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Abstract 

Background  DPANN archaea, including Woesearchaeota, encompass a large fraction of the archaeal diversity, 
yet their genomic diversity, lifestyle, and role in natural microbiomes remain elusive. With an archaeal assemblage 
naturally enriched in Woesearchaeota and steep vertical geochemical gradients, Lake Dziani Dzaha (Mayotte) provides 
an ideal model to decipher their in-situ activity and ecology.

Results  Using genome-resolved metagenomics and phylogenomics, we identified highly diversified Woesearchae-
ota populations and defined novel halophilic clades. Depth distribution of these populations in the water column 
showed an unusual double peak of abundance, located at two distinct chemoclines that are hotspots of microbial 
diversity in the water column. Genome-centric metatranscriptomics confirmed this vertical distribution and revealed 
a fermentative activity, with acetate and lactate as end products, and active cell-to-cell processes, supporting strong 
interactions with other community members at chemoclines. Our results also revealed distinct Woesearchaeota 
ecotypes, with different transcriptional patterns, contrasted lifestyles, and ecological strategies, depending on envi-
ronmental/host conditions.

Conclusions  This work provides novel insights into Woesearchaeota in situ activity and metabolism, revealing invari-
ant, bimodal, and adaptative lifestyles among halophilic Woesearchaeota. This challenges our precepts of an invaria-
ble host-dependent metabolism for all the members of this taxa and revises our understanding of their contributions 
to ecosystem functioning and microbiome assemblage.
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Background
In recent decades, cultivation-independent genomics 
has greatly increased our knowledge of natural micro-
bial diversity [1–3]. This has led to the discovery of many 
new major lineages, including phyla and superphyla, 
such as the DPANN archaea, and to the redrawing of the 
Tree of Life [1, 4–7]. The DPANN superphylum, which 
includes the ‘Ca. Diapherotrites’, ‘Ca. Parvarchaeota’, ‘Ca. 
Aenigmarchaeota’, Nanoarchaeota, ‘Ca. Nanohaloar-
chaeota’, as well as the Woesearchaeota, Micrarchaeota, 
Pacearchaeota, Huberarchaeota, Mamarchaeota, and 
Undinarchaeota phyla [2, 8], represents a large radia-
tion of the archaeal diversity and has been ubiquitously 
found in both oxic and anaerobic biomes ranging from 
animal microbiomes to fresh and marine waters, includ-
ing acidic, alkaline, and hypersaline ecosystems [4, 9–
13]. Pioneering studies using electronic microscopy on 
enrichment cultures depicted DPANN archaea as nano-
sized cells [6, 14–16], while genomic predictions indi-
cated small genomes and limited catabolic and anabolic 
capabilities [16–19], suggesting a fermentative and pyru-
vate-centered metabolism [5, 20]. However, additional 
catabolic pathways such as the Embden-Meyerhof-Par-
nas pathway, an incomplete Entner-Doudoroff pathway, 
the beta-oxidation pathway, and a RubisCO-dependent 
nucleoside degradation pathway have been also reported 
[10, 21], illustrating the genomic diversity in this taxo-
nomically large superphylum.

Many DPANN genomes are also characterized by the 
absence of genes encoding the enzymes involved in the 
synthesis of amino acids, purines, pyrimidines, lipids, 
and vitamins [3, 5], suggesting multiple dependencies on 
the environment or potential hosts through (epi)symbi-
otic or parasitic interactions [1, 16, 22, 23]. The rare cul-
tivated DPANNs do have an epi-symbiotic lifestyle. For 
example, the DPANN archaeon Nanoarchaeum equitans 
is dependent for growth on its archaeal host, Ignicoccus 
hospitalis [16, 17], which fills its metabolic deficiencies. 
Other works reported the presence of Micrarchaeota in 
co-culture with Thermoplasmatales [24, 25], and Nano-
haloarchaeota with Halorubrum lacusprofundi [26]. A 
physical association was also identified between the two 
DPANN archaea Huberiarchaeum crystalense and Ca. 
Altiarchaeum hamiconexum [27, 28], with H. crystal-
ense potentially scavenging the cytoplasmic content of 
Ca. Altiarchaeum in a CRISPR-mediated interaction 
[29]. However, extensive metabolic capacities have been 
reported for several members of ‘Ca. Diapherotrites’, ‘Ca. 
Micrarchaeota’, and ‘Ca. Parvarchaeota’ phyla, suggesting 
that some DPANN archaea may also be free-living [20, 
30, 31].

Among the recently described DPANN archaea 
phyla, the Woesearchaeota phylum (referenced as the 

Woesearchaeales order within the Nanoarchaeia class 
and Nanoarchaeota phylum in the Genome Taxonomy 
Database, GTDB [32]) has yet no cultivated representa-
tives, leaving the lifestyle and metabolism of the mem-
bers of this phylum enigmatic. Meta-analysis of available 
genomes reported that some Woesearchaeota may be 
capable of anaerobic heterotrophy with fermentative 
metabolism relying on lactate dehydrogenase, [FeFe] 
hydrogenase, and flavin-based electron bifurcation 
mechanisms [13], while some Woesearchaeota genomes 
recovered from marine and hypersaline environments 
harbored sulfur-cycling genes [33, 34]. While these 
results support a host-independent energetic metabolism 
for some lineages, key metabolic pathways (i.e., glycoly-
sis, TCA cycle, amino acids synthesis, lipid metabolism, 
etc.) are also absent or incomplete in most Woesearchae-
ota, suggesting contrasted capabilities and a strong 
dependence on a host or environmental for their sup-
ply [13]. However, it is noteworthy that a large fraction 
of the genes in Woesearchaeota genomes remains unas-
signed (e.g., hypothetical proteins) and, to our knowledge 
no transcriptomic data have yet confirmed the activity of 
identified genes so far, weakening metabolic and lifestyle 
inferences from genomic data, as observed for nanosized 
Patescibacteria [35]. Several studies speculating that 
Woesearchaeota could interact with various microbial 
and/or eukaryotic lineages have attempted to identify 
their potential hosts or partners through co-occurrence 
patterns [10, 34] or cell-sorting [36]. However, analysis 
of co-sorted cells isolated from subsurface environments 
concluded that they do not form symbiotic cell–cell asso-
ciations and that their divergent genomic and cell char-
acteristics may result from an ancestral trait [37]. Taken 
together these observations warrant for in-depth func-
tional characterization of the Woesearchaeota phylum 
and a validation of their genomic potential through culti-
vation and activity-based approaches.

