subdivided into nine subtypes (A–D, F–H, J–K) and

16 Circulating Recombinant Forms (CRF01–16) (Robertson

et al., 2000). Subtype B isolates predominate in North

America and Europe, but represent only a limited propor-

tion of infections worldwide (Peeters et al., 2003). None-

theless, genotypic drug resistance interpretation algorithms

have been based mainly on results obtained from subtype B-

infected patients. However, minor mutations occur as

natural variants in non-B strains (Pieniazek et al., 2000;

Vergne et al., 2000; Kantor & Katzenstein, 2003), and certain

subtypes can select specific mutations under drug pressure

(Gomes et al., 2002; Loemba et al., 2002; Brenner et al., 2003;

Grossman et al., 2004). Antiretroviral drugs have now been

introduced in developing countries where non-B variants

predominate. The frequency of non-B isolates is also in-

creasing in industrialized countries. It is thus necessary to
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study to what extent the different genotypic drug resistance

interpretation algorithms can predict treatment efficiency in

patients infected with a non-B HIV-1 strain. We therefore

compared three different algorithms for a large number of

non-B treatment-naive and treated patients to examine the

influence of pre-existing polymorphisms on predictions of

drug susceptibilities and the subsequent choice of therapy.

Materials andmethods

Patients

Samples from 428 HIV-1-infected patients were studied: 306

Africans attending hospitals in Cameroon (n = 147), Senegal

(n = 91), Democratic Republic of Congo (DRC) (n = 38) and

Gabon (n = 30); and 122 patients (46 Africans and 76

Europeans) attending the University Hospital in Montpellier,

France (Vergne et al., 2002, 2003). Of these 428 patients, 272

were antiretroviral (ARV) drug-naive and 156 were treated.

Patients received different combinations of ARV drugs:

nucleoside reverse transcriptase inhibitor (NRTI) only

(n = 29; 18.6%), non-nucleoside reverse transcriptase inhi-

bitor (NNRTI) only (n = 16; 10.2%), NRTI1protease inhi-

bitor (PI) (n = 49; 31.4%), NRTI1NNRTI (n = 20; 12.8%),

PI1NRTI1NNRTI (n = 26; 16.7%). The exact treatment

regimen was unknown for 10.3% of the treated patients.

Sequences

Viral RNA or proviral DNA was extracted from plasma or

peripheral blood mononuclear cells (PBMC) using the

QIAamp Viral RNA kit or the QIAamp Blood and Tissue

kit (Qiagen, Courtaboeuf, France), respectively. RNA was

transcribed into cDNA with the reverse primer IN3. DNA or

cDNA was amplified by a nested PCR using the Expand

High Fidelity PCR system (Roche, Meylan, France) with

outer primers G25REV and IN3 and inner primers AV150

and polM4 (50-CTATTAGCTGCCCCATCTACATA-30)

(Vandamme et al., 1998; Vergne et al., 2000). The amplified

fragments, encompassing protease (99 amino acids) and RT

(310 amino acids), were purified with a QIAquick Gel

Extraction kit (Qiagen) and directly sequenced using a

BigDyes Terminator V3.1 Cycle Sequencing kit (Applied

Biosystems, Courtaboeuf, France).

Phylogenetic analyses

Genetic subtypes were determined by phylogenetic tree

analysis. The new nucleotide sequences and sequences from

reference strains representing the different genetic subtypes

were aligned with the CLUSTAL W program, using the protein

sequences as a guide (Los Alamos National Laboratory,

2003). Phylogenetic trees were constructed with the neigh-

bor-joining method and the reliability of branching orders

obtained with the bootstrap approach was implemented by

CLUSTAL W (Saitou & Nei, 1987). The pol sequences were

further investigated by bootscan and similarity analyses

using SIMPLOT software to determine whether they were

recombinant or classified into a known CRF (CRF01–

CRF15) (Ray, 2003).

