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Why models underestimate West African
tropical forest primary productivity

Huanyuan Zhang-Zheng 1,2 , Xiongjie Deng 1, Jesús Aguirre-Gutiérrez 1,2,
Benjamin D. Stocker 3,4, Eleanor Thomson1, Ruijie Ding5, Stephen Adu-Bredu6,7,
Akwasi Duah-Gyamfi

6, Agne Gvozdevaite1, Sam Moore1,
Imma Oliveras Menor 1,8, I. Colin Prentice 5 & Yadvinder Malhi 1,2

Tropical forests dominate terrestrial photosynthesis, yet there are major
contradictions in our understanding due to a lack of field studies, especially
outside the tropical Americas. A recent field study indicated that West African
forests have among the highest forests gross primary productivity (GPP) yet
observed, contradictingmodels that rank them lower than Amazonian forests.
Here, we show possible reasons for this data-model mismatch. We found that
biometric GPPmeasurements are on average 56.3%higher thanmultiple global
GPPproducts at the study sites. TheunderestimationofGPP largely disappears
when a standard photosynthesis model is informed by local field-measured
values of (a) fractional absorbed photosynthetic radiation (fAPAR), and (b)
photosynthetic traits. Remote sensing products systematically underestimate
fAPAR (33.9%on average at study sites) due to cloud contamination issues. The
study highlights the potential widespread underestimation of tropical forests
GPP and carbon cycling and hints at theways forward formodel and input data
improvement.

Carbon exchanges between terrestrial ecosystems, especially tropical
forests, and the atmosphere are a major element of the global carbon
cycle. As the world’s most productive terrestrial ecosystems1, tropical
forests have been estimated to account for around44%of global forest
biomass and 43% of global gross primary production (GPP)2,3. None-
theless, confidence in estimates of tropical forest productivity remains
low4,5. There is still a large variation among models regarding the
magnitude and spatial pattern of tropical GPP6–8. Multiple global-scale
forest GPP studies have indicated that tropical forests have larger
uncertainty compared to other biomes9–12. This is likely an inevitable
consequence of the paucity of carbon cycling data in the tropics
relative to temperate regions13–16. For instance, many previous studies

found particularly large GPP data-model discrepancies for tropical
forests between flux towers and models (including satellite GPP
products)16–19, but investigation into the causes of discrepancywas not
attempted due to the lack of in situ auxiliary measurements of plant
traits and forest characteristics20. The large unresolved data-model
discrepancy suggests fundamental challenges in our understanding of
tropical forest productivity and its geography.

The uncertainty in estimates of tropical forest productivity is
particularly large inWestAfrica21. Thefirst fieldquantification of GPP in
African forests (termed ‘biometric GPP’) reported possibly the highest
GPP value recorded in intact forests, which however, are under-
estimated by about 60% in both the MODIS and FLUXCOM GPP
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products, two widely used global maps of tropical forest
productivity22. Since GPP is the source of carbon and energy for ter-
restrial ecosystems in Dynamic global vegetation models (DGVMs)23,
the data-model discrepancy in GPP propagates into NPP (Fig. S5) and
possibly other downstream variables. It has not yet been explained,
from modellers’ perspective, why this area has a GPP higher than
simulations. As models are designed based on current ecological
theory24, such a large discrepancy of multiple sites signals a lack of
physiological understanding or poor parameterisation of forest
physiology.

In this work, we set out to explain the high productivity of West
African forests using photosynthesis models and investigate the rea-
sons behind the data-model discrepancy, with a view to provide
information to modellers working on assessing and mapping the
productivity of forests globally. The investigation follows three
objectives (Table 1). Objective (1): We first compare the biometric GPP
to multiple models and satellite-based products, to quantify the data-
model discrepancy. Objective (2): We investigate whether the field-
observed high productivity is consistent with the leaf photosynthetic
traits and other fieldmeasurements that were commonly simulated by
models. This investigation is made possible by extensive field mea-
surementsof environmental variables, plant traits, and carbonfluxes at
the study sites25–28. Objective (3): We attempt to account for the data-
model discrepancy of MODIS and Pmodel (Table 2) and explore key
responsible parameters in DGVMs. This is done by substituting model
parameters with field measurements, according to several hypotheses
listed below as to the cause of this discrepancy.

Most vegetation models and global GPP products calculate GPP
using key inputs including (1) light use efficiency (LUE), a key para-
meter of MODIS-GPP and Pmodel. LUE could not be directlymeasured
but could be derived from field-measured photosynthetic capacity29

(Supplementary method). Pmodel29 and most DGVMs use photo-
synthetic capacity to calculate GPP30; (2) fraction of absorbed photo-
synthetically active radiation (fAPAR), a key parameter of MODIS-GPP
and Pmodel.Models typically simulate LAI and then express fAPAR as a
function of LAI and canopy extinction coefficient; (3) plant functional
types (PFTs) classification; (4) climate variables, including tempera-
ture, relative humidity and photosynthetic photon flux density (PPFD),
often calculated from incoming shortwave radiation. Formodels these
are retrieved from global climate data products.

Therefore, for objective (3), we hypothesise that the large data-
model discrepancy for GPP could stem from inaccuracies in one or
more of these key input variables: (Hypothesis 1) incorrect LUE, or
photosynthetic capacity; (Hypothesis 2) incorrect fAPAR; or (Hypoth-
esis 3) inappropriate assignment of plants functional types; or
(Hypothesis 4) climate variables. Multiple experiments are designed to
test each hypothesis (Table 1, see Methods for detailed experiment
settings).

Overall, we identify key areas for model improvement and also
provide a trait-based explanation for the high GPP observed in West
Africa.

