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A B S T R A C T

Micronekton are the mid-trophic level of the ecosystem and contribute to active carbon export to the deep ocean
through diel vertical migrations. Better characterization of micronekton functional groups depending on re-
lationships to environmental variables is useful for the management of marine resources, the conservation of
biodiversity and a better understanding of climate change impacts. For this purpose, regionalization of global
ocean into homogeneous provinces is an approach that is generating increasing interest. However, published
regionalizations efforts (i) derived from environmental forcings, that do not specifically focus on micronekton
and (ii) derived from acoustic backscatter, which do not allow direct estimates of micronekton biomass. Here, we
propose to fill the gap between biophysical regionalizations and micronekton biomass. We notably defined
biophysical biomes using global environmental variables known to affect micronekton: temperature of the
epipelagic layer, temperature stratification, and net primary production (NPP). Six biophysical biomes were
defined with a clustering method. A characterization of these biophysical biomes with simulated micronekton
from the SEAPODYM-LMTL model displayed biome-specific relationships between biomass and the environ-
mental variables used in the clustering (i.e. biomasses mostly structured by NPP and temperature). Biophysical
biomes also displayed specific vertical structures suggested by modelled micronekton functional groups ratios.
Then, a validation of biophysical biomes’ boundaries was performed to identify potential vertical structure
reorganization in acoustic backscattering response from adjacent biomes. The regionalization identified homo-
geneous areas in terms of acoustic vertical structure, which were also different between adjacent biomes. Finally,
a comparison with another biomes’ definition computed from micronekton biomasses suggested that environ-
mental variables can account for only some of the variability of the micronekton structures.

1. Introduction

Micronekton are defined as organisms in a size range from 2 to 20
cm. They contain a wide diversity of taxa dominated by crustaceans, fish
and molluscs. Some of the micronekton species are known to perform
diel vertical migration (DVM), presumably to forage in the surface layer
at night while minimizing predation risk and returning at depths to hide
from predators during the day (Benoit-Bird et al., 2009). This daily
vertical migration, which takes place all over the world ocean can be
seen as the biggest animal daily migration on Earth and notably impacts

the ocean carbon cycle by actively exporting carbon below the mixed
layer (Bianchi et al., 2013; Gorgues et al., 2019; Pinti et al. 2021).
Micronekton also constitute a key intermediate trophic level of the
oceanic food web. They feed mostly on zooplankton and are the main
prey of marine large predators, some of which are of crucial economic
importance (e.g. tunas, see Economic and Development Indicators and
Statistics: Tuna Fisheries of the Western and Central Pacific Ocean; Bell
et al., 2015; McCluney et al., 2019). Despite their pivotal position,
knowledge on micronekton remains fragmented with only a few rough
estimates of biomasses (Irigoyen et al., 2014; Proud et al, 2019).
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Direct observations of the micronekton rely mainly on trawl sam-
pling, which are costly and complex deep-water operations to perform
(Pakhomov et al., 2010; Kwong et al., 2018). The method is known to be
subject to biases due to avoidance and poor catchability of some species
(Kaartvedt et al., 2012), and the destruction of the more fragile organ-
isms, e.g., salps (Barbin et al., 2024). Net catchability also strongly de-
pends on mesh sizes and trawling speed. Optical measurements, such as
photos or videos acquired by a camera system often mounted on an
acoustic probe, can provide a promising non-destructive alternative to
trawl sampling, not impacted by net catchability (Graham et al., 2003;
Allken et al., 2021). However, these measurements are challenging to
conduct due to the lack of natural light below the epipelagic layer, and
the impact of artificial lighting on micronekton behavior (Benoit-Bird
et al., 2023). The analysis of top predators’ diets can also serve as a
method for observing micronekton and assessing trophic connections
between mid- and high-trophic levels (Lansdell and Young 2007; Allain
et al., 2012). However, since this approach involves examining stomach
contents, identifying and quantifying micronekton organisms can be
challenging, particularly depending on their state of digestion. As a
result, the analysis is largely qualitative. Indirect observations through
ship-borne acoustic echosounders are a non-destructive alternative
approach which presents the advantage of covering large ocean areas
(Haris et al., 2021; Ariza et al., 2022). Acoustic methods provide a proxy
for micronekton density along the water column, with the single
narrowband frequency of 38 kHz being commonly used (Kloser et al.,
2009). However, interpreting backscattering response from this single
frequency is challenging in ecosystems with a high diversity of taxa
(Benoit-Bird and Lawson, 2016; Barbin et al., 2024). At 38 kHz, the
scattering response is primarily influenced by organisms with gas-filled
swim bladders, such as myctophids but not only. Additionally, the
acoustic response of individuals varies with their size and orientation
(McGehee et al., 1998; Scoulding et al., 2017). Although acoustic
methods have biases in observing micronekton, detecting shifts or re-
organizations in the backscatter intensity vertical structure is a useful
tool for identifying ecosystem changes.

Machine learning techniques have significantly facilitated the use of
acoustic datasets to define global oceanic acoustic micronekton biomes.
For instance, Proud et al. (2017) and Ariza et al. (2022) defined, at
global scales, biomes of similar acoustical characteristics related to a few
environmental variables (e.g. temperature and (i) primary productivity
and wind stress for Proud et al. (2017) or (ii) chlorophyll and subsurface
oxygen for Ariza et al. (2022)). Yet, the approaches based on acoustic
data present the drawbacks of not allowing direct estimates of micro-
nekton biomasses or species composition without broad assumptions or
additional ground truthing data (Davison et al., 2015; Benoit-Bird and
Lawson, 2016; Barbin et al., 2024).

Thus, the observation and biogeographic description of mesopelagic
provinces must be supplemented by statistical or mechanistic modeling.
Environmental and acoustic data can be crossed in a statistical approach
(Proud et al., 2017; Ariza et al., 2022), converted into biomass by
theoretical scattering models (Benoit-Bird 2009; Jech et al., 2015; Bar-
bin et al., 2024) or compared to ocean ecosystem models with more or
less complex representations of the trophic levels, food web and energy
transfer (e.g., Ecopath (Polovina and Marten, 1982; Walters et al.,
1997); Lehodey et al., 2010; Apecosm (Maury, 2010; Dupont et al.,
2023); Blanchard et al., 2017; Anderson et al., 2019; Petrik et al., 2019;
Hatton et al., 2021; Hill Cruz et al., 2023).

Here, we thus propose a complementary approach to the biomes
definitions and characterizations used in acoustic-based studies,
focusing rather on biomasses of micronekton from the Spatial Ecosystem
and Population Dynamics Model – Low and Mid Trophic Levels (SEA-
PODYM-LMTL: Lehodey et al., 2010; 2015; Conchon, 2016) model. The
objective is to identify homogeneous micronekton functional patterns
using only a simple and parsimonious set of biophysical variables, and to
evaluate the biomes’ micronekton biomasses characteristics. Differences
with acoustic based studies are discussed. Moreover, biomes defined by

a common, simple, set of environmental conditions and aligned with the
structure of micronekton functional groups, help to estimate large scale
biomass from sparse, unevenly distributed data. In this study, we are
able to use biophysical data to extrapolate micronekton biomass, which,
to our knowledge, is a novel contribution to the literature. Our approach
also stands out for its dynamical aspect, with the production of biomes’
time series that offer an accurate framework to observe the spatio-
temporal variability of micronekton.

