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Accurate estimation of the dispersal velocity or speed of evolving organisms is no mean
feat. In fact, existing probabilistic models in phylogeography or spatial population
genetics generally do not provide an adequate framework to define velocity in a
relevant manner. For instance, the very concept of instantaneous speed simply does not
exist under one of the most popular approaches that models the evolution of spatial
coordinates as Brownian trajectories running along a phylogeny. Here, we introduce a
family of models—the so-called Phylogenetic Integrated Velocity (PIV) models—that
use Gaussian processes to explicitly model the velocity of evolving lineages instead of
focusing on the fluctuation of spatial coordinates over time. We describe the properties
of these models and show an increased accuracy of velocity estimates compared to
previous approaches. Analyses of West Nile virus data in the United States indicate
that PIV models provide sensible predictions of the dispersal of evolving pathogens
at a one-year time horizon. These results demonstrate the feasibility and relevance of
predictive phylogeography in monitoring epidemics in time and space.

phylogeography | Bayesian inference | West Nile virus | integrated velocity models

Evaluating the pace at which organisms move in space during the course of evolution
is an important endeavor in biology. When considering deep evolutionary time
scales, understanding past dispersal events is key to explaining the spatial diversity of
contemporaneous species. Over shorter time frames, making sense of the migration
patterns of closely related organisms is crucial in building a detailed picture of a
population’s demographic past, present, and future dynamics. Tracking the spatial
dynamics of pathogens during a pandemic, in particular, is of utmost interest as it conveys
useful information about the means and the rapidity at which a disease is spreading in a
population. Epidemiological data generally consist in records of incidence of the disease
at various points in time and space. Yet, estimating the speed at which an organism
spreads at the onset of an epidemic from count data is challenging (1, 2). Similarly,
characterizing the migration process from occurrence data in cases where the organism
under scrutiny is already well-established in a region is not feasible. These difficulties
mainly stem from the fact that count or occurrence data do not convey information about
the nonindependence between observations due to their shared evolutionary paths.

Genomes carry useful information about the relationships between pathogens.
Observed differences between homologous genetic sequences are at the core of
phylogenetic and population genetics approaches which provide a sound framework
to account for the nonindependence between data points in downstream analyses. This
framework also accommodates for situations where nucleotide (or protein) sequences
are sampled at various points in time (3). Heterochronous samples combined with
the molecular clock hypothesis (4) may then serve as a basis to infer the rate at
which substitutions accumulate and to reconstruct the time scale of past demographic
trajectories of the population under scrutiny (see, e.g., ref. 5 for a review).

Designing models for the joint analysis of genetic sequences and their locations of
collection was initiated in the middle of the last century by Wright and Malécot
who brought forward the isolation by distance model (6, 7). The rise of statistical
phylogeography over the last decade proposed alternatives that are less mechanistic
but still aim at capturing the main features of the spatial diffusion process. These
approaches are also well suited to deal with heterochronous data and handle cases where
the population of interest is scattered along a spatial continuum rather than structured
into discrete demes. Lemey etal. (8), in particular, described a hierarchical model whereby
spatial coordinates evolve along a phylogenetic tree according to a Brownian diffusion
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process with branch-specific diffusion rates. The so-called Re-
laxed Random Walk (RRW) model has since then been used
to characterize the spatial dynamics of several pathogens of high
public health, societal, and agricultural impacts, including Ebola
(9) and the rice yellow mottle (10) viruses for instance.

One of the key objectives of the RRW model is to infer the
rate at which organisms disperse. Pybus et al. (11) suggested
using a diffusion coefficient which derives from the ratio of the
estimated squared displacement between the start and the end
of a branch and the corresponding elapsed time. The branch-
level ratios are then averaged over the edges in the phylogeny.
Pybus et al. (11) and then Dellicour et al. (12) later introduced
wavefront-through-time plots, deriving from the displacement
between the estimated root location and the most distant tip
locations at various points in time. Trovao et al. (13) considered
instead dispersal rates which are defined as ratios of estimated
displacements (using great-circle distances) by the elapsed time.

These statistics generally provide a rough characterization of
the dispersal process. The limitations of the dispersal statistics
mainly stem from the very nature of the RRW model: Because
Brownian trajectories are nowhere differentiable, the concept
of instantaneous speed is simply not defined under that family
of models. Also, the sum of displacements deriving from the
observation of a Brownian particle at various points in time grows
with the square root of the number of (equally spaced in time)
observations, making the estimation of an average speed sampling
inconsistent. Finally, the analysis of spatial data simulated under
the Brownian motion model along birth—death trees shows that
the standard dispersal statistics often fail to provide accurate
estimates of speed (14).

