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Basin-wide variation in tree hydraulic safety 
margins predicts the carbon balance of 
Amazon forests

Tropical forests face increasing climate risk1,2, yet our ability to predict their response 
to climate change is limited by poor understanding of their resistance to water stress. 
Although xylem embolism resistance thresholds (for example, Ψ50) and hydraulic 
safety margins (for example, HSM50) are important predictors of drought-induced 
mortality risk3–5, little is known about how these vary across Earth’s largest tropical 
forest. Here, we present a pan-Amazon, fully standardized hydraulic traits dataset and 
use it to assess regional variation in drought sensitivity and hydraulic trait ability to 
predict species distributions and long-term forest biomass accumulation. Parameters 
Ψ50 and HSM50 vary markedly across the Amazon and are related to average long-term 
rainfall characteristics. Both Ψ50 and HSM50 influence the biogeographical distribution 
of Amazon tree species. However, HSM50 was the only significant predictor of observed 
decadal-scale changes in forest biomass. Old-growth forests with wide HSM50 are 
gaining more biomass than are low HSM50 forests. We propose that this may be 
associated with a growth–mortality trade-off whereby trees in forests consisting of 
fast-growing species take greater hydraulic risks and face greater mortality risk. 
Moreover, in regions of more pronounced climatic change, we find evidence that 
forests are losing biomass, suggesting that species in these regions may be operating 
beyond their hydraulic limits. Continued climate change is likely to further reduce 
HSM50 in the Amazon6,7, with strong implications for the Amazon carbon sink.

Rising temperatures and drought pose a significant challenge to the 
functioning of Earth’s forests and may already be changing forest 
dynamics globally8,9. The consequences of intensifying climate stress 
may be particularly marked in Amazon rainforests, which house around 
16,000 tree species10, store more than 100 Pg of carbon in their bio-
mass11 and regulate climate through their substantial exchanges of 
carbon, water and energy with the atmosphere12. Recent recurrent 
drought events across the Amazon have increased tree mortality13,14 and 
may be partially responsible for the long-term decline of the Amazon 
carbon sink15,16. Water stress over Amazonian forests is likely to intensify 
under future climate due to increasing temperatures, altered rainfall 
and increased occurrence of extreme events1,2. Thus, understanding the 
vulnerability of these forests to drought stress is of great importance.

Substantial evidence points to hydraulic failure, defined as a dis
ruption of whole-plant water transport capacity due to embolism of  
xylem vessels17, as a key mechanism underpinning drought-induced 
mortality3,4,18. The vulnerability of trees to hydraulic failure is closely 
related to their ability to resist xylem embolism and the proximity with 
which they operate to critical embolism thresholds, their hydraulic 
safety margins (HSMs)4,5. Commonly used metrics of embolism resis
tance include the xylem water potentials at which 50% (Ψ 50) and 88%  
(Ψ 88) of stem hydraulic conductance are lost, whereas HSMs integrate 
these embolism resistance thresholds with in situ atmospheric vapour 
pressure and soil water status, through several physiological and  
allometric traits19,20 and denote how close midday water potentials 

measured at the peak of the dry season (Ψ dry) in the field approach Ψ 50  
(HSM50) or Ψ 88 (HSM88)4,18,21. Thus, HSMs provide a combined measure 
of xylem vulnerability and exposure to water deficit. These properties 
have been shown to be important predictors of mortality under 
drought22 and are central to efforts to understand and mechanistically 
model climate change impacts on vegetation function8,23–25

Several recent studies have evaluated tree hydraulic properties 
within3,26–33 and between sites6,34 in the central and eastern Amazon. 
However, most of these sites share broadly similar climate, are located 
on highly weathered, infertile soils and are amongst the least dynamic 
Amazonian forests35,36. A basin-wide perspective of how hydraulic prop-
erties vary across Amazonian forests, which encompass a broad range 
of geographic/climatic conditions and species composition, is lacking 
at present, limiting understanding of how climate change will impact 
this critical ecosystem.

Here, we present a pan-Amazon dataset of plant hydraulic properties 
(Ψ 50, HSM50 and Ψ dry), following a fully standardized methodology. Our 
dataset includes hydraulic traits (HTs) from 129 species across 11 forest 
plots in the eastern, central eastern and southern Amazon. Our sam-
pling spans the entire Amazonian precipitation space ranging from 
ecotonal forests at the biome edges with long dry season length (DSL) 
to ever-wet aseasonal forests (Fig. 1, Extended Data Fig. 1 and Supple-
mentary Table 1). In each site, sampling effort was concentrated on 
adult dominant canopy and subcanopy species (Supplementary 
Table 2). For each species at each site, we constructed xylem embolism 
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vulnerability curves (describing the reduction in hydraulic conductiv-
ity with declining water potential), from which we determined Ψ 50 and 
Ψ 88 and also measured midday leaf water potential during the peak of 
the dry season (Ψ dry; Extended Data Fig. 2) to compute hydraulic safety 
margins (HSM50 =  Ψdry −  Ψ50). Collectively, the species sampled encom-
pass a wide array of life-history strategies37 and represent about 24% 
of total Amazon tree biomass, excluding palms38 (Extended Data Fig. 3).

We use this dataset to assess basin-wide biogeographic variation in 
embolism resistance and vulnerability to hydraulic failure. Finally, we 
take advantage of standardized long-term inventory plots distributed 
across the Amazon39, within which our sites are nested, to test whether 
these traits predict Amazonian species distribution and long-term 
aboveground biomass (AGB) accumulation (that is, the forest AGB 
carbon sink).

Hydraulic traits distribution
Our analyses suggest a strong overarching effect of water availability 
on HTs across Amazonian forests, both in terms of species level and 
community values. As expected, species found in ever-wet aseasonal 
forests (DSL of 0 months) have the least resistant xylem (least negative 
Ψ50), whereas forests with intermediate DSL (2–5 months) and ecotonal 
long DSL forests (DSL of more than 5 months) have species with pro-
gressively more resistant (more negative Ψ 50) xylem tissue (P < 0.0001; 
Fig. 2 and Extended Data Fig. 4). The same pattern is observed for Ψ dry, 
whereby species in long DSL forests experience more negative Ψdry than 
those in intermediate DSL or ever-wet aseasonal forests (P < 0.0001; 
Fig. 2 and Extended Data Fig. 4). Contrary to the convergence in HSM50 

reported by previous21,40 (but not all41) studies across woody species at 
continental and global scales, we find that HSM50 varies significantly 
across Amazonian forests (P < 0.0001; Fig. 2 and Extended Data Fig. 4). 
Species in ever-wet aseasonal forests generally have higher HSM50 than 
those in intermediate DSL and long DSL forests and thus face the lowest 
apparent risk of hydraulic failure despite having xylem that is least 
resistant to embolism. This may reflect a lack of exposure to drought 
in ever-wet forests. Similar patterns are also observed at the community 
level. Across all sites, basal area weighted HT are strongly related to 
maximum cumulative water deficit (MCWD; Extended Data Fig. 4), 
which alone explains 59%, 47% and 82% of the observed variation in Ψ 50,  
HSM50 and Ψ dry (linear model: P = 0.004, P = 0.01, P < 0.0001), respec-
tively. Drier sites are generally more resistant to embolism but have 
lower HSM than do wetter sites, in agreement with recent global analysis41.  
Many species in the driest sites have negative HSM50 (Fig. 2b), suggest-
ing that (1) they may be adapted to cope with seasonal exceedance of 
HSM50 and (2) mortality thresholds in these regions may be associated 
with higher conductance losses; for example, HSM88 as has been 
reported in experimental studies5,42

. Although our results point to a 
very strong control of background climate (MCWD) in driving variation 
in hydraulic properties across the Amazon, we note that other factors 
governing water availability locally are also probably important, includ-
ing topography-associated variation in water table depth28,43.

The relationship between community mean HSM50 and MCWD is 
unlikely to be driven by differences in leaf phenology across sites. 
Within our dataset, we find that deciduous species have lower HSM50 
than do semideciduous and evergreen species (Extended Data 
Fig. 5), consistent with other findings that deciduous species have 
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Fig. 1 | Sampled sites: spatial distribution and climatological variation. 
 The map depicts long-term climatical water deficit (CWD) obtained from  
ref. 63 (2.5 arcsec resolution). Bar graphs show mean precipitation per month  
(1998–2016) per site. The red lines at 100 mm represent the definition of dry 
season, where the monthly precipitation is below 100 mm. Precipitation data were 

obtained from TRMM (the Tropical Rainfall Measuring Mission—TMPA/3B43 v.7) 
at 0.25° spatial resolution64. Aseasonal ever-wet sites (blue bars): Sucusari (SUC) 
and Allpahuayo (ALP-1 and ALP-2). Intermediate DSL sites (green bars): Acre (FEC), 
Caxiuanã (CAX), Manaus (MAN), Tambopata (TAM) and Tapajós (TAP). Ecotonal 
long DSL sites (brown bars): Kenia (KEN-1 and KEN-2) and Nova Xavantina (NVX).
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hydraulically riskier strategies44. However, the relationship between 
HSM50 and MCWD remains, even when deciduous and semideciduous 
species are excluded from the analysis (P = 0.02, R2 = 0.44; Extended 
Data Fig. 5). Thus, deciduousness may partially explain the low HSM50 
observed in the dry fringes of the Amazon but further explanations are 
required. In these regions, where climate change is most accentuated, 
trees may now be operating at their physiological limits.