Results
Intercomparison of GPP estimates
Each study site represents a major forest type of West African forests
(Fig. 1). For all study sites, considerable discrepancies in GPP are found
among DGVMs, FLUXCOM, MODIS, Pmodel, and biometric measure-
ments, with a pattern that is consistent from site to site (Fig. 2). At each
site, biometric measured GPP exceeds methods GPP and global GPP
products. Overall, the DGVMs’ average GPP is higher than FLUXCOM,
which in turn is higher than MODIS GPP. The discrepancy between
biometric andMODISGPP is about 20MgC/ha/year regardless of sites.
The largest data-model discrepancy between DGVMs and biometric
GPP is seen at BOB (22.8 versus 43.3 MgC/ha/year). At BOB, the DGVM
average, FLUXCOM, and MODIS report almost equal GPP – but all less
than the measured GPP. There are substantial disagreements between
different DGVMs; for example, at ANK, the DGVMs simulated GPP
ranged from 14.3 to 42.6 (biometric GPP at 40.1) MgC/ha/year.

The match between trait-based GPP and biometric GPP
Using field observed PPFD, fAPAR, and photosynthetic traits as input,
Pmodel could estimate a GPP (i.e., experiment Pmodel_PfL) slightly
lower but still within the uncertainty range of field biometric GPP at
BOB and KOG sites. At the ANK site, Pmodel_PfL greatly reduces the
data-model discrepancy but remains lower thanbiometric GPP (Fig. 3).
Nonetheless, the slight mismatch at ANK does not undermine further
investigation at ANK because there are more dominant factors con-
tributing to the data-model discrepancy, explained below.

Photosynthetic trait and fAPAR
It was hypothesised that GPP data-model discrepancy could stem from
inaccuracies in (Hypothesis 1) LUE, or photosynthetic capacity;
(Hypothesis 2) fAPAR. Photosynthetic capacity estimated by the
Pmodel is lower, although close to field measured photosynthetic
capacity (Fig. S2) implying underestimated LUE. As a consequence,
Pmodel_Pf is lower than Pmodel_PfL consistently at all sites (Fig. 3).

GPP is substantially underestimated when in situ fAPAR is
replaced with MODIS fAPAR, resulting in a considerable difference
between Pmodel_Pf GPP and Pmodel_P at any site. Especially at ANK,
fAPAR is found to be the largest contributor to GPP data-model dis-
crepancy. A further investigation intoMODIS fAPAR (Fig. 4) shows that
during the rainy season,MODIS fAPARdecreases alongwith increasing
cloud cover (up to 90% of pixels), whereas field fAPAR remains fairly
constant during the year. Filtering fAPAR values according to cloudi-
ness or gap-filling of bad data points would removemost of the values
from the rainy season, leading to an underestimated mean annual
fAPAR. The above issue affects a major proportion of the African tro-
pical forest, and likely many areas of the tropics (Fig. 1).

By comparing toPmodel_null,we showed thatGMAOPPFD lead to
overestimation of GPP at site ANK and BOB, but leads to slight
underestimation of GPP at site KOG (Fig. S6). This is associated with
the low resolution of GMAO PPFD. Using a higher resolution PPFD
product (e.g. ERA5, Fig. S3) could alleviate this issue. Thus, we

Table 1 | Study objectives, hypotheses and testing datasets

Objectives Data Figure

1, quantify the data-model discrepancy Pmodel_null, MODIS, Biometric, FLUXCOM, TRENDY Fig. 2

2, consistency between leaf photosynthetic traits and biometric GPP Compare Pmodel_PfL to Biometric Fig. 3

3, Possible sources of data-model discrepancy (including 4
hypotheses)

Hypothesis 1 LUE and photosynthetic capacity Compare Pmodel_PfL to Pmodel_Pf; Compare Pmodel_null to MODIS Fig. 3; Figure S6

Hypothesis 2 fAPAR Compare Pmodel_Pf to Pmodel_P Fig. 3

Hypothesis 3 Plant functional types Compare TRENDY Forest-only GPP to whole-pixel GPP Fig. S4

Hypothesis 4 Climate variables Compare ERA5-Land, MERRA-2 (by GMAO), CRU-JRA to field
measurements

Fig. S3
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conclude that PPFD could not explain the underestimation of GPP at
the study sites. At the ANK site, MODIS and Pmodel_P GPP are almost
identical (Fig. 3a), but at BOB and KOG,MODIS is lower than Pmodel_P
GPP. This portion of data-model discrepancy could be resolved by
using the optimality-based LUE other thanMODIS LUE (from the look-
up table) (Fig. S6). This portion of data-model discrepancy could not
be resolved by PPFD as explained above. Although MODIS LUE is not
publicly available, the comparison between Pmodel_null and MODIS
suggests that optimality theory tends to estimate an LUE higher than
MODIS LUE. In short, Hypotheses 1 and 2 are accepted.

Scaling and plant functional type
Hypothesis 3 suggests that the GPP data-model discrepancy originated
from inappropriate assignments of plant functional types. At BOB the
entire forest fragment is smaller than a single grid cell in a DGVMbut is
hundreds of times larger than a MODIS grid cell (scales illustrated in
Fig. S1). MODIS GPP estimates that the surrounding area (a composite
of savanna and cocoa farms) has only half the productivity of the
forests. Therefore, the mean of the whole map (19.6 MgC/ha/year)
appears to be smaller than that of the forests (23 MgC/ha/year). This
is not the case for TRENDY, which simulated a comparable value
between forests-only and whole grid cell GPP (Fig. S4) (i.e. similar
simulated GPP between forests and C4 grass). There are no field stu-
dies to our knowledge comparing cocoa farm GPP to adjacent
forests GPP.

For all the study sites, most TRENDY models correctly simulate
the grid cell as a composite of ‘forest’ and ‘C4 grass’, although the
fraction of forests varies considerably amongmodels (Table S1). Given
that the ‘forest-only’ GPP of TRENDY and MODIS are much lower than
biometric GPP (Figs. 2; S4; S1) we conclude that the GPP data-model
discrepancy between TRENDY and biometric GPP cannot be explained
by scaling or PFT issues (rejecting hypothesis 3). Besides, please note
that TRENDY S2 keeps the land cover state fixed to its pre-industrial
state of 1700 and thus the proportion of C4 grass (Table S1) is tem-
porarily invariant and could be smaller than a land cover dynamic
simulation (e.g. MODIS replies on satellite imageries that incorporates
real-time land cover change).