Genotypicdrug resistance interpretation
algorithms

Amino acid sequences were analysed for mutations asso-

ciated with a reduced susceptibility to antiretroviral drugs

by comparing the new pol sequences to a subtype B

consensus sequence derived from an alignment of subtype

B sequences maintained at the Los Alamos HIV Sequence

Database (Los Alamos National Laboratory, 2003).

Drug susceptibilities and treatment efficiencies to PIs,

NRTIs, and NNRTIs were predicted using three different

algorithms: Rega 5.5 (2002), Stanford database algorithm

(HIVDB) (2003.08), and French national guidelines (ANRS

2002.3), implemented at the Stanford website in 2003 (Van

Laethem et al., 2002; Shafer, 2003; Rhee et al., 2003). Each

algorithm reports its results differently. For the ANRS and

Rega algorithms, viruses are scored on three levels of resis-

tance: susceptible (S), intermediate resistant (I) and resistant

(R). The HIVDB algorithm defines five levels of drug

resistance: susceptible, potential low-level resistance, low-

level resistance, intermediate resistance and high-level resis-

tance. In this study a normalized comparison was established

(‘SIR option’). Susceptible and potential low-level resistance

were considered to be susceptible (S), low-level resistance to

be intermediate resistant (I) and intermediate resistance and

high-level resistance to be resistant (R). Interpretations were

considered concordant for a particular drug when the three

algorithms assigned the same level of resistance (S, I or R) to

a given sequence. Interpretations were considered discordant

for a particular drug when at least one of the three algorithms

assigned a different level of resistance (all possible combina-

tions of SSI, SSR, IIS, IIR, RRS, RRI and SIR). In addition, we

analysed the interpretation discordances using a two-level

system where the intermediate resistance level alternatively

was considered susceptible or resistant (all possible combina-

tions of SSR and SRR).

Statistical analyses

Statistical analysis was performed using the SAS software

package version 8. One-way ANOVA with Tukey confidence

intervals was used to determine whether the number of

discordances was drug-dependent or subtype-dependent,

or both. Frequencies of mutations were compared using

Fisher’s exact test.
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Results

Phylogenetic analysesoftheproteaseandRT
sequences

In the treatment-naive population, the 272 samples repre-

sented the following HIV-1 variants in decreasing order of

importance: CRF02_AG (n = 122, 44.9%), A (n = 24, 8.8%),

G (n = 23, 8.5%), B (n = 21, 7.7%), F (n = 17, 6.2%), D

(n = 16, 5.9%), C (n = 14, 5.1%), CRF11_cpx (n = 10, 3.7%),

CRF01_AE (n = 8, 2.9%), CRF06_cpx (n = 5, 1.8%),

CRF13_cpx (n = 5, 1.8%), J (n = 4, 1.5%), CRF05_DF

(n = 2, 0.8%) and K (n = 1, 0.4%). In the treated population,

the 156 samples were: CRF02_AG (n = 60, 38.5%), B (n = 50,

32.1%), A (n = 14, 9.0%), D (n = 8, 5.1%), C (n = 6, 3.8%), F

(n = 4, 2.6%), CRF11_cpx (n = 4, 2.6%), G (n = 3, 1.9%),

CRF01_AE (n = 2, 1.3%), CRF13_cpx (n = 2, 1.3%), H

(n = 1, 0.6%), J (n = 1, 0.6%) and CRF06_cpx (n = 1, 0.6%).

More than 83% of the strains were non-B HIV-1 variants; all

subtypes and five CRFs were represented. Subtype B was

more frequent in the treated population, and was mainly

from highly treated patients in France. Overall, CRF02_AG

isolates predominated (42.5%) and the population studied

represents the HIV-1 variants that circulate in West and

West Central Africa.

Genotypicdrug resistance interpretationof
patient sequencesby threealgorithms

The results of the analysis of patient amino acid sequences

with three different interpretation algorithms are presented

in Table 1. The majority of sequences from treatment-naive

patients were interpreted as susceptible by all algorithms.