Within intermediate DSL forests, despite relatively similar MCWD 
and annual rainfall, species in central eastern Amazon have more resis
tant xylem and have wider HSM50 than their generally more dynamic 
western Amazon counterparts (P = 0.001; Fig. 2). Indeed, whereas 
resistance to embolism of intermediate DSL forests in western Amazon 
(mean Ψ 50 = −1.77 ± 0.13 MPa) is similar to that of aseasonal forests 
(mean Ψ50 = −1.61 ± 0.1 MPa), intermediate DSL forests in central eastern 
Amazon (mean Ψ 50 = −2.40 ± 0.15 MPa) have embolism resistance 
similar to ecotonal forests in southern Amazon (mean Ψ 50 = −2.59 ± 
0.18 MPa). On the other hand, Ψdry does not significantly differ between 
these forests (P = 0.5), indicating that western Amazon forest species 
do not compensate for their more vulnerable xylem through tighter 
leaf water potential regulation . Rather, western Amazon species  
show markedly lower HSM50 (mean HSM50 = −0.07 ± 0.14 MPa) than do 
central eastern species occupying a similar climatic niche (mean 
HSM50 = 0.58 ± 0.19 MPa, P = 0.01).

HTs explain Amazon tree biogeography
It has been shown previously that the distribution of tree species in 
western Amazon is strongly modulated by water availability, with some 
species associated with wet environments and others with dry45. We 

find a positive relationship between all evaluated HTs and species water 
deficit affiliation (WDA)45, defined as species preference for wet or dry 
habitat on the basis of its relative abundance across the precipitation 
space over which it is found (Fig. 3). Taxa with more negative WDA 
(dry-affiliated taxa) are widely spread in the Neotropics45. Although 
dry-affiliated taxa can in principle also occur in wet places, this is not 
true for most Amazonian species, which are highly wet-affiliated and 
not found in drier environments45. As expected, we find a significant 
positive relationship (R2 = 0.52, P < 0.0001) between Ψ dry and WDA 
(Fig. 3); that is, species associated with drier bioclimates experience 
more negative water potentials. A significant relationship between  
Ψ 50 and WDA (R2 = 0.23, P < 0.0001) further reveals that the xylem of 
species found in drier climates is more adapted to deal with lower water 
potentials than that of wet-affiliated species. These findings are qual-
itatively consistent with a worldwide study showing that conifer species 
occurring in drier climates have xylem that is more resistant to embo-
lism than those found in more mesic climates46. However, we still find 
a weak positive relationship between HSM50 and WDA (R2 = 0.11, 
P = 0.005), such that dry-affiliated species have lower HSM50 than do 
wet-affiliated species and thus face greater hydraulic risk (Fig. 3). Con-
tinuation of drying trends observed in the southern Amazon47 will 
probably further reduce Ψ dry and HSM50 of tree species found in this 
region, assuming limiting acclimation in Ψ 50, as documented by other 
authors (for example, ref. 30).

HSMs predict Amazonian carbon balance
Forests across the Amazon have been gaining biomass in recent decades 
and this substantial carbon sink is estimated to account for 10–15% of 
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the terrestrial land sink15,48. Forest inventory plots spread across the 
Amazon have revealed that Amazon forests vary widely in their biomass 
accumulation rates (ΔAGB, the difference between biomass gained by 
productivity and that lost by mortality) but the underlying mechanisms 
governing variation in ΔAGB across forests remain elusive15,16. We tested 
the predictive power of basal area weighted mean values of a range of 
plant traits including stem and branch wood density (WDstem and 
WDbranch), leaf mass per area (LMA) and HTs (Ψ 50, HSM50 and Ψ dry), as 
well as climate metrics (for example, MCWD, mean annual precipitation 
(MAP) and mean annual temperature (MAT)) and found HSM50 to be 
the only significant predictor of the long-term aboveground net bio-
mass change (ΔAGB) across forest plots (Fig. 4, Extended Data Fig. 6 
and Supplementary Table 3). Although we cannot rule out the role of 
predictors for which we had no data (for example, root traits or patho-
gen status), this result highlights a key role for HSM50 in regulating 
forest dynamics (Extended Data Fig. 7 and Supplementary Table 4) and 
holds true when the analysis is repeated using dynamics data from a 
larger set of plots (clusters) located within the same landscape as the 
plots sampled directly for HTs (Extended Data Fig. 8 and Supplemen-
tary Tables 5 and  6).

HSM50 explained 70% of the variance in relative ΔAGB across Amazon  
forest plots and 67% of the absolute ΔAGB (P < 0.01 and P < 0.01, 
respectively, Extended Data Fig. 7 and Supplementary Table 4). Tree  
communities characterized by narrow HSM50 are gaining less biomass 
than those with high HSM50. Unravelling the physiological mechanisms 
underpinning the relationship between HSM50 and ΔAGB is challenging. 
The ΔAGB depends on the balance of productivity and mortality and 
HSM50 might be expected to affect both of these pathways. Uptake of 
CO2 for photosynthetic assimilation and transpirational water loss from 
leaves are directly coupled through stomata. The economic challenge 
of guaranteeing carbon gain although minimizing water loss gives rise 
to a range of plant strategies depending on resource availability49, with 
plants with acquisitive characteristics at one end of the spectrum to 
those with conservative characteristics at the other. Previous studies 
have shown that species with higher growth rates50 or with acquisitive 
trait attributes51 have lower HSMs. Using species-level diameter growth 
data from across the Amazon37, we also find a negative relationship 
with HSM50 (Extended Data Fig. 9). At the community scale, we gener-
ally find a stronger association of HSMs with mortality processes than 
with productivity, suggesting that HSM controls on mortality may 
be particularly important in regulating stand-level carbon balance. 
For example, both plot-level and cluster-level analyses show tighter 
relationships between HSM50 and relative AGB mortality (R2 of 0.26 
and 0.27) than with relative AGB productivity (R2 of 0.00 and 0.02) 

(Extended Data Figs. 7 and 8), with the same patterns observed when 
HSM88 is considered instead of HSM50 (Extended Data Fig. 10 and Sup-
plementary Table 4). We also find strong relationships between HSMs 
(HSM88 in particular) and woody biomass residence time (Extended Data 
Fig. 10). Relationships between HSM50 and stand-level stem mortality 
rates are invariably stronger than with biomass mortality metrics (plot 
level R2 = 0.47, P = 0.04; cluster level R2 = 0.47, P = 0.06) and are even 
stronger for HSM88, which was found to explain 68% of the variation 
in mortality rates at plot level (Fig. 4c; R2 = 0.68, P < 0.01), with similar 
patterns observed in the cluster-level analysis. These results indicate 
that exceedance of HSM88 greatly increases mortality risk and is con-
sistent with experimental findings on saplings42.

We propose that the relationship between HSM and ΔAGB (Extended 
Data Fig. 7a,d) may be mediated mainly through HSM controls on woody 
biomass residence time (τw), which in turn modulates forest response to 
a CO2 stimulus. Forests with high τw are expected to sustain CO2-induced 
net carbon gains for a longer period of time than forests with shorter τw 
as the lag times between productivity increases and knock-on increases 
in mortality are longer in high τw forests52,53. We find that forests with 
low HSM50/HSM88 tend to be associated with higher woody biomass 
turnover rates/lower woody biomass residence times (τw; Extended 
Data Figs. 7h, 8h and 10h) but are often more productive than high 
HSM forests. In line with theoretical expectations, high τw forests have 
been found to be losing less biomass in the Amazon than those with 
low τw (ref. 16). High HSM50 may promote higher τw by reducing the 
risk of exceeding critical embolism resistance thresholds associated 
with tree mortality.

It has recently been proposed that HSM may also help to explain 
the growth–survivorship trade-off which is manifested at plot and 
at species level across the Amazon, whereby forests characterized 
by species with acquisitive traits that prioritize growth take greater 
hydraulic risks (that is, operate at lower HSM) and are more prone to 
mortality during periods of moderate water stress54. Our results sup-
port this as we find that species with high growth rates have low HSM50 
(Extended Data Fig. 9), providing a potential mechanistic explanation 
for recent findings that high species-level growth rates are the principal 
mortality predictor for trees across the Amazon55. This HSM-mediated 
growth–survivorship trade-off also provides an explanation for why 
forests on more fertile, western Amazon forests have higher mortality 
rates than those in slower, less fertile central eastern Amazon forests36,55 
as we find lower HSM in western Amazon forests occurring in a similar 
rainfall space to those in central eastern Amazon.

HSM50 reflects exposure to drought stress as well as plant water use 
strategies. Intensifying climate stress may help to explain why plots 
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with the most negative HSM are losing rather than gaining biomass. 
The most vulnerable site (lowest HSM) in our study is in the southern 
fringe of the Amazon, the driest region of the Amazon and also the one 
that has also faced the greatest recent climatic changes2,12. The very low 
HSM50 observed there points to substantial hydraulic stress and may 
indicate that this region of the Amazon faces the most imminent climate 
risk. Our finding that forests in this region are losing biomass (Fig. 4b), 
is consistent with recent results based on analysis of atmospheric CO2 
profiles that suggest remaining forests in the south eastern Amazon 
no longer act as a large-scale carbon sink56.