The present study tackles the issue of dispersal velocity and
speed estimation by introducing an approach that models the
instantaneous velocity of lineages explicitly. Under these models,
the spatial coordinates of lineages derive from integrating their
velocities so that we refer to Phylogenetic Integrated Velocity
(PIV) models throughout this article. This study uses the
integrated velocity models in a phylogenetic context. Integrated
processes are common however in a variety of applications,
ranging from population biology (15) to financial economics
(16). In virology, longitudinal studies measuring CD4 T cell
numbers in cohorts of patients with AIDS have used them
to test the hypothesis of “derivative tracking,” in which an
individual’s measurements over time tend to maintain the same
trajectory (17). Closer to phylogeography, integrated processes
are instrumental in the field of animal movement ecology
(18, 19). Unlike simple random walks, these processes are
not Markovian as the entire track provides information about
the next step through the integration. They are thus relevant
for accounting for directional persistence. Furthermore, the
integrated processes are related to physical models of particles
moving on a potential surface (20, 21), therefore permitting
fine-grained modeling of animal movement telemetry data. One
of the goals of the present work is to explore the potential of such
approaches in the context of phylogeography, starting with the
two simplest and most common models, namely the integrated
Brownian and Ornstein—Uhlenbeck processes.

Although velocity is not directly observable from hete-
rochronous and geo-referenced genetic sequences, our results
indicate that this quantity can be estimated reliably. Using
simulations under realistic spatial population genetics models,
we show that the velocity inferred with PIV models are more
accurate than those deriving from the RRW approach. Velocities
estimated from the analysis of multiple West Nile virus datasets
were also used to predict the spatial distribution of the pathogen
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over a one-year time horizon in the United States. Comparison
of these predictions to incidence data at the county level suggests
that important features of the spatial dynamics are indeed
amenable to reasonably accurate predictions.

Our ability to efficiently monitor and anticipate the spread of
emerging epidemics depends on the accuracy with which the pace
of dispersal can be quantified. The family of models introduced
in this study provides a relevant tool to achieve this objective.
While important aspects of viral evolution may escape prediction
indefinitely (22) and predicting the time and/or location of the
next virus outbreak remains out of reach (23, 24), the present
study shows how predictive phylogeography may complement
classical approaches in epidemiology.

Results

PIV Models: Rationale. The main attributes of models that belong
to the PIV family are presented first. We focus on the process
of interest along a given time interval [0, #], corresponding to
the length (in calendar time units) of a given branch in the
phylogeny of a sample of the organism of interest. Let X (5) be the
random variable representing the location (i.e., the coordinates)
of a lineage at time 0 < s < 7. Y(s) is its velocity, i.e., the vector
that is made of the instantaneous rate at which a lineage changes
its position along each dimension of the habitat at time s. In all
the following, we reserve the term velocity for the vector, and
speed for its scalar norm. Both X and Y are typically vectors
of length two, corresponding to latitude and longitude. The
location X(¢) at the end of the branch may then be expressed
as follows:

X(#) = x(0) + /0 Y ()ds 1]

where x(0), the location at the time of origin, is fixed. The
Brownian Motion (BM) and the RRW models focus on
{X(5), 0 <5 < t},i.e., the process describing the evolution of the
location during a time interval. While, in one dimension, BM
models have a single dispersal parameter that applies to all edges
in the phylogeny, the RRW model has branch-specific dispersal
parameters, in a manner similar to the relaxed clock model (25)
used in molecular dating,

Instead of modeling the fluctuation of coordinates, PIV models
deal with {¥'(5),0 < s < ¢}, i.e., the process describing the
variation of velocity in that interval. The dynamics of spatial
coordinates then derive from the integration over the velocity as
stated in Eq. 1 above, hence the name “phylogenetic integrated
velocity.” In the following, we introduce two stochastic processes
for {¥(5s),0 < s < ¢t} and characterize the corresponding
distributions of X(#). In order to simplify the presentation,
we provide formulas for univariate processes only in the main
text. Formulas for bivariate (and, more generally, multivariate)
processes are given in (S/ Appendix, sections C and D).

Behavior of PIV Models.

Velocities. The Integrated Brownian Motion (IBM) model relies
on a Wiener process with shift and scale parameters y(0) and o,
respectively, to model {¥(¢);# > 0}. That process is Gaussian
and we have (26):

E(Y(2) 1 5(0)) = »(0), [2]
Cov(Y (), Y(v)) = 6%u, with0 < u < 0. (3]

The Integrated Ornstein—Uhlenbeck (IOU) model uses in-
stead an Ornstein—Uhlenbeck (OU) process to describe the
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evolution of velocity. The mean and variance of velocity at time
¢ are given below (26):

E(Y(2) 1 5(0)) = y(0)e % + pu(1 — %), 4]
0.267&911

Cov(Y(u), Y(v)) = sinh (Qu), with 0 < # <wv. [5]

The parameter 0 in the OU model governs the strength with
which Y (¢) is pulled toward the trend p.
Spatial coordinates. We now examine the evolution of spatial
coordinates under the PIV models. Characterizing the process
governing the evolution of spatial coordinates will shed light on
the biological relevance of the proposed approach and exhibit the
main difference in behavior in comparison with the BM and, by
extension, the RRW models. The stochastic processes modeling
the fluctuation of velocity being Gaussian, the coordinates also
follow a Gaussian process (15). We give below the mean and
variance of the distribution of X(¢) given x(0) and y(0), the
coordinates and velocity at time 0.