Lake Dziani Dzaha (Comoros Archipelago, Mayotte) 
is a poly-extreme environment, with both hypersaline 
(salinity > 50  psu) and hyperalkaline (pH > 9) conditions. 
This crater lake shows original geochemical features with 
periodically very high H2S/HS− concentrations, anoxic 
conditions below 1.5  m [38–40], and a high and stable 
phytoplanktonic biomass (524 to 875  chla.µL−1) [41]. 
The lake has steep physicochemical gradients that define 
different ecological niches [41]. In particular, the alterna-
tion of dry and rainy seasons leads to the establishment 
of a seasonal surface chemocline and a permanent deep 
chemocline at about 14  m, characterized by elevated 
H2S/HS− concentrations [42]. Previous surveys, based on 
16S and 18S rRNA gene sequencing, have revealed that 
the biodiversity of the lake is limited to microorganisms, 
with no aquatic metazoans and no multicellular algae 
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identified to date [42–44]. The bacterial community is 
strongly dominated by the cyanobacterium Limnospira 
fusiformis (formerly Arthrospira fusiformis), while the 
microeukaryotic community is dominated by the chlo-
rophyte Picocystis salinarum, and the archaeal assem-
blage by Woesearchaeota, representing up to 75% of 
the archaeal 16S rRNA gene sequences [42]. The domi-
nance of Woesearchaeota among archaeal assemblage 
together with strong oxygen and sulfur gradients in the 
water column of Lake Dziani Dzaha provides thus an 
excellent model to study the diversity and metabolism 
of the members of this enigmatic phylum. Combining 
metagenomic and metatranscriptomic approaches, we 
first aimed to resolve Lake Dziani Dzaha Woesearchaeota 
phylogeny and to determine the origin and the diversity 
of these extremophiles (both halophilic and alkaliphi-
lic). Secondly, we investigated the genomic repertoire 
of Woesearchaeota to decipher their ecological success 
across the strong oxygen and sulfur gradients of this 
model ecosystem. We then tested whether in-situ tran-
scriptomic activities could support these genomic-based 
metabolic inferences and if their activities vary across the 
specific ecological niches of the system. Our results pro-
vide original insights into Woesearchaeota ecophysiology 
and demonstrate a complex and lineage-dependent parti-
tioning of their transcriptomic activity, reflecting invari-
ant, bimodal, and adaptative lifestyles among Lake Dziani 
Dzaha Woesearchaeota community in response to envi-
ronmental/host conditions.

Materials and methods
Study site, sampling, and environmental parameters
Lake Dziani Dzaha (12°46′15.6″S; 45°17′19.2″E) is a vol-
canic crater lake (Fig. 1A), located in the Comoros archi-
pelago (western Indian Ocean), on the Petite Terre Island 
of Mayotte (12°46′ 15.6″ S; 45° 17′ 19.2″ E).

Water samples were collected in November 2017 at 
the deepest point of the lake (maximum depth 17 m) at 
7 discrete depths (0.25 m, 1 m, 2.5 m, 5 m, 11 m, 14 m, 
and 16 m) using a horizontal 1.2 L Niskin bottle. Water 
subsamples (45  mL) were first filtered through 3  µm 
pore-size polycarbonate Isopore™ membrane filters (NB 
Merck-Millipore) and then through 0.2  µm pore-size 
polycarbonate Isopore™ membrane filters (NB Merck-
Millipore, pressure < 10  kPa). This sequential filtration 
was mandatory to reduce the representation of Cyano-
bacteria in the metagenomic and metatranscriptomic 
reads and access to other members of the microbial com-
munity. Although we could not exclude that some Woe-
searchaeota lineages were discarded by this approach, 
our previous study, based on 16S rRNA gene sequencing, 
did not reveal any Woesearchaeota OTU that were exclu-
sively identified in 3 µm pore size filters [42], suggesting 

that the diversity of Woesearchaeota collected in 0.2 µm 
pore size filters was not altered by the prefiltration. The 
filters were stored at − 20 °C until nucleic acid extraction.

As reported by Sarazin et  al. (2020), vertical profiles 
for pH, dissolved O2, temperature, and conductivity were 
recorded using a WTW 3630 multiparameter system 
equipped with optical dissolved oxygen, conductivity, 
and pH probes. Salinity was calculated from conductivity 
and temperature. Soluble sulfide levels (ΣS(-II)), referred 
to as H2S/HS− were determined by colorimetry in the 
field laboratory using an Aqualytic SpectroDirect spec-
trophotometer and Merck reagent kits.

DNA and RNA extraction
DNA was extracted from one 0.2 µm pore-size filter per 
depth (seven DNA extractions), using the ZymoBIOM-
ICS DNA Miniprep kit (Zymo Research), modified with a 
phenol/chloroform/isoamyl alcohol (25:24:1) step to fur-
ther purify the DNA [45]. DNA quality was checked by 
1% (w/v) agarose gel electrophoresis and quantified using 
the Qubit dsDNA HS Assay Kit (Invitrogen, Carlsbad, 
USA) according to the manufacturer’s instructions. DNA 
extracts were stored at − 20  °C until library preparation. 
Metagenomic libraries for all samples were constructed 
and sequenced by the Fasteris company (Plan-les-Ouates, 
Switzerland). Sequencing (2 × 150 bp) was performed on 
an Illumina HiSeq 4000 system.

RNA was extracted from three 0.2 µm pore-size filters 
per depth using the Quick-RNA™ MiniPrep kit (Zymo 
Research), optimized for the hypersaline samples, and the 
detailed procedure is described in the “Supplementary 
methods” section. After the quality check, RNA extracts 
were pooled per sample to obtain enough RNA. The 
library was prepared after rRNA depletion by RiboZero 
Gold + Bacterial kit, using the TruSeq stranded mRNA 
kit (Illumina, CA, USA) and sequenced on HiSeq 4000 
2 × 150  bp by the Fasteris company (Plan-les-Ouates, 
Switzerland).

Genomic reconstruction from metagenomes
Quality filtration of the reads was performed using 
BBDuk from the JGI’s BBTools v.38.95 suite (https://​jgi.​
doe.​gov/​data-​and-​tools/​softw​are-​tools/​bbtoo​ls/), result-
ing in an average of 40,149,540 ± 9,158,963 reads per sam-
ple. Metagenomic reads passing quality control filters 
were then pooled and co-assembled using MetaSPAdes 
v.3.15.5 (-k 33, 55, 77) [46]. Only contigs > 1000 bp were 
kept and reads passing filters were then mapped to con-
tigs using Bowtie2 v.2.5.2 [47] and Samtools 1.13 [48] to 
estimate contig coverage.