The present study is organized as follows. First, we compute bio-
physical biomes by clustering environmental variables known to have an
impact on micronekton biomass and which are derived from
SEAPODYM-LMTL forcings. We provide, at global scale, a time-averaged
as well as a monthly definition of these biomes for the period considered:
1998–2019. Then, we characterize the biomes’ micronekton biomasses
using SEAPODYM-LMTL model outputs. We analyze the biomes-specific
relations between the vertically integrated density of micronekton
biomass and the environmental variables used in the clustering,
micronekton vertical structure patterns per biome, quantitative biolog-
ical indicators, and values of global and migrant micronekton biomass
per biome. Then, we perform a validation of biophysical biomes’
boundaries using acoustic backscatter data (observations). Finally, we
compute a second clustering derived directly from micronekton bio-
masses using SEAPODYM-LMTL model outputs, to compare with the
clustering from environmental variables and determine the potential
differences introduced by the dynamics of the micronekton groups in the
model.

2. Material and methods

2.1. Micronekton model

The numerical ecosystem model used in this study to compute
micronekton biomass density is SEAPODYM-LMTL (Lehodey et al.,
2010, 2015; Conchon, 2016). It is based on the energy transfer across the
food web (Iverson, 1990) and a simplified view of the global marine
ecosystem considering phytoplankton, zooplankton, micronekton and
top predators. SEAPODYM-LMTL focuses on low and mid-trophic levels
(mesozooplankton and micronekton respectively), modeling six micro-
nekton functional groups defined according to their migratory behav-
iors, and one group of mesozooplankton.

SEAPODYM-LMTL uses the vertically integrated net primary pro-
duction (NPP) as the source of energy for the functional groups of
micronekton and mesozooplankton. Temperature and horizontal cur-
rents determine the population development (growth, mortality) and
the spatial dynamics (Lehodey et al., 2010, 2015). The euphotic depth
(Zeu) is used to define three vertical layers inhabited by resident and
migrant organisms: the epipelagic layer between surface and 1.5*Zeu
(~0–150 m), the upper mesopelagic layer between 1.5*Zeu and 4.5*Zeu
(~150–400 m), and the lower mesopelagic layer between 4.5*Zeu and
10.5*Zeu (~400–1000 m) (hereafter referred to as L1, L2 and L3
respectively). Those definitions have been validated using a large
dataset of acoustic data (Lehodey et al., 2015; Conchon et al., 2016).
Temperature and currents are averaged over these three layers. In the
following, we use the notation T1, T2, T3 for temperatures averaged in
layer 1, 2 and 3 respectively. Unlike the resident functional groups, the
migrant micronekton functional groups perform DVM and are exposed
to different temperature and currents conditions in the vertical layers.
Therefore, according to the layers inhabited in the daytime and night-
time (nomenclature: Layerday.Layernight), the model simulates three
resident and three migrant micronekton functional groups: epipelagic
(L1.L1), upper mesopelagic (L2.L2), lower mesopelagic (L3.L3), migrant
upper mesopelagic (L2.L1), migrant lower mesopelagic (L3.L2) and
highly migrant lower mesopelagic (L3.L1).

The model domain is global with a monthly resolution and a spatial
resolution of a quarter of a degree. The time series of the simulation
extends from January 1998 (corresponding to the commissioning of
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ocean color observation satellites) to December 2019. Prior to vertical
averaging, 3D temperature and currents are taken from the FREE-
GLORYS ocean simulation, produced by Mercator Ocean International
using the ocean general circulation model NEMO (Madec et al., 2008) in
a configuration without data assimilation (Lellouche et al., 2021). NPP
(mmolC/m2/day) is computed with VGPM (Vertical Generalized Pro-
duction Model, Behrenfeld and Falkowski, 1997), from satellite
chlorophyll-a concentration. As there is no reliable satellite chlorophyll
data for latitudes above ~ 60◦ due to sun glint, cloud coverage, and low
light levels (e.g. Gregg & Casey, 2007), the dataset has been completed
in high latitudes by a biogeochemical product using chlorophyll from
PISCES biogeochemical model (Aumont et al., 2015) (See detailed in-
formation about the data in supplementary material, Table S1). This is to
avoid gaps in forcing data.

2.2. Clustering analyses

In this section, we introduce the two clustering analyses conducted in
our study: the biophysical clustering (derived from biophysical vari-
ables), and the biomass clustering (derived from modelled micronekton
biomass). The flowchart in Fig. 1 illustrates the implementation of the
methodology, including the two clustering processes described below.

2.2.1. Biophysical clustering
In order to identify potential micronekton homogeneous patterns

using only a parsimonious set of environmental variables, we region-
alize the global ocean in biomes based on environmental variables
(hereafter referred to as “biophysical biomes”). Biophysical biomes are
defined as contiguous areas with no gaps and no overlaps, displaying
homogeneous biophysical characteristics. These biomes are built using
the integrated NPP, the mean temperature in the epipelagic layer of
SEAPODYM-LMTL (T1) and the temperature difference between the first
and second pelagic layers (i.e. epi and uppermeso-pelagic layers) used in
SEAPODYM-LMTL, as an index of the stratification (hereafter referred to
as “stratification”). These biophysical variables are derived from the
ones that force SEAPODYM-LMTL, and are similarly computed from the

FREEGLORYS ocean simulation (for T1 and stratification) and VGPM,
supplemented by PISCES in high latitudes (for NPP) (Table S1). Note
that (i) temperature is also used by Proud et al. (2017) and Ariza et al.
(2022) to cluster acoustic data, (ii) NPP is also used in Proud et al.
(2017), while Ariza et al. (2022) used chlorophyll concentration. Both
latter variables (i.e. NPP and Chlorophyll) are highly correlated and
present relatively similar patterns at global scale (Behrenfeld and Fal-
kowski, 1997). Finally, the stratification used in this study is also related
to the vertical mixing of the water column as are either the wind stress
(Proud et al., 2017), the subsurface dissolved oxygen concentration
(Ariza et al., 2022). Consequently, the use of the forcing variables of
SEAPODYM-LMTL fits into a relatively similar philosophy underlying
the choice of variables leading to regionalization, in our study as well as
in those of Proud et al. (2017) and Ariza et al. (2022).

As the three environmental variables (i.e. epipelagic layer tempera-
ture, stratification and NPP) are partially correlated, a Principal
Component Analysis (PCA) (Hotelling, 1933) is performed to reduce the
dimension to independent variables while retaining the main modes of
variability. Then, we perform a clustering (hereafter referred to as
“biophysical clustering”) on the PCA principal components that explain
the most variance (see selected principal components’ variances in
section 3.1) to define the biophysical biomes.

We aim to create homogeneous biophysical biomes by identifying
intrinsic structures or trends in the data without having any precon-
ceived notions about clusters. To do so, we use the unsupervised ma-
chine learning clustering algorithm k-means (Lloyd, 1957; Pedregosa
et al., 2011) that partitions the observations into k homogeneous clus-
ters (k being a natural number less than the number of observations).
Since the model is unsupervised, k-means requires that we define the
optimal number of clusters k beforehand, to assign each individual to
one of the k predefined clusters. Among the different existing methods to
determine this optimal number of clusters k, we use the silhouette
metrics (Rousseeuw et al., 1987; see Figure S1). The silhouette coeffi-
cient evaluates the quality of a dataset’s partitioning in classification
tasks. It measures both cohesion (how close data points are within a
cluster) and separation (how distinct clusters are from each other). This

Fig. 1. Flowchart describing the implementation of the global methodology: data sources used, different methods and tests applied, and diagnostics. Each element of
this figure is described in detail in the Material and Methods.
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makes it a more comprehensive metric compared to others that may
focus on only one aspect (for instance, the elbow method primarily
considering cohesion, yielded inconclusive results when we tested it for
determining k). Moreover, silhouette doesn’t require labeled data,
making it well-suited for unsupervised methods like k-means. We
calculate the average silhouette coefficient for k-means clustering with
different numbers of clusters. The optimal number of clusters k is the one
that leads to the clustering with the higher average silhouette coefficient
(see dashed line in Figure S1).

After having determined the clustering variables based on the PCA
and set the optimal number of clusters, we apply the machine learning
methodology. Machine learning methods involves two phases: (i) the
training phase consists in the training of the machine learning model on
input data to learn patterns from similarities in the data and (ii) the
prediction phase consists in the application of the learned patterns to
new data to make predictions.