Implications and conclusions
Our study evaluates large-scale variation in plant hydraulic properties 
across the Amazon. Our results provide compelling evidence for the 
importance of these properties in influencing basin-scale forest com-
position and function and offer important new insights into which 
Amazonian forests face greatest risk of drought-induced mortality. 
Although more resistant xylem (more negative Ψ 50) may provide  
Amazon species with an evolutionary adaptation to persist in water- 
limited environments, our results indicate that HSM50 is a powerful 
integrative trait that is strongly related to long-term ecosystem-scale 
biomass trajectories. We find that climatic factors alone or other plant 
traits do not have this explanatory power, in line with previous work 
suggesting that community-level variability in HSM50 exerts a strong 
control on ecosystem resilience to drought57. Although there are inevi
table uncertainties (for example, precise determination of minimum 
water potential requires continuous measurements58 and other  
portions of the tree hydraulic pathway may show different sensitivities 
to water stress59,60), the fully standardized dataset allows direct com-
parison of the drought vulnerability of forests across the Amazon. We 
find that central eastern forests that have informed most of our current 
understanding of Amazon drought impacts are the least vulnerable to 
drought, possibly due to the periodic occurrences of El Niño/Southern 
Oscillation events and high climate variability creating a selection pres-
sure for more drought-adapted taxa61,62. Of all sites considered in this 
study, the Tapajós site located close to one of the Amazon ecosystem- 
scale drought experiments has the most resistant Ψ 50 and the most 

positive HSM50, suggesting that upscaling of drought sensitivity 
inferred from these forests to the whole biome may underestimate 
Amazonian sensitivity to climate change. Continued increases in tem-
perature and vapour pressure deficit, as predicted by all climate models,  
will probably reduce safety margins across Amazonian forests6,31 and 
further threaten the already declining Amazon carbon sink15,56. Our 
results indicate that these effects will be most marked in fast-turnover 
forests in western Amazon and increasingly stressed forests in the 
southern Amazon, which may already be at their physiological limit.
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Methods

Site description
We assemble a pan-Amazon dataset of key HTs (Ψ 50, HSM50 and Ψ dry), 
including 129 species distributed across 11 forest sites (Fig. 1 and 
Extended Data Fig. 1). The sites are old-growth lowland forests (less 
than 400 m of elevation), with no evidence of significant human dis-
turbance, located in western, central eastern and southern Amazon. 
They were specifically chosen to span the full Amazonian precipitation 
gradient and to encompass the principal axes of species composition 
in the Amazon. The MAP varied from around 1,390 to around 
3,170 mm yr−1 and mean MCWD varied from −640 to −15 mm across 
sites. Summary information for all sites can be found in Supplementary 
Tables 1 and 2.

Species selection
To characterize drought sensitivity across a wide set of species and 
strategies, we sampled the most dominant adult canopy and subcanopy 
tree species at each site. For TAP, MAN and CAX, we used published data 
from refs. 6,27,30 which follow the same methodology as this study. 
The sampling effort at each site varied from 7 to 26 species which  
represented between 14% and 70% of the total basal area (Supplementary 
Table 2). Sites for which less than 30% of the total basal area was sampled 
(ALP-1, ALP-2, SUC, CAX and MAN) are hyperdiverse forests and lack the 
clear dominance structure by a few species observed in less diverse 
plots (for example, in the southern Amazon NVX site, the seven species 
sampled account for more than 50% of the basal area). Previous work 
by ref. 6, show that the MAN site, despite having the lowest sampled 
basal area of all sites presented in this study (about 14%) is representative 
of the broader floristic community, as adding a broader array of species- 
level hydraulic trait data did not significantly change basal area weighted 
mean (CWM) values. The same study found that mean species values 
are not likely to differ from community mean values if (1) species dom-
inance is not driven by a few species, (2) traits have low dispersion around 
the mean (low standard deviation compared to the mean) and (3) traits 
are randomly distributed across species dominance distributions. For 
the other four sites for which sampled coverage was less than 30%, these 
criteria are generally satisfied (for example, cumulative dominance of 
the five most dominant species at ALP-1 is 27.9%, ALP-1 26.2%, SUC 15.0% 
and CAX 10.7%, standard deviation of Ψ 50 is between 32% and 49% of the 
mean value at each site and there is no relationship between species 
dominance and HT. Thus, basal area weighted mean trait values for the 
11 sites probably well represent the broader unsampled community  
of trees.

Abiotic data
To characterize climatological water deficit at each site, we calculated 
the MCWD69, which is a widely used measure of dry season intensity 
for Amazon forests13,16,70 that expresses the cumulative water stress 
experienced within an average year69. The MCWD metric assumes that 
a forest experiences water deficit if monthly precipitation does not 
meet evapotranspirational requirements and accumulates that deficit 
over all successive months with rainfall lower than evapotranspiration 
(E) values69. Monthly water deficit (WDn) was then calculated as the 
difference between precipitation (P) and evapotranspiration demand 
in each month n. MCWD was computed as the maximum monthly 
cumulative water deficit (CWD) experienced over an average year, for 
which the change in water deficit in any given month n is calculated 
as the difference between precipitation falling that month (Pn) and 
an assumed evapotranspiration demand (En, mm month−1). For any 
given month n,

P ECWD = CWD + − ; max(CWD ) = 0;

CWD MCWD = min(CWD1, CWD2, …, CWD12)
(1)

n n n n n

n

−1

As all of our plots are in the southern hemisphere, their hydrological 
year coincides with the calendar year, allowing us to start our MCWD 
calculations at the beginning of each calendar year. For statistical analy-
ses, we use the long-term mean MCWD for each location. Monthly 
precipitation data were obtained from the tropical rainfall measuring 
mission (TRMM TMPA/3B43 v.7)64 at 0.25° spatial resolution from 1998 
to 2016. To estimate evapotranspiration, we used monthly ERA-5-Land 
Reanalysis E data at 0.1° spatial resolution from 1998 to 201671, as this 
product has been suggested to well represent evapotranspiration 
estimates in the Amazon72. To have one value of evapotranspiration 
demand per site (En in equation (1)), we used the mean E value for the 
3 months with highest E across years. Mean annual temperature data 
at 1 km spatial resolution were obtained from Worldclim2 (ref. 73).

We performed an alternative assessment computing MCWD on the 
basis of MOD16 (ref. 74) evapotranspiration product and on E estima-
tion of 100 mm per month69 and we also computed MAP on the basis of 
TRMM64 and CRU75 data. The main results remained similar, independ-
ent of the climate product used (Supplementary Table 7).

Collection of plant material
One fully sun-exposed top-canopy branch (or branch at the maximum 
height reachable by climbers) was collected from, on average, three 
individuals of each species at each site for subsequent construction 
of xylem vulnerability curves. The same or a second set of branches, 
in the same canopy position, was used to extract samples of wood 
density and LMA. For embolism resistance determination, data col-
lection was undertaken during the wet season, when forests were 
maximally hydrated. Branches (more than 1 m long) were harvested 
during predawn or very early in the morning, to capture a fully hydrated 
starting point. Immediately after collection, basal portions of branches 
were wrapped with a wet cloth and branches were placed in a humidified 
opaque plastic bag to avoid desiccation during transport. Bags were 
sealed and carried to the field station for determination of xylem vul-
nerability curves. For samples not collected during predawn, branches 
were placed in a bucket, recut under water, covered with an opaque 
plastic bag and left to rehydrate for at least 5 h.

Xylem embolism resistance (Ψ50 and Ψ88)
To quantify xylem resistance to embolism of Amazonian trees species, 
we focused on the water potentials associated with Ψ 50, given its wide 
use as a critical embolism resistance threshold4,5. To derive this param-
eter, we constructed xylem vulnerability curves by simultaneously 
measuring percentage of embolism formation and xylem water poten-
tial under progressive desiccation76. We estimated embolism using the 
pneumatic method of ref. 77, which quantifies the air extracted from 
within branches at each stage of dehydration and expresses this as a 
percentage of air discharge (PAD), defined as the percentage difference 
between the maximum amount of air removed under extreme dehydra-
tion (100% PAD) and the minimum amount removed under maximum 
hydration (0% PAD)78. For our measurements we used manual, 
self-constructed pneumatic devices, following ref. 78. Although auto-
mated devices for measuring air discharge are now available, these 
were not available at the time of our data collection. For all air discharge 
determinations, we applied the protocol of ref. 77 whereby measure-
ments of air discharge were made over a 2.5 min interval. We note that 
the absolute volumes of air discharged are sensitive to the time inter-
val of the discharge measurements, as shown by ref. 79,who report a 
difference of about 10% on the absolute air discharge measured for 15 s 
versus 115 s. There are still methodological uncertainties that require 
further investigation, including how the contribution of extraxylary 
discharge varies across different Amazonian species. Recent work 
using a pipe pneumatic model to simulate gas diffusion from intact 
conduits suggests that the overriding source of discharged air is from 
embolized xylem vessels although there is a small contribution  
(estimated to be about 9% over 15 s of discharge) from extraxylary 



pathways80. It is also important to note that the method measures 
embolism from vessels connected to the cut end of the branch from 
which gas is sampled and that there may be more embolism from ves-
sels that are not directly connected to the cut end80. However, embolism 
spread during the branch dehydration method for embolism induction 
used in this study is expected to be predominantly from the cut 
branches76 and is corroborated by the strong agreement between 
petiole embolism status using the pneumatic method and leaf vein 
embolism assessed using optical approaches81.