When velocity follows a Brownian process (IBM process), we
have

ECX (1) 1 %(0),(0)) = #(0) +(0)r 6]
o2
V() 15(0),5(0)) = - 7]

A linear increase of the spatial coordinates is thus expected
with a direction that is determined by the initial velocity (Eq. 6).
Because of the inertia deriving from their velocity, spatial coordi-
nates of lineages evolving under IBM thus tend to resist changes in
their direction of motion, i.e., they exhibit directional persistence
(18). This mean drift is similar to the directional random walk,
used e.g., in ref. 27 to model the spatial spread of HIV-1. The
BM model has a distinct behavior as it authorizes sudden changes
of direction. The RRW can even lead to large discontinuous
“jumps” from one place to another (28). In contrast, the IBM is
smoother (differentiable) by design, and well suited to model
autocorrelated movements. Moreover, as suggested by Eq. 7
above, the variance of coordinates grows cubically in time,
thereby allowing the IBM model to accommodate for dispersal
events over long distances in short periods of time. This process
is thus able to handle fast spatial range expansion, yet with
continuous and differentiable trajectories.

The corresponding expectation and variance for the IOU
model are given in (S/ Appendix, section A). Here again, the
average coordinates at the end of the branch of focus are
determined by the coordinates at the start of that branch (x(0))
plus the expected displacement (y(0)#) along that same edge. In
this simple IOU model, the velocity of the process converges to
the central value y, leading to trajectories with a clear directional
trend that are well suited for dispersal along an established spatial
gradient. While for small values of @ the IOU has a behavior that is
similar to the IBM, for larger values of that parameter, its variance
grows linearly in time and the process behaves like a directional
BM (27). The autocorrelation (or strength) parameter € is thus
interpreted as the amount of directional persistence present in
the data (18), with small values indicating more dependence to
the trajectory of the elapsed path for future moves.

Fig. 1 illustrates the behavior of the classical random walk and
integrated models along a 5-tip tree. Trajectories of coordinates
generated with the BM and OU versions of the random walk
model are intricate, showing abrupt changes of directions in the
movements (Fig. 1 B and C). The same behavior is displayed by
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Fig. 1. Simulated trajectories of classical random walk and PIV models on
a simple tree. Each process was simulated on the tree (A), with branches
of matching colors. Movements along the latitude and longitude axes were
simulated independently. (B) Random walk using Brownian motion (BM) with
variance ¢2 = 0.1, and starting point x(0) = (0, 0). (C) Ornstein-Uhlenbeck
process (OU) with stationary variance of ¢2/(26) = 0.1, strength 6 = 0.17,
starting at x(0) = (0, 0), and converging to its central value x = (1,1). (D and
E) Velocity y and position x of an Integrated Brownian Motion (IBM) with
variance o2 = 0.1, starting point x(0) = (0,0), and starting velocity y(0) =
(0,0). (F and G) Velocity y and position x of an Integrated Ornstein-Uhlenbeck
(I0U) with stationary variance o2/(20) = 0.1, strength 0 = 0.17, central trend
of u = (1, 1), starting point x(0) = (0, 0), and starting velocity y(0) = (0, 0).

the velocity trajectories under the IBM and IOU models (Fig. 1
D and F) as the models are here identical to that used for the
BM and OU models indeed. Yet, integrating over these rugged
paths gives smooth (differentiable) trajectories of coordinates
under the corresponding models (Fig. 1 £ and G), with particles
moving swiftly away from their initial points, illustrating the
cubic variance pointed above. The IOU model presented here
converges to a (1,1) velocity so that the coordinates of the five
lineages show a clear directionality, stronger than that obtained

with the OU model (Fig. 1 G vs. C).

Accuracy of Speed Estimation. Datasets were simulated under
the spatial Lambda-Fleming-Viot (SLFV) model (29, 30) and an
agent-based spatially explicit transmission chain simulator which
aimed at mimicking outbreaks of the Ebola virus in West Africa
(31). 100 datasets were analyzed for each of these two simulation
settings. As traditional speed statistics are typically computed
over the whole tree (32), we assessed the ability of PIV models
to estimate tree-level speed by averaging node-level velocities
across the tree. The classical weighted lineage dispersal velocity
(WLDV) (33) was used instead for all analyses performed under
the RRW model. As shown recently (14), we expect the WLDV
statistic on RRW models to perform poorly and would like to
assess the ability of PIV models to provide more accurate speed
estimates.

