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OPEN FunAndes — A functional trait
patapescriptor database of Andean plants

Selene Baez et al.*

© We introduce the FunAndes database, a compilation of functional trait data for the Andean

. flora spanning six countries. FunAndes contains data on 24 traits across 2,694 taxa, fora

. total of 105,466 entries. The database features plant-morphological attributes including

. growth form, and leaf, stem, and wood traits measured at the species or individual level,

. together with geographic metadata (i.e., coordinates and elevation). FunAndes follows the

. field names, trait descriptions and units of measurement of the TRY database. It is currently
available in open access in the FIGSHARE data repository, and will be part of TRY's next

. release. Open access trait data from Andean plants will contribute to ecological research in

. theregion, the most species rich terrestrial biodiversity hotspot.

Background & Summary
* Functional traits are measurable properties of a plant describing its structure, function or life history strategy
. that determine species responses to biotic and abiotic environmental conditions across scales of biological com-
© plexity, from communities to ecosystems'™. Exploring variation in plant functional traits provides key insights
. into plant species distribution, community assembly mechanisms, evolutionary strategies, and ecosystem level
: potential responses to global environmental change®~". Global databases of plant functional traits currently
. feature an unprecedented amount of trait information that supports scientific work on plant functional ecology,
including BIEN™, GIFT?®, and TRY!®1. Yet, the geographical coverage of trait measurements still remains lim-
ited for highly diverse tropical areas, especially in mountainous regions'>'.
The tropical Andes is a major hotspot of global biodiversity and endemism. With about 2% of the terrestrial
. area of the planet, it holds 10% of the species of vascular plants'®-*. However, trait information for Andean
. plants is underrepresented in global plant trait databases. These information gap limits our understanding of
© variation in plant trait composition and diversity at regional, continental, and global scales. Synthesizing and
. harmonizing trait measurements from remote and understudied areas is critical for global and regional data
: archiving initiatives?!, and for advancing empirical biodiversity research. Here, we present the FunAndes data-
. base, a compilation of plant functional traits in the tropical Andes (Fig. 1). The records in FunAndes stem from
18 unpublished datasets contributed by different research groups conducting fieldwork in the region. FunAndes
follows the structure and terminology of the TRY database, and is available in the FIGSHARE data repository?.
In total, FunAndes contains 105,466 records of 24 traits, covering 2,694 Andean (morpho-) species in 670 genera
and 175 families. Assembling FunAndes encompassed the following steps: 1) developing a TRY-based format
- for data contributors, 2) revising comparability among protocols used for trait data collection, 3) checking trait
: measurement units for each contributed dataset, 4) detecting and deleting suspicious or erroneous trait meas-
© urements, 5) compiling the contributed data into a unique source with common taxonomic names, units, and
. terminology. To our knowledge, FunAndes is the first open access trait database of the Andean flora, filling a
. substantial gap in global functional trait data. We hope that providing a standardized and curated database on
. Andean plant traits will encourage plant trait ecological research in Andean ecosystems, as well as comparative
. studies across tropical regions.

: #Afulllist of authors and their affiliations appears at the end of the paper.
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Fig. 1 Geographic distribution of plant traits in FunAndes and TRY version 5" in 1-degree cells (~1km).
Montane sites above 500 m of elevation and buffer areas of 50 km below such elevation show density distribution
of the most representative plant traits in FunAndes and TRY along the latitudinal gradient.

Country | SpeciesNames (n) | Trait observations (n) | Trait observations (%)
1 | Argentina | 97 1457 1.38
2 | Bolivia 692 19,463 18.45
3 | Colombia | 294 7,150 6.78
4 | Ecuador 1170 50,401 47.79
5 | Peru 1287 26,372 25.01
6 | Venezuela |27 623 0.59
Total NA 105,466 100

Table 1. Species and trait observations per country in FunAndes.

Methods

Primary sources. We first developed a basic data template containing trait names, trait descriptions and
units of measurement, together with information (e.g., site coordinates and collection dates, number of sam-
ples collected). This template was distributed to potential data contributors, scientists collecting vascular plant
functional trait data mainly in tropical forests of the Andean region. Filled templates were returned to the writ-
ing team, and FunAndes was assembled from 18 distinct datasets containing field data of Andean plant traits
(Tables 1 and 2).