Applying the training phase of the clustering model (i), we define
static reference biophysical biomes representative of the entire period
considered: 1998–2019, at global scale. The training phase of the clus-
tering model is performed on the PCA principal components from time-
averaged data (computed from monthly data spanning 1998 to 2019
with a ¼-degree spatial resolution), creating the reference clustering
with k homogeneous clusters. After the training process, the model pa-
rameters are estimated, and we can use this model to make predictions
on other data.

Hence, we apply the prediction phase of the model (ii) on monthly
data over the same period 1998 to 2019 (monthly PCA principal com-
ponents derived from monthly ¼ degree data). A monthly biophysical
clustering is provided over the time period, i.e., monthly definition of
biomes. This biophysical biomes’ time series accounts for the seasonal to
interannual variability. This dynamic approach facilitates the exami-
nation of micronekton’s spatio-temporal variability and provides an
accurate framework for gathering and analyzing field data, such as
acoustic transects or trawl samples, within a unified spatio-temporal
scale.

2.2.2. Biomass clustering
In order to understand how the biophysical regionalization compares

to the micronekton biomasses, we run an alternative biomes’ definition
based on modelled micronekton biomasses.

A second clustering is thus performed using the samemethodology as
the biophysical clustering, but with modelled micronekton biomass
instead of the biophysical variables. We refer to this as “biomass clus-
tering”. From the six functional groups of SEAPODYM-LMTL outputs, we
derive three simplified ones, defined as:

- The epipelagic: resident epipelagic group (L1.L1).
- The mesopelagic: sum of resident mesopelagic groups (L2.L2 and L3.
L3) and migrating between mesopelagic layers (L3.L2).

- The migrant: sum of mesopelagic groups migrating in the epipelagic
layer (L2.L1 and L3.L1).

We consider two ratios of micronekton functional groups as clus-
tering variables: respectively mesopelagic and migrant over the epipe-
lagic simulated biomasses. The biomass clustering is performed
following the same steps than the biophysical clustering (i.e. using k-
means training phase, but no PCA). Six micronektonic homogeneous
biomes are defined by clustering of these two variables, hereafter
referred to as “biomass biomes”.

2.3. Biophysical biomes, provinces and characterization

In this section, we first present a sensitivity analysis to assess the
robustness of the biophysical clustering. Next, we explain how provinces
are derived as subdivisions of the biophysical biomes. Finally, we
introduce the methods used to characterize the biophysical biomes and

provinces based on modeled micronekton biomass.

2.3.1. Sensitivity analysis
The robustness of the biophysical clustering obtained with the

reference dataset, i.e., FREEGLORYS for the physical variables and
VGMP for the biological variable (see section 2.2.1., and Table S1), is
tested by computing other biophysical clusterings derived from alter-
native environmental datasets. These alternative datasets include
physical data from ARMOR3D (Guinehut et al., 2012; Mulet et al., 2012)
and biological data from Eppley-VGPM (Eppley 1972; Morel 1991;
Behrenfeld and Falkowski 1997) or from the biogeochemical model
PISCES (See detailed information about the data sources in supple-
mentary material, Table S1).

We use the F1-score, a widely used metric in machine learning and
information retrieval, as the evaluation metric to compare the bio-
physical clusterings derived from the different datasets (Hastie et al.,
2009). F1-score is the harmonic mean of precision (ratio of true positives
to the sum of true positives and false positives, measuring the accuracy
of positive predictions) and recall (ratio of true positives to the sum of
true positives and false negatives, measuring the model’s ability to
capture all actual positives). F1-score ranges from 0 to 1; respectively
the worst and best degree of prediction. This metric is calculated be-
tween the reference biophysical clustering using FREEGLORYS − VGPM
and every alternative biophysical clustering derived from the other
datasets. The following combinations of data sources for alternative
clusterings are considered for comparison with the reference dataset
FREEGLORYS-VGPM: FREEGLORYS-Eppley-VGPM and FREEGLORYS-
PISCES for sensitivity to biogeochemical forcings, and AMOR3D-
VGPM for sensitivity to physical forcings.

The results of the biophysical clustering analysis is consistent
regardless of the physical data source used: substituting ARMOR3D data
to FREEGLORYS generates 93 % of clustering accurate prediction
compared to the reference clustering (Table 1). On the other hand, the
clustering is more sensitive to the biogeochemical data source used.
Indeed, substituting the biological data source VGPM with VGPM-
EPPLEY generates 76 % of accurate prediction and this decreases to
69 % when substituting with the data derived from biogeochemical
model PISCES.

A sensitivity analysis is also conducted using varying spatial reso-
lutions, demonstrating that degrading the resolution from 0.25 to 1
degree does not affect the clustering results. The reference biophysical
clustering considered hereafter is based on the same datasets as those
used to force SEAPODYM-LMTL (i.e., FREEGLORYS and VGPM) with a
spatial resolution of 0.25 degrees.

2.3.2. From biophysical biomes to provinces
The biophysical clustering leads to the definition of large homoge-

neous biophysical biomes, characterizing environmental regimes at
global scale. From these large biomes, we define provinces as sub-
regions split between different ocean basins and hemispheres. As
similar oceanographic regimes are repeated in multiple locations, bio-
physical biomes are extended over different ocean basins. However,
large-scale communities with similar structural and functional compo-
sitions may nonetheless consist of distinct species assemblages due to

Table 1
Sensitivity analysis results. F1-scores calculated to compare the reference bio-
physical clustering (VGPM-FREEGLORYS) with alternative biophysical cluster-
ings from different datasets. F1-score ranges from 0 to 1 (respectively the worst
and best degree of prediction).

VGPM −

FREEGLORYS
VGPM −

ARMOR3D
Eppley VGPM
−

FREEGLORYS

PISCES −

FREEGLORYS

VGPM-
FREEGLORYS

1 0.93 0.76 0.69
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spatially separated co-evolutions between different hemispheres or
ocean basins (Spalding et al., 2012; Sutton et al., 2017). Here we defined
provinces as biophysical biomes’ sub-divisions at the scale of ocean
basin and hemisphere characterized both by areas of stable biophysical
drivers and potential taxonomic identity. A map of these provinces is
provided in the supplementary material, also identifying the biome they
belong to (Figure S2).

2.3.3. Characterization with modelled micronekton biomass
With the purpose of demonstrating the relationship between our

biophysical clustering and micronekton biomass, we use modeled
micronekton biomass to characterize the biophysical biomes and
provinces.

We restrict the spatial domain of the biophysical clustering to depths
greater than 10.5*Zeu (i.e. roughly 1000 m deep, the bottom depth for
L3), ensuring the existence of the three pelagic layers of SEAPODYM-
LMTL. This restriction allows the biomes’ characterization with the
micronekton biomass modeled by SEAPODYM-LMTL for all functional
groups. This excludes the shallow coastal areas (see grey areas in Fig. 3).
From the six functional groups of SEAPODYM-LMTL, we derive three
simplified ones, epipelagic, mesopelagic and migrant (see detailed
composition of the simplified groups section 2.2.2.).

Spatially averaged biomasses of these three functional groups are
computed from SEAPODYM-LMTL outputs to characterize the bio-
physical biomes and provinces in terms of micronekton biomass and
vertical structure of the ecosystem. For each biome or province, we
compute the mean micronekton biomass (wet weight in g/m2) for each
functional group, examine the relationships between total biomass,
epipelagic layer temperature, and NPP, and analyze the biomass ratios
of mesopelagic/epipelagic and migrant/epipelagic to understand the
ecosystem’s vertical structure.

This way, we are able to compare micronekton biomass and vertical
structure between the different biophysical biomes, but also between the
provinces belonging to the same biome.