Rega 5.5 scored more sequences as intermediate resistant

towards PIs, whereas hardly any sequence was scored inter-

mediate resistant by ANRS. In the treated patient popula-

tion, the majority of sequences were still scored as

susceptible. However, the number of intermediate resistant

and resistant scores increased for all algorithms. Again, Rega

5.5 more frequently scored intermediate resistant for PIs,

and also for RTIs. For 37.8% of the patients failing therapy,

no resistance-associated mutations were detected. A more

detailed analysis of their clinical history revealed that this

was mainly due to poor observance or interruption of ARV

treatment due to major side effects or financial constraints.

Comparisonofthreegenotypicdrug resistance
interpretationalgorithms inARVtreatment-
naivepatients

Subsequently, the interalgorithm discordances were investi-

gated more in detail (Tables 2 and 3). The proportion of

sequences displaying discordant interpretations was higher

for the PI (0.6–39%) than for the RTI susceptibility scores

(0–4%). For PIs, 39% of the sequences were discordant for

ritonavir, 38% for indinavir, 19% for nelfinavir, 12% for

amprenavir, 12% for saquinavir, and only 0.6% for lopinavir

(Table 2). In an overall PI drug comparison the differences

were significant (Po 0.0001). Lopinavir displayed signifi-

cantly less discordance, whereas ritonavir and indinavir

displayed significantly higher discordance in a pairwise

comparison with the other PIs. For ritonavir and indinavir,

subtypes A and F displayed significantly more discordance

than B. For amprenavir, subtype F and for saquinavir, F, K

and CRF05 displayed significantly more discordance than B.

As only a limited number of sequences were available for

subtypes K (one strain) and CRF05 (two strains), care

should be taken not to overvalue the results of the analysis

of these subtypes. When the intermediate score was assigned

to the susceptible score, the discordances decreased for PIs

and the three tested algorithms had a very good agreement

on PIs. Only subtype CRF13 still displayed significantly

more discordance than subtype B for ritonavir and indina-

vir. When the intermediate level was considered resistant,

similar results as in the three-level comparison were ob-

tained, involving the same subtypes. This indicates that the

main problem was associated with the distinction between

intermediate and susceptible.

For RTIs, interalgorithm discordances were low overall,

but were higher for NNRTIs (2.2–4%) than for NRTIs

(0–1.8%) (Table 3). In an overall RTI drug comparison the

discordances were significant (Po 0.0001). Nevirapine dis-

played a significantly higher level of discordance (4%) than

the other RTIs in a pairwise analysis. No discordances were

observed for lamivudine and didanosine. For all of the RTIs,

except zalcitabine, the proportion of discordances did not

differ significantly between the subtypes. Only CRF11

revealed significantly higher levels of discordances for zalci-

tabine than subtype B. The subanalysis, with only two

susceptibility scores, showed that for most tested RTIs,

except zidovudine, nevirapine and delavirdine, the discor-

dances were related to interalgorithm disagreement between

the intermediate and susceptible scores.

Comparisonofthreegenotypicdrug
resistance interpretationalgorithms in
ARV-treatedpatients

In contrast to the treatment-naive patient population, the

proportion of interalgorithm discordances for treated pa-

tients displayed a bigger range for the RTI (5–48%) than for

the PI susceptibility scores (10–31%). For PIs, 31% of the

strains were discordant for ritonavir, 27% for indinavir, 22%

for nelfinavir, 20% for amprenavir, 10% for saquinavir and

25% for lopinavir (Table 4). Differences were significant
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when an overall PI drug comparison was performed

(Po 0.001). Saquinavir displayed a significantly lower level

of discordance when compared to ritonavir, indinavir and

lopinavir in a pairwise analysis but not when compared to

nelfinavir and amprenavir. For indinavir and amprenavir,

subtype F displayed significantly higher levels of discor-

dances than subtype B. For saquinavir, this was subtypes D,

F and H. When the intermediate score was assigned to the

susceptible score, the proportions of discordances in the

treatment group decreased, though not as significantly as for

the treatment-naive samples. These subanalyses showed that

the main problem was still associated with the distinction

between intermediate resistant and susceptible, but that the

disagreement on intermediate resistant and resistant also

made a substantial contribution to the overall level of

discordances, especially for amprenavir and lopinavir. Sub-

type H and subtypes G and CRF13 displayed significantly

higher levels of discordances than B in the I = S subanalysis

for nelfinavir and saquinavir scores, respectively. As only a

limited number of sequences were included in the analysis of

subtypes H, G and CRF13 , the results regarding these

subtypes should be interpreted with care.