Data-model consistency in climate variables
Hypothesis 4 suggests that theGPPdata-model discrepancy originated
from climate variables. The data-model differences we found for
temperature, relative humidity, PPFD and ci/ca were too small to
explain the GPP data-model discrepancy (Fig. S3), thus rejecting
hypothesis 4.

To sum up, the data-model discrepancy for GPP at the study sites
mainly stems from: incorrect LUE, or photosynthetic capacity
(Hypothesis 1 accepted); and incorrect fAPAR (Hypothesis 2 accepted);
not inappropriate assignment of plants functional types (Hypothesis 3
rejected); nor climate variables (Hypothesis 4 rejected).

Discussion
Main sources of GPP data-model discrepancy
Wenot only demonstrate a significant data-model discrepancy inWest
African forest GPP but also reveal themain sources of this discrepancy.

At the Ankasa wet rainforest site, we found that underestimation of
fAPAR, likely because of cloud contamination, is themajor contributor
to GPP data-model discrepancy. At the Bobiri (semideciduous) and
Kogyae (dry forest) sites, too low values of photosynthetic traits
(leading to a bias in light use efficiency) are the primary source of GPP
data-model discrepancy, which can be partly explained using optim-
ality theory predictions. Additionally, fAPAR accounts for a large pro-
portion of GPP data-model discrepancy at KOG but not at BOB.
Through this analysis we are able to fully account for the data-model
discrepancy at KOG and BOB, but leave part of the data-model dis-
crepancy unresolved (20.5% of biometric GPP) at ANK, which may be
caused by inaccurate traits measurements, photosynthesis model
assumption (e.g. the big leaf assumption) or possible bias in field
measurements of the biometric GPP (e.g. the upscaling of leaf and
stem respiration; the estimation of roots exudation)31.

Why do models underestimate GPP in West African tropical
forests?
Focusing on three sites (comprising 14 one-hectare plots) in Ghana, we
have utilised a recent in situ quantification of African forest GPP and
conducted a systematic data-model comparison. Despite the uncer-
tainty associated with biometric GPP measurements, it is more likely
that FLUXCOM, MODIS, TRENDY models, and Pmodel_null under-
estimate West African forest productivity than that the biometric GPP
measurements overestimate it. This is because (1) the biometric GPP is
an average across multiple plots spanning several years. To our
knowledge, there are no other biometric GPP measurements in the
study region, but the high GPP is supported by another field study
reporting very high forests biometric NPP32; (2) from a photosynthesis
traits perspective, West African seasonally dry forests are char-
acterised by a high CO2 assimilation rate or high photosynthetic
capacity, in comparison to wet-evergreen tropical forests studied in
other continents, predominately in Amazonia27,33,34; Pmodel could
simulate a GPP close to biometric GPP if informed by field-measured
traits (Fig. 3), which signals a broad consistency between the high GPP
and observed photosynthetic traits. (3) the cause of the models’
underestimation can be well explained by errors in modelled LUE and
satellite-derived fAPAR (Fig. 3). (4) There is only one flux tower for
West African forests (site GH-ank at the Ankasa site), which reports
three years of GPP varying substantially19. The tower reported 2011
annualGPP at36.06MgC/ha/year, but the tower onlyoperated for half-
year in 2012 and 2014 with estimated annual GPP at 22.02 and 26.1
respectively (FLUXNET201535, variable GPP_NT_CUT_REF) (Fig. S8). In
comparison, the biometric GPP is 40.11 and Pmodel_PfL is 31.85.
Therefore, the ‘true’ GPP of site ANK appears to be more likely to
situate around 36 MgC/ha/year with biometric GPP overestimating,
and the ‘unresolved data-model discrepancy’ at site ANK (Fig. 3) is
probably due to bias in the biometric GPP. Many tropical flux towers
face logical or technical issues36,37, and challenging subcanopy CO2

storage estimation38,39. For example, the road leading to site ANK is
seasonally inundated (Photos in Supplementary information)when the
study site can only be accessed on foot. During FLUXCOM extrapola-
tion, the machine learning algorithm would not receive information
about BOB’s higher photosynthetic capacity and would simply predict

Table 2 | Sources of gross primary production (GPP)

GPP Main features Group

Biometric Measuring Each GPP component (e.g. leaf NPP, stem respiration) in the field. Field works

TRENDY Global dynamic vegetation models that used environmental variables (but not fAPAR) as inputs. Model

Pmodel a light use efficiency model, which was used to design multiple experiments to test hypotheses for Objective 3. The
experiments include Pmodel_null, Pmodel_PfL, Pmodel_Pf, and Pmodel_P (see Fig. 3).

Model

MODIS MODIS GPP is a light use efficiency model that calculates GPP using satellite observed fAPAR. Observation based products

FLUXCOM By upscaling carbon fluxes observed by eddy covariance towers. Observation based products

Article https://doi.org/10.1038/s41467-024-53949-0

Nature Communications |         (2024) 15:9574 3

www.nature.com/naturecommunications


20°S

10°S

0°

10°N

10°W 0° 10°E 20°E 30°E 40°E

0 25 50 75 100

5°N

6°N

7°N

8°N

9°N

10°N

3°W 2°W 1°W 0° 1°E

KOG

BOB

ANK

Percentage of days (%) covered with cloud

(b)

(a)

Fig. 1 | Map of the three study sites in West Africa. Panel (a) displays a regional
viewofAfrica, andpanel (b) zooms inonGhana. Blue scales show the percentage of
days contaminated by clouds during the cloudy season (August and September),

which is the percentage of MODIS data marked as ’01 significant clouds present’
and ’10 mixed clouds present). Each red dot denotes a site. Each site contains
multiple one-hectare plots.
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BOB is less productive than ANK (opposite the observed GPP pattern)
due to the lower precipitation received at BOB (Table S3).