The portability, ease of use and low cost of the pneumatic method 
make it ideally suited for use in remote tropical environments in which 
laboratory infrastructure is often minimal. Several studies have shown 
that Ψ 50 values derived from the pneumatic approach agree closely 
with those derived using more laborious methods77,79,81–84. For the TAP 
site in this study, Ψ 50 determinations based on the pneumatic method 
were compared with values derived from xylem vulnerability curves 
of percentage loss of conductance (PLC) constructed using a hydrau-
lic ultralow flow meter85 and found a strong agreement (R2 = 0.83) 
between both methods84, further corroborating findings from previous 
studies (refs. 27,84 provide detailed description of the hydraulic 
method used). Although one study86 (but see refs. 84,87) proposed 
that the method may be unsuitable for long-vesseled species, we find 
no evidence of any vessel length bias in our Ψ 50 estimates derived from 
the pneumatic method (standard major axis (SMA) regression Ψ 50 ver-
sus maximum vessel length: P = 0.15, R2 = 0.02).

The initial PAD measurement for each branch was made immedi-
ately after removing the branch from a sealed opaque plastic bag to 
ensure that vulnerability curves started from a maximally hydrated 
state. Subsequent measurements were then conducted successively 
throughout the dehydration process, with approximately eight to ten 
measurements per individual used to construct each curve. Branches 
were progressively dried through the bench dehydration technique76. 
Between each dehydration state, branches were bagged for a minimum 
of 1 h to equilibrate leaf and xylem water potentials. Leaf water potential 
(used as a proxy for xylem water potential following equilibration) 
was measured with a pressure chamber (PMS 1505D and PMS 1000, 
PMS instruments).

We used the exponential sigmoidal function of ref. 88 to calculate 
Ψ 50 for each species at each site:





Ψ Ψ

PAD =
100

1 + exp ( − )
(2)S

25 x 50

where S is the slope of the curve, Ψx is xylem water potential (MPa) and 
Ψ50 is Ψx corresponding to a PAD of 50%.

Following ref. 89, we computed Ψ88 as:

( )
Ψ Ψ= −

2
(3)S88 50

25

Ψ dry and HSMs
To calculate how close Amazonian trees operate to critical embolism 
thresholds in nature, we measured in situ midday leaf water potentials 
during the peak of the dry season (Ψ dry). Sampling campaigns closely 
corresponded with the time of most intense water deficit (Extended 
Data Fig. 2) and the year of sampling was not climatologically anom-
alous. We sampled three to six top-canopy fully expanded and 
sun-exposed leaves per individual (three individuals per species for 
129 species in total across 11 sites) from 11:00 to 14:30. Parameter Ψ dry  
was measured with a pressure chamber (PMS 1505D and PMS 1000, 
PMS instruments) in situ immediately postsampling and the values 
of different leaves averaged per individual. In our protocol we tried 
to minimize the time spent between branch cutting and the leaf water 
potential measurement with the pressure chamber (around 3–5 min). 

We collected branches (40–60 cm in length, depending on the species 
and leaf size) that were fully exposed to light from the top part of the 
canopy (highest part that the climbers could reach), from apparently 
healthy and undamaged individuals. Telescopic shears (normally four 
to six poles, with total length of 5–7 m) were used to access and cut 
the branches. As soon as the branches hit the ground, the branches 
were bagged in a black and opaque plastic bag and transported to the 
pressure chamber, which was located inside the plot. We then col-
lected three to six healthy and fully expanded leaves for each indi-
vidual and immediately (after the cut) placed them into the pressure 
chamber. All of the processes were made as quickly as possible to 
avoid dehydration.

Because of pressure drops in transpiring leaves, we note that the water 
potentials measured are probably lower than the branch water potential 
values at the time of measurement. Apart from aseasonal ever-wet for-
ests, which have no climatological dry season (monthlyprecip < 100 mm), 
data collection took place in the peak of dry season (Extended Data 
Fig. 2) during what were climatically normal years. For each species at 
each site we calculated the HSM with respect to Ψ50 (HSM50), as the dif-
ference between species-level Ψ dry, taken as the minimum Ψ dry value of 
all individuals for that species and Ψ50. All Ψdry measurements were made 
in climatologically normal years. (See Supplementary Table 8 for further 
information of sampling dates for each site). We also calculated the 
HSM with respect to Ψ88 (HSM88) for all sampled species.

Wood density and leaf mass per area
We combined published and new field measurements of LMA and 
wood density to understand the power of these traits relative to HTs 
in predicting forest carbon balance. Stem wood density data (WDstem) 
were obtained from the Global Wood Density database65,66 and calcu-
lated as species mean values. We measured wood density at branch 
level (WDbranch) using a water displacement method90. In this method, 
branch segments of about 25 mm length and 12 mm diameter were 
first cut and debarked. Samples were then placed in a recipient with 
filtered water to rehydrate for 24 h and subsequently weighed with a 
three-decimal scale. After this, the sample was oven-dried for 48–72 h 
at 70 °C and the dry weight measured with a balance. Wood density was 
then expressed as the ratio of wood dry mass and wood fresh volume 
(g cm−3). Branch wood density measurements were made in all sites 
except NVX. For this site, we used stem wood density values65,66 for 
each of our target species.

We measured LMA for all sampled species in each of the 11 sites. For 
this, all leaves were detached from a selected branch and a subsample 
of 10–20 leaves per branch were taken, numbered and scanned. All 
the other leaves were kept separate to be oven-dried. This was usually 
done as soon as possible after returning to the field station. When it 
was not possible to scan the leaves straight away, we placed all the 
detached leaves into a sealed plastic bag in the dark and stored them 
for no more than 24 h. After scanning, all leaves were oven-dried for 
48–72 h at around 70 °C. Once dry, the subsampled numbered leaves 
were individually weighed and the non-numbered leaves were weighed 
together with a precision scale (three decimals). On the basis of the 
relationship between the fresh area and dry weight of individual leaves 
(from the subsampled 10–20 leaves) and having the dry weight of all the 
leaves of the branch, we estimated the fresh leaf area corresponding to 
the entire branch. The LMA was then calculated as the ratio of leaf dry 
mass to fresh area, expressed in g m−2. We then calculated basal area 
weighted mean values for all these traits for each site (Supplementary 
Table 2). The number of species sampled for each trait is shown in the 
Supplementary Table 9. Further leaf habit information of sampled 
species is provided in Supplementary Table 10.

Water deficit affiliation
To describe Amazonian species-level biogeographical distributions, we 
used published WDA data45, which describes the spatial association of 
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Amazonian tree species with climatological water availability. WDA was 
calculated as the mean climatological water deficit across inventory 
plots in which a species occurs weighted by its relative abundance in 
each of 513 forest plots broadly distributed in the western Neotropics45. 
More negative WDA values represent dry-affiliated species, whereas 
wet-affiliated species are represented by less negative WDA values.

Forest dynamics data
We used long-term forest plots from the RAINFOR network39 to 
help understand the relationship between hydraulic attributes and 
stand-scale carbon dynamics. Thus, we computed AGB net change 
(ΔAGB, Mg ha−1 yr−1), annual aboveground wood production (AGWP, 
Mg ha−1 yr−1), annual AGB mortality (AGBMORT, Mg ha−1 yr−1), annual instan-
taneous stem mortality rate (% y−1) and woody biomass residence time 
(τw) for the same forest plots sampled directly for HTs. For the two plots 
(MAN and TAP), for which we did not have access to forest dynamics 
data, we used information from a permanent RAINFOR network forest 
plot in the same landscape, with the most similar structure and species 
composition (BNT-01 and TAP-02, respectively; Supplementary Table 6) 
to our sampling plots. For CAX, we used published data by ref. 91 for 
the control plot. The other six plots are part of the RAINFOR network39, 
having been established by and/or monitored by RAINFOR partners 
(Supplementary Table 5). Plot data for these analyses were curated 
and obtained via the ForestPlots.net database92,93, for which standard 
quality control procedures are applied. We only included plots in the 
analysis that lacked a history of recent anthropogenic disturbance. For 
all forest dynamics analyses we excluded KEN plots because of a fire 
event that occurred in the region in 200468 and may still be affecting 
biomass stocks and dynamics. Following previous studies15,94, plots 
smaller than 0.5 ha that were up to 1 km apart from each other were 
combined and treated as a single plot (for example, TAP-54, TAP-55, 
TAP-56 and TAP-57 treated as TAP-02, the plot we used to represent 
TAP). For each plot, we only included pre-2015 El Nino censuses and 
selected the census start date to be as consistent as possible across 
plots. For this we excluded pre-2000 measurements, apart from TAP 
plot for which censuses were available only from 1983 to 1995. For 
other plots, we used the earliest census available for this plot if data 
collection started after 2000 (VCR-02 plot, for example, which starts 
in 2003). We tried to ensure that biomass dynamics metrics used in the 
analyses represented at least 10 yr of total monitoring time per plot. 
If application of the 2000 start date for a given plot resulted in fewer 
than 10 yr of monitoring, we also included the census date immediately 
before 2000 (99 for BNT-02 plot, which we used to represent MAN) to 
ensure at least 10 yr of monitoring (Supplementary Table 5). The moni-
toring time used for the plots included in the analysis was on average 
12.3 (s.d. = 2.5) yr. In RAINFOR plots, all live individuals of more than 
10 cm in diameter at breast height (DBH) are repeatedly measured over 
time, using standardized protocols, with species identified and careful 
records kept of trees that die or recruit from one census to the next. AGB 
for each census per plot was computed using the ref. 63 equation for 
moist forests on the basis of tree diameter, wood density and height. 
As local height data were often unavailable, a Weibull equation with 
regionally varying coefficients was used to estimate height following 
ref. 11. Species-level wood density values from the Global Wood Density 
database65,66 were used to compute AGB, AGWP and AGBMORT. For each 
census, biomass values were calculated for all dicotyledonous trees 
in the plots above the 10 cm DBH cut-off and summed to give total 
stand-level biomass stocks.