Table 1. Genotypic drug resistance interpretation of protease and reverse transcriptase sequences obtained from treatment-naive and treated patients

ANRS 2002.3 Stanford HIVDB 2003.08 Rega 5.5 2002

S I R S I R S I R

Treatment-naive

PI

Amprenavir 272 266 6 245 27

Indinavir 267 1 4 267 5 172 96 4

Lopinavir 272 270 2 272

Nelfinavir 271 1 266 3 6 220 51 1

Ritonavir 272 267 5 172 96 4

Saquinavir 271 1 271 1 242 30

RTI

Lamivudine 272 272 272

Abacavir 272 269 3 272

Zidovudine 272 267 2 3 269 2 1

Stavudine 271 1 268 3 1 271 1

Zalcitabine 272 271 1 272

Didanosine 272 272 272

Tenofovir 272 269 3 272

Delavirdine 268 4 266 2 4 259 2 11

Efavirenz 270 2 268 2 2 265 5 2

Nevirapine 270 2 267 3 2 261 2 9

Treated

PI

Amprenavir 138 18 116 8 32 110 24 22

Indinavir 116 3 37 117 4 35 80 36 40

Lopinavir 141 15 117 13 26 136 15 5

Nelfinavir 115 5 36 111 2 43 87 28 41

Ritonavir 122 6 28 117 4 35 80 36 40

Saquinavir 120 1 35 118 2 36 107 13 36

RTI

Lamivudine 101 2 53 95 5 56 90 16 50

Abacavir 114 28 14 68 26 62 78 41 37

Zidovudine 90 66 84 6 66 86 7 63

Stavudine 93 63 86 11 59 102 16 38

Zalcitabine 137 2 17 73 34 49 86 46 24

Didanosine 107 2 47 73 37 46 88 54 14

Tenofovir 109 4 43 92 12 52 107 41 8

Delavirdine 123 33 124 4 28 115 4 37

Efavirenz 118 38 118 4 34 116 11 29

Nevirapine 118 38 118 1 37 111 2 43

PI, protease inhibitors; RTI, reverse transcriptase inhibitors; S, number of sequences that were interpreted as susceptible (S) by the respective algorithm

for a particular drug; I, number of sequences that were interpreted as intermediate resistant (I) by the respective algorithm for a particular drug; R,

number of sequences that were interpreted as resistant (R) by the respective algorithm for a particular drug.
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In contrast to the treatment-naive patient population, the

proportions of discordances obtained for NNRTIs (5–8.3%)

were lower than those for NRTIs (6–48%) in the treated

patient population (Table 5). Differences were significant in

an overall RTI drug comparison (Po 0.0001). Abacavir,

tenofovir, zalcitabine and didanosine displayed significantly

higher levels of discordances in a pairwise comparison with

zidovudine, stavudine, lamivudine, nevirapine, delavirdine

and efavirenz. The proportion of discordances did not differ

significantly between the subtypes for the zidovudine, stavu-

dine and delavirdine scores. CRF06 revealed significantly

higher levels of discordances for nevirapine and efavirenz than

subtype B. However, as only one strain belonged to CRF06,

one should take care not to overvalue this result. Subtype C

was associated with significantly higher proportions of dis-

cordances for lamivudine than was subtype B. The results of

the sub-analysis with only two susceptibility scores showed

that the observed discordances were related to interalgorithm

disagreement between the intermediate and susceptible scores,

as well as between the intermediate and resistant scores.