Trait definitions and protocols.  Trait definitions and trait units of measurement in FunAndes follow those
of the TRY database, for a total of 24 plant traits, two categorical and 22 numerical (Table 3). All trait data con-
tributed to FunAndes were obtained from individuals growing in natural vegetation, following standard and
comparable methods**?*. Furthermore, traits were measured mostly in adult individuals, never in seedlings or
saplings. Leaf traits were quantified from exposed mature leaves in the plant canopy. A summary of trait geo-
graphical representation in FunAndes is presented in Fig. 1. A comparison between trait data in FunAndes and
TRY version 57 is presented in Table 4.
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Dataset ID PI LastName PIFirstName | Country Number of entries
ABERG Farfan-Rios William Peru 2522
Amira Project Apaza Amira Bolivia 2040
BAMBOOTRAITS Fadrique Belen Peru 1860
BOTROPANDES ECU Banares de Dios Guillermo Ecuador 9083
BOTROPANDES Banares de Dios Guillermo Peru 9225
COFOREC Bauters Marijn Ecuador 996
DISPLAMAZ Macia Manuel J. Peru 12907
E., ALVAREZ TRAIT DATABASE | Alvarez-Davila Esteban Colombia 623
FPY Blundo Cecilia Argentina 1457
Homeier Projects Homeier Jirgen Bolivia 1015
Homeier Projects ECU Homeier Jirgen Ecuador 30557
Iguaque Salgado-Negret Beatriz Colombia 2272
Jadan Project Jadén Oswaldo Ecuador 9623
LCP UDENAR IAVH Solarte Maria Elena Colombia 611
Madidi Project Tello J Sebastian Bolivia 16408
Rastrojos Norden Natalia Colombia 3008
Sumapaz-Cruz Verde Garnica-Diaz Claudia Colombia 636
VEN-SEU Vilanova Emilio Venezuela 623
Total 105,466

Table 2. Summary of the 18 datasets inFunAndes.

Trait Name Unit

Bark thickness mm

Leaf area (in case of compound leaves: leaf, petiole excluded) mm?

Leaf area (in case of compound leaves: leaf, petiole included) mm?

Leaf aluminium (Al) content per leaf dry mass mgg!
Leaf area per leaf dry mass (specific leaf area, SLA or 1/LMA): petiole included mm?mg~!
Leaf area per leaf dry mass (specific leaf area, SLA or 1/LMA) petiole, rhachis and midrib excluded | mm?mg™!
Leaf calcium (Ca) content per leaf dry mass mgg!
Leaf carbon (C) content per leaf dry mass mgg!
Leaf carbon (C) isotope signature (delta 13 C) mgkg™!
Leaf compoundness unitless
Leaf dry mass per leaf fresh mass (leaf dry matter content, LDMC) mgg!
Leaf magnesium (Mg) content per leaf dry mass mgg!
Leaf nitrogen (N) content per leaf dry mass mgg!
Leaf nitrogen (N) isotope signature (delta 15N) mgkg™!
Leaf phosphorus (P) content per leaf dry mass mgg!
Leaf potassium (K) content per leaf dry mass mgg!
Leaf texture (sclerophylly, physical strength, toughness) kKNm™!
Leaf thickness mm

Plant growth form unitless
Stem conduit cross-sectional area (vessels and tracheids) pm

Stem conduit density (vessels and tracheids) mm ™2
Stem dry mass per stem fresh volume (stem specific density, SSD, wood density): branch g/cm®
Stem dry mass per stem fresh volume (stem specific density, SSD, wood density): sapwood g/cm?®
Wood (sapwood) specific conductivity (stem specific conductivity) kgm !'Mpa's!

Table 3. Plant functional traits represented in FunAndes. Trait definitions and units of measurement follow
those of TRY'® (https://www.try-db.org/de/TabDetails.php).

Database structure. The database contains 24 fields to provide contextual information about data collec-
tion, including association of trait data to permanent vegetation plots, site coordinates and collection dates; and
information about the trait value provided (e.g., if the value provided is a single observation or an average of trait
measurements) (Table 5).