We estimated annual ΔAGB (Mg ha−1 yr−1) for a given plot as the dif-
ference in AGB between the final and initial census used (AGBfinal census −  
AGBinitial census) divided by the monitoring length (Datefinal census −  
Dateinitial census) in years. For each census interval per plot, we also computed 
annual AGWP (Mg ha−1 yr−1), following ref. 95, which encompasses (1) the 
sum of the growth of surviving trees, (2) the sum of AGB of new recruits, 
(3) the estimated sum of growth of unobserved recruits that dies and (4) 

the estimated sum of unobserved growth of initial trees that died, within 
a plot in a given census interval, divided by the census interval length (yr) 
(see also ref. 94). For each plot, we computed annual AGBMORT, including 
unobserved components, which is defined as the sum of the AGB of all 
dead trees, plus the estimated growth of recruits that died before they 
could be recorded in the second census and the sum of estimated unob-
served growth of trees that died within an interval, divided by the census 
interval length94.

As AGB varies across sites it is useful to account for this when com-
paring sites. We therefore also computed relative ΔAGB (ΔAGB/AGB), 
relative AGWP and relative AGBMORT by dividing absolute values by the 
time-weighted mean standing woody biomass across censuses per plot. 
Both absolute and relative values are presented in the Extended Data 
Figs. 7, 8 and 10 and Supplementary Table 4). We computed the annual 
instantaneous stem mortality rate (% y−1) following ref. 67:
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in which A is the number of stems per ha in the beginning of the census 
interval and B is the number of stems per ha that survived throughout 
the census interval. Owing to the sensitivity of these rates to census 
interval effects, we standardized them to a common census interval, 
following ref. 96. For all calculations above (AGB, AGWP, AGBMORT and 
stem mortality) we used the BiomasaFP R package97. We calculated the 
time-weighted mean values of all these absolute and relative parameters 
(AGB, AGWP, AGBMORT and stem mortality) to have one value per plot. We 
then calculated woody biomass residence time (τw) as the ratio of the 
time-weighted mean standing woody biomass and the time-weighted 
mean annual biomass mortality52.

To test whether relationships between HSM50 and forest dynamics at 
plot level apply over landscape scales and to account for the influence 
of within- and among-plot stochasticity in dynamics, we also we used 
mean forest values of forest dynamics metrics across groups of plots 
(clusters) in the same landscape with similar structure and composi-
tion to plots sampled for hydraulic measurements (Supplementary 
Tables 5 and 6). For this cluster-level analysis, we excluded white-sand 
forests and permanently water-logged swamp forests because they are 
extreme edaphic habitats, known to have a more limited and edaphi-
cally specialized tree flora98. We also excluded forests lying within 
active floodplains of rivers because their flora is also distinctive and, 
like swamp forests, they have access to more water beyond that which 
is climatically determined. In total, we used data from 34 long-term 
monitoring plots (31.37 ha of forest). For this analysis, we used cluster 
mean forest dynamic values (instead of plot cluster weighted mean, 
for example) because plot area and monitoring length did not vary 
considerably within clusters (Supplementary Table 5). To account for 
sampling effort variation across cluster of forest plot, we tested if the 
residuals of the relationship between relative ΔAGB and HSM50 were 
related to cluster mean monitoring time (mean ± s.d. was 12.1 ± 1.8 yr) 
and cluster total area (3.9 ± 3.0 ha). No weights were assigned to each 
data point in the regression because we found no evidence of relation-
ships between the residuals and sampling effort across clusters.

Statistical analysis
To examine the distribution of HTs (Ψ 50, Ψ dry and HSM50) across Amazo-
nian tree taxa (N = 129 species), trait values were averaged for species 
occurring at several sites. We conducted statistical analyses to investi-
gate differences in species-level hydraulic trait values among different 
forest types and geographical regions and also to evaluate controls of 
water availability on basal area weighted mean HT across the study sites. 
To examine differences in HTs among forest types, we first grouped our 
11 forest sites into three forest types, based on DSL: (1) ecotonal long 
DSL forests—DSL equal to 6 months, MAP and MCWD less than 1,600 
and −470 mm, respectively; (2) intermediate DSL forests—DSL ranging 



from 5 to 2 months, MAP between 1,990 and 2,650 mm and MCWD 
varying from −288 to −184 mm; and (3) ever-wet aseasonal forests—DSL 
about 0 months, MAP and MCWD greater than 2,950 and −15 mm, respec-
tively (Extended Data Fig. 1 and Supplementary Table 1). To test for 
statistical differences in HTs across forest types, we performed a one-way 
Kruskal–Wallis followed by a post hoc Mann–Whitney–Wilcoxon rank 
sum test. Western and central eastern Amazon forests have fundamen-
tally different dynamics in that western Amazon forests are character-
ized by high growth and turnover whereas central eastern forests are 
associated with slow growth and turnover35,36. To test for differences 
between species in intermediate DSL sites in western Amazon (FEC and 
TAM) and central eastern Amazon (CAX, MAN and TAP), we performed 
Wilcoxon rank sum tests. Linear models were constructed to evaluate 
relationships between basal area weighted mean HT and MCWD (Sup-
plementary Table 7). For all analyses, we use a significance level of 0.05.

To investigate if species biogeographical distributions are related to 
mean HT, we used SMA regressions with WDA as the response variable. 
Following Esquivel-Muelbert et al.45, we restricted our analysis to the 
western Amazon as these published WDA data are based entirely on 
species distributions within western Amazon, helping to control for 
the potentially confounding effects of differences in soil and forest 
dynamics across Amazonian regions. Our subsample for this analysis 
encompassed a total of 87 species distributed across aseasonal, inter-
mediate DSL and ecotonal long DSL forests, with MAP across plots 
ranging from 1,390 to 3,170 mm. SMA regressions were performed 
using the smatr package99 in R.

Using our entire dataset across the Amazon, we evaluated whether 
HTs were better predictors of Amazon forest carbon balance than cli-
matic factors or other leaf and wood traits. More specifically, we per-
formed bivariate SMA models to investigate relationships between 
HTs (Ψ 50, Ψ dry and HSM50), climatic data (MCWD, MAP, DSL and MAT) 
and other functional traits (LMA, WDstem and WDbranch) versus long-term 
ΔAGB at plot level. We computed basal area weighted mean LMA, 
WDbranch and WDstem data65,66. To account for the influence of multiple 
testing, we applied a Bonferroni correction to P values for bivariate 
regressions. SMA models were further conducted to examine the rela-
tionship between HSM50 versus absolute and relative values of AGB 
annual woody production, AGB annual mortality, stem mortality and 
residence time of woody biomass. Supplementary Table 5 presents 
summary information per plot and clusters. All presented analyses 
were performed in RStudio v.1.1.423 (ref. 100).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The pan-Amazonian HT dataset (Ψ 50, Ψ dry and HSM50) and branch wood 
density per species per site, as well as forest dynamic and climate data 
per plot presented in this study are available as a ForestPlots.net data 
package at https://forestplots.net/data-packages/Tavares-et-al-2023. 
Basal area weighted mean LMA is shown in Supplementary Table 2. 
Species stem wood density data were obtained from Global Wood  
Density database65,66. Species WDA data were extracted from ref. 45.

Code availability
The codes to recreate the main analyses and the main figures presented 
in this study are available as a ForestPlots.net data package at https://
forestplots.net/data-packages/Tavares-et-al-2023.
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Extended Data Fig. 1 | Precipitation regimes of sampled sites. Precipitation 
data were obtained from TRMM (the Tropical Rainfall Measuring Mission—
TMPA/3B43 version 7)64 at 0.25o spatial resolution from 1998–2016. Maximum 
cumulative water deficit (MCWD) was computed following Aragão et al. (2007) 
but replacing universal ET values with site-specific values derived from the 
ERA-5 re-analysis product71. MCWD is defined as the maximum climatologically- 

induced water deficit (see equation 1 in Methods). Sites in which MCWD~0 do 
not experience seasonality (dry season length (DSL) = 0), while sites with very 
negative MCWD values are strongly seasonally water-stressed. Sites are colour- 
coded by forest types, based on their seasonal rainfall patterns: aseasonal 
(blue), intermediate DSL (green) and long DSL (brown).
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Extended Data Fig. 2 | Climatological data corresponding to Ψdry (in situ dry 
season leaf water potential) sampling at each site. Grey bars and error bars 
show the mean and standard deviation of monthly precipitation from 1991 to 
2018 (CRU data ts.4.0338)75. The blue dashed lines represent the year of sampling, 
while the brown points show the months at which Ψdry was measured. Hydraulic 

traits and climatic data for TAP were obtained from Brum et al.27. We display 
CRU data in this figure due to no availability of TRMM (Tropical Rainfall 
Measuring Mission) data beyond 2016. Sampling years can be found in 
Supplementary Table 8.