Biome’s characterization by quantitative biological indicators and
values of global and migrant micronekton biomass can also be useful
tools for future mid-trophic biological studies. We compute two bio-
logical indicators for each biome: the generation time (tG) and maximum
lifespan (tmax) of organisms, which both depend on temperature
(Huntley and Lopez, 1992; Gillooly et al., 2002; Lehodey et al., 2001;

2010) (Table S2). The generation time is the age at maturity for the
micronekton population considered. The maximum lifespan is defined
as in Lehodey at al., 2010 as the time necessary to see the population
reduced to a specific level (e.g., x = 5 % here). As the relationships are
exponentially decreasing functions with temperature, the colder the
biome, the longer the generation time and maximum lifespan (Lehodey
at al., 2010). Here we consider a monthly time series of temperatures
from 1998 to 2019 for each pelagic layer of SEAPODYM-LMTL, spatially
averaged for each biome. We compute the values of tG and tmax from the
mean temperature of each vertical layer per biome (Table S2). These
values can be compared to the biological characteristics of resident
species in each corresponding layer of the biophysical biomes. For
migrant species, these parameters values would need to be weighted by
the time spent in each layer based on daytime and nighttime durations,
which vary by date and latitude.

2.4. Acoustic database and biophysical biomes’ boundaries validation

Acoustic transects are used to validate the biophysical biomes’
boundaries. Here we use in situ acoustic backscattering response from
echosounders at the frequency of 38 kHz. Despite the biases associated
with acoustic methods in micronekton observation (described in Intro-
duction section), acoustics provide a proxy of the organisms’ density
throughout the water column, allowing for the observation of their
vertical and spatial distribution. These data are used to investigate (i)
the heterogeneity of acoustic backscatter profiles between different
biophysical biomes, and (ii) the homogeneity inside each biome.

2.4.1. Acoustic database
We use a database of 394 echointegrated acoustic transects collected

between 2006 and 2019 (Fig. 2) and compiled from the sources listed in
Table 2.

More detailed information on acoustic data, such as calibration
acquisitionmethods, data processing software or transducer specifications
is available in supplementarymaterial (Table S3). Our acoustic database is
similar to the one used in Proud et al., 2017 (e.g., IMOS andBAS transects),
but we are missing some from the Pelagic Ecology Research Group (Uni-
versity of St Andrews, UK) and the SMILES project (Plymouth University,
UK). However, we’ve added several transects to our database, including
NOAA’s transects, and additional IMOS and BAS transects.

Fig. 2. Map of the acoustic database available for this study from 2006 to 2019, transects are plotted in grey. The acoustic transects plotted in color are the ones
registered in November 2017. The colors represent the proportion of backscattering in layer 3 of SEAPODYM-LMTL out of the total acoustic backscatter in the water
column (from blue to red, respectively low and high proportions). The background map displays the biophysical biomes in November 2017 (extracted from the
monthly biomes time series). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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2.4.2. Between-biomes heterogeneity test
To assess the heterogeneity of the acoustic backscatter profiles be-

tween biophysical biomes, acoustic transects crossing a boundary be-
tween two biomes are segmented at the point where they cross the
biomes’ boundary, in two distinct sections. Then, the nonparametric
Mann Whitney statistical test (Wilcoxon, 1945; Mann and Whitney
1947) is used to compare the data distributions between the two sec-
tions, i.e., the distribution of the acoustic backscatter data on each side
of the biome border. The Mann Whitney U test is used to test the hy-
pothesis that the distributions of two groups of data are similar. Among
the numerous tests existing to compare data distributions, it is probably
one of the most relevant one in our case, being non-parametric (our data
are not normally distributed) and considering only two populations of
independent samples. It computes a p-value as a metric to reject or not
the null hypothesis (H0: “the two distributions are identical”). If the p-
value is less than the significance level α = 0.05, the null hypothesis can
be rejected with a confidence of 95 %, which we consider here as a
validation of the biomes’ heterogeneity. This test is hereafter referred to
as the between-biomes heterogeneity test.

2.4.3. Within-biome homogeneity test
In conjunction with the between-biomes heterogeneity test, the

acoustic data variance is used as a comparison metric to assess the ho-
mogeneity of the backscattering response within each biome. For each
transect straddling two biophysical biomes, we compare the variance of
the acoustic data within a biome to the one computed over the entire
transect. A threshold of 5 % is considered to enforce the significance of
that difference in the variances. This test is hereafter referred to as the
within-biome homogeneity test.

2.4.4. Data treated by the heterogeneity and homogeneity tests
In order to preserve the information on the vertical structure and

DVM given by the acoustic backscatter profiles, daytime and nighttime
periods are distinguished based on solar elevation angle (daytime is
classically taken when the local solar elevation is greater than 18◦). The
between-biomes heterogeneity test and within-biome homogeneity test
described above are performed independently on daytime and nighttime
data. For the same vertical structure information considerations, we also
apply the statistical tests distinctively on the acoustic data from each of
the three pelagic layers of SEAPODYM-LMTL. More precisely, as the
transects from different acoustic campaigns are not intercalibrated, we
do not consider backscattering signal directly, but the proportion of
backscattering signal received in each pelagic layer of SEAPODYM-

LMTL out of the total acoustic backscatter in the water column, on
each measurement point of the transects (see acoustic transects plotted
in color and associated color bar Fig. 2).

Therefore, the between-biomes heterogeneity test provides six p-
values per transect crossing a boundary, compares the acoustic data
between two biophysical biomes for (i) the epipelagic layer during
daytime and (ii) nighttime, (iii) the upper mesopelagic during daytime
and (iv) nighttime, (v) the lower mesopelagic during daytime and (vi)
nighttime. The within-biome homogeneity test is also applied on the six
sub-sections of each transect crossing a boundary between two bio-
physical biomes.

We restrict the analysis to transects with at least one hundred mea-
surement points within each biome, ensuring a reliable representation of
the acoustic response. As a result, transects that consist in very few
measurement points sampling a biome (around ten) are excluded.

The 394 acoustic transects of our database are used (Fig. 2). 60 % of
the boundaries between monthly biomes are crossed by at least one
transect of the database. This database enables the study of 380
boundary crossings between 2006 and 2019. We can only propose a
global validation of the biophysical clustering using acoustics, not a
validation per specific boundaries because of a lack of transects in some
less documented areas.

3. Results

3.1. Biophysical biomes’ definition

To define the homogeneous biophysical biomes, we perform a clus-
tering on principal components generated by the PCA performed on the
three environmental variables (i.e. epipelagic layer temperature, strat-
ification and NPP). We selected the two principal components that
explain the most variance, accounting for 97,9% of the variance (72,4%
and 25,5% for the first and second PCA respectively).

Using the two principal components as new variables for the bio-
physical clustering, the optimal number of clusters is then determined to
be six using the silhouette metric (Figure S1) (see section 2.2.1.). We
refer to these six spatial clusters computed from averaged data over the
period 1998–2019 as “reference biophysical biomes” (Fig. 3).

A video animation displaying the monthly time series of provinces is
available in the Supplementary Material (Video S1).

Focusing on the biophysical conditions for each biome, we consider
the data distribution for averaged epipelagic layer temperature, strati-
fication, and NPP. Fig. 4 shows monthly values of these three variables

Table 2
Description of the acoustic database sources, number of transects (N = 394) and references.

Data Description Number of
transects

Source

IMOS BA-SOOP (Integrated Marine Observing
System, Bio-Acoustic Ships of Opportunity
sub-facility)

Australian data maintained by the CSIRO. These data are mainly situated in
the South Indian Ocean and the South Pacific Ocean.

298 Available through Open Access
to Ocean Data aodn.org.au

   
British Antarctic Survey (BAS) Data gathered around South Georgia and between the UK and South Georgia. 82 Available through bas.ac.uk
   
Mycto-3D-MAP and PIRATA cruises A set of transects from French IRD-CNRS institutes collected during the

research cruises Mycto-3D-MAP in the Southeast Indian Ocean and PIRATA
in the equatorial Atlantic Ocean.