Some degree of model underestimation of GPP may even be a
pan-tropical feature. Intercomparison of GPP and NPP in previous
studies40,41 has also revealed data-model discrepancies for Amazonian
lowland forests. In this study, we found that the data-model dis-
crepancy was due to fAPAR and photosynthetic capacity. The cloudi-
ness issue, leading to low satellite-based fAPAR, has been described as
a pan-tropical phenomenon for many remotely sensed products42–45.
Moreover, cloud-free fAPAR (Fig. 4) also underestimate fAPAR thus
there are issues beyond cloud contamination. Bias inMODIS fAPAR (or
LAI) will inevitably cascade into models or analyses that use MODIS
fAPAR as a predictor, including FLUXCOM. Large GPP discrepancy
between global flux towers andMODIS are reported, which was found
associated with fAPAR and LUE not cliamte variables19. Many tropical
rainforests have high persistent cloud cover compared to other forests
and therefore may be disproportionally affected by cloud
contamination43,45.

The LUE (or photosynthetic capacity) discrepancy is strong and
consistent with previous literature, since a previous study found
higher Asat and Amax values in West African species than in Amazonian
ones34. HigherAsat andAmax are found in BOB andKOG (drier sites), but
not ANK (the wet evergreen forest on poor soils more similar to much
of lowland Amazonia)22,27, making LUE the dominating source of GPP
bias in BOB and KOG but less dominant in ANK. The high photo-
synthetic capacity in semi-arid forest or savanna is consistent with
other field studies in West Africa33. Vcmax inferred from remotely
sensed leaf chlorophyll data and Vcmax predicted by the P model both
show exceptionally high values in West Africa and parts of India –

substantially higher than in Amazonia or SE Asia46,47. These seasonal
forests on more fertile soils may have photosynthesis rates optimised
to high light, temperature and VPD (also see field study48). This sub-
stantial spatial variability of Vcmax has not been incorporated in most

TRENDY models30,49 which could lead to underestimation of GPP at
such regions. Traditionally, Vcmax is a PFT-specific constant. If the true
Vcmax differs among sites due to nutrient availability, then models can
only embody the dynamics with varying PFT fractions. Some models
do simulate Vcmax as a function of leaf nitrogen, in which case they
could, at least in theory, reproduce those patterns. Nonetheless, leaf
nitrogenmay be simulated alsowith PFT-specific parameters and theN
cycle has its own set of challenges30. Thus, further modelling study is
needed to carefully consider the high Vcmax at this region.

We note that Vcmax behind TRENDY simulation is not directly
retrievable and thus we could not conduct direct data-model com-
parison for Vcmax but discuss and compare to the PFT-specific values
recalculated following models’ equations50 (Table S2). As shown in
Table S2, two TRENDY models (OCN and ORCHIDEE) indeed under-
estimate Vcmax. IBIS substantially overestimates Vcmax which results in
its high GPP at site ANK. However, JULES, CLASSIC, CLM5.0 and
JSBACHhave similar or higherVcmax but still underestimate GPP, which
implies that there are other factors contributing to the GPP under-
estimation. Moreover, the substantial inter-model disagreement
shown in Table S2 is alarming, with Vcmax for evergreen forest vary
from 18 to 163 μmolm−2 s−1 while fieldmeasurements at our study sites
are around 30 μmol m−2 s−151. Model parameterisations of Vcmax for C4
grass also vary substantially and appear to be lower or higher than
forests dependingonmodels, whichmay affect somemodels that have
C4 grass as main plant functional types at the study sites, for example,
CLM5.0. Further, although Vcmax model parameters may differ from
measurements at the study sites, the values may still be appropriate at
a larger scale, as in-situ Vcmax measurement values differ considerably
among sites. The wide range of Vcmax actually reflects substantial var-
iation in global traits databases46, where further data-model bench-
marking study is suggested. Most TRENDY models embedded an
exponential equation linking fAPAR with LAI. In other words, GPP is
positively influenced by Vcmax and LAI. At study site KOG,mostmodels

Fig. 2 | Intercomparison of gross primary productivity (GPP, MgC/ha/year)
fromvarious independent sources. The figure contains study sites (a) Ankasa, (b)
Bobiri and (c) Kogaye. The red dotted lines denote in situ biometric GPP, as amean
of multiple one-hectare plots (Table S3);measurements are taken spanning 2011 to
201622,25. The grey areas denote measurement uncertainty, not standard error. The
uncertainty is calculated through error propagation. ForGPPmodels and products,
we calculate mean annual GPP from 2011 to 2016. Bars denote Carbon-onlymodels
(dark purple), Carbon-Nitrogen coupled models (light purple), FLUXCOM (white)

and MODIS (green). The error bars are maximum/minimum mean annual GPP
during the studyperiod. Thepurpledotted line denotes all TRENDYmodels (purple
bar) average. For TRENDYmodels that reported GPP per plant functional types, we
display forests-only GPP (the potential GPP if the grid cell is full of forests).
Otherwise, we display whole gridcell GPP. See Fig. S4 for a comparison between
forest-only GPP and whole gridcell GPP. Source data are provided as a Source
Data file.
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overestimate LAI (Figure S7). Thus, LAI would not explain the under-
estimation of GPP at this site. At study sites BOB and ANK however,
models averaged LAI is very close to fieldmeasurements althoughwith
large inter-model variation, suggesting that the key parameters
accounting for GPP underestimation here should vary among models.
To sumup, the investigation into the causeof DGVMs underestimating
GPP is not straightforward. The parameterisation of Vcmax and LAI is
one of the reasons for some models but there are likely other con-
tributing factors that require future studies.