Reconstruction of MAGs (Metagenomes Assem-
bled Genomes) was performed using MetaBAT 2 
v.2.15–2 [49] with default parameters. Completeness 

https://jgi.doe.gov/data-and-tools/software-tools/bbtools/
https://jgi.doe.gov/data-and-tools/software-tools/bbtools/


Page 4 of 16Cloarec et al. Microbiome          (2024) 12:249 

and contamination levels of the MAGs were assessed 
using CheckM2 1.0.1 [50]. Taxonomic assignment of 
MAGs was performed using GTDB-Tk v.2.1.1. [51] with 
the GTDB database v.207 [51]. MAGs affiliated to d__
Archaea; p__Nanoarchaeota; c__Nanoarchaeia; o__Woe-
searchaeales by GTDB were selected from the dataset. 
MAG abundance was estimated by mapping reads from 
individual metagenomes to MAGs using Bowtie2 v.2.5.2 
[47]. Average Amino Acid Identity (AAI) was calculated 
using the All-vs-All AAI matrix calculator tools devel-
oped at the Kostas lab [52] (Supplementary Table  S1). 
The isoelectric point of Woeasearchaeota proteins were 
calculated using custom Python 3.10 and the Bio.SeqU-
tils package. Amino acid ratios of all predicted proteins 

from Woesearchaeota MAGs were calculated using a 
custom Python 3.10 script available in Source data S5.

Functional annotation of MAGs was performed using 
default parameters of the NCBI Prokaryotic Genome 
Annotation Pipeline (PGAP, version 2023/10) [53], that 
includes more than 17 000 curated HMM profiles cover-
ing PFAM, TIGRFAM and CAZY categories and Kofam-
Scan using the KEGG database with e-value < 1.10−15 [54] 
(KO-HMM database and KO list from 2023/12/30) for a 
conservative approach and METABOLIC V.4 [55] for a 
more exploratory analysis. In addition, CAZYmes were 
also identified using dbCAN3 (e-value < 1.10−15, cover-
age > 0.35) [56], and hydrogenases genes were affiliated 
using HydDB [57] (version June 2024) and phylogenic 
analysis was carried out as detailed in the “Supplementary 

Fig. 1  Woesearchaeotal MAGs distribution across geochemical profiles of Lake Dziani Dzaha. A Picture of Lake Dziani Dzaha from the top 
of the crater (Credit: Mylène Hugoni, 2024). B Vertical profiles of environmental parameters recorded along the water column. Profiles of salinity 
(psu), temperature (°C), pH, O2 saturation (%), and H2S/HS− concentration (µM) were recorded in November 2017 during the collection of microbial 
samples. Depth profiles of Woesearchaeota MAGs were estimated based on the percentage of mapped reads from C metagenomic and D 
metatranscriptomic data against woesearchaeotal MAGs recovered from this study. Scale for B and C is logarithmic
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methods” section. ORFs labeled as pseudogenes were 
removed. Metabolic reconstruction of central carbon and 
amino acid pathways was performed using the KEGG 
PATHWAY database (https://​www.​genome.​jp/​kegg/​pathw​
ay.​html) and MetaCyc [58].

Identification of CRISPRs was performed using 
MinCED (https://​github.​com/​ctSke​nnert​on/​minced) and  
default options. Spacer sequences were retrieved and 
searched in archaeal MAGs from Lake Dziani Dzaha with 
blastn [59] (options “blastn-short” and “qcov_hsp_perc 
80”, allowing to retrieve hits that align on at least 80% of 
the total length of the query sequence).

Phylogenetic analyses
A phylogenetic analysis of ribosomal proteins was per-
formed to determine the phylogenetic position of the 15 
woesearchaeotal MAGs from Lake Dziani Dzaha within 
the Woesearchaeota. All 636 genomes annotated as Woe-
searchaeota in NCBI (April 6, 2023) were downloaded 
(Supplementary Table  S2). Genomes with < 70% comple-
tion, > 5% contamination level according to CheckM2 
[50], > 150 contigs, < 10 × sequencing coverage were 
removed from the dataset. The remaining genomes were 
then dereplicated using dRep v3.4.2 [60] with a 95% ANI 
threshold and a coverage threshold of 0.1. This allowed 
us to assemble a set of 297 non-redundant, high-quality, 
genomes of Woesearchaeota (Supplementary Table S2). We 
added 38 genomes from various DPANN lineages selected 
with the same quality criteria (Supplementary Table S3) as 
the outgroup for phylogenetic analysis. Altogether, the set 
of genomes used for phylogenetic analyses contained 350 
genomes: 15 woesearchaeotal MAGs from this study, 297 
woesearchaeotal genomes from public databases, and 38 
additional DPANN lineages used as outgroups.

Genes coding for the 61 archaeal rprot families, were 
identified and extracted from the 350 genomes using 
the algorithm used to build the RiboDB database [61]. 
For each rprot family, single-copy coding genes pre-
sent in each of the 350 genomes were retained for phy-
logenetic analysis, while multiple copies were omitted. 
Rprots sequences were aligned at the amino acid level 
using MAFFT v7.490 with the L-INSI option [62]. For 
each rprot family, the resulting multiple alignments were 
trimmed to suppress the most gapped amino acid posi-
tions and partial sequences, by removing columns (amino 
acid positions) and rows (genomes) containing more than 
10% gaps. The multiple alignments were then combined 
into a supermatrix containing 7869 amino acid positions, 
with an overall proportion of gaps less than 12%.

ML phylogenetic trees were inferred with IQ-
TREE v2.0.7. For the rprots supermatrix, we used the 

LG + C20 + F + R10 model, as suggested by ModelFinder 
(BIC criteria) [63].

Metatranscriptomic analysis
Metatranscriptomic reads were quality filtered as  
metagenomic sequences using BBDuk from the JGI’s  
BBTools suite (https://​jgi.​doe.​gov/data-and-tools/software- 
tools/bbtoo​ls/), resulting in an average of 43,319, 
000 ± 4,295,572 metatranscriptomic reads per sample. 
Retained metatranscriptomic reads were then mapped 
to open reading frames (ORFs) identified by PGAP in 
woesearchaeal MAGs using Bowtie2 v.2.5.2 [47] with a 
minimum end-to-end percentage of identity for qualify-
ing reads of 98%. Mapping results were normalized by 
the length of each ORF and by the number of reads per 
metatranscriptome, then converted to transcripts per mil-
lion (TPM) for comparisons.