Mycto-3D-
MAP:
10
PIRATA:
2

Mycto-3D-MAP:
Béhagle et al., 2016
Yves Cherel, personal
communication
PIRATA: Habasque et al., 2024
https://doi.org/10.17600
/15001800
https://doi.org/10.17600
/16002300

   
NOAA’s TZCF Oceanographic Survey
(SE0902L1, EK60) and (SE1102L2, EK60),
North Pacific Ocean

Cruises in 2009 and 2011 in the North Pacific Subtropical Frontal Zone. 2 Réka Domokos, personal
communication
doi:10.7289/V57S7KQ9 (2009)
doi:10.7289/V53776PJ (2011)
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http://aodn.org.au
http://bas.ac.uk
https://m365.eu.vadesecure.com/safeproxy/v4?f=w2t5hliZVMxjmTWpY_fzv6A3lTvA_is9nbXFP-q29FllhBoaetB4ImUrCyJYwl5V%26i=oroOrchjpRAxSizr_bmyTqzzf_G0G7dSBFhVjplf9v8l3mDhvjcnUEP3KTGssH-br8zLIzIAiz3-kXFUem7rog%26k=GiI9%26r=CrBu0xpAs_Zk1Ag73rV07NgQW9lRV6aLV0lesrjx2NogM2NuoXX2Cys0RFKafVrN%26s=b5208b84d626e9dba1df332630c2177487b307519c49a7b1a7bb233f5c06da5b%26u=https%3a%252F%252Fdoi.org%252F10.17600%252F15001800
https://m365.eu.vadesecure.com/safeproxy/v4?f=w2t5hliZVMxjmTWpY_fzv6A3lTvA_is9nbXFP-q29FllhBoaetB4ImUrCyJYwl5V%26i=oroOrchjpRAxSizr_bmyTqzzf_G0G7dSBFhVjplf9v8l3mDhvjcnUEP3KTGssH-br8zLIzIAiz3-kXFUem7rog%26k=GiI9%26r=CrBu0xpAs_Zk1Ag73rV07NgQW9lRV6aLV0lesrjx2NogM2NuoXX2Cys0RFKafVrN%26s=b5208b84d626e9dba1df332630c2177487b307519c49a7b1a7bb233f5c06da5b%26u=https%3a%252F%252Fdoi.org%252F10.17600%252F15001800
https://m365.eu.vadesecure.com/safeproxy/v4?f=bVF1OJiZIfFZBxmjxz4IFquQ9Xmf3yRAnE9jlbFJJKKA5ipD4aSmQKdDVCyRCPXG%26i=JJE08JIJ061pxh_zdkCL_Naihb0NUEo7M7YHRquG3Qwdt4XRnsPcuP7gi2OE_O6khccWiARaYK9FHLFSYk1yRA%26k=gRf9%26r=Ldu6YGrZCp5gyM7gBGrnyviUNHJ8GutMcCqTaxia9EyZlHU-IZe2F2bDAe9N9RVq%26s=63f824ff22a761447e7cb8359674c3f36f93036a6927215cc1f41cc7e0f7f865%26u=https%3a%252F%252Fdoi.org%252F10.17600%252F16002300
https://m365.eu.vadesecure.com/safeproxy/v4?f=bVF1OJiZIfFZBxmjxz4IFquQ9Xmf3yRAnE9jlbFJJKKA5ipD4aSmQKdDVCyRCPXG%26i=JJE08JIJ061pxh_zdkCL_Naihb0NUEo7M7YHRquG3Qwdt4XRnsPcuP7gi2OE_O6khccWiARaYK9FHLFSYk1yRA%26k=gRf9%26r=Ldu6YGrZCp5gyM7gBGrnyviUNHJ8GutMcCqTaxia9EyZlHU-IZe2F2bDAe9N9RVq%26s=63f824ff22a761447e7cb8359674c3f36f93036a6927215cc1f41cc7e0f7f865%26u=https%3a%252F%252Fdoi.org%252F10.17600%252F16002300
https://m365.eu.vadesecure.com/safeproxy/v4?f=GcYoEYt2jo-x4FWnlCRGVh3DSmm29lIAS8AV7pr8uwltu2kIOb0KC0xhcNdArf1j%26i=gq_9YtkBcH6EpInVAwlm62fooue0pq7rDxVC4Zv7_JizlGCeGh5t-5WpfZolsT7Q1lat_Gtht-AqA_7WS26w4Q%26k=kDZp%26r=wurOJfeibwDofj8XB-7vgL8iAPkpuzg7V2jQloLqXHwdBBzpjxKg5hcxizgCqSf5%26s=63b87e28a6b71233277244a02543c8aa2bfeebfc07bb5234cf77cabf0d44f5db%26u=http%3a%252F%252Fdoi.org%252F10.7289%252FV57S7KQ9
https://m365.eu.vadesecure.com/safeproxy/v4?f=FWUx46bOepLbBwkIfuT6u6s633UZD0rAXuWXXWYFn15c3Zos3yp4W8NRCpMgRPUT%26i=LA_5opL_JJcS_GqAk5AIV66FjzHP0aJJKozLHCoHATeFt6IliVkJ4I60HgTf1_ZtmDdLxbZb33rPPN3705KsPw%26k=hNY9%26r=l2XIxsR6V2vr-4a9DPInIPPDg4HCLZJe1Oznyl2zR4r2sDO0F5aZcezU-uwGe-dE%26s=329c5e50600a61b29a0bfe1aec3650818980c5955f4db4acd0730dac583c4856%26u=http%3a%252F%252Fdoi.org%252F10.7289%252FV53776PJ


from 1998 to 2019, spatially averaged for each biome. The spatial dis-
tribution of the reference biophysical biomes shows mostly a latitudinal
structure with the addition of areas influenced notably by upwellings
(either eastern boundary or equatorial, see Biomes 3 and 4) (Fig. 3). The
six biophysical biomes can be categorized as follow:

- Biome 1. The tropical biome extends roughly between latitudes 20̊ N
and 20̊ S in the three oceans. It is characterized by the warmest and
most stratified waters associated with relatively low biological pro-
duction (below 25 mmolC/m2/day).

- Biome 2. The subtropical biome is mostly centered around 30◦N and
30◦S in all basins. It is characterized by warm water temperatures

Fig. 3. Map of reference biophysical biomes obtained by PCA principal component clustering from averaged epipelagic layer temperature, stratification, and NPP
over the 1998–2019 time period. The 6 biophysical biomes are represented by a color defined in the legend. Geographical separation between different areas of the
same biome defines 27 associated provinces. One label is attributed to each province with the hundreds’ digit corresponding to the biome in which they belong. Grey
areas delimitate the domain where the depth of the water column is not sufficient to ensure the existence of the three pelagic layers of SEAPODYM-LMTL (see
section 2.3.2.).

Fig. 4. Biophysical biomes characterization with monthly environmental forcings: epipelagic layer temperature (T1(◦C)), stratification (Str(◦C)), NPP (mmolC/m2/
day), from 1998 to 2019. The data considered are monthly values of T1, Str and NPP spatially averaged over each biome (i.e. one value of each environmental
variable per month per biome). The boxplots show the median of data distribution in the rectangles’ centers, top and bottom of the rectangles represent first and third
quartiles, segments’ ends represent percentiles 5 and 95, and the orange dots represent the outliers. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

S. Albernhe et al. Progress in Oceanography 229 (2024) 103370 

7 



combined with relatively high stratification (yet almost half the one
associated with Biome 1) and production comparatively as low as
that of Biome 1.