Harmonization. We followed various steps to ensure the quality of the data before adding a contributed
dataset to FunAndes. Our workflow consisted of a series of operations, including generating dataset IDs for
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FunAndes TRY

Number Entries identified to
Trait of Project IDs | Entries | genus or species level Species | Entries
Bark thickness 2 1242 1232 340 0
Leaf aluminium (Al) content per leaf dry mass 2 1712 1689 402 318
Leaf area (in case of compound leaves: leaf, petiole excluded) 2 686 670 162 0
Leaf area (in case of compound leaves:leaf, petiole included) 10 6512 6399 1534 0
Lefaesper o dy s cclefre SLAor M)
Irﬁtaii?:ig:dl:;fdry mass (specific leaf area, SLA or 1/LMA): 14 16458 | 15577 2423 0
Leaf calcium (Ca) content per leaf dry mass 3 2289 2213 558 318
Leaf carbon (C) content per leaf dry mass 5 2785 2700 654 882
Leaf carbon (C) isotope signature (delta 13 C) 2 259 257 72 68
Leaf compoundness 18 18570 | 17642 2600 423
he)a.{/[ d(r:;l mass per leaf fresh mass (leaf dry matter content, 6 2058 2049 403 68
Leaf magnesium (Mg) content per leaf dry mass 2 2096 2023 519 318
Leaf nitrogen (N) content per leaf dry mass 6 2853 2768 669 1698
Leaf nitrogen (N) isotope signature (delta 15N) 2 259 257 72 0
Leaf phosphorus (P) content per leaf dry mass 4 2378 2302 577 1566
Leaf potassium (K) content per leaf dry mass 2 2170 2096 523 318
Leaf texture (sclerophylly, physical strength, toughness) 2 1423 1407 345 0
Leaf thickness 7 8200 7414 1779 257
Plant growth form 17 18780 17818 2657 2064
Stem conduit cross-sectional area (vessels and tracheids) 1 933 912 367 3
Stem conduit density (vessels and tracheids) 1 930 909 367 0
ifg:)ndcgeynrsr;?;)s l})):; nsct;alm fresh volume (stem specific density, SSD, 3 3418 7625 1795 0
‘S;Zf)r:j (areynlg'llta;)s sy;{e; ‘;‘t)eonj fresh volume (stem specific density, SSD, 5 2845 2814 683 0
\C/gcr)l(éi C(tsia:/[i)tv;rlc))od) specific conductivity (stem specific 1 929 908 367 3
Total 105,466 | 100,346 20,029 | 8551

Table 4. Plant functional traits inFunAndes in comparison to TRY version 5'7 for the Andean region.

each contributed dataset, harmonizing data into common measurement units, translating terms (trait values)
for categorical variables, verifying and correcting collection coordinates, and identifying erroneous trait data
measurements. Each data contributor was contacted to double check methods used for trait collection, correct
or eliminate suspicious trait values. Finally, duplicates were removed to create the final version of the database.
All steps taken toward data standardization were done in R!® using built-in functions and the package ‘dplyr'.

Taxonomy. Species names standardization was conducted with the R package ‘LCVP’ of The Leipzig
Catalogue of Vascular Plants'®. Original species names were compared to LCVP names by searching for matches.
Non-matches (mainly caused by incorrect spelling) were revised by an expert in Andean flora (J.H.), and cor-
rected following LCVP. The final FunAndes database reports both the original and the updated taxon name
alongside each trait record. For each morphospecies, higher taxonomic affiliations obtained from the LCVP were
included.

Data Records
Access. FunAndes database is stored and available for direct download from the FIGSHARE data repository*
and will become available from the TRY Plant Trait Database in the next release (https://www.try-db.org).

Data coverage. FunAndes includes 105,466 trait records for 24 traits of 2,694 Andean morpho-species in
670 genera and 175 taxonomic families. Therefore, FunAndes presents trait information for roughly nine percent
of the ~30,000 species of vascular plants estimated to occur in the Tropical Andes?*?. Three traits of FunAndes
(plant growth form, leaf compoundness, specific leaf area) make up half of the records in the database (Table 4).
Leaf trait data make up 67.7% of the database, followed by whole plant (i.e., plant growth form and leaf com-
poundness) (17.8 and 17.6%, respectively) and stem traits (14.5%). Each species has an average of 7.4 (SD =5.1)
distinct traits. All observations have geographic coordinates.