Table 3. Interalgorithm discordances (%) between genotypic drug resistance interpretations of reverse transcriptase sequences obtained from

treatment-naive patients infected with B and non-B HIV-1 subtypes

NRTI

Total analysis including 3

susceptibility scores (S, I, R) Subanalysis including 2 susceptibility scores (S, R)

Discordances (%)�,w Subtypesz,‰

I score assigned to S score (I = S) I score assigned to R score (I = R)

Discordances (%)�,w Subtypesz,‰ Discordances (%)w Subtypesz,‰

Zidovudine 1.8 � 1.1 � 1.5 1

Abacavir 1.1 � 0 � 1.1 �
Tenofovir 1.1 � 0 � 1.1 �
Stavudine 1.1 � 0 � 1.1 �
Zalcitabine 0.4 1 (CRF11) 0 � 0.4 1 (CRF11)

Lamivudine 0 � 0 � 0 �
Didanosine 0 � 0 � 0 �
NNRTI

Nevirapine 4.0 � 2.6 � 1.8 �
Delavirdine 3.7 � 2.6 � 1.5 �
Efavirenz 2.2 � 0 � 2.2 �

�Proportions of sequences that displayed discordances were significantly different when performing an overall drug comparison (Po 0.0001).
wProportions of discordances that did not differ significantly from each other in a pairwise analysis are displayed in an identical font style (bold, regular or italic).
z1, indicates that the proportion of discordances differed significantly between all subtypes for a respective drug (Po 0.05); –, indicates that the proportion

of discordances did not differ significantly between all subtypes for respective drug.
‰Subtypes that displayed significantly more discordances than subtype B for the susceptibility scoring to the respective drug are in brackets.

Table 2. Interalgorithm discordances (%) between genotypic drug resistance interpretations of protease sequences obtained from treatment-naive

patients infected with B and non-B HIV-1 subtypes

PI

Total analysis including 3

susceptibility scores (S, I, R) Subanalysis including 2 susceptibility scores (S, R)

Discordances (%)�,w Subtypes z,‰

I score assigned to S score (I = S) I score assigned to R score (I = R)

Discordances (%)w Subtypes z,‰ Discordances (%)�,w Subtypes z,‰

Ritonavir 39 1 (A, F) 1.5 1 (CRF13) 37 1 (A, F)

Indinavir 38 1 (A, F) 1.5 1 (CRF13) 36 1 (A, F)

Nelfinavir 19 1 0.70 � 19 1

Amprenavir 12 1 (F) 0 � 12 1 (F)

Saquinavir 12 1 (F, K, CRF05) 0.40 � 11 1 (F, K, CRF05)

Lopinavir 0.60 � 0 � 0.70 �

�Proportions of sequences that displayed discordances were significantly different when performing an overall drug comparison (Po 0.0001).
wProportions of discordances that did not differ significantly from each other in a pairwise analysis are displayed in an identical font style (bold, regular or

italic).
z1, indicates that the proportion of discordances differed significantly between all subtypes for a respective drug (Po 0.05); –, indicates that the

proportion of discordances did not differ significantly between all subtypes for respective drug.
‰Subtypes that displayed significantly more discordances than subtype B for the susceptibility scoring to the respective drug are in brackets.
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Prevalenceofmutationsand their contributions
togenotypicdrug resistance interpretation

For particular drugs, some non-B variants displayed signifi-

cantly more discordance than subtype B. Therefore, we

investigated whether certain amino acid changes that might

influence the genotypic drug resistance interpretations (as

recorded in Fig. 1) were more prevalent in some non-B

variants. The analysis was restricted to the treatment-naive

population because the analysis in the treated populations

could be biased due to different treatment history in the

different subtypes.