- Biome 3. The eastern boundary coastal upwelling systems display
lower epipelagic layer temperature than Biomes 1 and 2, moderate
stratification, and is the most productive biome. It is also the smallest
in surface.

- Biome 4. The oceanic mesotrophic systems display an average
epipelagic layer temperature as well as a stratification close to Biome
3 but only half of its biological productivity. This second most pro-
ductive biome has a much bigger surface than Biome 3, as it includes
equatorial upwelling zones, large oceanic extensions of the eastern
boundary upwelling systems between equator and latitudes 50◦, and
temperate mid-latitudes regions centered around latitudes 50◦ in the
Northern and Southern Hemispheres.

- Biome 5. The sub-polar biome is weakly stratified and productive. It
covers the cold waters of the Arctic and Southern Oceans, roughly
between 40◦ and 60◦ in latitudes, and the seasonally Baffin Sea.

- Biome 6. The polar biome displays the weakest stratification, and
the lowest epipelagic layer temperature than any other biomes and
extends from latitude 60◦ to the poles. The NPP is also the lowest of
all biomes.

From these six biophysical biomes, five will be analyzed in term of
the SEAPODYM-LMTL predicted biomass. Indeed, the NPP used within
the polar biome (i.e. #6) to force SEAPODYM-LMTL is not entirely
consistent with the one used in other biomes as it relies on chlorophyll
biogeochemical model outputs (used at latitudes higher than 60◦) rather
than from satellite chlorophyll. This geographical discrepancy in the
NPP and the known biases of the biogeochemical model in high latitudes
region (see Aumont et al., 2015) do not allow a meaningful analysis of
this specific polar biome in terms of the SEAPODYM-LMTL computed
biomasses.

3.2. Characterization of biophysical biomes and provinces

The biophysical clustering, with the different environmental char-
acteristics that are described in the previous section, leads to a con-
trasted predicted density of total micronekton biomasses averaged over
each biome. In this section, we characterize the biophysical biomes and
provinces by (i) biomes-specific relations between density of total
micronekton biomasses and the environmental variables used in the
biophysical clustering (Fig. 5), (ii) comparison of the characterization
between provinces belonging to a same biome (Fig. 5), (iii) micronekton
vertical structure patterns from functional groups biomass ratios
(Fig. 6), (iv) quantitative biological indicators and values of global and
migrant micronekton biomass per biome and province (Tables S2 and S4
respectively).

The results shown in Fig. 5 and Fig. 6 are derived from the monthly
biomes definitions, with the aim of exploring variability in micronekton
biomass and vertical structure patterns within biomes and provinces.

Fig. 5 shows that the relations between the density of total micro-
nekton biomasses and the environmental variables used in the bio-
physical clustering (NPP and epipelagic layer temperature respectively)
differ markedly between biomes (i). Biophysical biomes are firstly
structured following the NPP (see the background scatterplots in Fig. 5,
that can be easily divided along the x-axis which depicts NPP). Clearly
by itself, the NPP is sufficient to discriminate the productive Biomes 3
and 4. These biomes are characterized by specific ranges of NPP
(respectively 40–60 mmolC/m2/day and > 80 mmolC/m2/day), and
display a wide range of total micronekton biomass density values. On
the other hand, Biomes 1, 2 and 5 share a common range of NPP (about
20 mmolC/m2/day) but display specific ranges of total micronekton
biomass density. For these biomes, total micronekton biomass density
relates to the epipelagic layer temperature (see the foreground large
circles’ colors in Fig. 5, showing increasing temperature alongside y-axis
which stands for micronekton density).

Fig. 5. Micronekton total biomass density (WWg/m2) as a function of NPP (mmolC/m2/day) and epipelagic layer temperature (T1 (◦C)). The background scatter plot
represents the monthly data for each biome (1 point per month on 1998–2019 per biome). The colors of this background scatter plot are associated with the color of
each biome in Fig. 3 (see legend bottom right corner). The foreground large circles represent temporal average data on 1998–2019 for each province, indicating
provinces’ labels. The colors of these foreground large circles represent the mean epipelagic layer temperature of the province (see T1 color bar on the right).
Modeled biomass density characterizing the biophysical biomes and provinces is extracted from SEAPODYM-LMTL.
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These large circles in the foreground in Fig. 5 allow the comparison
of the characterization between provinces belonging to the same biome
(ii). The circles’ colors, corresponding to the mean epipelagic layer
temperature of each province, highlight the temperature homogeneity
in the different provinces belonging to a same biome, for Biomes 1, 2 and
5 respectively. A contrario, they display the important temperature
variability in the different provinces of Biomes 3 and 4, i.e., the most
productive biomes, also adding variability in total micronekton biomass
density.

Variability in micronekton vertical structure patterns between bio-
physical biomes (iii) is also explored using migrant/epipelagic and
mesopelagic/epipelagic biomass density ratios from SEAPODYM-LMTL
modeled biomass (Fig. 6). This diagnostic suggests specific vertical
structure patterns in the different biophysical biomes for both ratios,
with distinct data distributions and relatively low dispersion. To assess
the significance of these differences between biophysical biomes, the
data distributions used for each boxplot are compared in pairs using the
Mann Whitney statistical tests (for both ratios distinctively). Every pair
of biophysical biomes displays statistically significant differences in data
distribution for both ratios, except between Biomes 4 and 5 for the
migrant/epipelagic ratio (pvalue = 0.43) (see lower part of Fig. 6 dis-
playing orange boxes between biomes without statistically significant
difference in data distribution). Elsewhere, both ratios increase as the
latitude of the biome approaches the equator (i.e. increases with tem-
perature in the epipelagic layer). The mesopelagic/epipelagic ratio of
Biome 1 is particularly high, around 10. Since this biome is highly
stratified (Fig. 4), the relationship between generation time and tem-
perature (Gillooly et al., 2002; Lehodey et al., 2010) drives a strong
mortality gradient between surface and depth. In addition to the

difference in temperature (and thus mortality rates), the simulated
biomass is also controlled by the energy transfer coefficient (associated
to each functional group) from the NPP the SEAPODYM-LMTL bio-
masses. Ratio values for the provinces in Biome 2 (subtropical) show
very low dispersion compared to other biomes. It is the opposite for
Biomes 3 and 4 that also present the widest range of epipelagic layer
temperature (Fig. 4).

The SEAPODYM-LMTL model with the parametrization we use here
(Lehodey et al., 2010) previously estimated the global micronekton
biomass to be 2.82 Gt (WW), including 0.96 Gt (WW) of migrant
mesopelagic organisms (sum of functional groups 2.1 and 3.1). Here, we
refine those by providing biomass estimates for each biome and province
(see Table S4 supplementary material), which can be a valuable input
for regional studies.

3.3. Biophysical biomes’ boundaries validation with acoustic data

As shown above, biophysical biomes show different characteristics of
predicted biomass of SEAPODYM-LMTL functional groups (Fig. 6). We
use acoustic data to validate if such transitions are also observed in the
acoustic backscattering response from adjacent biomes. Considering
acoustic transects that cross at least two biophysical biomes, we propose
two metrics measuring (i) the heterogeneity of the acoustic backscatter
profiles between two neighboring biomes and (ii) the homogeneity of
the acoustic backscatter profiles inside each biome.

The two metrics are applied to each of the three vertical layers of
SEAPODYM-LMTL and distinguishing daytime and nighttime periods
(see section 2.4.4.). This makes the diagnostic more accurate for the
description of vertical structure of the acoustic signal and DVM.

Acoustic validation of biophysical biome boundaries uses the
monthly time series of these biomes. To detect transitions in acoustic
backscattering between adjacent biomes, precise biomes’ borders
aligned with the acoustic recording period are crucial. The monthly
timeseries displays a significant seasonality in biomes position and
expansion, notably in poleward shifts, making monthly resolution more
relevant than a static approach for comparison with observations.