The importance of field evidence in productivity estimation
The availability of comprehensive field measurements allows us to
trace and quantify the sources of data-model discrepancy in theGPP of

West African forests. We find that fAPAR and LUE (or photosynthetic
capacities) are the dominant sources of data-model discrepancy,
rather thanmodel structure or climate variables. These findings reflect
the lack of field measurements of West African forest photosynthetic
traits and leaf area index (or fAPAR), while the environmental variables
of the study regions are better represented. FLUXCOM also struggles
with the only flux tower for West African forests that reported three
years of patchy data. Beyond pointing out the sources of data-model
discrepancy, this study alsohighlights that such issues couldbe fixed if
models were better informed with field-measured fAPAR and LUE
derived from measured traits, or more generally if better maps of
canopy traits are applied52. The model simulated GPP could be
improved with predicted LUE by optimality theory (Fig. 3), which

Fig. 3 | Partitioning of GPP data-model discrepancy, by comparing different
experiments. Results are shown for study sites (a) Ankasa, (b) Bobiri and (c)
Kogaye. Experiments design is shown in (d). The left panel displays field-based
biometric GPP (pink line with grey zone showing uncertainty) and multiple GPP
experiments (bars). Pmodel_PfL, Pmodel_Pf and Pmodel_P are GPP experiments
which are all simulated using Pmodel but with different inputs. Both Pmodel and
MODIS GPP were calculated from Eq. (1), enabling direct comparison. The right
panel, a ‘Diff’ bar, illustrates the difference in GPP between experiments, which
represents the sources of GPP data-model discrepancy. For example, the GPP

difference between Pmodel_Pf and Pmodel_P experiments is caused solely by the
difference in input variables - fAPAR. Therefore, thedifferencebetween them(blue)
is GPPdata-model discrepancy resolvedby fAPAR. Thedifference (orange) between
Pmodel_P and MODIS is GPP data-model discrepancy resolved by optimality-
estimated LUE and PPFD (but mostly LUE, Fig. S6). The difference (green) between
Pmodel_PfL and Pmodel_Pf is GPP data-model discrepancy caused by the difference
betweenmeasured LUE and optimality-based LUE.MODIS fAPAR and GPP are from
MOD15A2H and MOD17A2H excluding data marked as ‘01-Significant clouds were
present’. Source data are provided as a Source Data file.
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highlights the importance of using ‘trait-based approaches’ para-
meters instead of PFTs prescription30,53. This study thus suggests that
providing models with ample field evidence and ensuring strong
fidelity to field measurements is critical in improving current carbon
cycle simulations54.

Implication for carbon cycle modelling of West African forests
Researchers studying tropical forest functioning should exercise cau-
tion when using satellite-based products subject to cloud contamina-
tion, as they are strongly compromised during the rainy season in this
region due to high cloudiness (Fig. 1). Moreover, both cloud-free
MODIS GPP (Fig. 3) and fAPAR (Fig. 4) are lower than field measure-
ments, suggesting room for improvement beyond cloud contamina-
tion. Additionally, West African forests are highly fragmented55

(Fig. S1), so future studies across scales are suggested to check plant
functional types assignment (Fig. S4)32.

The study has shown that the Pmodel has advanced prediction of
ci/ca, Vcmax and Jmax – essential parameters for the FvCB model. The
data also support the coordination of the Rubiscio- and electron
transport-limited photosynthetic rates, AC and AJ, which is one of the
optimality principles underlying the Pmodel (Fig. S2). However, the
reasons why almost all TRENDY models underestimate West African
GPP has not been fully elucidated. The investigation of TRENDY
models’ LAI and Vcmax suggests that these models do not share the
same cause of the data-model discrepancy. While much criticism of
TRENDY models has centred on likely inaccurate characterisations of
plant functional types30, our study suggests that this is unlikely to be
the causeof GPPbias at the study sites. Further, we identifiedVcmax as a
key factor. Numerous models calculate Vcmax from leaf nitrogen30 but

nitrogen-coupled models do not contrast with carbon-only models at
the study site (Fig. 2), suggesting that the nitrogen-GPP relationship
still has room for improvement in future modelling studies. More
transparency in models’ input data (e.g. leaf nitrogen content) and
parameterization (e.g. Vcmax) is necessary for further investigation.
Although it is challenging to unbox each model and investigate their
Vcmax, Jmax or LUE, our analysis suggests that the underestimation of
GPP is associatedwith photosynthetic capacities, especially at site BOB
and KOG (Fig. 2). Allowing Vcmax, Jmax or LUE to acclimate to brighter
and drier environments should improve the simulation of GPP at semi-
arid forests and savanna56.

In conclusion, the study not only reveals an underestimation of
West African forest productivity but also explores why this under-
estimation occurs. The unique data-model comparison approach
proposed in this study may also have wider potential as it successfully
(1) shows consistency between field-measured photosynthetic traits
and biometric GPP; (2) identify likely sources of data-model dis-
crepancy by designing multiple experiments with a minimal photo-
synthesis model (Pmodel). The study also demonstrates that to gain
insight, thorough field measurements of forest plots are valuable and
the application of simple models (that can be easily understood and
tuned) is key for ecological hypothesis testing. As this study is limited
in terms of spatial cover, we encourage future research in this region,
in particular drier African ecosystems where C4 grasses are abundant
with more LUE but less cloudiness (Fig. 1)57. We also acknowledge that
models are intended for global simulation and thus our site scales
study does not serve as models benchmarking but approaches to
improve model simulation. Nonetheless, given the broad consistency
in our results displayed across the study sites, we expect that models’
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carbon cycle simulation in West African region could be substantially
improved by simulating a higher GPP across West African tropical
forests. It is possible, indeed likely, that suchmodel-data discrepancies
are a more general feature of tropical forests. This requires further
detailed comparison between biometric field measurements and
model predictions, with the approach outlined here offering a valuable
approach for such a pantropical analysis.