Compared to subtype B, the major mutation M46L was

more prevalent in CRF13. Minor mutations at positions 10, 20,

36, 63, 77 and 93 of the protease were significantly more often

observed in subtypes A (L10I, M36I), C (K20R, M36I, I93L), D

(M36I), F (L10V, K20R, M36I), G (K20I, M36I), J (M36I,

L63T), CRF01 (M36I), CRF02 (K20I, M36I, I93L), CRF05

Table 5. Interalgorithm discordances (%) between genotypic drug resistance interpretations of reverse transcriptase sequences obtained from treated

patients infected with B or non-B HIV-1 subtypes

NRTI

Total analysis including 3

susceptibility scores (S, I, R) Subanalysis including 2 susceptibility scores (S, R)

Discordances (%)�,w Subtypesz,‰

I score assigned to S score (I = S) I score assigned to R score (I = R)

Discordances (%)�,w Subtypesz,‰ Discordances (%)w Subtypesz,‰

Zidovudine 6 � 3.0 � 6.0 1 (H)

Abacavir 48 1 31 1 44 1

Tenofovir 39 1 32 1 35 1

Stavudine 21 � 18 � 15 �
Zalcitabine 44 1 22 1 38 1

Lamivudine 10 1 (C) 4 1 (C) 10 1 (C)

Didanosine 46 1 28 1 45 1

NNRTI

Nevirapine 5.0 1 (CRF06) 4.0 � 1.0 1 (CRF06)

Delavirdine 8.3 � 7.0 � 4.0 1 (CRF06)

Efavirenz 7.0 1 (CRF06) 6.0 � 7.0 1 (CRF06)

�Proportions of sequences that displayed discordances were significantly different when performing an overall drug comparison (Po 0.0001).
wProportions of discordances that did not differ significantly from each other in a pairwise analysis are displayed in an identical font style (bold, regular,

italic or underlined).
z1, indicates that the proportion of discordances differed significantly between all subtypes for a respective drug (Po 0.05); –, indicates that the

proportion of discordances did not differ significantly between all subtypes for respective drug.
‰Subtypes that displayed significantly more discordances than subtype B for the susceptibility scoring to the respective drug are in brackets.

Table 4. Interalgorithm discordances (%) between genotypic drug resistance interpretations of protease sequences obtained from treated patients

infected with B and non-B HIV-1 subtypes

PI

Total analysis including 3

susceptibility scores (S, I, R) Subanalysis including 2 susceptibility scores (S, R)

Discordances (%)�,w Subtypesz,‰

I score assigned to S score (I = S) I score assigned to R score (I = R)

Discordances (%)�,w Subtypesz,‰ Discordances (%)�,w Subtypesz,‰

Ritonavir 31 � 8 � 28 �
Indinavir 27 1 (F) 4 � 25 1

Nelfinavir 22 1 5 1 (H) 21 1

Amprenavir 20 1 (F) 10 � 17 1 (F)

Saquinavir 10 1 (D, F, H) 2 1 (G, CRF13) 10 1 (D, F, H)

Lopinavir 25 1 17 1 21 1

�Proportions of sequences that displayed discordances were significantly different when performing an overall drug comparison (Po 0.001).
wProportions of discordances that did not differ significantly from each other in a pairwise analysis are displayed in an identical font style (bold or

underlined).
z1, indicates that the proportion of discordances differed significantly between all subtypes for a respective drug (Po 0.05); –, indicates that the

proportion of discordances did not differ significantly between all subtypes for respective drug.
‰Subtypes that displayed significantly more discordances than subtype B for the susceptibility scoring to the respective drug are in brackets.
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(L10V), CRF06 (K20I, M36I), CRF11 (L10I, L63T), CRF13

(K20I/L, M36I, L63S, V77I). The majority of non-B subtypes

(A, C, F, G, J, CRF05, CRF11 and CRF13) had significantly

more minor PI mutations than subtype B. The minor muta-

tion L63P was less prevalent in subtypes A, CRF02 and CRF11

than in subtype B. V77I was less prevalent in subtypes A, F, G

and CRF02. At resistance-related positions, reverse transcrip-

tase displayed fewer differences between non-B and B. Only

V118I was significantly more prevalent in subtype D, and

V179I significantly more prevalent in subtype A.