3.3.1. Between-biomes acoustic heterogeneity
To assess the heterogeneity of the acoustic backscatter profiles be-

tween two neighboring biophysical biomes, we apply the between-
biomes acoustic heterogeneity test. This test involves applying Mann-
Whitney U tests to the six sub-sections (three pelagic layers, during
the daytime and nighttime) of each transect crossing a boundary be-
tween two biophysical biomes. The null hypothesis (H0) ’the two dis-
tributions are identical’ (see section 2.4.2.), allows for the comparison of
data distributions between the two biomes crossed.

In 93,8% of the cases (N= 1983), the null hypothesis H0 of the Mann
Whitney test is rejected with a confidence of 95 %. Rejection of the null
hypothesis indicates that the acoustic data distributions are significantly
different between the two biophysical biomes crossed by the acoustic
transect.

3.3.2. Within-biome acoustic homogeneity
To assess the homogeneity of the acoustic backscatter profiles within

each biophysical biome, we apply the within-biome acoustic homoge-
neity test (see section 2.4.3.). Our results show that the variance of
acoustic data within a biome is significantly smaller than the variance
over the whole transect in 61.76 % of all the cases (N = 3639) (Table 3).

The lower mesopelagic layer (L3) shows the greatest homogeneity in
backscattering signal (Table 3). The lower mesopelagic layer (L3) co-
incides with the daytime habitat of the organisms of the Deep Scattering
Layer (DSL), characterized by a strong acoustic response and the diel
vertical migration (DVM) associated to light penetration (Aksnes et al.,
2017). Some of the consistency observed in L3 may also be due to the
influence of the scattering physics. The epipelagic layer (L1) is also
strongly impacted by the DVM, representing the main zooplankton

Fig. 6. Boxplots of biomass density ratios of migrant/epipelagic (blue) and
mesopelagic/epipelagic (orange) micronekton groups, monthly ratios per
biome for 1998–2019. The boxplots show the median of ratios distribution
displayed by the black horizontal line inside le boxes (to be distinguished from
the white circles that represent the mean), top and bottom of the rectangles
represent first and third quartiles, white dots are the mean values, segments’
ends represent the percentiles 5 and 95. The gray dots are the outliers. The
lower part of the figure indicates, for each boxplot, from which other biomes’
boxplots data distributions show a statistically significant difference. Each
column indicates with which other biome (with its label from 1 to 5, self-label
in grey) the data distribution is significantly different (light green) or not (light
red). For instance, the migrant/epipelagic ratio of Biome 4 and Biome 5 are not
significantly different. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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vertical habitat. Migratory behavioral patterns are thus strongly re-
flected by the acoustic backscattering in these two layers. As they
display the greatest homogeneity in the backscattering signal both for
daytime and nighttime data (Table 3), it appears that these patterns are
identified in our regionalization. The upper mesopelagic layer (L2) has
the lowest homogeneity inside biomes, in all likelihood because it is a
transition layer between the epipelagic and lower mesopelagic layers
inhabited by migrant organisms of the DSL.

3.4. Biomass biomes’ definition

For comparison purposes, here we define biomass biomes by per-
forming an alternative clustering derived from modelled micronekton
biomass (previously referred to as biomass clustering, see section
2.2.2.). The variables used are two ratios of modelled micronekton
functional groups from SEAPODYM-LMTL outputs (i.e. respectively
mesopelagic and migrant over the epipelagic biomass). From the clus-
tering of these ratios, six homogeneous biomass biomes are defined
(Fig. 7).

One identifies the Pacific equatorial upwelling region as a specific
cluster, highlighting a distinct vertical structure of modelled micro-
nekton in this latitudinal band. A second biome gathers dynamic regions
around the globe: Kuroshio and Oyashio currents, Gulf Stream and
North Atlantic current, Brazil and South Atlantic currents, Tasman Sea

and Mauritania upwelling. Finally, other biomes follow tropical band
patterns, with an east–west structuration identifying the subtropical
gyres (see the Pacific and Atlantic Ocean poleward of 5◦ and equator-
ward of 20◦, as well as the Indian ocean). These biomass biomes defined
by micronekton vertical structures resembles the biophysical biomes
(Fig. 3) yet with some notable differences (Fig. 7, Figure S3).

Overall, there is a good agreement between the two methods in
latitudes poleward of 30◦ (e.g. North Pacific and Atlantic, the Kuroshio
and Gulf stream regions, south-eastern Australia, and south America),
and, to some extent, in equatorial and eastern boundary upwelling
systems. Yet, some differences arise. The biomass clustering displays less
latitudinally structured patterns than the biophysical clustering within
the tropical band patterns, with an east–west structuration that better
represents the subtropical gyres. Interestingly, Eastern Boundary Up-
welling Systems (EBUS) are less visible in the biomass clustering in the
Pacific.

4. Discussion

Our clustering derived from biophysical variables (i.e. temperature
of the epipelagic layer, NPP and stratification) subdivided global ocean
into specific biogeographic regions that represent our “biophysical bi-
omes”. Other studies (e.g. Proud et al., 2017; Sutton et al., 2017, Ariza
et al. 2022) employed a comparable methodology, also using

Table 3
Results of within-biome acoustic homogeneity tests on the acoustic database, distinguishing daytime and nighttime data, in the three pelagic layers of SEAPODYM
LMTL. Values are the proportion of within-biome acoustic homogeneity test showing that acoustic data variance within a biome is significantly smaller than the
variance over the whole transect (Varbiome < 95 % Vartransect). Each test considers one transect, with Varbiome the variance of acoustic data within a biome, and
Vartransect the variance of acoustic data within the whole transect.

Daytime/Nighttime
Layer

Daytime acoustic data Nighttime acoustic data

L1 L2 L3 L1 L2 L3

Varbiome < 95 % Vartransect
(% of within-biome acoustic homogeneity tests)

61,35 % 57,40 % 63,65 % 63,64 % 58,84 % 65,46 %

60,80 % 62,72 %

61,76 %

Fig. 7. Map of the biomass biomes obtained by clustering of two modelled micronekton functional groups ratios, respectively mesopelagic and migrant over the
epipelagic simulated biomasses. These ratios are computed from SEAPODYM-LMTL outputs averaged on the 1998–2019 time period. The 6 biomass biomes are
represented by a color defined in the legend. The foreground black lines represent biophysical biomes’ contours (Fig. 3). Grey areas delimitate the domain where the
depth of the water column is not sufficient to ensure the existence of the three pelagic layers of SEAPODYM-LMTL (see section 2.3.2.).
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biophysical variables to derive biogeographic regions. In Sutton et al.
(2017), the authors derived their classification from environmental
drivers, complemented with some expert knowledge. In Proud et al.
(2017), the authors similarly derived their classification from environ-
mental drivers (e.g. surface primary production, temperature, and wind
stress) using a clustering method, with the aim to model DSL charac-
teristics (depth and backscattering intensity). In Ariza et al. (2022), the
authors performed a clustering using acoustic data as a proxy of
micronektonic biomasses, which they reconstructed from biophysical
data (satellite-derived chlorophyll concentration, sea surface tempera-
ture and subsurface dissolved oxygen).

Despite the discrepancies that can be found in these three previously
mentioned approaches from the existing literature, the resulting
biogeographical regions closely mirror our biophysical biomes, most
probably because the biophysical variables that they used, include the
same fundamental information about temperature, biological produc-
tivity, and the degree of the water column mixing, than the variables
used in our study. Indeed, in addition to the latitudinal banding that is
particularly visible in the austral Ocean, more complex structures
appear within these different regionalizations in the North Atlantic, in
midlatitudes frontal zones (except in the south Pacific sector) and in
upwelling regions (see Fig. 4 in Sutton et al., 2017, Fig. 3A in Proud
et al., 2017, Fig. 2a in Ariza et al., 2022 and our Fig. 3).