Examination of the estimated vs. true speed relationship
(Fig. 2) indicates that the RRW model systematically under-
estimates speed and the bias worsens with increasing speed. This
bias is strong with data simulated under the SLFV (Fig. 24) and
milder with the Ebola datasets (Fig. 2B), which is expected since
the transmission trees generated in the latter case are sampled in
time and not ultrametric, making the temporal signal to estimate
speed stronger. Nonetheless, true speed values are, on average,
1.6 times larger than those estimated with the RRW for the
Ebola data and 22 times larger for the SLFV data (the ratios
for IBM are 1.2 for both simulation settings). The SLFV model
assumes a finite-size habitat (a square here) and boundary effects,
which occur for large and small dispersal values, are expected
to impact the estimation of speed under models that ignore
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Fig. 2. Accuracy of speed estimation under the RRW and PIV models. True
(x-axis) vs. estimated (y-axis) speed. Estimates were obtained under the IBM,
10U, and RRW models. (A) 100 datasets were simulated using the spatial
Lambda-Fleming-Viot process on a 10-by-10 square. (B) 100 datasets were
simulated under a random walk model inspired by the Ebola epidemic in
West Africa (see the main text). The Insets give the log-log scatterplots of the
estimated vs. true speeds. The y = x line is shown in black on each plot.

this constraint. Yet, the IBM model is largely immune to this
issue. While the IOU model underestimates speed for the SLFV
datasets, its estimates are less biased than those deriving from
the RRW model. The IOU model also tends to overestimate
speed on the Ebola datasets. Further examination of these results
shows a clear influence of the prior distribution on the strength
parameter in the IOU model, a phenomenon already observed

in ref. 34.

Dispersal Dynamics of the West Nile Virus (WNV) in the United
States. The phylogeography of the WNV in the United States
has been studied extensively (see, e.g., ref. 32). The origin of
this epidemic took place in New York City during the summer
1999 (35, 36). By 2004, human infections, veterinary disease
cases, or infections in mosquitoes, birds, or sentinel animals had
been reported to the Centers for Disease Control and Prevention
(CDC) in most counties.

We fitted the PIV and RRW models to several subsets of the
801 geo-referenced sequence dataset analyzed in ref. 32. PIV
models are less flexible than the RRW approach as they do not
authorize sudden changes of direction, as noted earlier (and see
SI Appendix, section B). Therefore, ensuring that both approaches
nonetheless provide comparable fit to the data is a prerequisite
to further analyses. We then used the IBM model to predict
the dispersal patterns and evaluate these predictions through the
comparison with incidence data for the 2000 to 2007 time period.
Model comparison. We compared the fit of the RRW and PIV
models to the WNV data using cross-validation of location
information. Cross-validation is a powerful model comparison
technique in the context of phylogenetic factor analysis (37).
Using a subset of 150 data points chosen uniformly at random
among the 801 available observations, a leave-one-out procedure
was applied to the sample coordinates. Each tip location was
first hidden and its posterior density was estimated using Markov
chain Monte Carlo (MCMC) from the remaining 149 locations
and all 150 sequences (S/ Appendix, section G).

Fig. 3 shows the distributions of the great circle distances
between the observed and reconstructed tip locations as inferred
under the PIV and the RRW models, along with that of uniform
at random predictions. The three phylogeographic models have
similar behavior overall with a majority of distances between
true and reconstructed tip locations ranging between 238 km
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(25% quantile of distribution from MCMC output pooled across
models) and 950 km (75% quantile) with a median of 450 km.
In contrast, if inferred locations are uniform at random within
the United States (excluding Alaska and Hawaii), the median
distance is 1,564 km, i.e., more than three times that estimated
with the phylogenetic models. This result demonstrates the
ability of these models to extract meaningful signal from the
data, even though these approaches do not account for habitat
borders (while the uniform predictor does so). Examination of the
posterior distribution deriving from each model taken separately
indicates that the median distances obtained under the IBM,
IOU, and RRW models are 474, 496, and 416 km, respectively.
While the fit of the RRW model is superior to that of the PIV
models, the performance of the three models are nonetheless
qualitatively similar.

Predicting dispersal using PIV models. PIV models enable the
estimation of dispersal velocity of each sampled lineage. These
velocities may then serve as a basis to predict the spatial
distribution of the underlying population in the near future.
Here, we tested the ability of the IBM model to anticipate the
dynamics of dispersal of the WNV in the early and later stages of
the epidemic.

Sequences collected earlier than December of year ¥ were ran-
domly subsampled from the complete dataset with exponentially
increasing weights given to recent samples. Datasets with 150
sequences were obtained except for years 2000 to 2002 where
smaller sample sizes were considered due to a lack of observations
in this time period. Estimated posterior distributions of velocities
at the tips of the obtained phylogeny under the IBM model were
then used as predictors of the spatial distribution of the virus in
year Y +1 (see Materials and Methods). The predicted occurrences
were compared to yearly incidence data collected at the county
level.