Methods
Study sites and field measurements
The three study sites span a wet-to-dry rainfall gradient in Ghana from
evergreen rainforest at site Ankasa (ANK) with a mean annual pre-
cipitation of 2050mm, to semi-deciduous forest at site Bobiri (BOB)
with 1500mm, and a dry forest and mesic savanna matrix at site
Kogyae (KOG)with 1200mm(Fig. 1). Each study site represents amajor
forest type of West African forests. See Table S3 for site
environmental data.

Biometric GPP was measured in the field using the Global Eco-
system Monitoring protocol. Each component of GPP (e.g. canopy
productivity, stem respiration, fine root productivity) is measured
separately with common technique. For example, canopy productivity
is measured using litterfall trap, and stem respiration is measured by
attaching a CO2 Gas Analyzer (PPsystems EGM4) to stem surface.
Biometric GPP was then calculated as a sum of each component28 and
the field practice at our study sites is described in detail in a previous
study22. Biometric GPPwas originally quantified at the plot scale. There
are three one-hectare plots at Ankasa, six plots at Bobiri, and five plots
at Kogyae. This study was conducted at site rather than plot scale
because one-hectare plots at the same site share almost identical cli-
mate variables and fall into onemodel grid cell. Specifically, a grid cell
of TRENDY models and FLUXCOM covers approximately 50 × 50km,
or 0.5° × 0.5°. Nonetheless plots at the same site fall into different grid
cell of MODIS due to higher resolution (500 ×500m) (Figure S1). We,
therefore, calculated a mean biometric GPP for each site as an average
across plots. We did not calculate a standard error. The uncertainty in
Biometric GPP (Fig. 2) represents measurements error (mostly sys-
tematic error) as calculated by error propagation from each GPP
component, instead of spatial variation of GPP. See this study22 for
more data and error propagation associated with the study sites.

The fraction of absorbed photosynthetically active radiation,
fAPAR, was obtained using hemispherical photography, taken each
month in each plot between 2012 and 2017. Photos were processed
usingmachine learning-based software ‘ilastik’58 for pixel classification
and CANEYE59 for fAPAR calculations (see Supplementary method for
details).

In this study, we also need field-measured community-weighted
mean light-saturated photosynthetic rate (Asat), light- and CO2-satu-
rated photosynthetic rate (Amax), to calculate a trait-based LUE and
trait-based GPP (specific experiment explained in Section 2.4). We
derived the maximum carboxylation rate (Vcmax) and the maximum
electron transport rate (Jmax) from each fieldmeasured Asat and Amax at
growth temperature60 using R package ‘plantecophys’61,62. We used
these Vcmax and Jmax in one of the Pmodel experiments for Objective 3.
However, the Jmax limitation equation in ‘plantecophys’ is different to
that in ‘rpmodel’ (an R package used to conduct Pmodel experiments),
so wemodified the Jmax equation in ‘plantecophys’ (see Supplementary
Methods). Measurements of Asat and Amax were made every three
months from 2014 to 2016 to cover both wet and dry seasons. To
measure Asat and Amax, we used an open-flow gas exchange system (LI-
6400XT, Li-Cor Inc., Lincoln, NE, USA). To ensure a proper repre-
sentation of the forest stand, we sampled tree species that constituted
approximately 80%of theplot basal area. For each species, we selected
three mature and canopy emergent trees, and cut one fully sunlit and
one shaded branch per tree using a single rope climbing technique.We
immediately placed and recut the cut branch under water, and

measured the maximum rate of net CO2 assimilation at 400 ppm CO2

(Asat) and 2000 ppm CO2 (Amax) on three leaves per branch. The PPFD
was set to 2000 μmolm–2 s–1 and block temperaturewas kept constant
at 30 °C. Although we measured both shade and sun leaves, we used
sun leaves only in this study, consistent with common practice in field
studies of photosynthetic traits63. Besides, we used above-canopy
PPFD as model input and only sun leaves acclimate to this level of
PPFD; shade leaves acclimate to darker environments and have con-
sistently lower Asat than sun leaves64. The ratio of leaf internal CO2 to
eternal CO2 (ci/ca) was estimated from leaf δ13C measurements. We
initially estimated the difference between the leaf stable isotope ratio
and the atmospheric stable isotope ratio at that place and time (Δ13C)
from δ13C, using the method described by a previous study65. Subse-
quently, we calculated ci/ca from Δ13C using equation 11 in a previous
study60. We compared measured ci/ca to Pmodel estimated
ci/ca (Fig. S3).

MODIS fAPAR and GPP
Using Google Earth Engine, we retrieved MODIS GPP from the collec-
tion MOD17A2H and retrieved MODIS fAPAR from MOD15A2H from
2011 to 2016. We extracted GPP and fAPAR of the 14 plots using their
coordinates and calculated annual (Fig. 3) and monthly mean values
(Fig. 4) per site. To remove cloud-contaminated GPP and fAPAR, we
selected only dataflagged as ‘Significant cloudsNOTpresent (clear)’or
‘Mixed cloud present on pixel’ provided in band ‘faparlaiQC’ and
‘Psn_QC_500m’. In rain season, almost no data ismarked as ‘Significant
cloudsNOTpresent (clear)’ (Figs. 1 and4). SinceMODISGPP and fAPAR
share the same data flag, the above approach ensures that the fAPAR
used in Pmodel experiments is identical to that used in MODIS GPP
(Fig. 3), ensuring a fair comparison between them. MOD17A3HGF
product containsMODISGPP andNPP after gap-fillingMOD17A2H.We
used GPP and NPP fromMOD17A3HGF to compare with other models
and GPP products (Fig. 2, Fig. S1).