Results
Environmental parameters
Consistent with the long-term monitoring of the lake 
[39], in-situ physicochemical measurements performed 
in November 2017 indicated that the water column has 
a steady high salinity (64  psu on average) and an alka-
line pH ranging from 8.95 to 8.97 (Fig. 1B). Gradients of 
temperature, sulfides, and oxygen were also detected. A 
first transition zone including a thermocline, an oxycline, 
and a chemocline occurred between 0 and 2.5 m, shifting 
from 33.8 to 30.5 °C, 237.91 to 0%, and 0.63 to 10.38 µM 
for temperature, oxygen saturation and H2S/HS− con-
centration respectively. Below 2.5  m, temperature was 
stable with an average of 30.4 °C. An increase in H2S/HS− 
concentrations from 2.5  m to 14  m was reported, from 
10.38 to 99.56 µM. Finally, the permanent deep chemo-
cline previously reported in 2014 and 2015 [42] was also 
observed with an increase of H2S/HS− concentrations at 
16 m (Fig. 1B). To investigate the genomic diversity of the 
Woesearchaeota populations, water samples were col-
lected at seven discrete depths (0.25 m, 1 m, 2.5 m, 5 m, 
11 m, 14 m, and 16 m), representing the distinct regions 
of geochemical redox gradients within the lake.

Genomic overview of Woesearchaeota from Lake Dziani 
Dzaha
After metagenomic sequencing, co-assembly of the reads 
from all the samples (with an average of 40 × 106 reads 
per sample) was performed. A total of 246 metagenome-
assembled genomes (MAGs) were recovered, includ-
ing 21 archaeal MAGs. Among them, 15 were assigned 
to the Woesearchaeales order by the GTDB-Tk pipe-
line, supporting the dominance of Woesearchaeota on 
the archaeal assemblage. These MAGs were estimated 

https://www.genome.jp/kegg/pathway.html
https://www.genome.jp/kegg/pathway.html
https://github.com/ctSkennerton/minced
https://jgi.doe.gov/data-and-tools/software-tools/bbtools/
https://jgi.doe.gov/data-and-tools/software-tools/bbtools/
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to be 23.5 (MAG.72) to > 99% (MAG.56) complete 
based on CheckM2 pipeline, with an average complete-
ness of 73.7 ± 23.4% and contamination of 0.6 ± 0.6% 
(Table 1). The average pairwise amino acid identity (AAI) 
between Woesearchaeota MAGs ranged from 37 ± 0.5 
(MAG.40.165) to 43 ± 4% (MAG.221), suggesting a high 
degree of divergence (Supplementary Table  S1). With 
the exception of MAG.250, R/K, and DE/IK ratios of 
the Woesearchaeota MAGs averaged at 0.49 ± 0.16 and 
0.74 ± 0.09, respectively (Table  1). The isoelectric point 
distribution of Woesearchaeota proteins followed a 
bimodal distribution with both acidic and basic proteins 
with a median pI of Woesearchaeota MAGs averaged at 
7.5 ± 1.0 (Supplementary Figure S1).

According to depth coverage, Woesearchaeota 
MAGs ranked between position 46th/246 (MAG.96) 
and 236th/246 (MAG.72), with estimated abundances 
similar to or below the median abundance of all the 
MAGs recovered from the dataset (21.9 reads per base) 
(Fig.  2A). MAG.96 had the highest coverage among the 
archaeal MAGs with an average of 95.2 reads per base in 
the contigs (Fig. 2B).

Woesearchaeota phylogeny
The phylogenetic position of Lake Dziani Dzaha MAGs 
within the Woesearchaeota phylum was confirmed for 
14 MAGs by the analysis of the ribosomal protein set 
(rprots) (Fig.  3). However, MAG.40.165, which showed 
the lowest AAI percentages (< 0.38) with the other 
MAGs, was excluded from further analyses because 
it belongs to a lineage that branches outside of the 
Woesearchaeota phylum, between Pacearchaeota and 
Mamarchaeota (Fig. 3).

Regarding the Woesearchaeota phylum, our analyses, 
which doubled the number of analyzed genomes and 
included more stringent quality cut-offs compared to 
previous studies, defined well-resolved relationships with 
most ultrafast bootstrap values and aLRT supports > 0.95 
(Fig. 3). We observed a deep split in the tree defining two 
major groups, referred hereafter as to group 1 and group 
2, corresponding respectively to Group A and to a large 
cluster which encompasses groups B, C, D, E, F, G, H, I, 
and J (labeled on the leaves of the tree when available), 
from a previous meta-analysis by Huang et al. [13]. How-
ever, our analysis only partially supported the delineation 
of B, C, D, E, F, G, H, I, and J subgroups, indicating that 
further work is needed to fully resolve the phylogeny of 
Woesearchaeota.

Woesearchaeota populations from Lake Dziani Dzaha 
are highly diverse, as shown by the phylogeny of rprots, 
which showed that the 14 MAGs formed six distinct 
subgroups that branched at different locations within 
Group 2 (Fig.  3). Subgroups I and IV contained no 

other representatives from public databases, suggest-
ing that they may represent novel lineages specific to 
the Lake Dziani Dzaha ecosystem. Other MAGs clus-
tered with sequences recovered from hypersaline mero-
mictic lakes such as Cock Soda Lake (GCA_007117065, 
GCA_007128245, GCA_007116645), hypersaline soda 
lake brines (GCA_007117145) [33] or the hypersaline 
Lake El Tobar (GCA_021734865).

Metabolic potential of Woesearchaeota MAGs
To ensure the robustness of metabolic predictions, only 
MAGs with > 70% completeness (n = 9) were retained. 
As a first step, the functional annotation was performed 
with PGAP [53] and KofamScan [64]. This was followed 
by a more exploratory analysis using the METABOLIC 
pipeline [55] and dbCAN3 [56]. Combining these results, 
52.7% to 59.9% of the ORFs were assigned to a potential 
function (Supplementary Figure S2).

Although we cannot exclude that some genes were not 
identified due to the incompleteness of the MAGs or 
because of high sequence divergence, genomic analyses 
indicated limited metabolic capabilities for Lake Dziani 
Dzaha Woesearchaeota (Fig.  4, Source data S1, S2, and 
S3).

No oxidative pathways or tricarboxylic acid cycle 
(TCA) genes were identified. All nine MAGs have the 
metabolic potential to degrade starch to glucose thanks 
to an alpha-amylase (amy – GH57) (Fig. 4). Genes encod-
ing glycoside hydrolases (GH100, GH133, GH13, and 
GH15) were also detected in most (5/9) MAGs, indicat-
ing the potential for sucrose and glycogen degradation. 
However, the gene coding for the glucokinase (glk), which 
enables glucose phosphorylation, the limiting step of gly-
colysis, was only detected in two MAGs that were not in 
the same phylogenetic subgroup (MAG.78, MAG.96). 
Similarly, genes encoding the higher part of the glycoly-
sis/gluconeogenesis pathway (i.e., 6-phosphofructokinase 
(pfk), class II fructose-1,6-bisphosphate aldolase (fbaA)) 
were not identified for most of the MAGs. However, the 
potential for conversion and phosphorylation of sugars to 
glyceraldehyde-3P via the non-oxidative pentose phos-
phate pathway was detected, linking hexose and pentose 
degradation to the lower part of the glycolysis and pyru-
vate metabolism.