5000
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Fig. 3. Distribution of the distance between true and estimated tip coordi-
nates under the PIV, the RRW models and uniform at random predictions
(WNV data). Cross-validation was used to predict the locations of held-one-
out tip lineages under the RRW and PIV models. “Random” gives the distance
between two locations selected uniformly at random within the United States.
The y axis gives the great circle distance between coordinates (in km).
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Fig. 4 shows the incidence and the predicted occurrence of
the WNV in the early stages in the epidemic. Samples for
years 2000 to 2002 included only 7, 19, and 68 geo-referenced
sequences, thereby making any prediction inherently challenging.
For instance, predictions for year 2000 are overly dispersed and
sensitive to priors (S/ Appendix, section H). Also, while the virus
had reached Florida by 2001, our model failed to predict its
presence south of North Carolina. Predictions for subsequent
years rely on larger numbers of observations and demonstrate the
relevance of our approach. Indeed, the PIV model successfully
predicted the arrival of the pathogen along the west coast of the
United States by the end of 2002. It also correctly predicted that
the north west corner of the country would remain largely virus-
free until the end of 2003. Predictions deriving from the RRW
show qualitatively distinct patterns with a widespread presence of
the virus for years 2003 and 2004 that contrasts with incidence
data (87 Appendix, section H). Overall, the RRW shows a higher
sensitivity (average of 0.89 over all years for the RRW, vs. 0.72
for the IBM), but a lower specificity (average of 0.36 for the
RRW, vs. 0.56 for the IBM), consistent with wider and rather
vague predicted regions.

By 2004 the virus reached an endemic state and the spatial
dynamics of the epidemic diverged from that of the early stages.
Fig. 5 shows the results for the 2004 to 2007 time period.
Prediction at local spatial scales has limited accuracy. For instance,
a high probability of occurrence was systematically estimated for
the states in the North East corner of the country and the south of
Texas while incidence was generally mild in these areas. Note that
the difference between predicted and observed occurrence could
reflect a relatively lower ecological suitability of these regions to
host local WINV circulation, thereby serving a useful purpose.
Moreover, the IBM model correctly predicts the expansion of

Incidence Prediction
2000
5 .I-
2001
g 4 =3 f
2002 = '} 4
S :‘.. ’ ".
2003 ks !

Fig. 4. Incidence and predicted occurrence of WNV in the early phase of the
epidemic (model for prediction: IBM). Purple dots correspond to sampled
locations. Incidence data (Left) for each year and each county was obtained
from the CDC. For year Y, predicted occurrence of the WNV (Right) was
inferred using data collected earlier than the end of December of year ¥ — 1.
The maps were generated with EvolLaps2 (38).
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Fig. 5. Incidence and predicted occurrence of WNV in an endemic regime
(model for prediction: IBM). See the caption of Fig. 4.

the epidemic north of California and Nevada between 2005 and
2006. Also, according to our predictions, the pathogen covered
limited distances in the 2004 to 2007 period compared to the
early stages of the epidemic. This quasi-stasis is confirmed by
the largely similar distributions of yearly incidences. Hence, here
again, our approach manages to capture changes in the spatial
dynamics of the pandemic that are central in the context of
pathogen surveillance.

Discussion

The present study addresses shortcomings in the estimation of
the velocity of lineages using popular models in phylogeography.
These approaches rest on the probabilistic modeling of the
coordinates of lineages along their phylogeny. Yet, the central
concept of instantaneous speed does not exist under the most
popular RRW model. As a consequence, measuring speed as a
ratio between a displacement and the corresponding elapsed time
leads to difficulties. In order to circumvent these limitations, we
introduce PIV models. The originality of this family of models
lies in their modeling of the velocity of evolving lineages instead
of their coordinates. This approach enables a proper definition of
instantaneous speed, which can be inferred anywhere along the
tree, including at its tips.

Datasets were simulated under two models of spatial evolution
that are distinct from that underlying the PIV and RRW
approaches. Results show that speed estimates obtained with PIV
models are generally more accurate than those deriving from the
RRW approach, especially in cases where the pace of dispersal
is high. Also, unlike RRW, PIV models produce velocity vector
estimates at each node of the tree. We assessed the accuracy of
these estimates at tip nodes in the IBM case and found that
the velocity vectors were well estimated, with highest posterior
density intervals having good coverage (SI Appendix, section I).
Yet, PIV models are less flexible than RRW in their description
of the movement of lineages during the course of evolution.

https://doi.org/10.1073/pnas.2411582121
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In particular, sudden changes in the direction of dispersal are
not well accounted for by PIV models. These changes would
indeed require “breaks” in the trajectory of velocities, which
the underlying Gaussian processes do not allow. However, our
analysis of West Nile virus data in the United States indicates
that the movements of lineages display here enough inertia so
that rapid changes in the spatial trajectories are seldom observed.
Cross-validation suggests in fact that the two PIV models tested
here provide a fit to the data similar to that obtained with the
RRW. Moreover, the analytical expressions of the variance of
coordinates under the IBM model grow with time in a superlinear
manner, thereby allowing large displacements in short amounts
of time.