Extended Data Fig. 3 | Functional trait range of species sampled in this 
study. Histograms of life-history related traits of the sampled species (red) in 
relation to comprehensive histograms of the broader Amazon tree flora (grey). 
A) Mean wood density (g cm−3)65,66; Potential size, calculated as the 95th 

percentile of diameter distribution (cm); C) Maximum growth, calculated  
as the 95th percentile of individual growth rates available for a given species  
(cm yr−1); D) Mean growth rate (cm yr−1); E) Mean mortality rate (% yr−1). All trait 
data shown in this figure were extracted from Coelho de Souza et al.37.
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Extended Data Fig. 4 | Hydraulic traits variation at species and community 
level. Top panels: variation in hydraulic traits across Amazon forest types; long 
DSL (brown), intermediate DSL (green) and aseasonal (blue). A) xylem water 
potential at which 50% (Ψ50) of the conductance is lost. B) hydraulic safety 
margins related to Ψ50 (HSM50 = Ψdry – Ψ50). C) minimum leaf water potential 
observed in the dry season (Ψdry). Dashed lines show the mean value of each 
trait across all tree taxa. Red lines denote hydraulic safety margins equal to zero. 
Significant differences at p < 0.05 are shown by letters above each boxplot 
(Kruskal–Wallis followed by post hoc Mann–Whitney–Wilcoxon Rank Sum 
test). Each point represents one species per site. Long DSL, intermediate DSL 

and aseasonal forests encompass 3, 5 and 3 forest sites, respectively. Boxplots 
display the 25th percentile, median and 75th percentile. The vertical bars show 
the interquartile range times 1.5 and datapoints beyond these bars are outliers. 
Bottom panels: Relationship between tree basal-area weighted mean hydraulic 
traits and maximum cumulative water deficit (MCWD). D) Basal area-weighted 
mean ψ50 (xylem water potential at which 50% of the conductance is lost);  
E) Basal area-weighted mean hydraulic safety margin (HSM50); F) Basal area- 
weighted mean minimum leaf water potential observed in the dry season (Ψdry); 
n = 11 sites. Significant linear relations are shown by regression lines and 95% 
confidence intervals, by shaded areas. See methods for MCWD calculations.



Extended Data Fig. 5 | Leaf habit information of the sampled species per 
plot (top panels), hydraulic trait variation across leaf habit groups (middle 
panels) and relationship between basal area-weighted mean hydraulic 
traits and maximum cumulative water deficit when excluding deciduous 
and semideciduous species. A) and D) xylem water potential at which 50% of 
the conductance is lost (Ψ50); B) and E) Hydraulic safety margins related to Ψ50 
(HSM50 = Ψdry – Ψ 50 and C) and F) Minimum in situ leaf water potential observed 
in the dry season (Ψ  dry). Dashed lines denote the mean value of each trait 
across all tree taxa in the dataset. Red line, the hydraulic safety margins equal 
to zero. Boxplots display the 25th percentile, median and 75th percentile. The 
vertical bars show the interquartile range times 1.5 and datapoints beyond 
these bars are outliers. Sites are sorted by increasing water availability. Each 
point represents one species per site (N = 170 species) in the top panels and 

species mean (Ψ50, HSM50) and species minimum Ψdry per leaf habit in the 
bottom panels (N = 136 species). Deciduous, semideciduous and evergreen 
species are represented by red, blue and green points, respectively. Grey points 
or NA represent species for which leaf habit information was not available. 
Significant differences at p < 0.05 are represented by different letters above 
each boxplot (Kruskal–Wallis followed by post hoc Mann–Whitney–Wilcoxon 
Rank Sum test). G) ψ50 (xylem water potential on which 50% of the conductance 
is lost; H) Hydraulic safety margin (HSM50 = Ψdry – Ψ 50); I) In situ leaf water 
potential observed in the dry season (Ψ  dry); n = 10 sites. Significant linear 
relations are shown by regression lines. The shaded area represents the 95% 
confidence interval of the regression slope. Further leaf habit information of 
sampled species is provided in Supplementary Table 10.
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Extended Data Fig. 6 | Bivariate relationship between plot relative 
aboveground net biomass change (ΔAGB) and basal-area-weighted mean 
vegetation traits (A–E) and climatic variables (F–I) across Amazonian 
forest plots. Due to high standing aboveground biomass variability across 
sites, we computed relative ΔAGB values as: ((AGB end – AGB start)/census length)/
AGB (time-weighted mean standing woody biomass). Each point indicates a 
forest plot. Information about each plot and the observation period used can 

be found in Supplementary Table 5. Stem wood density data were extracted 
from the Global Wood Density database65,66. KEN plots were excluded from all 
forest dynamics analyses because of a fire event that occurred in the region in 
200466 and may still be affecting biomass accrual. Regression lines show 
significant relationships using standard major axis (SMA) models after 
Bonferroni correction for multiples hypothesis testing. Supplementary Table 3 
shows the results of the SMA models.



Extended Data Fig. 7 | Plot-level analyses: bivariate relationships between 
basal area-weighted mean hydraulic safety margin and forest dynamics 
across Amazonian forest plots. Basal area-weighted mean HSM50 in relation 
to relative (A-C) and absolute (D-H) forest dynamics values. A) Relative  
annual aboveground biomass net change (ΔAGB/AGB), where: ΔAGB is the 
difference in aboveground biomass between the final and initial censuses 
(AGBfinal census – AGBinitial census) divided by total monitoring length for that plot 
(Datefinal census – Dateinitial census) in years and AGB is the time-weighted mean 
standing woody biomass across censuses per plot; B) Relative annual mortality 
in terms of biomass: (AGBMORT/AGB). Where AGBMORT is the sum of the AGB of all 
dead trees and the unobserved components (see methods), divided by the 
census interval length95;C) Relative annual AGB wood productivity: (AGWP/AGB), 
where AGWP is defined as the sum of the biomass growth of surviving trees 
>10 cm DBH, new recruits > 10 cm DBH and the unobserved components 

(see methods), within a plot in a given census interval, divided by the census 
interval length95; D) Annual aboveground biomass net change (ΔAGB); E) 
Annual aboveground biomass mortality (AGBMORT); F) Annual aboveground 
wood productivity (AGWP), G) Annual instantaneous stem mortality rate 
(See methods Equation 4)67; H) Residence time of woody biomass calculated as 
the ratio of mean standing biomass to mean biomass mortality rate52. All these 
parameters were calculated for each census interval and we calculated 
time-weighted mean to have one value per plot. Each point indicates one forest 
plot. Significant linear relations are shown by regression lines (Standard major 
axis models). The shade area represents the 95% bootstrapped confidence 
interval. Information about each plot and the observation period is available  
on Supplementary Table 5. Supplementary Table 4 shows the results of the  
SMA models.
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Extended Data Fig. 8 | Cluster-level analyses: Relationship between basal 
area weighted mean HSM50 and cluster mean forest dynamics across 
clusters of forest plots. Basal area-weighted mean HSM50 in relation to cluster 
mean relative (A–C) and absolute (D–H) forest dynamics values. A) Relative 
annual aboveground biomass net change (ΔAGB/AGB), where: ΔAGB is the 
difference in aboveground biomass between the final and initial censuses 
(AGBfinal census – AGBinitial census) divided by total monitoring length for that plot 
(Datefinal census – Dateinitial census) in years and AGB is the time-weighted mean 
standing woody biomass across censuses per plot; B) Relative annual mortality 
in terms of biomass: (AGBMORT/AGB). Where AGBMORT is the sum of the AGB of all 
dead trees and the unobserved components (see methods), divided by the 
census interval length95;C) Relative annual AGB wood productivity: (AGWP/AGB), 
where AGWP is defined as the sum of the biomass growth of surviving trees 
>10 cm DBH, new recruits > 10 cm DBH and the unobserved components 

(see methods), within a plot in a given census interval, divided by the census 
interval length95; D) Annual aboveground biomass net change (ΔAGB);  
E) Annual aboveground biomass mortality (AGBMORT); F) Annual aboveground 
wood productivity (AGWP), G) Annual instantaneous stem mortality rate 
(see methods)67; H) Residence time of woody biomass calculated as the ratio of 
mean standing biomass to mean biomass mortality rate52. All these parameters 
were calculated for each census interval and we calculated time-weighted mean 
to have one value per plot. Each point indicates the mean value across clusters 
of forest plots, which in total encompass 31.37 ha of forest spread across 34 
plots. Information about each cluster and the observation period used for each 
cluster is provided in Supplementary Table 5. The solid line is the best fit line of 
the standard major axis (SMA) model and the shaded area represents the 95% 
bootstrapped confidence interval. Supplementary Table 4 shows the results of 
the SMA models.



Extended Data Fig. 9 | Relationship between published pan-Amazonian 
species-level growth rates37 and hydraulic safety margins. We restrict our 
analysis to the western Amazon, where there is the highest overlap of species 
between ours and Coelho de Souza et al.37 dataset and to avoid biases due to 

soil/forest dynamic differences across Amazonian regions. Hydraulic safety 
margins for species occurring across multiple sites were averaged to yield one 
value per species.
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Extended Data Fig. 10 | HSM5Plot-level analyses: bivariate relationships 
between basal area-weighted mean HSM88 and forest dynamics across 
Amazonian forest plots. Basal area-weighted mean HSM88 in relation to 
relative (A-C) and absolute (D-H) forest dynamics values. A) Relative  
annual aboveground biomass net change (ΔAGB/AGB), where: ΔAGB is the 
difference in aboveground biomass between the final and initial censuses 
(AGBfinal census – AGBinitial census) divided by total monitoring length for that plot 
(Datefinal census – Dateinitial census) in years and AGB is the time-weighted mean 
standing woody biomass across censuses per plot; B) Relative annual mortality 
in terms of biomass: (AGBMORT/AGB). Where AGBMORT is the sum of the AGB of all 
dead trees and the unobserved components (see methods), divided by the 
census interval length95;C) Relative annual AGB wood productivity: (AGWP/AGB), 
where AGWP is defined as the sum of the biomass growth of surviving trees  
>10 cm DBH, new recruits > 10 cm DBH and the unobserved components 

(see methods), within a plot in a given census interval, divided by the census 
interval length95; D) Annual aboveground biomass net change (ΔAGB); E) 
Annual aboveground biomass mortality (AGBMORT); F) Annual aboveground 
wood productivity (AGWP), G) Annual instantaneous stem mortality rate 
(see methods Equation 4)67; H) Residence time of woody biomass calculated as 
the ratio of mean standing biomass to mean biomass mortality rate52. All these 
parameters were calculated for each census interval and we calculated 
time-weighted mean to have one value per plot. Each point indicates one forest 
plot. Significant linear relations are shown by regression lines (Standard major 
axis models). The shade area represents the 95% bootstrapped confidence 
interval. Information about each plot and the observation period is available  
on Supplementary Table 5. Supplementary Table 4 shows the results of the  
SMA models.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection To quantify xylem resistance to embolism of Amazonian trees species we constructed  xylem vulnerability curves using the pneumatic method 
of Pereira et al. (2016). To generate these curves, we used the open source R software version 3.6.3, RStudio version 1.1.423 and R script 
from Bittencourt et al., 2018 available at: https://en.bio-protocol.org/CN/e3059#biaoti25711.  
 