Considering the Andean countries, Ecuador has 47.8% of all the trait observations in FunAndes, followed
by Peru (25.0%) and Bolivia (19.5%) (Fig. 1, Table 1). Data in FunAndes comes from 788 collection sites
(i.e., unique combinations of latitude and longitude) and is associated to 570 forest plots. Furthermore, trait
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Number Field Definition

1 Project_ID Project name of the contributed dataset

2 Plot_ID Plot identification code

3 Plant_ID Plant identification code or voucher

4 Sample_ID Sample number

5 SpeciesOriginal Species of the plant in the original dataset

6 OrderLCVP Taxonomic order provided by the Leipzig Cataloge of Vascular Plants
7 FamilyLCVP Taxonomic family provided by the Leipzig Cataloge of Vascular Plants
8 GenusLCVP Taxonomic genus provided by the Leipzig Cataloge of Vascular Plants
9 SpeciesLCVP Taxonomic species provided by the Leipzig Cataloge of Vascular Plants
10 Long Longitude in decimal degrees

11 Lat Latitude in decimal degrees

12 Elevation Elevation in m

13 Country Country

14 Collection_year | Year of collection

15 ValueKindName | Value kind (single measurement, mean, median, etc.)

16 SpeciesName Revised species name

17 OrigValueStr Trait value

18 OriginalName Trait name following TRY

19 OrigUnitStr Trait units

20 LastName Last Name of the PI contributing the dataset

21 FirstName First Name of the PI contributing the dataset

22 Email Email of the PI of the contributed dataset

23 Dataset Identifier of the dataset in TRY (FunAndes)

24 Observation_ID | Unique identifier of each observation in FunAndes

Table 5. Definitions of fields in the FunAndes database.
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Fig. 2 Distribution of plant trait data in FunAndes along gradients of (a) elevation, (b) Mean annual
temperature and Mean total annual precipitation. Climatic variables were extracted from the Chelsa climate

database?.

observations are grouped mainly around 500, 1,000, 2,000 and 3,000 m of elevation (Fig. 2a). The data is widely
distributed along a gradient of mean annual temperature, but clustered toward lower values of total mean annual
precipitation (Fig. 2b).

The five most represented plant functional traits in FunAndes - plant growth form, leaf compoundness, spe-
cific leaf area (SLA), wood density, leaf thickness - are homogeneously distributed in the tree phylogeny (Fig. 3).

TRY version 52 hosts 8,548 entries for Andean plants, corresponding to 1,123 species, and 15 of the 24
functional traits held in FunAndes (Table 4). FunAndes, therefore, will increase available trait data by a factor
of 12, and at least double the current representation of traits per species in TRY. In consequence, FunAndes is a
substantial contribution to plant functional trait data availability for the Andean region.
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Fig. 3 Phylogenetic distribution of trait data in FunAndes showing the total number of observations per taxa
for the five most represented functional traits: Plant growth form, leaf compoundness, specific leaf area (SLA),
wood density, and leaf thickness. The phylogenetic tree shows information for 150 families and 2,690 species.
The tree is based on a recent plant phylogeny*®, nomenclature of The Plant List (http://www.theplantlist.org),
and was created with the package ‘V.phylomaker’?.

Technical Validation

For each contributed dataset we visually inspected all data and metadata producing histograms of each trait
value to identify outliers or mistaken measures. In most cases, extreme values were discussed with data contrib-
utors to make decisions toward correcting or eliminating erroneous observations. With the final version of the
database, histograms were produced once again to check for outliers or mistaken values.

Usage Notes

The data can be downloaded from the FIGSHARE data repository under the terms of Creative Commons Zero
(CC0) waiver. We also provide FunAndes database in the TRY Plant Trait Database (https://www.try-db.org).
Users of FunAndes data are invited to cite this publication: Baez et al. xx. FunAndes — A functional trait database
of Andean plants. Scientific Data. 00:00-00, and the accompanying FIGSHARE dataset?.

Code availability

The contributed datasets were provided in Excel spreadsheets (Microsoft Office 2013), therefore no code is
available for this step. Scripts to conduct taxonomic standardization using the LCVP, to plot environmental
distribution, and trait representation in the plant phylogeny are available at FIGSHARE®. The scripts were
developed in R.
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