Analysis of potential fermentation pathways suggested 
that MAG.4 and MAG.78 could ferment pyruvate to lac-
tate using an l-lactate dehydrogenase (LDH). In addition, 
MAG.4, MAG.78, and MAG.221 contained genes coding 
pyruvate ferredoxin oxidoreductase (por) and 2-oxoglu-
tarate ferredoxin oxidoreductase (kor), which convert 
pyruvate to acetyl-CoA. MAG.4 and MAG.221 encoded 
the acetyl-CoA ligase (ADP-forming) (acdAB), which 
allows the production of acetate and ATP generation 



Page 7 of 16Cloarec et al. Microbiome          (2024) 12:249 	

Ta
bl

e 
1 

G
en

er
al

 g
en

om
ic

 fe
at

ur
es

 o
f t

he
 1

5 
W

oe
se

ar
ch

ae
ot

a 
M

A
G

s 
re

co
ve

re
d 

fro
m

 L
ak

e 
D

zi
an

i D
za

ha

Co
m

pl
et

en
es

s 
(C

om
pl

.) 
an

d 
co

nt
am

in
at

io
n 

(C
on

t.)
 le

ve
ls

 w
er

e 
es

tim
at

ed
 u

si
ng

 C
he

ck
M

2.
 D

ep
th

 c
ov

er
ag

e 
w

as
 c

al
cu

la
te

d 
by

 m
ap

pi
ng

 th
e 

m
et

ag
en

om
ic

 re
ad

s 
ag

ai
ns

t t
he

 M
AG

s 
w

ith
 a

 s
im

ila
rit

y 
cu

to
ff 

of
 9

7%
. S

el
ec

tio
n 

of
 

th
e 

M
AG

s 
fo

r “
Fu

nc
tio

na
l a

nn
ot

at
io

n”
 w

as
 b

as
ed

 o
n 

co
m

pl
et

en
es

s 
an

d 
co

nt
am

in
at

io
n 

le
ve

ls
 R

/K
 ra

tio
 a

rg
in

in
e/

ly
si

ne
 ra

tio
, D

E/
IK

 ra
tio

 a
sp

ar
tic

 a
ci

d 
*G

lu
ta

m
ic

 a
ci

d/
is

ol
eu

ci
ne

 *
 L

ys
in

e 
ra

tio

M
A

G
 ID

°
Co

m
pl

. (
%

)
Co

nt
. (

%
)

N
b.

 C
on

tig
s

N
50

Ra
tio

 R
/K

Ra
tio

 D
E/

IK
D

ep
th

 
co

ve
ra

ge
 

(X
)

G
en

om
e 

si
ze

 (b
p)

Co
di

ng
 

se
qu

en
ce

 
(t

ot
al

)

G
C 

(%
)

N
b 

of
 tR

N
A

Pr
es

en
ce

 o
f 

16
S 

rR
N

A
 

ge
ne

Fu
nc

tio
na

l 
an

no
ta

tio
n

N
CB

I I
D

M
A

G
.3

76
.2

5
1.

08
18

6
64

00
0.

51
0.

80
7.

0
1,

03
3,

29
9

11
74

32
30

•
•

SA
M

N
40

74
97

24

M
A

G
.4

86
.0

5
0.

32
11

8
11

,4
16

0.
56

0.
77

25
.5

1,
04

9,
85

1
11

18
34

27
•

•
SA

M
N

40
74

97
25

M
A

G
.3

5
70

.9
4

0.
62

11
6

50
37

0.
51

0.
76

6.
5

59
9,

40
1

73
0

34
17

•
SA

M
N

40
74

97
26

M
A

G
.5

6
 >

 9
9

0.
98

70
24

,4
09

0.
61

0.
77

25
.5

1,
11

5,
66

6
11

73
36

37
•

•
SA

M
N

40
74

97
27

M
A

G
.6

5
36

.8
6

0.
12

14
49

,4
50

0.
32

0.
67

12
.1

33
2,

36
8

40
6

29
13

SA
M

N
40

74
97

28

M
A

G
.7

2
23

.5
0

0.
11

10
0

40
32

0.
39

0.
67

5.
6

41
6,

57
5

47
8

32
13

SA
M

N
40

74
97

29

M
A

G
.7

4
52

.3
6

2.
67

18
4

40
52

0.
27

0.
58

9.
2

76
3,

37
1

84
0

23
25

•
SA

M
N

40
74

97
30

M
A

G
.7

8
91

.8
0

0.
36

47
29

,8
91

0.
79

0.
81

12
.7

1,
07

0,
55

8
11

32
39

39
•

•
SA

M
N

40
74

97
31

M
A

G
.9

6
99

.1
8

0.
07

14
10

3,
12

6
0.

80
0.

98
95

.2
96

0,
68

8
11

20
42

37
•

•
SA

M
N

40
74

97
32

M
A

G
.1

21
51

.0
8

0.
58

20
49

,9
45

0.
37

0.
71

14
.5

55
3,

75
8

60
1

31
19

•
SA

M
N

40
74

97
33

M
A

G
.1

80
84

.7
0

0.
34

10
6

98
91

0.
58

0.
72

8.
3

84
7,

13
9

99
0

34
33

•
SA

M
N

40
74

97
34

M
A

G
.2

21
98

.1
0

0.
36

12
23

2,
78

4
0.

42
0.

66
25

.1
1,

55
7,

84
0

15
29

28
30

•
•

SA
M

N
40

74
97

35

M
A

G
.2

50
69

.2
3

0.
30

50
32

,9
30

2.
06

1.
32

13
.0

96
3,

73
0

11
15

57
39

•
SA

M
N

40
74

97
36

M
A

G
.2

57
76

.5
4

0.
25

7
16

7,
13

2
0.

39
0.

74
25

.5
81

7,
31

0
94

0
30

29
•

SA
M

N
40

74
97

37

M
A

G
.4

0.
16

5
90

.5
8

0.
80

56
33

,8
20

0.
43

0.
74

59
.1

1,
09

2,
00

2
10

80
27

29
•

SA
M

N
40

74
97

38



Page 8 of 16Cloarec et al. Microbiome          (2024) 12:249 

from acetyl-CoA. This feature, usually found in fermenta-
tive archaea, may also be reversible and thus be involved 
in acetate utilization [65, 66]. Finally, genes encoding 
[FeFe] hydrogenases were detected for MAG.4, MAG.78, 
and MAG.221 (Fig.  4). Phylogenetic analysis of the cor-
responding proteins and the presence of nuoF-like and 
nuoE-like genes in the vicinity indicated that these hydro-
genases are trimeric and belong to the electron bifur-
cating [FeFe] hydrogenase group A3, consistently with 
previous reports in fermentative microorganisms and 
other DPANN Archaea [67] (Supplementary Figure S3).