To calculate leaf we used the ImageJ software (Schneider, Rasband & Eliceiri,  2012).  
 
References: 
-Pereira, L., Bittencourt, P.R., Oliveira, R.S., Junior, M.B., Barros, F.V., Ribeiro, R.V. and Mazzafera, P. Plant pneumatics: stem air flow is related 
to embolism–new perspectives on methods in plant hydraulics. New Phytologist, 211(1), pp.357-370 (2016). 
-Bittencourt, P., Pereira, L. & Oliveira, R. Pneumatic Method to Measure Plant Xylem Embolism. Bio-Protocol 8, 1–14 (2018). 
-Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675. 

Data analysis All data analysis was performed using the open source R software version 3.6.3 and RStudio version 1.1.423 and packages dplyr (1.0.6) and 
tidyr (1.1.3) to manage datasets. Standardized major axis (SMA) regressions were perfumed using the smatr  package (3.4-8). We created and 
plotted the figures using ggplot2 (3.3.4) and egg (0.4.5). We used package modelr (0.1.8) and purrr (0.3.4) to create 95% bootstrapped 
confidence interval of best fit line from the Standard major axis model. We used the biomasaFP package to calculate forest dynamic 
parameters (i.e., AGB, AGWP, AGBMORT and stem mortality).  
 
References: 
-R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL 
https://www.R-project.org/. 
-RStudio Team. RStudio: Integrated Development for R. Boston, MA: RStudio, Inc. (2016). Available at: http://www.rstudio.com/. 
-Hadley Wickham, Romain François, Lionel Henry and Kirill Müller (2021). dplyr: A Grammar of Data Manipulation. R package version 1.0.6. 
-Hadley Wickham (2021). tidyr: Tidy Messy Data. R package version 1.1.3.  
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-Warton, David I., Duursma, Remko A., Falster, Daniel S. and Taskinen, Sara (2012) smatr 3 - an R package for estimation and inference about 
allometric lines. Methods in Ecology and Evolution, 3(2), 257-259 
-H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016. 
-Baptiste Auguie (2019). egg: Extensions for 'ggplot2': Custom Geom, Custom Themes, Plot Alignment, Labelled Panels, Symmetric Scales, and 
Fixed Panel Size. R package version 0.4.5. 
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The pan-Amazonian hydraulic traits data set (ψ50, ψdry, HSM50) and  branch wood density per species per site, as well as forest dynamic and climate data per plot 
presented in this study will be available, before the publication, as a ForestPlots.net data package at https://forestplots.net/data-packages/Tavares-et-al-2023. 
Basal-area-weighted mean leaf mass per area is displayed in SM. Table 2. Species stem wood density data were obtained from Global Wood Density database 
(Chave et al., 2009; Zanne et al., 2009). Species water deficit affiliation data were extracted from Esquivel-Muelbert et al. (2017).  
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Study description In this study, we present the first pan-Amazonian dataset of key tree hydraulic traits (embolism resistance: ψ50, hydraulic safety 
margins: HSM50 and minimum in situ leaf water potential: ψmin, ) from 129 species across 11 forests plots, which span the entire 
Amazon precipitation gradient and vary among ever-wet aseasonal, climatically seasonal and ecotonal forests types and assess 
variation in drought sensitivity across Amazonia. This this new large-scale dataset combined with long-term forest inventory  
(RAINFOR network - ForestPlots.net et al., 2021) information allowed us to evaluate the ability of these traits to predict 
biogeographical distributions of Amazon species and long-term forest biomass accumulation under climate change. For each plot, we 
computed forest dynamics information (relative and absolute values of aboveground biomass net change, aboveground biomass 
mortality and aboveground wood production, as well as stem mortality and residence time of woody biomass). 
 
Reference: 
-ForestPlots.net et al. Taking the pulse of Earth ’ s tropical forests using networks of highly. 260, (2021).

Research sample To caracterize spatial variation of hydraulic traits across amazonian forests, we combined new data collection and published data 
from Brum et al. (2018), Barros et al. (2019) and Bittencourt et al. (2020) which used the same methodology and sampling design of 
this present study. For our data collection, 8 forest plots were selected to represent tree communities across a wide precipitation 
gradient, ranging from ecotonal forests in the south of the basin to ever-wet forests in the northwest. We selected forest on the 
western and southern Amazon due to the lack of information for these regions, as most hydraulic traits information for the intere 
domain is given from central-eastern Amazon. Our data collection was nested within RAINFOR permanent inventory plot network 
(Forestplots.net et al 2021). For each site, we extracted information about species composition and location from ForestPlots.net 
database (ForestPlots.net et al., 2021) and focused our sampling on the most dominant adult canopy and sub-canopy tree species, in 
terms of basal area. Tree botanical identifications were carried out by RAINFOR partners and botanical vouchers are deposited in 
Amazon state herbaria (AMAZ, CUZ, HOXA, INPA, UFACPZ, USZ). In total, our hydraulic traits dataset consist in 129 tree species 
(including published data quoted above), 88 genera and 35 families distributed across 11 old-growth lowland forest sites, with no 
evidence of significant human disturbance, located in western, central-eastern and southern Amazonia (Fig 1 and SI Tables 2 and 3).  
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References: 
 
-Brum, M. et al. Hydrological niche segregation defines forest structure and drought tolerance strategies in a seasonal Amazon forest. 
J. Ecol. 1–16 (2018). doi:10.1111/1365-2745.13022 
-Barros, F. V. et al. Hydraulic traits explain differential responses of Amazonian forests to the 2015 El Nino-induced drought. New 
Phytologist, (2019). 
-Bittencourt, P. R. L. et al. Amazonia trees have limited capacity to acclimate plant hydraulic properties in response to long-term 
drought. Glob. Chang. Biol. 26, 3569–3584 (2020). 
-ForestPlots.net et al. Taking the pulse of Earth ’ s tropical forests using networks of highly. 260, (2021). 
-Lopez-Gonzalez, G., Lewis, S. L., Burkitt, M., Baker, T. R. & Phillips, O. L. ForestPlots.net Database. (2009). Available at: 
www.forestplots.net. (Accessed: 1st September 2018) 
-Lopez-Gonzalez, G., Lewis, S. L., Burkitt, M. & Phillips, O. L. ForestPlots.net: A web application and research tool to manage and 
analyse tropical forest plot data. J. Veg. Sci. (2011). doi:10.1111/j.1654-1103.2011.01312.x

Sampling strategy At each site, our sampling was focussed on the most dominant adult canopy and sub-canopy tree species, with sampling effort 
varying from 7 to 25 species which represents between 14% and 75% of the total basal area (SM Table 3). In total the sampled 
species account for ~24% of total Amazon tree biomass (Fauset et al., 2015) and spans a broad variety of life-history strategies (SM 
Fig 3). On average, we sampled 3 individuals per species per plot. Whenever possible, we prioritised sampling individuals of similar 
sizes and light exposure within a given species. Sites where less than 30% of the total basal area was sampled (ALP1, ALP2, SUC, CAX, 
MAN) are hyperdiverse forests and lack the clear dominance structure by a few species observed in less diverse plots (e.g. in the 
southern Amazon NVX site, the seven species sampled account for >50% of the basal area). Previous work by Barros et al. (2019), 
showed that the MAN site, despite having the lowest sampled basal area of all sites (~14%) is representative of the broader floristic 
community, as incorporating a broader array of species-level hydraulic trait data did not significantly change community-weighted 
mean (CWM) values. The same study found that mean species values are not likely to differ from community mean values if: (1) 
Species dominance is not driven by a few species, (2) traits have low dispersion around the mean (ie. low standard deviation 
compared the mean) and (3) traits are randomly distributed across species dominance. For the other 4 sites for which sampled 
coverage was less than 30%, these criteria are generally satisfied (e.g. cumulative dominance of the 5 most dominant species at 
ALP-1 is 27.9%, ALP-1 26.2%, SUC 15.0% and CAX 10.7% (SM Table 3), standard deviation of ψ50 is between 39 and 43% of the mean 
value at each site and there is no relationship between species dominance and hydraulic traits (SM Table 3). Thus, community-mean 
trait values for the 11 sites are likely to well represent the broader unsampled community of trees.  
 
Reference: 
-Fauset, S. et al. Hyperdominance in Amazonian forest carbon cycling. Nat. Commun. 6, 1–9 (2015). 
-Barros, F. V. et al. Hydraulic traits explain differential responses of Amazonian forests to the 2015 El Nino-induced drought. New 
Phytologist, (2019).