FLUXCOM and TRENDY GPP
We chose the ‘RS_METEO’ version of FLUXCOM because the magni-
tude of GPP in this version does not involve uncertainty from MODIS
fAPAR, which makes the comparison between FLUXCOM and MODIS
GPP more independent. Specifically, we used “GPP.RS_METEO.FP-
ALL.MLM-ALL.METEO-ERA5.720_360”. For TRENDY, we analysed the
model outputs in version 966 under the S2 protocol, in which climate
and CO2 change while the land cover state is fixed to its pre-industrial
state of 1700. Models are classified into nitrogen-carbon coupled
models and carbon only models for readers convenience. Note that
models still include ‘C4 crop land’ as one of the plant functional types
(PFTs), but the cover of ‘C4 crop land’ is kept constant. We retrieved
total GPP (sumof all PFTs) of the grid cell (variable ‘gpp’). We also used
variables ‘gpppft’ and ‘landcoverfrac’ to calculate a forest-only GPP,
which is theGPP that themodel would have estimated if thewhole grid
cell were ‘forests’, including evergreen, deciduous and any other types
of forests. For both TRENDYand FLUXCOM,we extracted the grid cells
where the three study sites are located, as an average from 2011
to 2016.

Experiment design for Objective 1
For Objective (1), we compared biometric GPP with values estimated
by (a) the TRENDY ensemble of dynamic global vegetation models
(DGVMs)66; (b) two data-driven products, FLUXCOM67, and MODIS68,
and (c) an optimality-based model (Pmodel v1.0)29. The above choices
are widely used models and GPP products that applied distinctly dif-
ferent approaches to calculate GPP16(Table 2).

The TRENDY v9 S2 ensemble is a collection of 15 DGVMs that
calculate functional aspects of vegetation, including fAPAR or leaf area
index (LAI), metrics that determine light absorption from environ-
mental variables, without using any remotely sensed data as input.
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Most of these models calculate leaf-level photosynthesis via the
Farquhar-von Caemmerer-Berry (FvCB) photosynthesis model69,
which requires specification of several photosynthetic traits: Vcmax,
Jmax, and parameters of one or other of the semi-empirical schemes
that are commonly used to estimate stomatal conductance (gs)30. Leaf-
level photosynthesis is scaled up to the canopy, and thus to GPP, by
methods that vary in complexity, but all depend on the modelled LAI
or fAPAR.

FLUXCOM and MODIS, by contrast, are observation-based GPP
products that do not depend on the FvCB model. FLUXCOM GPP is a
machine learning application that uses eddy-covariance estimates of
GPP from worldwide flux towers as the key input, combined with
environmental covariates that include satellite-derived fAPAR, and
shortwave radiation (closely related to PPFD). FLUXCOM used MODIS
fAPAR, and shortwave radiation prepared by Japan Aerospace
eXploration Agency (JAXA) using Terra MODIS data.

MODIS GPP68 is a light use efficiencymodel70,71 that calculates GPP
as:

GPP= fAPAR * LUE * PPFD ð1Þ

where PPFD is sourced from Global Modelling and Assimilation Office
(GMAO). TheMODISGPP algorithm calculates LUE as a prescribed (per
biome) maximum light use efficiency, multiplied by reduction factors
that are defined a priori as biome-specific functions of temperature
and vapour pressure deficit.

In this analysis we also employ Pmodel29. The Pmodel, uniquely, is
a LUE model (also using Eq. 1) but it calculates LUE based on the FvCB
model, using optimality principles72 to determine the spatial and
temporal variation in Vcmax, Jmax and the ratio (ci/ca) of leaf-internal to
ambient CO2

29. The ci/ca ratio results from the combined effects of
photosynthetic rate and stomatal conductance, which are co-
regulated by plants. Leaf-level photosynthesis is scaled up to the
canopy with the help of the big-leaf approximation73 and driven by
satellite fAPAR data. The Pmodel thus combines the mechanistic basis
of photosynthesis as represented in DGVMs with the simplicity of LUE
models. The Pmodel also dispenses with the need to consider plant
functional type (PFT) or biome distinctions (apart from the difference
between C3 and C4 plants); the differences in photosynthetic traits
among C3 PFTs are implicitly predicted as a consequence of their
habitat preferences alone. The validity of these predictions has been
supported by global-scale comparisons74–76.

Experiment design for Objective 2
Before investigating the cause of the GPP data-model discrepancy
(Objective 3), it is necessary to first investigate whether biometric GPP
can be reproduced by the FvCB model (within Pmodel) fully informed
by field-measured inputs – PPFD, fAPAR and photosynthetic capacities
(Objective 2). Here we fed Pmodel with Vcmax Jmax derived from field
measured Asat and Amax (Supplementary Method). Note that the ‘big
leaf assumption’ is implied for all Pmodel simulation in this study. The
above GPP experiment was called ‘Pmodel_PfL’. A match would indi-
cate consistency between the field-measured canopy properties and
the independent field biometric GPP.

If such a match is found between Pmodel_PfL GPP and biometric
GPP, we can further investigate the cause of GPP data-model dis-
crepancy by designing more experiments using Pmodel with different
inputs (Table 1 and Fig. 3). The difference between Pmodel_PfL and
biometric GPP is labelled as the ‘unresolved discrepancy’ in Fig. 3.

Experiment design for objective 3
We elucidated four hypotheses for Objective (3) (investigate the cause
of data-model discrepancy) (Table 1), which are tested with the fol-
lowing procedure:

To test Hypothesis 1 (incorrect LUE explains the mismatch), we
used the Pmodel to predict photosynthetic capacity (Vcmax, Jmax)
and LUE using optimality theory based on climate variables alone. The
Pmodel then calculates a ‘Pmodel_Pf’ GPP using the above optimality-
based predictions, combined with field-measured PPFD and fAPAR. As
the only difference between ‘ Pmodel_Pf’ and ‘Pmodel_PfL’ GPP is in
light use efficiency (derived either from optimality or from in situ
measurements), we label the difference in GPP as ‘data-model dis-
crepancy resolved by field traits’.