Estimates of tip velocities can serve as a basis to model future
dispersal events. Here, we evaluate the accuracy of predicted
movements through the analysis of subsets of a large dataset
of West Nile virus geo-referenced sequences and county-level
yearly incidence data in the United States. Our predictions
focus on deciding whether the pathogen will occupy (or be
absent from) a given county at a given time interval in the
future, i.e., a modest, yet challenging and critical endeavor
compared to predicting future incidence. The proposed approach
accurately predicted the arrival of the virus along the west
coast of the United States in 2002 from the analysis of data
collected before the end of December 2001. Furthermore, the
predictions clearly point to a change of dispersal dynamics around
2004 to 2005 with a transition from an expansion phase to
an endemic regime whereby rapid east-to-west dispersal events
are replaced with short-distance migrations. While the proposed
predictions have limited accuracy in the early stages of the
pandemic where data is scarce and sampling likely to be biased,
the PIV models successfully anticipate dispersal events in many
instances. Altogether, our results indicate that the predictive
phylogeography approach put forward in the present study could
indeed serve a useful purpose in real-time forecasting of the spread
of an epidemic. Future work could aim at incorporating data
on the ecological suitability of the investigated areas in order
to improve predictions, in a manner similar to that used in
“landscape phylogeography” (39).

In addition to prediction, the PIV models are also expected
to prove useful in many cases where the RRW model has
been applied to quantify and compare dispersal velocity. These
applications range from animal and human viruses to plant
viruses. For instance, lower rates of dengue virus dispersal in
urban as opposed to rural settings have implicated a major role
for mosquito-mediated dispersal (40). Also, dispersal velocity has
often been estimated for rabies lineages with dogs as the main host
species, resulting in hypotheses of their spread being impacted by
human activities (41). More recently, a slow dispersal has been
estimated for Lassa virus in its rodent reservoir, which could in
part explain the restricted distributions of the virus (42). Finally,
increasing dispersal rates of the rice yellow mottle virus in Africa
has led to the suggestion that intensification of rice cultivation
could have enhanced the spread of that virus (43). Applications
of the PIV models could increase the credibility of these and
many more hypotheses of viral spread.

The proposed models and predictions have limitations,
however. In a manner similar to that of the classical RRW
framework, PIV models assume that i) the geographical position
does not impact the fitness or the molecular evolution of the
pathogen, ii) all the lineages are independent from one another,
excluding any competition effect and iii) the geographical spread
of the pathogen is independent from its current position. While
limiting, these assumptions permit efficient computations and
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provided a sound methodological framework for important
phylodynamics studies (see, e.g., ref. 44 for a review). In some
specific contexts such as discrete phylogeography, some of these
assumptions were relaxed, see, e.g., refs. 45 and 46 and references
therein for i), (47—49) for i), and ref. 50 for ii). Similar extensions
to the PIV framework proposed here should be considered. In
particular, models of animal movement also rely on integrated
processes, with an additional potential function that links the
dynamics of velocity evolution of an individual to its position at
each point in time (20, 21). Such a potential function could be
extended to include prior knowledge on the environmental layers
impacting the spread of pathogens, including natural barriers
such as coastline, or could be used to test the impact of specific
environmental variables on the dispersion (51). However, the
pruning algorithm used here (Materials and Methods) would not
apply to these kinds of models, which are thus likely to be highly
computationally intensive.

Furthermore, sampling is likely to impact the results in case
it is driven by practical aspects (e.g., the distribution of genomic
surveillance facilities is not uniform throughout the habitat)
and does not reflect the underlying spatial distribution of the
population under scrutiny (52). Recent work (53) shows how
different sampling strategies can be incorporated in the RRW
model. A similar framework could apply to PIV models and
mitigate the impact of sampling. Additionally, when available,
incidence data convey information about the demographic
dynamics of an epidemic. Hence, increased accuracy of the
predictions may be achievable through the incorporation of past
incidence data in the models presented in this work.

Materials and Methods

Likelihood Calculation and Bayesian Inference. Let X* and X correspond to
random variables denoting the vectors of positions at the tips and the internal
nodes, respectively. X* = {x1,...,xp} and X = {x,41,..., X1} are
realizations of the corresponding random variables, where n is the number
of tips and 2n — 1 is the index of the root node. Y* and Y are the vectors of
velocities attip and ancestral nodes, respectively. Here, we describe two different
approaches for the Bayesian inference of PIV model parameters.