Pathways for the synthesis of essential amino acids (i.e., 
tryptophan, histidine, arginine, glutamine, cysteine, pro-
line, alanine, valine, methionine, phenylalanine, isoleu-
cine, tyrosine, aspartate, glutamate) were not detected. 
The nine MAGs encoded potential aspartate ammonia-
lyase (asnA), which is used to synthesize asparagine. 
However, this pathway appeared to be blocked due to 
the absence of aspartate ammonia-lyase (aspA) and glu-
tamine synthetase (gnlA). Similarly, five MAGs have an 
identified glyA, involved in serine synthesis, but none 
have the serA/B/C genes necessary for the downstream 
reactions (Fig.  4). Only MAG.96 showed a complete 
potential for the branched-chain amino acid transport 
pathway (livK, livH, livM, livG, livF). Genes involved in 
flagellar motility (flaB, flaH, flaI, flaJ, flaK) were detected 

in most MAGs. The signal recognition particle recep-
tor (ftsY) and the subunit SRP54 (ffh), as well as the gene 
involved in the secretion system (secY), were also iden-
tified in more than half of the Woesearchaeota MAGs. 
Na+/Ca2+ antiporter genes were detected in MAG.3, 
MAG.4, MAG.35, MAG.180 and MAG.221. Gene coding 
a potassium transporter was also identified in MAG.221. 
In addition, most of the MAGs included multiple mecha-
nosensitive channel genes (Fig. 4).

Abundance and distribution of Woesearchaeota MAGs
Mapping of the metagenomic reads against the nine 
retained MAGs showed that these Woesearchaeota rep-
resented a total of ~ 0.3% of the reads at all sampling 
depths. As expected from its coverage, MAG.96 was the 
most abundant MAG, representing an average of 0.11% 
of mapped reads across the water column, while other 
MAGs represented 0.0023 to 0.1535% of mapped reads 
(Fig.  1C). The nine MAGs showed similar depth distri-
bution profiles with two peaks of increased abundance 
in the water column. The first peak was located near the 
surface at 1 m (MAG.96) or 2.5 m (the other eight MAGs) 
while the second peak was found at 14  m (MAG.96) or 
16 m (the other eight MAGs) (Fig. 1C).

Two hypotheses could explain these increased abun-
dances in the upper and the lower transition zones: (1) 

Fig. 2  Rank of Woesearchaeota MAGs. Average sequencing depth of A the 246 MAGs from the Lake Dziani Dzaha dataset and B 21 archaeal MAGs 
from Lake Dziani Dzaha (contamination < 5%). Solid and dashed lines represent the mean and the median of the average sequencing depth, 
respectively
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the 1  m/2.5  m peak could correspond to live/active 
Woesearchaeota, whereas the 14 m/16 m peak could be 
associated with decaying and dead/inactive cells, or (2) 

Woesearchaeota could be active in these two contrasted 
ecological niches in the water column, possibly relying on 
different, niche-specific metabolisms.

Fig. 3  Maximum likelihood phylogeny of the Woesearchaeota phylum. The tree was inferred using a large supermatrice gathering the sequences 
of 61 rprots (350 sequences, 7869 amino acid positions). The tree was computed with IQ-TREE with the LG + C20 + F + R10 model. The tree 
was rooted using representative genomes from other DPANN lineages. Branch robustness was evaluated using ultrafast bootstrap and aLRT 
supports computed with IQ-TREE. For clarity, only branches with both supports > 0.95 are highlighted (black circles). The scale bar corresponds 
to evolutionary distance (i.e., the average number of substitutions inferred per site). The clusters (A-J) defined by Huang et al. (2021) are labeled 
along the GCA code of the sequence and indicated as grey arcs in the tree. Outer colored lines and labels indicate subgroups delineated in this 
study. Red squares correspond to well-supported (bootstrap and aLRT > 0.95) clades of putative halophilic Woesearchaeota (red stars)
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Overall gene expression profiles of Woesearchaeota MAGs
To test the two hypotheses associated with the double 
peak distribution, metatranscriptomic reads sequenced 
from the seven water depths were mapped against the 

ORFs of the nine Woesearchaeota MAGs (Fig. 1D). This 
approach revealed transcriptomic activity at all depths 
for all Woesearchaeota populations, indicating that they 
were likely alive and active throughout the entire water 