But do these biogeographical regions computed from biophysical
variables correspond to different characteristics of the ecosystem, as
they are supposed to? Existing regionalizations based on environmental
forcings such as Sutton et al. (2017) do not specifically focus on mid
trophic levels. On the other hand, our biophysical clustering specifically
targets micronekton as it is derived from environmental variables
selected for this purpose. Proud et al. (2017) and Ariza et al. (2022) took
different approaches: Ariza et al. (2022) applied clustering directly to
acoustic data, while Proud et al. (2017) performed clustering on envi-
ronmental drivers and then established the connection to DSL features.
However, both studies converge in their common focus on acoustics. In
the end, they have defined acoustic regions that display different clus-
ters of mesopelagic biomasses (which comprises micronekton). Yet,
biases in micronekton estimations from acoustic methods, together with
the multilinear relationship used to compute the backscatter (proxy of
the mesopelagic biomass) from the biophysical variables reduces the
meaning of this result. To avoid the limitations of acoustic clusterings in
representing micronekton biomass, we demonstrate the relationship
between our biophysical clustering and micronekton biomass by (i)
using modeled micronekton biomass to characterize the biophysical
biomes, and (ii) comparing the biophysical clustering with the biomass
clustering. This approach allows us to use biophysical data to extrapo-
late micronekton biomass.

Addressing point (i), our biophysical biomes are characterized by
different modelled micronektonic biomasses (Fig. 5). Yet, this structur-
ation cannot be as directly linked to the biophysical variables used for
the clustering, as micronektonic biomasses are computed from
SEAPODYM-LMTL which is not a linear model with respect to the bio-
physical forcings (Lehodey et al., 2010). In addition to the micro-
nektonic biomasses, the vertical structure of the ecosystem displays
differences between our biophysical biomes (Fig. 6). The differences and
homogeneity between our biophysical biomes in terms of biomasses and
vertical structures are significant and are mechanistically interpretable
(e.g. higher vertical biomass gradient in highly stratified regions).
Finally, a validation of the biophysical biomes’ borders using acoustic
data shows that our biomes’ borders, which are computed from bio-
physical variables, correspond to a shift in the backscatter vertical
structure. This advocates for good correspondence between bio-
physically derived biomes and observed ecoregions delineated by
backscatter reorganization along the water column.

Addressing point (ii), another way to test the informative potential of
the biophysical clustering is to use a clustering from the biomasses and
the vertical structure of epi-, meso-pelagic and migrant micronektonic

communities. Fig. 7 compares such biomass clustering from
SEAPODYM-LMTL outputs to the biophysical biomes computed from the
biophysical variables. Overall, the two methods show good agreement;
however, some differences emerge, particularly in the representation of
subtropical gyres and Eastern Boundary Upwelling Systems (EBUS).

Despite the differences in the clustering methods, a tentative com-
parison of Ariza et al. (2022) regionalization (Fig. 2a in Ariza et al.,
2022), our biomasses clustering here (Fig. 7), and our biophysical
clustering here as well (Fig. 3) can bring information on the degree of
explainability of the micronektonic biomasses due to the biophysical
variables, as well as some indication of the SEAPODYM-LMTL model
performances. Indeed, some identified patterns are common to the three
clustering methods as seen poleward of 30◦ (e.g. the Kuroshio and the
Gulf Stream regions) or the equatorial upwelling regions. In those re-
gions, specific characteristics of the micronekton ecosystem (from the
data and the model) can thus be mostly explained by the biophysical
variables. Yet in the tropical band, Ariza et al. (2022)’s clustering and
our biomass clustering seem to identify the subtropical gyres while the
biophysical clustering is more latitudinally structured. This suggests
that, in those regions, the biophysical clustering misses the east–west
differences in the vertical structuration of the micronektonic biomasses,
which are present both in our SEAPODYM-LMTL outputs and in Ariza
et al. (2022)’s acoustic dataset. Finally, some regions such as the
offshore extension of the Pacific EBUS and the north Indian Ocean (Bay
of Benghal and Arabian sea) are only present in Ariza et al. (2022)’s
clustering. It suggests that neither the biophysical variables nor the
biomasses from SEAPODYM-LMTL are able to capture this region-
specific vertical structure of the micronekton. Indeed, those latter
geographical patterns resemble those of well-known oxygen minimum
zones (OMZs). Yet oxygen cannot really be accounted for by our bio-
physical variables nor by SEAPODYM-LMTL, which does not use oxygen
to simulate micronektonic biomasses.

Lastly, our approach also stands out for its dynamical aspect. We
produced a monthly time series of provinces that are consistent with
micronekton biomass, representing a significant advancement in the
field. This allows for the study of the spatio-temporal variability of
micronekton and offers an accurate framework for gathering and
analyzing field data, such as acoustic transects or trawl samples, within a
coherent temporal scale.

5. Conclusion

The ambition to identify micronekton homogeneous functioning
patterns leads to a global definition of 6 biophysical biomes (tropical,
subtropical, eastern boundary coastal upwelling systems, oceanic
mesotrophic systems, sub-polar biomes, polar). Three environmental
variables widely used in mid-trophic ecosystem study are used in the
biophysical biomes’ definition: NPP, epipelagic layer temperature, and
stratification of the mesopelagic ocean. We investigate the differences
between these biophysical biomes in terms of simulated micronekton
biomass using the SEAPODYM-LMTL model. This biophysical biomes’
characterization displays biomes-specific relations between modelled
biomass and the environmental variables used in the clustering. Indeed,
we showed that biophysical biomes display a first structuration
following the NPP, that is related with micronekton biomass according
to biomes-specific relationships for the most productive biomes. NPP
mostly discriminates the eastern boundary coastal upwelling systems
and the oceanic mesotrophic systems in terms of total micronektonic
density. Elsewhere, biophysical biomes display a second structuration
following the epipelagic layer temperature, that is also related with
micronekton biomass according to biomes-specific relationships but
only for the less productive biomes (NPP values of about 20 mmolC/m2/
day). Temperature of the epipelagic layer discriminates tropical, sub-
tropical and sub-polar biomes in terms of total micronektonic biomass.
Epipelagic layer temperature also adds internal variability in productive
biomes, displaying more discrepancies between the related provinces.

S. Albernhe et al. Progress in Oceanography 229 (2024) 103370 

11 



For the less productive biomes, conversely, related provinces show very
similar characteristics in terms of modeled micronektonic biomass. This
observation challenges the relevance of biophysical biomes’ subdivision
into provinces. Characterizing the biomes with micronekton functional
groups ratios from modeled biomass, we observed that most stratified
biophysical biomes show greater proportions of mesopelagic and
migrant micronekton than epipelagic micronekton. Furthermore, the
validation of biophysical biomes’ boundaries with acoustic data dem-
onstrates that the regionalization outlines more homogeneous areas in
terms of acoustic backscatter vertical structure, diverging with the
adjacent biome.

Finally, comparisons between biomes issued from different clus-
tering methods allows us to discuss the rationale supporting the
regionalization from biophysical variables (this kind of regionalization
being often used in studies focusing on mid-trophic level). Indeed, the
biophysical clustering displays an overall relatively good agreement
with the biomass clustering, yet with patterns more latitudinally
distributed. As we established the relationship between our biophysical
biomes and micronekton biomass with this clusterings comparisons,
together with the biophysical biomes’ characterization with modeled
micronekton biomass, we are able to use biophysical data to extrapolate
micronekton biomass. Moreover, with the notable exception in the
OMZs, Ariza et al. (2022)’s clustering from the acoustic vertical struc-
ture agrees relatively well with our biomass biomes computed from
modelled micronektonic biomasses, which may increase confidence in
the model producing vertical structure of the micronekton. However,
the authors would suggest that, at a minimum, oxygen should be
considered in any further clustering from biophysical variables and
might also be a meaningful addition to the SEAPODYM-LMTL.
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