Data augmentation: Sampling velocities. The first method, implemented in
PhyREX (53), relies on data augmentation. It starts with the computation of
p(x*, x, y*,y), i.e., the joint density of all (i.e., ancestral and tip) locations and
velocities. This density is also conditioned on the phylogeny, i.e., a rooted tree
topology with node heights, which is not included in the formula below for
the sake of conciseness. Given the locations and velocities at all nodes in the
tree, the evolutionary process taking place along every branch is independent
from that happening along the other edges. The likelihood is then evaluated
as follows:

PO X y"y)
2n—2
=7(¥p Xp) l_[ p(xi |Xpa(i)/yi/ypa(i))p(Yi |}/pa(i)/Xpa(i))
i=1
2n=2 2n—2
=2 %p) [T P0G 1 Xpa(iy Vi Yoai)) T1 PO 1 Ypagiy) 18]
i=1 i=1

where the subscript pa(i) corresponds to the direct parent of node i. Also,
7(¥p. Xp) is the velocity and location density at the root node. In the present
work, we use a normal density for the corresponding distribution. Since (X; |
Xpa(i) Vi J’pa(i)) is normally distributed, we can use the pruning algorithm as
described in ref. 11 to integrate over X, giving the following likelihood:

2n—2

PO YY) = 2 %) 0055, Y) [T PO | Ypaciy) [9]
i=1
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where ¢p(x*; y*, y) is obtained through a postorder tree traversal, assuming the
movementsalong both spatial axes are independentfrom one anotherand using
the meansandvariancesforeitherthe IBM orthe I0U model (S/Appendix, section
B). The calculation just described relies on augmented data since velocities at
all nodes in the tree are considered as known. Uncertainty around these latent
variables is non-negligible. Samples from the joint posterior distribution of all
model parameters, including ancestral and contemporaneous velocities, were
obtained through MCMC integration.

Direct likelihood computation with the pruning algorithm. The second
method for evaluating the likelihood of PIV models is implemented in the
BEAST phylogenetic software package (54). It relies on the direct computation
of p(x*), the likelihood of the observed positions at the tips conditionally on
the tree. It uses the fact that the stochastic process Z(t) = (Y(t), X(t)) that
describes the joint evolution of both the velocity and position is a multivariate
Markov process, that can be framed as linear Gaussian as in refs. 55 and 56.
Indeed, as shown in (S/ Appendix, section C), for any node i with parent pa(i),
the joint velocity-position vector Z; can be written conditionally on Loa(i) the

vector at the parent node pa(i), asZ; = QiZpa(i) + Y + €ir with €; a Gaussian
random variable with variance Z; that is independent from Z ), and 3=,

q;, and r;, two matrices and a vector of dimension 4 that only depend on the
tree and the parameters of the PIV process considered. In this approach, all
the velocities at the tips are considered as missing: We only observe the last
two entries of vector Z corresponding to the position, but the velocities are
unknown. In ref. 56, a general pruning algorithm is described to deal with this
kind of process (with missing values), that provides not only the likelihood (one
postorder traversal) but also the conditional distribution of nonobserved traits
conditioned on observed traits at the tips (one additional preorder traversal).
This algorithm hence readily gives the posterior distribution of velocities without
the need to sample from them using MCMC. Moreover, it does not need
to assume that movements along the spatial axes are independent from
one another.

Phylogeographic Bayesian inference. In both approaches, standard operators
were used to update the topology of the phylogenetic tree, the node ages
along with the parameters of a Hasegawa, Kishino, Yano (HKY) (57) nucleotide
substitution model. The diffusion parameters of the Brownian process were also
updated using standard Metropolis-Hastings steps. Most results in this study
were derived with PhyREX even though BEAST outperformed PhyREX in terms
of speed of parameter inference (S/ Appendix, section E). The two independent
implementations of Bayesian samplers under the same models provide a robust
validation of most results presented in this study.

Simulations.

Spatial Lambda-Fleming-Viot model. Genealogies and the accompanying
spatial coordinates were first generated according to the "“individual-based"
SLFV model (29, 30). In this model, individuals give birth to descendants
which locations are normally distributed. Death events are also governed by
the same kemel so that the spatial density of the population is constant,
on average, during the course of evolution. The normal kemel is truncated,
allowing the SLFV model to accommodate habitats of finite size, as opposed
to most continuous phylogeographic models. We selected the SLFV model as
it describes the evolution of a population of related individuals along a spatial
continuum as opposed to discrete demes. It is not subject to the shortcomings
that hinder other popular spatial population genetics models such as sampling
inconsistency (58) or Felsenstein's infamous "pain in the torus” (59). Finally
and most importantly, because lineages' coordinates evolve here according to
a jump process, the exact spatial coordinates of each lineage at each point
in time can be monitored. This information may then serve as a basis to
evaluate the total distance covered by all lineages in the genealogy. The
ratio of this distance by the corresponding elapsed time gives an (average)
speed that genuinely reflects the dispersal ability of the organisms under
scrutiny.