Data collection Plant material from the top canopy (or highest position reachable) was obtained by a tree climber using a telescopic scissor. During 
the wet season, immediately after collection, basal portions of branches were wrapped with a wet cloth and branches were placed in 
a humidified opaque plastic bag to avoid desiccation during transport. Bags were sealed and carried to the field station for 
determination of xylem vulnerability curves, branch wood density and leaf mass per area. For samples not collected during predawn 
(but always early morning), branches were placed in a bucket, re-cut under water, covered with an opaque plastic bag and left to 
rehydrate for at least 5 hours before determination of vulnerability curves. Detailed information about determinations of xylem 
vulnerability curves is provide in: Xylem embolism resistance (ψ50) in methods section. During the dry season, 3-6 leaves per 
individual were collected from top canopy and eaf water potential was measured with a pressure chamber (PMS 1505D and PMS 
1000, PMS instruments).

Timing and spatial scale For each site on which data collection was carried out, plant material to construct vulnerability curves and to measure branch wood 
density and leaf mass per area was undertaken during the wet season, when forests were maximally hydrated. Branches were 
harvested during predawn or very early in the morning, to capture a fully hydrated starting point (i.e in the vulnerability curve). SI 
Table 8 shows the sampling periods for all the plant traits evaluated in this study and SI Table 9 displays the number of species 
sampled per trait. Minimum in situ leaf water potential was measured from 11:00-2:30 in the peak of the dry season, except for 
aseasonal forests, which have no climatological dry season (monthlyprecip < 100mm) (Extended Data Fig. 2).

Data exclusions Forest plots ALP-01 and ALP-02 (Plot codes from ForestPlot.net) have mixed soil types. To avoid bias due to soil type differences 
within tree communities, we used preferred plot views “ALP-01 poorly drained sandy clay” and “ALP-02 Shapajal clay soils”  to 
calculate species dominance and carry out our data collection.  These preferred plot views only include subplots, which total area is 
0.48 ha (ALP-01) and 0.44 ha (ALP-02) that have the same soil type. 
 
Before computing ψ50 per species per plot, we excluded all the branches that psi of maximum air discharge (AD) was less negative 
than - 2 Mpa, since no clear plateaus were detected. The maximum AD is the reference point for the calculation of the percentage of 
embolism formation and incorrect maximum AD will result in less negative ψ50 (Pereira et al., 2016; Trabi et al., 2021). Besides, we 
excluded from the analysis species which presented incomplete vulnerability curves (e.g. data points did not reach the plateau of 
maximum percentage air discharge). The exception of this criteria were applied for two species where was not possible to measure 
leaf water potential lower than -2 MPa using the pressure pump due to leaf drop. These two species (ALP2- Simarouba amara and 
TAM- Cedrelinga catenaeformis) were kept in the analyses because they all branches had the same pattern and no water potential 
measured was more negative than -2 MPa. 
 
KEN1 and KEN1 plots were excluded from all forest dynamics analyses due to a fire event that occurred in the region in 2004 (Araujo-
Murakami et al., 2014) and may still be affecting biomass accrual. 
 
References: 
-Lopez-Gonzalez, G., Lewis, S. L., Burkitt, M., Baker, T. R. & Phillips, O. L. ForestPlots.net Database. (2009). Available at: 
www.forestplots.net. (Accessed: 1st September 2018) 
-Lopez-Gonzalez, G., Lewis, S. L., Burkitt, M. & Phillips, O. L. ForestPlots.net: A web application and research tool to manage and 
analyse tropical forest plot data. J. Veg. Sci. (2011). doi:10.1111/j.1654-1103.2011.01312.x 
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-Pereira, L., Bittencourt, P.R., Oliveira, R.S., Junior, M.B., Barros, F.V., Ribeiro, R.V. and Mazzafera, P. Plant pneumatics: stem air flow is 
related to embolism–new perspectives on methods in plant hydraulics. New Phytologist, 211(1), pp.357-370 (2016). 
-Trabi C.L., et al.  A User Manual to Measure Gas Diffusion Kinetics in Plants: Pneumatron Construction, Operation, and Data Analysis. 
Frontiers in Plant Science 12, (2021) 
-Araujo-Murakami, A. et al. The productivity, allocation and cycling of carbon in forests at the dry margin of the Amazon forest in 
Bolivia. Plant Ecol. Divers. 7, 55–69 (2014)

Reproducibility All details are described in the Methods session to allow vulnerability curves, measurements of minimum in situ leaf water potential, 
branch wood density and leaf mass per area to be reproduced. For each of these measures, sample collection was performed, on 
average, 3 times per species per site (on average 3 individuals per species).  
To best ensure comparability between data it is important to keep standardised as much as possible the period of data collection and 
criteria for branch selection. 

Randomization Randomization was not relevant to our study since we evaluated relationships between forest dynamics metrics, vegetation traits 
and climatic factors across clusters of Amazonia forests individually through bivariate regression models. To calculate cluster mean 
values of forest dynamics metrics, we weighted each plot within a cluster by the product of plot monitoring length and the square 
root of plot area. 

Blinding Blinding was not relevant to our study.

Did the study involve field work? Yes No

Field work, collection and transport
Field conditions Plant traits sampled collection was carried out in 8 sites in the western and sourthern Amazon, with mean annual precipitation 

regime and mean annual temperature varying from 1126 to 2880 mm and 23.4 to 26.3 °C across sites. Data from Central-eastern 
Amazon sites ( TAP, MAN and CAX) were obtained from Brum et al. (2018), Barros et al. (2019) and Bittencourt et al. (2020), which 
follows the same methodology used in this present study. Site environmental characteristics are shown in supplementary material 
table 2.  
 
References: 
-Brum, M. et al. Hydrological niche segregation defines forest structure and drought tolerance strategies in a seasonal Amazon forest. 
J. Ecol. 1–16 (2018). doi:10.1111/1365-2745.13022 
-Barros, F. V. et al. Hydraulic traits explain differential responses of Amazonian forests to the 2015 El Nino-induced drought. New 
Phytologist, (2019). 
-Bittencourt, P. R. L. et al. Amazonia trees have limited capacity to acclimate plant hydraulic properties in response to long-term 
drought. Glob. Chang. Biol. 26, 3569–3584 (2020).

Location Samples were collected in terra-firme lowland forest plots (<400 m.a.s.l. altitude), being all plots part of RAINFOR permanent 
inventory plot network. Figure 1 shows a map with all site locations.  
SUC (Sucusari) - Iquitos, Maynas, Peru 3°15’S, 72°54'W 
ALP1 and ALP-2 (Allpahuayo) - Iquitos, Maynas, Peru 3°56’S, 73°25’W 
TAM (Tambopata) - Puerto Maldonado, Madre de Dios, Peru 12°49’S, 69°16’W 
FEC (Fazenda Experimental Catuaba) - Senador Guiomard, Acre, Brazil 10°4’S, 67°37’W 
KEN1 and KEN2 (Kenia) - Ascensión de Guarayos, Santa Cruz, Bolivia 16°1'S, 62°43'W 
NXV (VCR) - Fazenda Vera Cruz, Nova Xavantina, Mato Grosso, Brazil 14°49’S, 54°84’W 
Central-eastern Amazon forests data obtained from Brum et al. (2018), Barros et al. (2019) and Bittencourt et al. (2020). 
 
References: 
-ForestPlots.net et al. Taking the pulse of Earth ’ s tropical forests using networks of highly. 260, (2021). 
-Brum, M. et al. Hydrological niche segregation defines forest structure and drought tolerance strategies in a seasonal Amazon forest. 
J. Ecol. 1–16 (2018). doi:10.1111/1365-2745.13022 
-Barros, F. V. et al. Hydraulic traits explain differential responses of Amazonian forests to the 2015 El Nino-induced drought. New 
Phytologist, (2019). 
-Bittencourt, P. R. L. et al. Amazonia trees have limited capacity to acclimate plant hydraulic properties in response to long-term 
drought. Glob. Chang. Biol. 26, 3569–3584 (2020).

Access & import/export The permits for sample collection in each site were granted in the name of Prof. Dr. David R. Galbraith/Tremor Project and conceded 
by the following national responsible authorities: 
 
- SUC - Gestión Sostenible del Patrimonio Forestal y de Fauna Silvestre (SERFOR). nº121-2016-GGR-ARA-DEFFS-DER, Date: 
29/11/2016; 
- ALP - Dirección de Gestión de las Áreas Naturales Protegidas (SERNANP).  nº 073-2017-SERNANP-RNAM-J, Date: 18/11/2016;  
- TAM - Dirección de Gestión de las Áreas Naturales Protegidas (SERNANP). nº  039-2016-SERNANP-RNTAMB-PRD, Date: 08/09/2016; 
- FEC - Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio), Sistema de Autorização e Informação em Biodiversidade 
(SISBIO) - Número: 57821-1, Date: 07/03/2017; 
- KEN - Ministerio de Medio Ambiente y Agua - Viceministerio de Medio Ambiente, Biodiversidad y Cambios Climáticos. CAR-MMAYA/
VMABCCGDF/DGBAP/MEY nº 0198/2017, Date: 27/03/2017; 
 
NXV site is located in a private area and, apart from the farm's owner, no other permit is needed. The owner of Vera Cruz farm 
granted the collection permit in the name of Prof. Dr. Beatriz Schwantes Marimon. 

Disturbance Our sampling did not cause significant disturbances on the plot. Top tree canopy were assessed by climbers using climbing gears and 
terminal branches were cut with telescopic scissors. 
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