Next, the model calculates a ‘Pmodel_P’ GPP also using measured
PPFD and the above optimality-theory predicted LUE, but withMODIS-
derived fAPAR rather than in situ measured fAPAR as input. When
‘Pmodel_P’ GPP is compared to MODIS GPP, the difference originates
from PPFD and LUE (predicted by optimality theory versus from
MODIS lookup table). The differences in PPFD among GMAO (used by
MODIS68), ERA5-Land and field measurements are trivial in explaining
GPP bias (Fig. S3) and an intercomparison of climate products is out of
the scope of this study. We compared ‘Pmodel_P’ and ‘Pmodel_null’ to
show that PPFD could not explain the underestimation of GPP at the
study sites (Fig. S6). Thus, for simplicity, the difference between
‘Pmodel_P’ GPP andMODIS GPP is labelled as ‘data-model discrepancy
resolved by trait optimisation’.

To test Hypothesis 2 (incorrect fAPAR explains themismatch), we
compared ‘Pmodel_P’ to ‘Pmodel_Pf’. The only difference between
these two is in fAPAR (in situ measurements versus MODIS). We
referred to the difference as ‘data-model discrepancy resolved
by fAPAR’.

Lastly, ‘Pmodel_null’ GPP is calculated using satellite PPFD, in
which case Pmodel gets no information from field measurements,
which is a fair comparison to other models (Fig. 2).

Equivalently to comparing GPP, one could directly compare
Vcmax, Jmax, fAPAR and LUE from multiple sources (some presented
in Figs. S2 and S3). However, LUE used in MODIS GPP are not pub-
licly available and were difficult to reproduce, so we did not include
them. Since the data-model discrepancies in these variables all
cascade into GPP, we focus on visualising the discrepancies in GPP
in Fig. 3.

Hypothesis 3 (misclassification of land cover) is based on the fact
that the GPP estimated from in situ measurements, which is the mean
of data from several one-hectare plots, differs in scale from the GPP
estimatedby theTRENDYmodels, FLUXCOMandMODIS (as visualised
in Fig. S1). West African forests are extremely fragmented, and some
forest patches are smaller than the grid cell size of the models. For
example, one of the study forests, Bobiri (BOB), is a forest fragment
measuring only about 7 × 15 km (Fig. S1), surrounded by cocoa farm-
land. To illustrate this, we drew amap ofMODISGPP (with a resolution
of 500m)over the Bobiri site, covering anarea similar to a single 0.5˚ x
0.5˚ grid cell of the TRENDY models. In some TRENDY models, each
grid cell is a composite of multiple PFTs (often represented by differ-
ent fractions in different models) and those models report GPP per
PFT. Thus, we also show the PFT composition in those models of the
study sites and compare ‘forest-only’ GPP to the grid cell average
(Fig. S4). The ‘forest-only’GPPmaycontain several types of forests (e.g.
deciduous and evergreen) (Table S1). We checked each model doc-
umentation to ensure that the ‘forest-only’ GPP represents the
potential GPP of the grid cell if the whole grid cell were forests. LPJ-
GUESSwas excluded due to its TRENDYdocumentation, which advises
against using landcoverfrac to scale per-PFT data. In LPJ-GUESS, PFTs
can overlap due to age-cohorts and understory vegetation, making it
impossible to report PFT fluxes in PFT-m² and meet the requirement
that the sum equals the land fraction of the grid cell. As a result, PFT
fluxes are reported per m²-grid area, not per PFT-m². To calculate
gridcell totals, one must sum PFT fluxes across all PFTs (e.g., gpp =
sum(gpppft over all PFTs). Any scaling by *landcoverfrac is not
meaningful for LPJ-GUESS.
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Data-model comparison for climate variables and ci/ca
For Objective 3 Hypothesis 4 (i.e. bias in climate variables explain the
GPP data-model discrepancy), the following analysis was conducted.
We compared temperature and relative humidity from local weather
stations to products commonly used by vegetation models and GPP
products. TRENDY simulation used CRU-JRA; MODIS GPP used GMAO
products,whose latest version isMERRA-2. FLUXCOMreported results
forced by different climate variables products and we chose ERA5-
Land version. ERA5-Land, which has better resolution than the above,
distinguishes climate condition of the study sites well. We chose ERA5-
Land to calculate optimality-estimated ci/ca via ‘rpmodel’. We also
derive ci/ca from leaf δ13C measurements, using the method described
in ref. 60. This isotope-derived ci/ca was compared to Pmodel-
predicted ci/ca (Fig. S3). PPFD in this study is calculated from surface
incoming shortwave radiation, following74. Note that a previous data-
model comparison of climate variables for tropical forest sites77 found
ERA-interim outperform Climate Forecast System Reanalysis (CFSR),
MERRA2 and the Japanese 55-year Reanalysis (JRA55) for Africa
(including our study sites). As we found very small data-model dis-
crepancy in climate variables (Fig. S3) at the study sites, to maintain
consistency we used ERA5-Land temperature, vapour pressure and
optimality-estimated ci/ca for all Pmodel experiments. We avoid using
field measured climate variables to inform Pmodel to ensure a fair
comparison between Pmodel and other GPP products. The choice of
PPFD dataset was specific to the experiment (see simulation schematic
in Fig. 3).

Data availability
All data generated in this study have been deposited in the ‘figshare’
database under accession code [https://doi.org/10.6084/m9.figshare.
25431796]. The above includes the environmental data of the study
sites. Models and satellite outputs are too large to be uploaded, which
will be available upon request. Source data are provided with
this paper.

Code availability
All data generated in this study have been deposited in the ‘figshare’
database under accession code [https://doi.org/10.6084/m9.figshare.
25431796]. The above includes the environmental data of the study
sites. Models and satellite outputs are too large to be uploaded, which
will be available upon request. Source data are provided with
this paper.
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