Irrespective of the subtype, the presence of single muta-

tions in treatment-naive samples that were given clearly

IDV RTV SQV NFV APV LPV
PI A S R A S R A S R A S R A S R A S R
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20 

24 

30 

32 

33

35

36

41

46 
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48

50 

53

54 

62 

63

71

73

77

82 

84 

88

90 

93

major (presence of single mutation
causes R score)

intermediate (presence of single
mutation causes I score)

minor (presence of single mutation
causes S score)

no data

Colouring as for the highest score for a 
particular amino acid change at that position
A = ANRS 2002.3, S = Stanford HIVDB 2003.08,
R = Rega 5.5 2002

NNRTI
NVP DLV EFV

A S R A S R A S R
98
100
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106A
106M
106I
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318

AZT d4T ddI ddC 3TC ABC TDF
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41
44
62
65
67

del67
69

del69
ins69
70
74
75
77
115
116
118
151
184
210
215
219
333

Fig. 1. Contribution of mutations to genotypic drug resistance interpretation in three different algorithms.
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different scores by the algorithms could also be responsible

for some of the observed discordances (e.g. Protease: M46I/

L (1.8%), L90M (0.4%); RT: A98G (0.3%), K101Q (0.3%),

V106I (1.9%), V108I (0.75%), V179D/I (4.9%), F227L

(0.3%)).

A summary is presented in Fig. 1 of the different positions

of PI and RTI mutations and their individual impact on

antiretroviral drug susceptibility, as scored by the three

algorithms.

Discussion

The rules of algorithms are mainly derived from in vitro and

in vivo data obtained on subtype B. However, the applica-

tion of these different algorithms produces discordant

interpretations even on subtype B strains (Ravela et al.,

2003; Sturmer et al., 2003; Zazzi et al., 2004). Non-B

subtypes are, in addition, characterised by the presence of

several resistance-related mutations that occur as natural

variants (Pieniazek et al., 2000; Vergne et al., 2000; Kantor &

Katzenstein, 2003). In this study, we examined to what

extent this might result in interalgorithm discordances. We

showed high levels of discrepancies between the different

algorithms in ARV treatment-naive and treated patients

infected with either non-B or B strains.

In treatment-naive patients, the highest discordances

were seen in the protease gene. Minor mutations occurring

naturally in non-B strains (positions 10, 20, 36, 63, 77 and

93 in protease) were responsible for the majority of dis-

cordances because combinations of them are associated with

intermediate resistance by certain algorithms. In particular,

the Rega algorithm, which predicts intermediate PI suscept-

ibility when two minor mutations are present and suggests

adopting alternative drug choice, contributed to the high

interalgorithm discordance. Only for lopinavir was a low

level of discordance observed, because in all algorithms a

large number of minor mutations are required for a change

in the susceptibility score. As a consequence, when the

interalgorithm comparisons were made considering the

intermediate level as susceptible, a better concordance was

seen. It is necessary to further characterize the clinical

relevance of this level in the prediction of PI susceptibility

in non-B strains. Furthermore, the intermediate level is not

similar for all algorithms, and has a higher score in ANRS

and Stanford algorithms than in Rega. In the Rega algo-

rithm, intermediate level just corresponds to alternative

therapeutic choice. In addition, we arbitrarily classified the

five levels of the Stanford algorithm in three levels, consider-

ing low-level resistance intermediate. The intermediate level

classification related to minor mutations was the main

source of interalgorithm discordances, with one algorithm

assigning an intermediate level and the other algorithms a

susceptible level. In subtype B-infected patients under

therapy, minor mutations occur during the accumulation

of major mutations and help compensate for the reduced

fitness of mutated viruses (Nijhuis et al., 1999). Their

natural presence in non-B strains could thus facilitate the

rapid emergence of resistant strains (Perno et al., 2001).