Fig. 4  Schematic overview of metabolic pathwaysidentified in Woesearchaeota MAGs from Lake Dziani Dzaha. Presence of the genes in the nine 
retained MAGs (contamination < 5%, completion > 70%) is represented by colored circles. Stars indicate that corresponding transcripts 
for the gene were identified in at least one depth. Functional genes encoding the relevant proteins/enzymes are labeled for each metabolic 
step. Abbreviations: amy , amylase; glk , glucokinase; pmm-pgm , phosphomannomutase/phosphoglucomutase; pgi , glucose-6-phosphate 
isomerase; pgi-pmi , bifunctional phosphoglucose-phosphomannose isomerase; fbp , fructose-1,6-bisphosphatase I; pfk , 6-phosphofructokinase; 
fbaA , class II fructose-1,6-bisphosphate aldolase; gapA , type I glyceraldehyde-3-phosphate dehydrogenase; pgk , phosphoglycerate kinase; 
gpmI , 2,3-bisphosphoglycerate-independent phosphoglycerate mutase; gpmA , 2,3-diphosphoglycerate-dependent phosphoglycerate 
mutase; eno , enolase; pyk , pyruvate kinase; ppdk , pyruvate, phosphate dikinase; korA , 2-oxoacid:acceptor oxidoreductase subunit alpha; korB 
, thiamine pyrophosphate-dependent enzyme; por , pyruvate:ferredoxin (flavodoxin) oxidoreductase; LDH, L-lactate dehydrogenase; acdAB , 
acetate–CoA ligase family protein; ackA , acetate kinase; pta , phosphate acetyltransferase; aldh , aldehyde dehydrogenase family protein; adh 
, alcohol dehydrogenase; serA , D-3-phosphoglycerate dehydrogenase/2-oxoglutarate reductase; serC , phosphoserine aminotransferase; serB 
, phosphoserine phosphatase; glyA , glycine hydroxymethyltransferase; cysE , serine O-acetyltransferase EpsC; cysK / cysM , cysteine synthase; 
talAB , transaldolase family protein; tktAB , transketolase; zwf , glucose-6-phosphate dehydrogenase; devB , 6-phosphogluconolactonase; rpe , 
ribulose-phosphate 3-epimerase; gnd , decarboxylating 6-phosphogluconate dehydrogenase; prsA , ribose-phosphate diphosphokinase; rpiA 
, ribose 5-phosphate isomerase A; pckA , phosphoenolpyruvate carboxykinase (ATP); maeA , NADP-dependent malic enzyme; mdh , malate 
dehydrogenase; fumABC , fumarate hydratase, class I; sdhA , succinate dehydrogenase flavoprotein subunit; sucC / sucD , succinyl-CoA synthetase; 
idh , isocitrate dehydrogenase; acnA , aconitate hydratase; aclA / aclB , ATP-citrate lyase; aspA , aspartate ammonia-lyase; asnA , aspartate–ammonia 
ligase; asnB , asparagine synthase; glnA , glutamine synthetase; glt , glutamate synthase (NADPH); flaB , archaeal flagellin FlaB; flaF , archaeal 
flagellar protein FlaF; flaG , archaeal flagellar protein FlaG; flaH , archaeal flagellin FlaH; flaI , archaeal flagellin FlaI; flaJ , archaeal flagellin FlaJ; flaK , 
archaeal preflagellin peptidase FlaK; ffh , signal recognition particle subunit SRP54; ftsY , fused signal recognition particle receptor; secY , preprotein 
translocase subunit SecY; livG / livF , branched-chain amino acid transport system ATP-binding protein; livM / livH , branched-chain amino acid 
transport system permease protein; livK , branched-chain amino acid transport system substrate-binding protein; rpk , Alpha-D-ribose-1-phosphate 
5-kinase; e2b2 , eucaryal translation initiation factor 2B; deoA , AMP/thymidine phosphorylase; rbcL , type III ribulose-bisphosphate carboxylase; adk 
, adenylate kinase; rnf , rnfABCDE, electron transport complex Rnf
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column, or at least maintained a basal transcriptomic 
activity. The percentage of transcribed genes per depth 
varied between 12.98% and 71.74% depending on the 
considered MAGs. While MAG.96 was identified as the 
most abundant archaeal MAG in the metagenomic data-
set, MAG.96 genes were not the most highly expressed. 
Expression levels of MAG.96 were higher at 0.25 m and 
1  m, and then decreased with depth (Fig.  1D). In con-
trast, the transcription patterns of MAGs 3, 4, 35, 56, 78, 
180, 221 as well as MAG.257 showed a double peak of 
activity at 1–2.5 and at 14–16  m, mirroring their depth 
distribution detected by metagenomics (Fig.  1C). Inter-
estingly, the two most active MAGs, i.e., MAG.221 and 
MAG.4 belonged to the same phylogenetic subgroup III.

Analysis of the top 10 woesearchaeotal genes expressed 
at each depth in this study revealed several genes 
involved in archaellin type IV proteins (flaB), membrane 
formation (S-layer protein genes, YceI family protein), 
and cellular machinery (ATP synthase, TRAM domain-
containing protein, ribosomal proteins, translation elon-
gation factor EF-1, stress response translation inhibitor 
YciH and cold shock proteins), secretion system (secY) 
and cell division (protein FtsZ) (Supplementary Fig-
ure  S4). Only a limited activity of amino acid synthesis 
was detected. For example, MAG.3, MAG.4, MAG.78, 
MAG.96, and MAG.221 expressed an asparagine syn-
thase, while MAG.4 and MAG.221, expressed a serine/
glycine hydroxymethyltransferase (Fig. 4). Transcripts of 
the non-oxidative pentose phosphate pathway and gly-
colysis genes were also identified in the dataset, as well 
as transcripts from the lactate dehydrogenase (LDH) of 
MAG.4 and MAG.78 and type III RubisCo from MAG.78 
(Fig.  4). Transcripts of the genes involved in pyruvate 
fermentation to acetate were also identified for MAG.4 

and MAG.221. MAG.4, MAG.78, and MAG.221 also 
expressed [FeFe] hydrogenase genes (Fig. 4).

Depth profiles of Woesearchaeota activity
To test whether the double peak of Woesearchaeota 
activity corresponds to a modulation of their metabo-
lism to acclimatize to environmental conditions, gene 
expression patterns were compared between top (i.e., 
0.25/2.5  m) and bottom (i.e., 14/16  m) samples. This 
comparison revealed contrasting patterns depending on 
the lineages (Fig. 5).

Transcript analysis identified five distinct transcrip-
tomic patterns along the water column (Fig. 5). The first 
pattern concerns MAG.4, and MAG.221, both belonging 
to the phylogenetic subgroups III (Fig. 3). In these MAGs, 
the majority (48 and 58% for MAG.4, and MAG.221, 
respectively) of the genes, including [FeFe] hydrogenases, 
type V ATP synthases, glycoside hydrolases, cell division, 
and membrane protein genes were expressed at both top 
(1 m/2.5 m) and bottom (14/16 m) layers of the water col-
umn (Fig. 5). A complete rnfABCDGE electron transport 
complex was also expressed at both depths for MAG.221.

A relatively large overlap between gene expression pat-
terns was also observed for MAG.3, 56, and 78, including 
archaellin and hydrogenases, but additional sets of genes 
were also expressed at specific depths. For instance, the 
lactate dehydrogenase gene of MAG.78 was expressed 
only at the bottom of the lake, while the gene encoding 
glycoside hydrolases (GH100 and GH57) and type III 
RuBisCo involved AMP recycling were only expressed at 
the top of the lake.

The third pattern was observed for MAG.180 and 35, 
which are phylogenetically close within subgroup IV. It is 
characterized by a very low number of genes expressed 

Fig. 5  Transcript partitioning of Woesearchaeota. Each dot represents a transcribed ORF that has been detected only at the top, bottom, 
or both (shared) water layers. The upper and lower depths corresponding to the peaks of activity are labeled for each MAG. For each MAG, the size 
of the dots was calculated based on the number of transcripts per ORF and then normalized by the number of transcripts per depth to compare 
top, shared, and bottom expressions. The number below each MAG indicates the subgroup to which it belongs. LDH, l-lactate dehydrogenase; H.P, 
Hypothetical protein
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at both depths and a higher number of genes expressed 
at the bottom. This includes genes encoding GH15, 
phosphoenolpyruvate synthase, and glycogen synthase 
for both MAGs and chemotaxis proteins CheABCD for 
MAG.180.

A bimodal pattern with opposite expression profiles 
at the top and bottom peaks was detected for MAG.257, 
which was taxonomically related to subgroup VI (Fig. 5). 
However, the number of transcripts was too low and 
overly represented by hypothetical proteins to infer the 
metabolic activities. Finally, MAG.96 which was the most 
abundant MAG in the metagenomic dataset was mainly 
active at 1 m where it expressed archaellin, type V ATP 
synthase, transporters, and pyruvate metabolism genes.