50 individuals were sampled on a 10-by-10 square defining the habitat of
the corresponding population. The rate of events where lineages die and/or give
birth to descendants (the so-called REX events in ref. 60) was set to 103 events
per unit of time per unitarea and the variance of the normal density that defines
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the radius parameter in the SLFV model was chosen uniformly at random in
[0.1,0.3]. These parameter values are such that lineage jumps are short and
frequent, thereby mimicking the behavior of a Brownian process (61).
Ebola-like simulations. Here, we used the agent-based spatially explicit
simulator implemented in the R package nosoi (31). Parameters were chosen
so as to mimic the Ebola epidemic in West Africa over a time period of 365 d,
starting from a single infected host in Guéckédou (Guinea). nosoi is a discrete
time, continuous space simulator that explicitly models within-host dynamics
and between-host transmissions. It can exploit a geographic raster to simulate
a full transmission tree where the geographic position of each infected host is
tracked at all time. We simulated datasets using the same parameters as in ref.
31 which are informed by the literature describing human infections by Ebola.
Spatial demographic data from WorldPop (www.worldpop.org) was also taken
into account for these simulations.

Each host had a probability of 20% to move every day. These migrations
were governed by a bivariate Gaussian distribution centered at the location of
the lineage under scrutiny, with diagonal covariance matrix and equal SDs for
longitude and latitude. The SD was set constant for each simulation, and drawn
fromalog-normal distribution with mean and SD equal to approximately 15 km
in each direction. We used a raster of the entire West Africa, ensuring that no
epidemicreached the border of the map within the time frame of the simulation.

As previously, we sampled 50 infected individuals randomly from the
transmission tree, and extracted the sampled genealogy as well as the realized
speed, that exploits the simulated position at each time of the chain. Note that
the genealogies produced by these simulations are sampled through time and
not ultrametric, making the estimation of speed easier.

Sequence simulation. In both simulation settings, edges in the obtained
genealogy were rescaled so that the average length of an edge after scaling
was 0.05 nucleotide substitutions per site. Nucleotide sequences were then
generated under a strict clock model according to the HKY model of evolution
(57) with transition/transversion ratio set to 4.0. 100 genealogies along with the
corresponding spatial coordinates and homologous nucleotide sequences were
generated this way for the SLFV and Ebola simulations.

Statistical inference. Each simulated dataset was processed using the RRW,
IBM, and 10U models with independent coordinates. When considering their
spatial componentsonly, these models have 3,2, and 6 parameters, respectively.
The RRW model used alog-normal distribution of branch-specific dispersal rates,
whichisthe standard parametrization for that model. The nucleotide substitution
rate was set to its simulated value by taking the ratio of the tree length as
expressed in molecular and calendar units. The tree-generating process was
assumed to be Kingman's coalescent (62) with constant effective population size
and a flat (improper) prior distribution on that parameter. Although sequences
evolved according to a strict clock model, we used an uncorrelated relaxed clock
model (25) with a log-normal distribution of edge-specific substitution rate
multipliers. An exponential prior with rate set to 100 was used for the variance
of this log-normal density.

For each dataset, the true average speed was taken as the actual Euclidean
(SLFV) and great-circle (Ebola) distance covered by every lineage divided by the
tree length in calendar time unit. For RRW, distances between the (observed or
estimated) coordinates at each end of every branch in the tree were used to derive
the dispersal rate through the "weighted lineage dispersal velocity” statistic(33).
The posterior median of that statistic was used as our speed estimate. For PIV
models, speed atthe tree level was obtained by averaging the speed estimated at
each node, the latter deriving from the corresponding velocities. Here again, we
obtained the posterior distribution of the tree-level speed and use the median
as our estimate. Note that none of the processes used for inference is the "true”
process used for simulation, but simplified versions of it.

Predictive Phylogeography. The PIV models provide an adequate framework
to estimate velocities at the tips of the inferred phylogenies. It thus makes sense
to apply them to predicting dispersal patterns. Here, we designed a prediction
technique which goal is to assess whether the organism under scrutiny may be
found in a given region at a given point in time after the most recent sample
was collected. Our approach utilizes the posterior distribution of the velocities
estimates at each tip of the phylogeny to build a predictor. The latter is obtained
by linear extrapolation of the estimated velocity at each tip in the tree that
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assumes a constant speed of lineages after their sampling. Survival of these
linear trajectories is taken into account so that older samples are less likely
than recent ones to survive to a given time point in the future. This approach
therefore puts more weight on recent samples to predict dispersal patterns (S/
Appendix, section F). Incidence data used for comparison were extracted from
https://www.cdc.gov/west-nile-virus/data-maps/historic-data.html.

Data, Materials, and Software Availability. The data and code to reproduce
all analyses and figures displayed in this study are available at https:/
github.com/pbastide/integrated_phylogenetic_models. The PhyREXand BEAST
programs are open source and freely available from https:/github.com/
stephaneguindon/phyml and https://github.com/beast-dev/beast-memc, re-
spectively. All other data are included in the manuscript and/or S/ Appendix.
Previously published data were used for this work (32).
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