Clinical studies on the efficiency of ARVs on non-B-infected

patients in Europe and Africa, however, suggest a similar

efficacy of PIs after 12–18 months, although a longer follow-

up may be needed to confirm this (Frater et al., 2001). The

M46I mutation, associated with resistance to indinavir for

ANRS, intermediate resistance to nelfinavir and amprenavir

for Stanford, and intermediate resistance to indinavir and

ritonavir for Rega, was observed significantly more often in

CRF13 strains from patients residing in regions in Africa

where PIs have either not yet been introduced or have been

introduced only recently, and is probably a natural poly-

morphism. It is necessary to elucidate the role of this

mutation.

In non-B strains from naive patients, we observed NNRTI

resistance substitutions at major and intermediate positions,

e.g. 98, 101, 106, 108 and 179. They were not significantly

specific to a particular subtype or CRF. Certain algorithms

considered these substitutions major, intermediate or minor

mutations (definition from Fig. 1). Their implications for

NNRTI susceptibilities await further clarification.

More interpretation discordances were observed in the

treated than in the naive patients. Whereas major PI muta-

tions were selected in only 28.8% of patients, similar levels

of discordances were observed for predictions of PI suscept-

ibilities in the naive and treated population. Discordances

were mainly related to interpretations of minor mutations

present as natural variants in non-B subtypes. The highest

level of discordance was observed for the most recent PIs,

amprenavir and lopinavir, reflecting the limited knowledge

on their resistance.

For RTIs, the interpretations of complex mutation pat-

terns were the main reason for interalgorithm discordances,

especially those related to cross-resistance and antagonistic

interactions. These discordances were seen in patients

infected with B strains as well as those infected with non-B

strains. The impact of NAMs on overall NRTI susceptibil-

ities is difficult to assess. Stavudine, didanosine and tenofo-

vir susceptibilities are difficult to measure because biological

and clinical cut-offs overlap with reproducibility cut-offs.

Some clinical studies showed that NAMs can be selected by

stavudine and didanosine and patients with NAM mutated

virus were reported to not or only partially respond to

stavudine therapy (Coakley et al., 2000).

Stanford and Rega algorithms consider that the M184V

mutation is also associated with intermediate resistance to

other NRTIs, such as abacavir, zalcitabine and didanosine.

In addition, the M184V mutation can partially reverse

T215Y-mediated resistance to zidovudine. This fact was not
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considered in a similar way by all algorithms (implemented

by Stanford and Rega, but not by ANRS). Numerous

discordances were observed to interpret tenofovir and

abacavir susceptibilities (39% and 48%, respectively) but

few data are available to evaluate the mutations inducing

resistance in these recently introduced drugs (Brun-Vézinet

et al., 2003).

For NNRTIs, discordant interpretations were related to

the following mutations, Y181C, Y188L, G190A, which,

depending on the algorithm, were considered resistant or

intermediate resistant. In addition, the natural polymorph-

isms A98G, V106I and V108I, often observed in non-B

subtypes, were also present in the treated population and

led to interpretation discrepancies.

Interpretation algorithms are regularly updated; our

results were analyzed with the 2003 algorithms. Only small

modifications have been added since and our data are thus

still relevant on the use of these algorithms on non-B

variants. The aim of this study was to test the use of these

algorithms on non-B variants, not to select one algorithm as

the best one, as data about clinical outcome are limited. This

study shows much discordance between genotypic drug

resistance interpretation algorithms when applied to non-B

strains from HIV-1 naive and treated patients. It is necessary

to match different algorithms for better patient care. Further

retrospective and prospective clinical studies in Europe and

in developing countries are necessary to elucidate the

interalgorithm discordances and to determine whether some

subtypes or CRFs select other mutations at positions known

for subtype B or even at positions which were not docu-

mented to be associated with resistance in B strains and

whether minor mutations in non-B should be differently

appreciated than in subtype B. More studies on the correla-

tion between phenotype and genotype would also help to

improve algorithms and elucidate the role of minor muta-

tions as natural polymorphisms.
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