Discussion
Woesearchaeota have been previously identified in 
numerous natural environments [11–13] and are taxo-
nomically diverse, with at least 26 proposed subgroups 
based on 16S rRNA gene meta-analysis [10] and 10 
subgroups based on a set of 38 orthologous proteins 
[13]. However, our larger-scale analysis of 61 ribosomal 
proteins, partially supported this previous taxonomic 
delineation of Woesearchaeota subgroups, highlighting 
that the known diversity of Woesearchaeota is far from 
being complete and that further work is needed to bet-
ter understand their taxonomic arrangements and evo-
lutionary history. Based on the taxonomic placements of 
MAGs recovered from Lake Dziani Dzaha and other high 
salinity environments (Laguna Del Tobar, Soda lakes), 
halophily appears to be paraphyletic within the Woe-
searchaeota phylum, with at least six cohesive clades of 
putative halophilic Woesearchaeota that emerged from 
three distinct evolutionary events. Although additional 
experiments are required to fully characterize the adap-
tative strategies of halophilic Woesearchaeota, no bias of 
amino acid composition or isoelectric point of proteins 
was identified, indicating that a salt-in strategy is unlikely 
[68]. By contrast, a strong expression level of the serine/
glycine hydroxymethyltransferase was observed in the 
most active populations (MAG.221 and MAG.4), sug-
gesting a salinity tolerance through osmoprotectant accu-
mulation [69]. Transcripts of mechanosensitive channels 
were also detected (Fig.  4). These membrane proteins 
could potentially be involved in Woesearchaeota salinity 
resistance, as observed for other Archaea [70].

With six identified clusters, including two subgroups 
(I and IV) that could potentially be endemic, Lake Dzi-
ani Dzaha hosts an elevated genomic diversity for 
Woesearchaeota as observed in other stratified aquatic 
ecosystems [33, 34, 71]. This genomic diversity, possi-
bly induced by their unique biology [72], may allow the 

co-occurrence of multiple lineages in the same ecological 
niche. Consistently, mapping of the metagenomic data 
against Woesearchaeota MAGs revealed similar depth 
distributions for these phylogenetically distinct line-
ages, regardless of their relative abundance (dominant/
rare) in the system. However, the unusual double peak 
of abundance that we detected at two different depths 
in Lake Dziani Dzaha challenged previous investigations 
of the vertical distribution of Woesearchaeota in aquatic 
ecosystems, which suggested a single niche preference 
along the vertical stratification of the water column [73]. 
Mapping of the MAGs against historical datasets from 
2014 and 2015 showed similar patterns (Supplementary 
Figure  S5) and metatranscriptomic data also confirmed 
the double peak of abundance, with an increased woe-
searchaeotal transcriptomic activity at both 1–2.5 m and 
14–16 m depths, providing rare evidence of in-situ activ-
ity of Woesearchaeota.

Based on the geochemical profiles of the lake, these two 
depths correspond to the oxycline and the permanent 
deep chemocline that characterize the lake’s geochem-
istry [42]. Transition zones are places of high chemical 
reactivity in lakes and hotspots of microbial diversity 
and activity due to overlapping distributions of electron 
donors and acceptors and intense interactions of different 
biotic components [74]. Since Woesearchaeota genomes 
do not appear to have the metabolic capacity to directly 
use the chemical species present in Lake Dziani Dzaha 
(i.e., oxygen and sulfur compounds, Fig.  4), we hypoth-
esized that their double peak of abundance and activity 
could be linked to the increased biomass and diversity 
found in these layers [75].

At these depths, Woesearchaeota could benefit from 
multiple interactions with other microorganisms that 
would complement their metabolic gaps. Analysis of 
CRISPR-Cas signatures for the detection of a puta-
tive partner [29] was inconclusive, suggesting a non-
CRISPR-Cas-mediated interaction. Woesearchaeota 
from Lake Dziani Dzaha expressed high levels of 
archaellin type IV (fla) proteins, which are also found 
in several DPANN members such as Nanoarchaeota, 
Woesearchaeota and Diapherotrites [3, 10, 76, 77]. In 
DPANN, archaellin genes may be involved in motility 
[78], but also in host attachment and interaction, as 
recently suggested for the co-cultured ‘Ca. Nanoclepta 
minutus’ with its host, Zestosphaera tikiterensis [79]. 
These highly active genes are present in the different 
woesearchaeotal MAGs from the Lake Dziani Dzaha 
suggesting that they have a crucial function, potentially 
enhancing cell-to-cell contacts and interactions with 
other microorganisms in these transition zones.

In addition, metagenomic and metatranscriptomic 
data revealed starch, glycogen, and sugar degradation 
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and diverse lineage-dependent fermentations, with 
lactate and acetate as end products, providing tran-
scriptomic evidence for a heterotrophic fermentative 
activity. Active hydrogen metabolism, via [FeFe] hydro-
genase was also identified in some MAGs, supporting 
previous metabolic predictions of Woesearchaeota 
from other ecosystems [5, 10, 13]. Lactate, acetate, 
and hydrogen were found to be major intermediates 
in interactive metabolism and syntrophic relationships 
[80, 81], supporting microbial interactions between 
Woesearchaeota and other community members of the 
transition zones.

While presenting the same apparent double peak 
of abundance and activity in the water column, con-
trasted gene expression strategies were detected for 
Woesearchaeota populations. These include (i) identi-
cal gene expression at both surface and bottom water 
layers (MAGs 4, 221), (ii) constitutive expression of 
housekeeping genes but modulation of their activity 
related to carbon and energy metabolism (MAGs 3, 56, 
and 78), or (iii) extremely contrasted activities (MAGs 
180, 35 and 257). These results show that beyond their 
observed metabolic versatility, Woesearchaeota popu-
lations could also be characterized by a complex and 
lineage-dependent tuning of their activity, challenging 
the extrapolation of their ecological role and lifestyle 
based on genomic data. The first pattern (i.e., identical 
expression) suggests that lineages clustered within sub-
groups III and IV are insensitive to local environmen-
tal conditions such as oxygen and sulfur concentrations 
and/or the potential state of their putative host, allow-
ing them to avoid niche competition. In contrast, other 
patterns could indicate a gradient of transcriptomic 
responses from local acclimatation to changing condi-
tions or different adapted lifestyles (i.e., associated vs 
free-living or active vs dormant) with differing gene 
expression requirements. Alternatively, this fine-tuning 
of activities could also reflect an adjustment to their 
potential host physiology that might differ between 
oxic and sulfidic zones as observed for instance in 
Cyanobacteria [82]. This reveals rapid modulation 
of their in-situ activities, different ecological and/or 
energy-saving tactics, and potential niche acclimatation 
for Woesearchaeota ecotypes.
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